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CHAPTER 1 

INTRODUCTION

1.1. A Brief Overview of Descriptor Variable and Singular 
Perturbation Theory

Descriptor variable theory depends heavily on the theory of regular 

matrix pencils which was first explored by Weierstrass in the nineteenth 

century [1]. A standard modern reference to the theory is Gantmacher [2].

A regular matrix pencil is a matrix polynomial Es-A where E and A are square 

matrices of the same dimensions and

det(Es-A) f 0. (1 . 1)

In (1.1) the determinant is formed in the obvious way by taking the deter­

minant of the corresponding matrix of scalar polynomials.

More recently, it was observed by Rosenbrock [3],[4] that the 

linear system

Ex = Ax + Bu ( 1 . 2 )

is strongly related to the pencil Es-A since Laplace transformation of (1.2) 

yields

(Es-A)x = Bu + Ex(0). (1.3)

x and u are the Laplace transforms of x and u. If E is singular, (1.2) is 

called a descriptor variable system.

In [4] Rosenbrock introduced his decomposition of (1.3) into static 

and dynamic parts along with the theory of infinite decoupling zeros. The 

decomposition uses the canonical form of a regular pencil to decompose the 

system into two parts, one whose eigenvalues are the same as those of (1.2)
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and one with no dynamics in the usual sense. The theory of infinite 

decoupling zeros is an algebraic characterization of controllability and 

observability for the static subsystem. The theory utilizes properties of 

the pencil As-E. Continuing in the same direction, Verghese et al, [5]-[7] 

carried the work of Rosenbrock further with some modifications.

Proceeding in a somewhat different direction, Luenberger (who 

originally coined the phrase "descriptor variable") concerned himself with 

time varying, discrete-time descriptor systems. In [8] and [9], as well as 

having stated basic results, he gave many real-world examples as a justifi­

cation of the development. [10] contains applications of the theory to 

the LQ regulator problem and to large-scale systems.

A third line of work has been followed by Campbell [11] who solved

(1.2) using the Drazin inverse. The Drazin inverse is a generalized matrix 

inverse, closely related to the eigenspaces of a matrix. The solution of

(1.2) can be written in terms of E, A, and B and their Drazin inverses. Such 

an approach seems less traditional than that of the others insofar as it 

completely avoids explicit use of the theory of matrix pencils.

The motivation for descriptor variable theory for the most part is 

that, in choosing variables in a physical system in a natural way, one is not 

always guaranteed that the resulting mathematical model will be in state 

variable form. In many instances the most natural choice of system variables 

may be a non-minimal set leading to a system model (1.2) with E singular. 

Luenberger gives several examples of such systems in [8] and [9],

In other situations it may not even be possible to write a state 

equation under any choice of system variables. For example, Figure 1.1 shows 

a simple electrical network with one energy storage element, A convenient
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Figure 1.

u

. An electric circuit which is not naturally described 
by a state equation.
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choice of variables might be as labeled. However, the loop equations are

Xl = _Xl " X2 (1.4)
0 = x^ + u

which cannot be manipulated into state space form. It will be shown in 

Chapter 2 that even though the circuit contains an energy storage element, the 

system order is zero. (1.4) is an almost trivial example of one sort of 

problem that can arise in system modeling. However, it is clear that in more 

complex situations when one’s intuition may not be readily applied, a 

systematic approach to such problems is essential.

We now turn to singular perturbation theory. It is difficult to 

state precisely what constitutes a singular perturbation problem. Singularly 

perturbed systems are identified as such if they exhibit certain characteristic 

features. First, there is a dependence on a parameter of some sort, usually 

real and in some sense "small." Secondly, a slight change in the parameter 

results in a change in system order. This often occurs when a small real 

parameter multiplies a derivative of a system variable. Many times, when 

the parameter is set to give a low-order system, a descriptor variable system 

results. This fact is the basis for the relationship between descriptor 

variable and singularly perturbed systems.

Existing work in singular perturbation theory is extensive. Surveys 

of the subject include [12]-[14].

1.2. Contributions of this Thesis

In this section we shall explore some of the limitations of 

existing singular perturbation theory and general directions that will be 

taken in subsequent chapters to overcome them.
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The majority of control oriented results in singular perturbation 

theory have been derived for the linear time-invariant system

A
= Al l X l +

A1 2 x 2
+

B1

U)X2
A2 1 X1

+
A2 2 x 2

+
B2

(1.5)

where w is a small real parameter and A ^  is nonsingular. There are, however, 

important cases in which system models yield singular ^* A simple example 

is given in Figure 1.2. The system equations are

X1 X1 x2
-cox̂  = x^ + u.

(1.6)

Here = 0 and the results of [15]— [17] are not applicable. There are only 

a few results available concerning singular A^  (see [20]).

There are many instances in which systems may not be conveniently 

modeled in the form (1.5) even if singularity of A^  is allowed. Consider 

the operational amplifier circuit of Figure 1.3. Assuming an ideal amplifier, 

the system equations are

+ X^ = —x^ - u 

WX2 = ~X2‘
(1.7)

(1.7) seems to be the most natural (i.e. most intuitively meaningful) de­

scription of Figure 1.3. Yet it is not clear how to transform (1.7) into 

the form (1.5). One might try to diagonalize the matrix of coefficients of 

x^ and x^> but this would lead to a similarity transformation which is 

singular at w = 0. Thus system equivalence between (1.7) and the transformed 

system would be lost at w=0. Other attempts at standardizing the model 

must all lead to a loss of the natural interpretation inherent in (1.7) of 

the parameter and system variables.
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u

Figure 1.2. A singularly perturbed system with singular A ^ .
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xl

Figure 1.3. A singularly perturbed system which is not naturally 
representable by the standard form (1.5).
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Actually, a more natural interpretation of the system of Figure 1.3 

would include two parameters, one for each parasitic capacitance. This 

brings us to the problem of generalizing the system parameter. It is easy 

to think of many examples where the most intuitively pleasing model formula­

tion requires several parameters. However, little work has been done in this 

area. Most results can be applied only to systems of a highly restrictive 

form [18],[19].

Singular perturbation theory is primarily a qualitative theory.

Its purpose is to give insight into the nature of the perturbations of system 

related quantities that occur as a result of slight changes in system 

components. Quantitative results are scarce. In fact, the existence of 

practical numerical bounds on the variation of system related quantities 

would render most convergence results obsolete since bounds contain much 

more information than a simple statement of convergence. Singular perturba­

tion theory is mainly a means of obtaining insight into the variational 

characteristics of a system and, in particular, of obtaining information 

about a high-order model by examining one of lower order.

Given a particular physical system it is clear that one may mathe­

matically characterize it with a large number of parametrically dependent 

models. One task of those who apply the theory is that of choosing the model 

that supplies the most information. Since the information to be gained is 

basically qualitative, it makes the most sense to choose system parameters 

and variables which have direct and intuitively clear relationships with 

physical quantities in the system. It is true that singularly perturbed 

models of an extraordinary nature may in some cases be manipulated into 

something resembling a standard form. However, it is unavoidable that such
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manipulations at times must diminish the intuitive power of the model 

resulting in a loss of information provided by the theory. It is for this 

reason that a more general theory is needed.

The main contributions of this work are 1) the reformulation of 

the singular perturbation problem to include system models which cannot be 

naturally put into a standard form, 2) the extension of existing control- 

theoretic results of standard singular perturbation theory to the more general 

class of system models, and 3) the unification of descriptor variable and 

singular perturbation theory for linear, time-invariant systems. It is hoped 

that this thesis will be viewed as a fresh look at the singular perturbation 

problem. Whenever possible, results are stated in coordinate-free or geometric 

terms. This is done in order to increase conceptual clarity. In this way 

the reader is freed from the burden of having to keep track of changes of 

coordinates which would appear in any discussion of structural properties and 

would necessarily depend on the perturbation parameter. The value of the 

geometric approach has been established by Wonham [21] and others. Part of 

the last chapter is devoted to alternative algebraic formulations of the 

problem. This is intended to give further insight into the nature of 

singularly perturbed systems.

It should be stressed here that even in the linear time-invariant 

case the structure of generalized singularly perturbed systems can be 

extremely complex. Many pertinent questions cannot be answered easily.

1.3. Chapter Survey

The thesis is divided into two main parts: ideas concerning

descriptor variable theory (Chapters 2 and 3) and singular perturbation theory
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(Chapters 4-7). In Chapter 2 the decomposition theory of Rosenbrock [4] 

is interpreted in geometric terms. It is shown that there is a natural 

decomposition of the state space into independent subspaces that span the 

whole space, including Rosenbrock’s decomposition on the system. Chapter 3 

carries the geometric approach further by defining controllability of descriptor 

systems and studying the interplay between controllability and linear non­

dynamic feedback. The geometric structure of closed-loop systems is studied 

in the tradition of Wonham.

In Chapter 4 we begin the study of generalized singularly perturbed 

systems with the definition of such systems and with an extension of the 

geometric decomposition described in Chapter 2 to a region of the parameter 

space. Under this decomposition a singularly perturbed system consists of 

two subsystems which are consistent with the partitioning of the system 

eigenvalues into slow and fast modes. Chapter 5 is a study of the variation 

of the trajectory or solution of a system under small pertutbations. Some 

conditions are given under which a small perturbation in system parameters 

results in a small change in the system trajectory. Chapter 6 is a study of 

the behavior of certain basic structural properties such as stability, 

controllability, and stabilizability that results from a perturbation of 

the system.

The linear quadratic regulator problem is considered in Chapter 7, 

Conditions are established under which the optimal control, trajectory, and 

cost change only slightly as a result of a small perturbation in system 

parameters. Finally, Chapter 8 contains some alternative ways of looking at
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descriptor variable and singularly perturbed systems. Previous results are 

interpreted in new ways and basic conclusions of the thesis are stated.
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PART ONE

DESCRIPTOR VARIABLE THEORY
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CHAPTER 2

GEOMETRIC DECOMPOSITION

2.1. Problem Formulation

To facilitate the development in later chapters and to gain insight 

into the structure of descriptor systems we shall be concerned in this chapter 

with the decomposition of a given system into two subsystems. The decomposi­

tion has already been achieved in [4], for example, using analytic techniques. 

However, the geometric structure of the decomposition has not been described 

elsewhere. We shall parallel the development of the analytic decomposition 

for descriptor systems with geometric interpretations given at each step.

It will be seen that the natural response of one subsystem is a 

linear combination of the Dirac delta and its derivatives. Hence it will 

be called the "fast" subsystem. The other subsystem will be called "slow" 

since it is a state variable system with exponential natural response. It is 

emphasized that the terms slow and fast refer merely to the natural responses 

of the two subsystems of the original open loop system. The character of 

the trajectories of the two subsystems may change drastically when feedback 

or an external control is applied. The terms "dynamic" and "static" seem 

to be preferred by some authors. However, since we are ultimately concerned 

with singular perturbation theory, the terms slow and fast seem more 

appropriate.

Let X and U be complex Euclidean spaces with dimX=n and dimU=m,
2 2X and U have inner products and norms related by < x,x) = II xll and (u,u> = ||u||
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1 2for x£ X, uE U. ’ We shall consider only linear maps associated with X and U.

Let Hom(U,X) be the C-vector space of homomorphisms from U into X where C is 

the complex plane. We choose to make the distinction between homomorphisms 

and matrices in keeping with the philosophy of coordinate-free representations. 

Hom(X,X) is the C-algebra of endomorphisms on X. Hom(X,X) has identity element 

I. If AG Hom(X,X) and S is an A-invariant subspace of X then let A|SEHom(S,S) 

be the restriction of A to S. The identity map in Hom(S,S) will also be 

denoted by I. If S is not A-invariant then A[Sg  Hom(S,X).

Let A^eHom(X,X), i=0 ,. . , ,v and choose a basis ft of X. We denote 

by det(A^sV + •••+ A^s+ Aq) the determinant of the polynomial matrix
r V V , . 1  , 0 - , ,  . r k . / . V ,  , . , , , .[a. . s +***+a..s + a,.j where Mat o Â  = [a. . J . det (As + • * * + A- s + A ) is lj ij ij » Tc ij v 1 o
independent of the particular choice of ft .

We shall consider dynamical systems described by differential 

equations of the form

A x V + * * * + A x  = B u Tr+ * ,* + B u  (2.1)v o it o

where B^EHom(U,X), i=0,...,Ti and superscripts denote differentiation with 

respect to t. A^x1 and B^u1 are to be interpreted in the obvious pointwise 

sense. The class of admissible controls is taken to be the set of all general­

ized functions (or distributions; see [24] and Section 5.1) with range in U that 

are identically zero on (-°°,0). The admissible controls form a C-vector space

denoted by Jj (U) .o

^Throughout the thesis all inner products are denoted by < .,•), 
and all norms by || *11 .

2 ,  . .<•,•> is conjugate symmetric.
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The system equation (2.1) can be simplified considerably by 

defining Z = XV x]JTr, jfy (X) and analogous to î o (U), and z G ^ q (Z),

vGi^^CU) according to

, v-1z = (x,...,x ,u, TT-1)
and

where x is a solution of (2.1) for a given u.

( 2 . 2 )

(2.3)

Then (2.1) may be rewritten

Ez = Az + Bv (2.4)

where E,AGHom(Z,Z) and BGHom(U,Z). Applying a control v to (2,4) corresponds 

to applying the nth indefinite integral of v to (2.1). Thus any problem 

involving (2.1) can be reduced to one in which (2.4) is considered.

Henceforth we shall concern ourselves with (2.4) only, Of course, 

the interesting case occurs when E is singular. We shall always assume that 

det(Es-A)1 0.

2.2. System Decomposition

For simplicity, assume E,AGHom(X,X) and BG Hom(U,X) , Our goal 

is to decompose the system

Ex = Ax + Bu

k ni
into slow and fast parts. Let det (Es-A) = cb rr (s-A.) where <j>o i <
implies A.^A.. Define a(E,A) = {A ,. . . , A } and let AGC-cr(E,A),l j I k

k n -
det(AE-A) = d> 7T (A-A.) 1 1 0 

° i=l * 1

(2.5)

f  0 and i f  j 

Then

(2.6)

so AE-A is invertible. Define
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and

where

k -1 1 niS = © Ker ( (AE-A) E - -r— :—  I)
i=l A“Ai

F = Ker((AE-A) * 1E)n r

r = E n. = deg(det(Es-A)) < n. 
i=l 1

(2.7)

( 2 . 8 )

(2.9)

Clearly, r< rank E with r = n if and only if E is invertible.

Theorem 2.1 gives a canonical decomposition of X with respect to the 

pair (E,A).

Theorem 2.1: 1. S © F = X w i t h  dimS=r.

2. There exists an invertible MG Hom(X,X) such that

a) S and F are both ME- and MA-invariant

b) ME | S = I, MA| F = I

c) ME|f is nilpotent
I k nid) det(Is-MA| S) = 7T (s-A.) x.

i=l 1

Proof:J Let det (Is-(AE-A) dE) = sn d tt (s-p.) 1 where d = Em., p.^0 forn-d m ,

= i l ii=l x i=l
i=l,...,8, and i/j implies n . t  n . ^ n-d is the multiplicity of the zero eigen-i J
value of (AE-A) dE, Define

6 m.
R = © Ker ((AE-A) E-p.I) 11 i=l

and
R2 = Ker((AE-A) 1E)n d ,

Then R^ © R 2 = X, dim R^= d , and R^ and R2 are both (AE-A) ^E-invariant.

p. 28
Much of this proof was patterned after Gantmacher [2], Vol. 1,

p. clearly depends on A. However, A is fixed so we do not write 
this dependence explicitly as p^(A).
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Let J = (AE-A) 1E|R1 and J2 =(AE-A) 1E | R2. Then detCls-J^ =
6 - L

= it (s-ri.) and Jk is nilpotent. Since (AE-A) A= A (AE-A) E-I, 
i=l 1 2
(AE-A) 1A|R1 = AJ1-I and (AE-A) ^a |R2 = AJ2~I. Define Me Hom(X,X) according to

Mx - {

j’L if x£ R

(AJ2-I)_1x if xG r2

and AJ2~I are invertible since has no zero eigenvalues and J"2 is 

nilpotent. Let M=M(AE-A) Then R^ and R2 are both ME- and MA-invariant

with

m e |r 1 = m (ae-a )“1e |r 1 = j"1*^ = 1

and
MA|R2 = M(AE-A) 1A\'&2 = (AJ2-I) 1(AJ2-I) = I.

Also,
m e |r 2 = (aj2-i) x j 2

which is nilpotent and

MA|Ri = J11(AJ1~I) = AI-J11.

Next observe that

, ^  det (MEs-MA)d e t(Es-A)-----^ ----

det(Is-MA|R^)det(ME|r 2s-I) 
det M

n-d k n.
i>“ .H- II =

5 ! (s-d±) 1. Also

"1))
67T (s - ( A -

m.
^)) \1 i=l ni

have 6 =- k, m. = n.l l> d = r,
A - — = A. so n.=T^T-- Hence R = S , R0 = F. This completes the proof, n. i i A-A. 1 2i l



18

The construction of M in the preceding theorem is important so it 

will be repeated here. Let

J ± = (AE-A) 1E|S

j 2 = (ae-a )-1e |f

and let MG Hom(X,X) be defined by

Finally, let

Mx = A 1X if xg S

-1 ifX xG F

(2 . 10)

( 2 . 11)

( 2 . 1 2 )

Note that

M = M(AE-A)

= ME F, L = MA S f 1 s 1

rank L. = rank ME - r = rank E-r, f

(2.13)

(2.14)

(2.15)

Formulas (2.7), (2.8), and (2,10)-(2.14) constitute a family of 

algorithms for decomposing the pair (E,A), The family is indexed by the 

parameter A which ranges over C-a(E,A). It is fortunate that all the 

algorithms give the same end result. The following two lemmas establish that 

S, F, M, and consequently Lg and are independent of A.

Lemma 2.1: Let A^g o (E,A), 3 be any positive integer, and L^ and L^ be gener­

ated by using a fixed parameter Ag C in the algorithm (2.7)-(2.14) . Then

1) Ker((nE-A)_1E ---I)B = Ker(A . I-L )6q-A. i s
and 1

2) Ker((nE-A)_1E)3 = Ker L^

for all ri G C-a(E,A) .
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Proof: 1) First observe that

(nE-A)_1E - - ^ -  I = - - t -  (nE-A)_1(A E-A) 
i i

so if M is given by (2.7)-(2.13) (using A, not rt) we have

Ker ((riE-A) "1E  I)3 = Ker((nE-A)_1(A.E-A)) 3
i 1

= Ker((nE-A)"1M~1M(AiE-A))3 

= Ker((nME-MA)"1(AiME-MA))3

= Ker((nl-L )”1(A.I-L ))3s 1 s
© Ker((nL -I)_1(A.L -I))3 f i f

= Ker((nl-L )"1(A.I-L ))3 s 1 s

since A.L -I is invertible. Also i f

((ni-Ls)'1(Ali-Lg))B = (nI-Ls)"B(A1 I-Ls)S

since (r|I-L ) and A.I-L commute. Hence s i s

Ker((nE-A)-1E - — f -  I) B = Ker (A.I-L )6.n-A i s

2) The argument parallels that of part 1).

Ker((pE-A) 1E)3 = Ker((pME-MA)_1ME)3

= Ker(pI-L )“3© Ker((nL -I)_1L^)3s t It
= Ker L3

since (pL^-I) and commute. This completes the proof.

An obvious corollary to Lemma 2.1 is that S and F do not depend on 

A. The A-independence of M will be shown next.
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Lemma 2.2: Let J-^(A), ^(A), M(A) , and M(A) be given by (2.10)-(2.13) for

some choice of A. For riGC-o(E,A) define J^n), J2(n), M(n) , and M(n) in 

the obvious way. Then M(n)=M(A) regardless of the choice of p.

Proof: We have

M(A)E|S = I, M(A)A|F = I.

Define

Then

Similarly,

so

and

Hence

L (A) = M(A)A|S, L (A) = M(A)E|F.
S  jl

J-,(n) = (nM(A)E-M(A)A)"1M(A)E|s 
= (nl-L (A))_ 1 .

S

J2 (n) = (nLf (A) - i)_:LL f (A)

M(n) |s = n i - L  (A)
S

M ( n )| f  = n L f (A) - i.

M(n) (nM (A )E - M ( A ) A ) _1 = I

M(n) = M(n) (nM(A)E - M(A)A) 1M(A) 

= M(A)

which is the desired result.

This brings us to the decomposition of the descriptor system (2.5). 

Operating on both sides of (2.5) by M yields

MEx = MAx + MBu. (2,16)

Define P GHom(X,S) and Q £Hom(X,F) as the skew projection operators on S 

along F and on F along S respectively. Let



21

B = PMBs
and

Bf = QMB.

We may rewrite (2.16) as

(2.17)

(2.18)

x = L x + B u (2.19)s s s s

Lfxf = x + B u (2.20)

where x = Px and x_ = Qx.s f

We now have two systems acting on independent state spaces with x = x  + x^.

2.3. Trajectories and Initial Conditions

If TEHom(S,S) define e(T) : [0 ,°°) -> Hom(S, S) according to

e(T)(t) = etT. (2.21)

Then the solution of (2.19) is simply

x = e(L )Px + e(L )*B u (2.22)s s o  s s

where denotes convolution. Defining solutions of (2.20) is a more

complicated task.

Let q be the index of nilpotency of L . In [11] Campbell 

showed that for each q times differentiable u : [0,°°)-^U there exists a 

unique differentiable x^ : [0,°°)->F satisfying (2.20). x^ is given by

x r (t) = - ^ L ^ B ^ C t ) ,  (2,23)
l  i=0 ± 1

Note that no initial condition is specified, This is in contrast to the

family of solutions of (2.19), a particular solution being singled out by

choosing an initial condition x ES.so
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It has been suggested in [5] and [7] that by allowing solutions 

of (2.20) from ^(X), a distinct solution may be defined for each choice 

of initial condition x ^ e F .  The proposed solution is

q—1 i—1 i q—1 i xx = - H  L ..x - E L B u (2.24)f 1=1 f fo i=o f f

where 6̂  is the jth derivative of the Dirac delta. (2.24) was obtained 

by taking the Laplace transform of (2.20). Although the Laplace transform 

approach is quite formal and is not very satisfying intuitively, we shall 

take (2.24) to be the solution of (2.20). A more intuitively pleasing 

justification will be given in Chapter 5. We shall see that, for any 

singularly perturbed system with (2.20) as its limiting descriptor form, if 

its solutions converge to anything then they converge to (2,24),

The parts of (2.22) and (2.24) due to initial conditions alone 

serve as motivation for calling (2.19) the slow subsystem and (2.20) the 

fast subsystem. Also, we shall henceforth call S the slow subspace and F

the fast subspace.
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CHAPTER 3

CONTROLLABILITY AND POLE PLACEMENT

3.1. Reachability in the Fast Subspace

In this chapter we begin by defining controllability for descriptor 

systems. Although the idea of extending the usual state variable definition 

of controllability to descriptor systems is a fairly obvious generalization, 

it has not been proposed elsewhere.

Some authors have come close to considering controllability. 

Rosenbrock in his theory of infinite decoupling zeros [4] considered 

certain properties of descriptor variable systems which are related to 

controllability. According to his definitions, a descriptor system has 

infinite decoupling zeros if and only if the matrix [sA-E • B] loses rank 

at s = 0. It will be shown that this condition is equivalent to uncontrol­

lability of the fast subsystem as we shall define it in Definition 3.1. 

Rosenbrock's theory, however, does not address the problems of state reach­

ability and of finding controls that steer the trajectory to a specified state.

In [10] Luenberger et al. defined the concept of maintainability 

which is also related to controllability as we shall define it. Maintain­

ability guarantees that a solution exists to a certain type of tracking problem 

determined by the parameters of a descriptor system. It is clear after 

examination of the definitions that maintainability is not equivalent to our 

forthcoming definition of controllability. For our purposes it will be con­

venient to define controllability for descriptor systems in a way more closely 

analogous to the standard definition of controllability for state variable

systems.
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In generalized function theory it is often impossible to talk about 

the value of a function at a given point.’*' To avoid this problem let Ĉ (.U) 

be the C-vector space of q times continuously differentiable mappings from 

[O,00) into U (using the right-hand derivative at 0) and consider only 

controls from C^(U). Then x^ may be identified with a differentiable ordinary 

function on (0,°°), namely

q-1 i ix_ = - £ LTB^u , t > 0  (3.1)
f i=0 f f

and it makes sense to say

x (t) = -^£ L^B_pU^(t) (3.2)
f i=0 f f

for any t > 0.

The definition of a reachable vector for descriptor variable 

systems is highly analogous to that of a reachable state for state variable 

systems. Let $ : [0,°°) x C^(U) xx->X be given by

tL t (t-x)L q_i .
$(t,u,x ) = e S (Px ) + / e SB u(x)dx- £ L^B_u1(t) (3.3)

o ° 0 S i=0 f f

where u1(0) is the ith right-hand derivative at 0. Then $(*,u,x ) agrees on

(O,00) with the solution of (2.5) with control u and initial condition x .o
Definition 3.1: A vector wG X is said to be reachable from xQ e X with respect

to the system (2.5) at time xG (0,°°) if there exists a control uGC^(U) such

that $(x,u,x )=w.o
Clearly, when applied to the slow subsystem (2.19), Definition 3.1 

is equivalent to the usual notion of controllability from state variable theory.

^What is 5(0)?
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We now consider controllability of the fast subsystem (2,20), Let

(R = ImB + +f f f f + 1ImBf. (3,4)

Theorem 3.1: Let we F. The following statements are equivalent with regard

to the fast subsystem (2.20):

1) w e  .

2) There exist tg (0,°°) and such that w is reachable from x ^q

at time x.

3) w is reachable from at time x for every xe (0,°°), x^ E F,

Proof: It should be noted at the outset that the initial vector x_ has nofo
effect on the solution of (2.20) for t>0. It appears in statements 2) and

3) merely to preserve the form of the analogous theorem from state variable 

theory.

First we show that 1) implies 3). Let x r e F  and xG (0,°°) befo
given. Since wG (R£, w = w + * * . + w  , with w. G L^ImBr, i = 0,...,q-l. Sincef o q-1 i f f ’
L^ImB = Im(L^B ) , there are u.eU satisfying L'JB_u. = -w. , i=0,..,,q-l. f t  t f  i f f i i
Define uE C^(U) according to

u(t) u + o (t-x)^ + (t-x)
2 !

+ (t-x) q-1
(q-1)! q-1'

Then

$(x,u,x ) = -qE l Jb u X ( t )fo i=0 f f
q-1 ±

= - E L B u . 
i=0 f f 1

= w.

Obviously, 3) implies 2) so it remains to show that 2) implies 1),

This follows almost trivially since L^Bru.(x)G L^ImBr, Inspection of thef f l f f
definitions of $ and gives the desired result.
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3.2. Controllability of Descriptor Variable Systems

We now consider reachability and define controllability for
2descriptor systems. Let <R be the controllable subspace of the slow sub­

system (2.19).
Lemma 3.1: Let p be a nonnegative integer, xE (O,00), and

Then

x - tL tLx „
J f  = f t2pe SB B*e Sdt.3Tp J S S0

Im = (R .xp s

Proof: Let xG Kerj^ for some x,p. Then-----  xp r
x tL* 0 x _ tL tL*

/ II tPB"e Sx|| dt = / < x,t Pe SB B*e Sx> dt j  i i  s  II j s s
0 ° *x „ tL tL

= ( x, / t Pe SB^B*e Sx dt)
0

= (x , j y  x)xp

s s

= 0
JUtL"

so tPB*e Sx = 0  for all tG [0,x]. Right-hand differentiation p+r-1 times at 

t = 0 gives

B*L* x = 0, i = 0,...,r-1.s s (3.5)

Hence
r 1 -? r—1 -f r

xG H Ker(B"L" ) = n lm(L B ) 
i=0 s s i=0 s s

27—X
= ( E Im(L1B ))' 

i=0 3 3

=  (R (3.6)

‘See [21].
) j„"denotes the adjoint operator.

This is an adaptation of a proof given on pp. 35-36 of [21].
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so KerJlr C <R andTP S

<R C K e r jy  
s xp I m > 5< = I m f rxp xp

since V f is Hermitian.xp
To show the reverse inclusion let xGiR’*’. Then (3.6) holds ands

hence (3.5) does also. Recall that there exist y^ : [0,x]->C, i=0,...,r-l 

such that

tL -1 e S = y (t)I + y (t)L + ••• + y (t)Lr o I s  r-1 s

for all te [0,x]. Thus

t^Bxe Sx = E t^y. (t)B,'L''̂ x = 0 s i_Q i s s

and J Y  x = 0 soxp
xe ImJty^ = Ker . xp xp

Hence (R* 1 C K e r j t y and I m J V c  (R • This completes the proof.s xp xp s
Let <R = <R The next result justifies calling <R the controllables f ------------

subspace,

Theorem 3.2: Let wG X. The following statements are equivalent with regard

to the system (2.5):

1) wG(R.
2) There exists xe (O,1®) and x E (R ©F such that w is reachable fromo s

x at time x. o
3) w is reachable from x at time x for every x£ (0,°°), x e  (R ©F,o o s

Proof: To show 1) implies 3) let x and x q be given and let w = wg +w^,

w E <R , w ,_e<R-. Choose u. , i=0,...,q-l so that s s f f 1

q-1 i
- E L-.B-U. = w, i=0 f f 1 f
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and define u^GC^(U) by

Uf(t) = U o +  (t-T)^ + u2 + ••• + (t-T)
q-1

(q-1) ! “q-l'
Let

t (x-t)L 
■ / e 

0
B û -(t) dt E <R s f s

and choose any position integer p > ^ ~ - . Let x = x  + x,. , x e <R , x f g F,T 2 o so fo so s fotLsSince <R is L -invariant, w -e x -6£<R and from Lemma 3.1 there exists s s s so s
z£ S with

tL
TV z = w - e  x -d).Tp S SO

Define
(x-t)L*

u(t) = (x-t)2pB*e sz + u (t) .s f

Then uX(x) = u^(x)=ui> i=0,...,q-l and

l"1 i i- £ LjrB,ru (x) = w_. i=0 f f f

Also
x (x-t)L 

/ e 
0

x 2p (x-t)L (x-t)L*
B u(t)dt = / (x-t) e B B“e z dt +
S 0 s s

= y r  z +

and hence

$(x,u,x ) = w + w = w. o s f

2) follows from 3) trivially. Inspection of the definition of 

gives that 2) implies 1) and the proof is complete.

For obvious reasons, if <R=X the system (2,5) is said to be 

completely controllable and (E,A,B) is called a controllable triple. 

Implicit in the notation (E,A,B) is the assumption that det(Es-A)$ 0,
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Recall that an eigenvalue A_̂ of is called a controllable mode if the eigen- 

space of is reachable, i.e.
n .

Ker(A . I-L ) 1 C <R . (3.7)i s s

In [3] and [5] tests were established to check for the existence 

of input decoupling zeros. Although they were not originally intended to 

pertain to our concept of controllability, these tests are related to our 

definitions. We shall interpret them geometrically.

Theorem 3.3: 1) An eigenvalue A^ea(E,A) is a controllable mode of the slow

subsystem (2.19) if and only if

Im(kE-A) + ImB = X.

2) The fast subsystem (2.20) is completely controllable if and

only if

ImE + ImB = X.

Proof: 1) Let M be given by (2.13). Then

M(Im(AiE-A)+ ImB) = Im(A ME-MA) + Im(MB)

= Im(A.I-L ) + Im(A.L--I) + Im(MB) i s  i t
= (Im(A.I-L ) + ImB ) tb F i s  s

since A.L -I is invertible. From state variable theory, i f  y ’

Im(A.I-L ) + ImB = Si s  s

if and only if A^ is a controllable mode. Since M is invertible the result 

follows.

2) From (3,4) it follows that the fast subsystem is completely 

controllable if and only if (L ,B^) is a controllable pair or equivalently,

Im(AI-Lf) + ImB = F
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for all As C. This certainly holds for A^O. Hence

M(ImE + ImB) = Im(ME) + Im(MB)

= S © (ImL^+ ImB^)

gives the desired result.

3.3. The Effects of Linear Feedback

Now that controllability has been defined, we can investigate its 

bearing on problems associated with descriptor systems. As we shall see, in 

some situations it is necessary to allow controls in ̂  (U) - (U). At first

it may seem strange that controllability is a useful concept in such cases 

since it was defined entirely in terms of C^(U) controls. However, closer 

inspection reveals that controllability is essentially a structural property 

independent of the types of control driving the system.

Suppose one were to apply to the system (2.5) a feedback control law

u(t) = Kx(t) + v (t) (3,8)

where KGHom(X,U) and v E ô 0 (U), The system would then be of the form

Ex = (A+ BK) x + Bv. (3.9)

However, it is easy to construct examples where the condition

det(Es-A-BK) * 0 (3.10)

is violated. Since we do not know how to deal with such systems theoretically, 

only those K satisfying (3.10) will be considered.

Our first task is to establish relationships between the structures 

of the open and closed loop systems (2.5) and (3.9). One easy result 

concerns systems satisfying
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rank E = r (3.11)

where r is defined in (2.9). (2.15) shows that (3.11) is equivalent to

Lf = 0. If (3.11) holds then

dim(Ker E) = n-r =dimF. (3.12)

From (2.8), the definition of F, Ker ECF. Hence (3.11) implies F = Ker E 

so the fast subspace of any system satisfying (3.11) is invariant to linear 

feedback.

A more difficult result says that the feedback invariance of the 

controllable subspace in state variable theory can be extended to descriptor 

systems. To prove this we shall need a lemma.

Lemma 3.2: Let (E,A,B) have controllable subspace <R. Then the pair ((AE-A) ^E,

(AE-A) ^B) has controllable subspace (in the state variable sense) for any 

AG C-a(E,A) .

Proof: Choose A^a(E,A) and observe that

R + (AI-L )R C R + L R s s

for any subspace R of S. If x e R + L gR then there exist y, z e R  such that 

x = y + L gz. Let z = -z and y=y+Az. Then z,yeR and

x = y + (AI-L )zGR + (AI-L )Rs s
so

R + L R = R + (AI-L )R.s s

Assume that

R + L R + • • • + LkR = R + (AI-L )R + • • . + (AI-L )kR s s s s

for some k. Then
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R + L R + s + Lk+1R s = R + L R + • • • + L Rs s
+ L (R + L R + • • * + L kR) s s s

= R + L R+ • • • + LkRs s
+ (AI-L )(R + L R + *•.+LkR) s s s

= (AI-L )R+**+(AI-L )k+1R, s s

Setting R=ImBs , it follows that

<R = ImB + (AI-L )ImB + ••• + (AI-L )n_1ImB . s s s s s s

Since (R is L -invariant it is also (AI-L ) "^-invariant so s s s

<R = (AI-L )-1ImB + ••. + (AI-L )_nimB . s s s s s

We shall now prove that

f t .  = ( AL _-I) _1ImB + ( ( AL̂ --I) ”1Ljr) (AL -I)_1ImB + • • • +r t t r t t t
+ ... + ((ALf-I)"1Lf)n~1(ALf-I)"1ImBf,

For A = 0 this is obvious so assume that A ^ O  and let R be any subspace of F, 

Clearly,

n-1 n-2 2, n-3 n-1, n-1,L . R +  (AL -I)L R +  (AL.-I) L “ R +  • • • +  (AL -I) X R C  R + L ^ R +  • . . +  L ! XR.

Let 0 < k < n - l  and consider the nxn matrix T= rt..l where
ij

* « ■ <

- 1

i-j ( - l ) j if j

0 if i< j

oII•H

, n - l satisfying
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Then

ft 1 i n-i-1
i V i (XLf-I) Lf = ns1 E a. (^ (-1)1 n+j 1 1

1=0 j=0 1 3 f

n”l n“  ̂ , i N , .. j i-j_n-j-l= 3 S a .(. .) (-1) A L _
3=0 i=j 1 1“J f

= Lk Lf*

If x G R  then

k n-1 2. n-i-1Lj-x = E (AL -I) L“ (a.x)f i=0 f f 1

S l"_1R + (AL -I)l"-2R + ••• + (AL -I)n_1Rf r f f
and

R + L fR+ • • • + L 1jr1R = L^_1R + (ALf-I) L^“2R + • • • + (ALf-I)n_1R.

Setting R=ImB^ and observing that is (AL^-I) ^"-invariant gives 

(Rf = (ALf-I) ImBf + (ALf-I) LfImBf + • • • + (ALf-I)_nL* ImBf.

Note that

Lf(ALf~I) = (ALf-I)Lf

so left and right multiplication by (AL^-I) ^ shows that (AL^-I)  ̂and 

commute. This establishes the desired expression for(R^.

Finally, note that

(AE-A)_1E|S = (AI-L )_1 1 s

(AE-A)_1e |F = (AL -I)_1L ' t f

P (AE-A)_1B = (AI-L )“1Bs s

Q(AE-A)_1B = (AL -I)_1B.f f

so the pairs ((AE-A)_1E|S, P(AE-A)_1B) and ((AE-A)_1E|F, Q(AE-A)_1B) have 

controllable subspaces (Rg and respectively. Since (AE-A) Lp | g and
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(AE-A) 1E|F have disjoint spectra, ((AE-A) ^E, (AE-A) ^B) has controllable 

subspace <R = (R. This completes the proof.

Theorem 3.4: The triple (E,A+BK,B) has controllable subspace (R for all

KG Hom(X,U) that satisfy (3.10).

Proof: Let <R̂  be the controllable subspace of (E,A+BK,B). For any subspace

R of X and any A £ C-(a(E,A) n a(E,A+BK)) we have

(AE-A-BK)(AE-A)“1(ImB+ R) = (I-BK(AE-A)_1)(ImB+ R)C ImB+ R

and _
(AE-A) 1(ImB+R) = (AE-A-BK) 1(ImB + R)

since AE-A-BK is invertible. Applying Lemma 3.2 gives

<R = (AE-A)_1(ImB + E(AE-A)_1(ImB + E(AE-A)_1(...(ImB)•••)))

= (AE-A-BK)_1(ImB + E(AE-A-BK)_1(ImB + E(AE-A-BK)_1(•..(ImB)•••)))

= %

and the proof is complete.

Henceforth, for notational simplicity, we shall denote the relevant 

subspaces and operators of the closed loop system (3,9) by S^, FR , M̂ ., LgK, 

LfK, etc.

3.4. Slow Feedback

Besides feedback invariance of the controller subspace, there 

does not appear to be much that can be said in general relating structural 

properties of open loop descriptor systems to those of closed loop ones. 

Fortunately, the pole placement problem can be dealt with by feeding back 

the slow and fast trajectories separately. The induced structural changes
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can then be more easily characterized. In this section we consider feedback 

in the slow subsystem. That is, we apply a control u = K x + v  with

Ker K 3 F . (3.13)

Let
K = K | S s 1 (3.14)

and let 4ig ” (e^,. . . ,e ) and if = (er+1>•••>en) be bases of S and F

respectively. If fi =(e^,..., e ) then n

Mat (MEs-MA-MBK) =ib

Mat (Is-L -B K )s s s s

MatB B (-Bf Vf s
Mat ... Hi

0

(L s-I)
f

(3.15)

Clearly, the eigenvalues of the closed loop system (3.9) are those of the 

operator Lg + B^K^. Hence we have the following extension of a well known 

result from state variable theory.

Theorem 3.5: An eigenvalue A_̂ of the descriptor variable system (2.5) can

be shifted arbitrarily by applying slow feedback if and only if the eigenspace

of A. is contained in (R . l s
From (3.15) it follows that the dimensions of the slow and fast sub­

spaces do not change when feedback is applied. In fact, the next result says 

that the fast subspace and fast subsystem are essentially unchanged by slow 

feedback.

Theorem 3.6: If K satisfies (3.10) and (3.13) then

fk = F

L _ = L _fK f
and (RfK ll a Hi

Proof: Choose Ae C- (a ( E, A) Ho(E,A+ BK) ) and observe that
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Mat ((AE-A-BK) 1E)
Mat ( AI-F -B K ) 1 0i)3 s s s

Mat6 B (XL - D - ' B ^  tXI-L -B K J-1 Mat (ALf-I)-1Lf
f S f

Clearly,
F = Ker((AE-A-BK)_1E)n”r = F.K

Also, (3.13) implies

(AE-A-BK)_1E|F = (AE-A)_1e |f

SO - _i -1 -
Mr |f = (AJ^-I) = (XJ2_I) = M IF

F = M(AE-A)_1e |f = L .

Finally, <R = <R n p F = F, and Theorem 3.4 together imply (R =($?_ so the iK K K K rK r
proof is complete.

It is easy to construct examples where B ^ B~, Nevertheless, asrK r
we have just seen, the open and closed loop systems have the same fast 

controllable subspace.

and
LfK = MK (AE“A_BK)_iE

3.5. Fast Feedback

Consider the control law u=Kx + v with

and let

Ker K 3 S 

K = K|F.

(3.16)

(3.17)

Then
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Mat (MEs-MA-MBK)
Mat B ( I S - L s }  s

0

Mat

Mat
&

q (-B K_)U U r S fs f
(L s-I-B K ) 

f -

(3.18)

Clearly, the eigenvalues of the open loop system are also eigenvalues of the 

closed loop system. But det(L^s-I-B^K^) in general is not a constant poly­

nomial so fast feedback may induce additional modes in the system.

If some of the roots of det (L ..s-I-B _K.) are also eigenvalues of Lt i t  s
then it is difficult to find a relationship between the open loop and closed 

loop eigenspace structures. However, this can be easily avoided as we shall 

now see.

Let X  denote the subspace of Hom(X,U) consisting of all T 

satisfying Ker T C S and let 7 c X  consist of all T satisfying det(L^s-I-B^T^) £ 0 

and such that

a (Lf,I + BfTf) na(E,A) = <j) (3.19)

where T ^ = t |f . Let

II Til = sup{||Tx|| |xeX,||x|| = 1}. (3,20)

Proposition 3.1: 7 is open relative to X  •

Proof: The proof will be postponed until Chapter 4. See the discussion

following Lemma 4.3.

Corollary: There exists e > 0  such that TE?C and IITII <e together imply that

TE I .

Proof: Obviously O e T so the result follows immediately from the proposition.

We next establish a threefold decomposition of the closed loop

system. Let
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det(L_s-I-B,.K,-) = ¥ tt (s-8.) f f f o p=p 1
si (3.21)

where ¥ ^0 and i implies 8. 4 8.. Henceforth we assume that K g  J so 8. ^ A, o l j i J
for all i,j. Let AG C-a(E,A+BK) and define

h _i iD = © Ker ((AE-A-BK) E - I) .
K i=l A

(3.22)

Lemma 2.1 guarantees that D. is independent of A.
K.

Theorem 3.8: 1) S„=S©D„.K K
2) S and are both M^E- and M^.(A+BK)-invariant with

M^A+BK) | S = Lc

3) fis K = fls ® DK-
Proof: 1) Let AE C-a(E,A+BK) and define

r -1 1 niS = © Ker ( (AE-A-BK) E - ) .i=l A-A

Then S = S © D . Let xE X with x = x., + x0 , x E S, and x„GF. Then Jx K X Z X Z
(AE-A-BK)_1Ex = (AI-L )_1Xl + (AI-L )“1B L ( A L  - I - B X J ^ L as 1 s s t f  tt tz

+ (AL -I-B K .)_1L x„f f t  t l

and there exists N e  Hom(F,S) such that

k -1 1 ni k( (AE-A-BK) E - —  I) x = Nx0 +
i=l

Since K E J  , --- - is not an eigenvalue of (AL^-I-B K ) ^L  ̂ soA-* A # r X X X

1 1 n '
it ((AE-A-BK) E - ~ -  I) Xx = Nx0 + tt ( (AL -I-B K ) L, - —  I) Xx_ .i=1 A—A. Z - „ -i l X X  X A—A# Zx x i x— X i

(ALf-I-B^K^) XL̂  -— -—  I is invertible. Thus, if xE S we have x = 0 andf f f A- A. 2
xE S. Conversely, suppose x e S. Then

of (AE-A)
5

-1See the proof of Theorem 2.1 for a discussion of the eigenvalues E for any E and A with AE-A invertible.
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K - 1 1  itt ( (AE-A-BK) E i—  I) x = 0
i=l A-A±

and xG S so S = S.

2) We have immediately that S and D are (AE-A-BK)K
J1K~ and M^-invariant, and hence M^E-invariant. From 

(AE-A-BK)_1(A+BK) = A(AE-A-BK)_1E-I

M^CA+BK)-invariance of S and follows. From (3.16), 

(AE-A-BK)“1E|S = (AE-A)_1E|S

SO - -1 _ i
M^lB = J - K |S = I "  - M | S

and _
MR (A+BK)|S = AE-A-BK) a |s

= m (ae-a )_1a |s

= L . s

3) Clearly,

Im($iME-MA-MBK) + ImMB = S (Im(3±Lf-I-BfK )+ ImB ) 

For x g F let x^ = (3^L^-I) ^x and x^ = K^x^. Then

and
^ i Lf-I-BfKf )xi + Bfx2 = x

Im(3.L -I-B K ) + ImB_ = F.i f  f f f

Hence, from Theorem 3.3, part 1), D C <R. Also D C S soK K K

D C f i n s  = <R .K K sK

Furthermore, by Theorem 3.4,

& = finsCfi n s  =fl i;s K K sK

E-invariant,
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so
% K D R s ® \ -

To prove the converse let

x e « sK = fiKnsR - fin (s ® dk).

Then xG(R and there exist yG S, z G D  such that x=y+z. But y = x-z G <R + D = <RK K
so

and

x£ (<Rn  s) ©D„ = <R ©DTrK s K

fiSK C «s ® Dr

This completes the proof.

Theorem 3.8 is analogous to Theorem 3.6. It states that the closed

loop system consists of three subsystems: one acting on the open loop slow

subspace S with eigenvalues and controllable subspace ^ , one which is

completely controllable acting on D with the induced eigenvalues 3., and aK l
fast subsystem acting on F , Although there is considerable structuralK
reshuffling, the controllable subspace of the overall system (R remains 

unchanged,

If rank E = r  then we can go even further. We already know that in 

this case the fast subspace does not change when feedback is applied. Since 

SC and S ^ © F = X  it follows that S = S  . The next result says that not only 

are the slow and fast subspaces unchanged, but the entire system is essentially 

unaffected. This would seem to indicate that applying fast feedback to such 

a system is pointless. Recall that rank E = r  implies L^=0 so I + B^Kf must

be invertible for det(L^s-I-B l r)£ 0 to hold.f f f
Theorem 3.9: If rank E = r  and K satisfies (3.10) and (3.16) then L T = L ,-----------  sK s

LfK= °> BsK= B s(I-Kf(I+BfKf)'lBf)> and BfK= (I+B£Kf)-1Bf.
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Proof: Since F = Ker E , L = | F = 0. Also, if A G C-ct(E ,A+BK) then

J1Tr = (ae-a-b k )_1e | S = (ae-a )-1e |s = (AI-L )-1iK s
and _ 1

LgK = M^AE-A-BK) (A+BK)|S

= j7J(ae-a )_1a | sIK
= L .s

Next we have

PMr  = J ^ P

so _1 -1
PHr B = J1KP(AME-MA-MBK) mb

“ J5 a i -Lsr l B s- (AI-Ls)"lBsKf(I + BfKf)_lBf) 
= Bs(I-Kf(I + BfKf)_1Bf).

Finally,

Q \  “ (AJ2K-I)_1q
80 -1 -1QMkB = (AJ -I) Q (AME-MA-MBK) MB

= -(AJ2K-I)_1(I+BfKf)“1Bf.

Biit
JOT_ = ( e-a -b k )-1e |f = 0

which gives the desired result.

To conclude this chapter we consider the problem of eliminating the 

impulsive portion of the fast trajectory (2.24) by applying fast feedback.

The result that we shall obtain says that it is possible to eliminate 

impulsive behavior if and only if the fast subsystem (except for the part 

acting on Ker L^) is controllable. First we need a lemma.

Lemma 3.3: Let Y and Z be finite-dimensional C-vector spaces with dimY= dim Z .

Let NGHom(Y,Z) and GG Hom(U,Z) . There exists HG Hom(Y,U) such that N + GH is

invertible if and only if ImN+ImG=Z.
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Proof: If N is invertible then the result is obvious. Let N be noninvertible

and choose bases of Y, Z, and U. The existence of an appropriate H is 

equivalent to controllability of the mode 0 of the pair (MatN, MatG) which 

is equivalent to

ImN + ImG = Z

so the proof is complete.

Let F/KerL^ be the quotient space of F modulo KerL^,

We Hom(F,F/Ker Lf) the canonical surjection, and L^ the induced map of L^. 

Proposition 3.2: L^ is nilpotent with index of nilpotency q-1.

Proof: L^ is uniquely defined by WL^= L^W. Assume

Then

WL^ = L^W. f f

WL^+1 = L^WL_ f f f

(3.23)

Hence (3.23) holds for p= 1,2,3,...

Next, note that if xG ImL^ then there exists yG F with x = L^~ y.

Thus L ..x = L^y = 0 and f f

so

ImL^ 1 C Ker L = Ker W

L^ XW = WL^ 1 = 0

-q-land, since W is a surjection, L^ =0.

On the other hand, there exists ye F with L^ “̂y ̂  0 so

ImL^ 2 Ker L_. f f
Thus

l J 2w = w l ^ 2 ^ 0

and L^ 2 ̂ 0. This completes the proof.
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* ALetting B^ = WB^ and x^(t) = Wx^(t), we may define the quotient system

L̂ x̂ . = x^ + B^u. (3.24)

Since L is nilpotent, (3.24) has similar structural properties to those of

the fast subsystem (2.20). In particular, from Theorem 3.3, part 2) it

follows that (3.24) is completely controllable if and only if

ImLj, + ImB_ = F/Ker L r . We shall make use of this fact in the final theorem f t  f
of this chapter. Note that no 6-functions are present in (2.24) if and only 

if Lf = 0.

Theorem 3.10: The following statements are equivalent:

1) There exists Ke Hom(X,U) satisfying (3.10) such that L =0.r K
2) There exists KG Hom(X,U) satisfying (3.10) and (3.16) such that 

LfK=°-
3) ImL _ + ImB - + KerL, = F.f f f
4) The quotient system (3.24) is completely controllable.

Proof: Choosing bases of S and F, it is clear from the matrix representation

of- Ex-MA-MBK that, for any K,

deg(det (Es-A-BK) ) = r + deg(det (L^s-I-B K_p) ) .

From (2.15), L =0 if and only iflK

deg(det(Es-A-BK)) = rank E

or equivalently,

since

deg(det(Lfs-I-B K )) = rank Lf 

rank E = r + rank L^.

Whether or not L_^=0 is therefore determined solely by the action of K on F.
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The behavior of K on S is irrelevant and the equivalence of 1) and 2) 

follows.

Choose a basis = (e.,...,e ,e , - ,. ..
1 Px P-l+1 P, e > • • • 1 1  >•• • )

pd-i+1 pa
of F so that Mato L r is in Jordan form with d blocks of sizes p ., -p , . Let n f i+l rx
Mat^ (I + B^K^) = [h_ ] . A straightforward but notationally messy calculation 

yields that the (rankL^)th coefficient of det(L^s-I-B^K^) is just det© 

where, setting pQ = 0 , © = [0 ] with

0 . . = h .U  Pi.Pj.i+l

1) is equivalent to det © ̂  0 for some K^. Note that

and

Let

ImLf = span{e | j = p ^ + l , .  . . .p^l; i=l,...,d}

Ker L„ = span{en ,e e .
f  ̂ 1 ’ p^l* pd-l+1

T = span{e ,e ,...,e }.
P1 P2 Pd

Then dim( Ker L^) = dim T and 1) is equivalent to the statement that

P_T _ (I + B_e.Kr) I Ker L r is invertible for some K,_ where _ is the skew TImLf f f 1 f f TImL
projection operator on T along ImL_. Let V = P__ T . Thent IImL^

V(I + B K )IKer L = VIKer L + (VB_)(K-IKer L _)f t 1 t ' ± f t '  f

and from Lemma 3.3 an appropriate K^ may be found if and only if

V(Ker L + ImBj = ImV|KerL^+ ImVBx = T. f t  1 f f

Hence we have arrived at the equivalence of 3).

Complete controllability of (3.24) is equivalent to

ImL^ + ImB^ = F/Ker L^

so the equivalence of 3) and 4) follows from elementary arguments.
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Since 1) implies 2) in Theorem 3.10, we are guaranteed that if the 

impulsive behavior of the fast subsystem can be eliminated by feedback then 

it can be eliminated by fast feedback. Theorme 3.10 may be interpreted as 

a pole placement theorem concerned with shifting poles at infinity into the 

finite portion of the complex plane. Theorem 3.S says that the shifted poles 

correspond to controllable modes and can thus be placed arbitrarily.

3.6. A Two-Stage Pole Placement Procedure

The following design procedure can be used for pole placement in the 

overall descriptor system. First, calculate the decomposition for the given 

open loop system. If the fast subsystem modulo Ker is completely 

controllable then any impuslive behavior can be eliminated by applying fast 

feedback as outlined in the corollary to Proposition 3.1 and Lemma 3.3.

Second, calculate the decomposition of the closed loop system after 

fast feedback has been applied and shift the poles of the slow subsystem as 

desired. The properties listed in Theorem 3.8 make calculating the decompo­

sition easier.
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PART TWO

SINGULAR PERTURBATION THEORY
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CHAPTER 4

DECOMPOSITION OF GENERALIZED SINGULARLY PERTURBED SYSTEMS

4.1. Preliminaries

As shown in Chapter 1, there is a need for a singular perturbation 

theory which not only unifies existing theories, but also extends them to 

a larger class of systems. In this Chapter, after defining the generalized 

singularly perturbed system, we shall develop a geometric decomposition of 

the system into slow and fast subsystems. Such a decomposition will have 

use in Chapter 5 in the study of the behavior of the solutions of (4.8).

It will also be useful in studying the behavior of the solution to the LQ 

regulator problem in Chapter 7. For the standard form (lc5), approximate 

decompositions already exist (see, for example, [15]). We shall take a 

somewhat different approach from what has been done in the past, extending the 

geometric decomposition developed in Chapter 2 to systems defined on a para­

meter space. The decomposition will be exact in contrast to the approximate 

decoupling result of [15]. In order to develop the theory we shall need certain 

mathematical concepts. Consider the set 7T( of all subspaces of X. For any 

R G74 let P £Hom(X,X) be the orthogonal projection operator on R. Define 

p: 7/\ -» [0,o3) by

p(R,T) = ||pR - PTH. (4.1)

It is shown in [33], pp. 69-71 that p is a metric with values in [0,1] and 

that p(R,T) = l if and only if either R1 H T / 0 or RflT^^Oo From a 

dimensionality argument it follows that p(R,T) =1 when dim R/dim T 0 p can 

be thought of as a generalization of the angle between subspaces.
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Let Q be a topological space (see, for example, [28]) and choose

U)o € Q 0 If R : Q -*fy[ is continuous at with respect to p, it will be useful

to construct a convergent basis for R0 To do this we need a pair of lemmas

Lemma 4.1. Let y, e_̂  : Q -*X, i = l,...,n be continuous at with (e^(go) ,<,.<>

en (^)) a basis of X for all a)£Q. If ct\: Q^C, i = l,0..,n are defined by

y(co) = a (ou)e, (cd) + ... + a (oj)e (cu) then each a. is continuous at ou . i i n n i o
Proof: Define L : Q-»Hom(X,X) according to

L(uj)ei(aJo) = ei(ou) , i = l,...,n0

Then L is continuous at oi and L(o)) is invertible for each cotQ. Taking

the inverse of L(u)) corresponds to a continuous function on the topological

subspace of invertible endomorphisms in Hom(X,X). Hence ou^L^)  ̂ is

continuous at cju <> It follows from o

||l (03) ^y (cr>) - L(ouo> 1y ((oQ) !l ̂  I |l (co) ^-LC^) 1||||y(uj)||

+ I!l (w0) 1lllly((i) * y(a)o)||

so u>“*L(uj) is continuous at ouq . Define £ :Q->C according to

L(tt)“Ly(^) = 3, (uo)e (u> ) + . 0 0 + P (ou)e (co ).1 l o  n n o

Then each 3. is continuous at co . It follows that r o

y((ju) = L ( t u ) ( P ( C D  ) + ... + 3 (uj)e (co ))o n n o

= ̂  (co)e (co) + . o. + 3 (oi)e (co)I I n n

so ql = j3̂ , i = l,...,n and the proof is complete.

Lemma 4,2. Let L : Q->Hom(X,X) be continuous at co with (v^,.0.,v^) a basis

of Ker L((t )e There exists a neighborhood V of id and maps e. :V-»X, o o 1
i = l,...,p such that
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1) e^ is continuous at (Dq, i = l,...,p.

2) ei((Uo) = v., i =

3) (e-̂ (oj) ,... ,e (cju) ) is linearly independent Vu)€V.

4) span {e (a)),...,e (co)} ̂ Ker L(w) V tu € V.i. p
5) ou-^span {ê (aj) ,... ,e (̂0))} is continuous at u)Q.

Proof: Choose a basis (b..... b ) of ImL(u) ) and define c. : Q-*X.-----  v 1* n-p7 o7 l 9

i = l,...,n-p according to ĉ (ou) = L(U)) b^. Then ĉ (o)) £ Ker L (<ju) ̂ . Further-
* .more, (b-,... ,b ) is a basis of Ker L(co V -1 so ( c 1 (ua ) , .. . ,c (oj )) is a 1 n-p v o v 1 o n-pv o77

a , n-pbasis of ImL(UJo) =Ker L ^ )  . Since the points in X which correspond

to linearly independent sets of vectors form an open set, there is a

neighborhood of U)q throughout which (c-̂  (<o) ,...,cn_^ (ou) ) is linearly

independent. Taking the adjoint corresponds to a continuous function on

Hom(X,X) so a)-»L(ao) is continuous at o)q. ||c (̂(ju) - (cuq) li ̂  i!l (o>) - L((Dq) || [|b̂
gives that c^ is continuous at ojq , i=l,...,n-p.

Applying the projection theorem (see [27], p. 56) yields the 

orthogonal projection 3 ^ (uo)ĉ (cd) + ... + 3̂  n_p(to)cn_p(̂ ) °f on span 

[ĉ ((d) ,...,c^ p(au)} c:Ker L(̂ )-1 where 3^ :V^~*C is given by
— - — j - -

< c 1 (uj),c l(aj)>  ... < c 1 (uj) ̂ n _p (a))>
—

< v i5C i ( UJ)>

• •
<c (au) , c n (cd) >  ... <c (cd) , c (id) >  n-p 75 1 7 n- p  75 n - p v 7 5 , n - p (“i < V  , C ((d) >  i n-p

Clearly, each 3. . is continuous at u) .ij o
Define e^ on by

ei<“) =vi • (811W c1(») + ' " + P i|n.p W cn. p W )

Then each e. is continuous at ca> . Also, 1 o 3
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v j _  span {c (i» ) cn-p (a) )}o

so e.(u) )=v., i = 1, ... 3p and there exists a neighborhood Vcv, of u) i o i 1 o
throughout which (e, (a>) ,..., e (oj) ) is Linearly independent. Restricting

r

e^ to V, 1) - 3) hold.

Since

ei(oj)€span [c l (<u) ,... (0))} -1,

from a dimensionality argument it follows that

span[e^(o)) ,... ̂ e^O)} = span{c ̂ (cu) ,... ,0 ^ (cu)}-1 =)Ker L(ou)

for all cu G V . F ina 1 ly 3 let x^X. F rom lemma 4 • 3 ther e exis t cy, i Q “* C 5

i = l,...,n, continuous at &1 , such that 7 o

X = Qf1(u3)e1(0)) + ... + ^ p (cr)ep (aj) + ap+10*0 c i (uj) + •.. + (u;)cn_p (a))

for all o)6v. Then

P r , . , . ix = or, (^e, (ct) + ... + a (au)e (u>)spanle1(a)),...,e (a))j lw  lw  P P

so tr —* P r , . , N •) is continuous at cu and so is oo -> spanfe. (cjo) ,.. . ,spanle^au) ,... ,e (U))j o c lv
ep (w)}. This completes the proof.

Corollary; Let (v^,...,vp) be a basis of R(o)o). There exist a neighborhood

V of a) and maps e. : Q-»X, i = l,...,p, continuous at (U , with e. (u) ) = v . J o 1 o l O l
i = l,...,p and (e^ (oo) ,..., ep (o>) ) a basis of R(uu) for each cu€V.

Proof: Since R is continuous at at , dim R(uj) =p for all uj in some neighbor­

hood of uj . Setting

L((r) I ‘PR(cju)

and applying 1) -4) give the desired result.
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We shall shortly be considering parametrically varying linear 

operators. Unfortunately,their domains may also depend on a parameter. 

Hence, in order to talk about continuous behavior locally about the 

singular point, it is necessary to topologize the set

x  = R h r ( Hom(R’R)* (4.2)

To do this define jj< :%-*Hom(X,X) according to

(T)x = '

HX if X  6  R 

0 if x &R1
(4.3)

Hom(X,X) has the topology induced by the operator norm (3.20). Let f̂(X) 

be the weakest topology on X  that makes p, continuous. The topological 

space (Z,3(X)) is pseudometrizable with pseudometric

W V  =1I^ V (4.4)

Hence, a map L : is continuous at if and only if p£>L is continuous

at in the usual norm sense. Define H(X) to be the set of all L : Q~^Z

continuous at (i) .o
If R : f i s  continuous at cu we denote by H (X) the set of allo R

L €H(X) with L(<t>) 6Hom(R(o)) ,R(ou)) for each o)6Q. If G and R(cu) =G for 

all a> then H^(X) is alternative notation for HR (X). Note that Hom(G,G)c% 

with

T IU(T) (4.5)

for any T€Hom(G,G). Thus, considering Hom(G,G) as a topological subspace 

of X , the relative topology on Hom(G,G) is the same as the norm topology. 

Therefore, L : Q _iHom(G,G) is contained in H^X) if and only if it is con-
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tinuous at ui) with respect to the norm topology on Hom(G,G).

Consider a locally continuous R : and L £Hd (X). Let V be a

neighborhood of cjû and e^,,..,e^ basis functions as described in the 

corollary of lemma 4.2. Then

Hl (uj) e± (oj) " L O o)eiO o)|| = ||m< (L (oj) ) e± (oj) - (L(tUQ) ) e± II

^ H(jjioL) (u>) -  (p,0 L) (<Do > l|||e^(cuo)|| +  |||a(L((to ) ) | |  lle^ (to) -  e i ( |̂ 0 ) II ( 4 .6 )

so uj-» L(u))ê (o)) is continuous at <a)q, i = l,...,p. It follows from lemma 4.1 

that the matrix representation of L(w), defined on V with respect to 

e.,,...,e , varies continuously with the parameter about the singular point.i. p
Proceeding similarly, let

U = Hom(U,R) (4.7)

and define v : fy-->Hom(U,X) by v(T)u = Tu for any u €u« v simply extends 

range spaces to X. Letting JJ(U) be the weakest topology on %( that makes 

v continuous, define H(U) to be the set of all L : Q.-’ fy, continuous at 0) 

with respect to «J(U). If R : is continuous at U) , let H (U) consist
O  R

of all l £H(U) with L(cu) €Hom(U,R(o))) for all u). Local continuity of 

matrix representations of members of HR (U) can easily be shown.

In dealing with singularly perturbed systems we shall consider 

only operator valued maps in HR (X) and HR (U) for some R, continuous at U)q. 

Hence, all systems that we shall consider will have locally continuous 

matrix representations. Since matrix representations are inevitably used 

in applications we are justified in developing a theory which guarantees 

local continuity with respect to the topologies b(X) and 3?(U). For 

theoretical purposes, however, abstract topological concepts are preferred
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over notions of matrix convergence since the abstract approach is coordinate 

free.

We need a few more results concerning H„(X) and H (U). LetK K
R : be continuous at uj .o
Proposition 4.1. 1) Let L £H (X) and let R(ao) be L(ao) - invariant for allX
cu€Q. Then cu -»L(a)) I R(uj) is continuous at ou .

2) If X : U-»C is continuous at u)q and L €h (X) then 

op X(cd)L(cju) is continuous at

3) If L-̂ jL^ 6 h (X) such that, for each 0)6 Q, L^(u)) and

Ln (̂ ) share the same domain, then (ju->L, (cjo) + L~ (uj) is continuous at ou . z I z o
4) If L£HL(X) and L(u)) is invertible for each (ju£QK

then ou-*L((ju)  ̂ is continuous at ^ .o
5) If G : Q a n d  v : y-*X are continuous at (D witho

R(uj) © G(oj) = X for all oj€Q then w PR(o))G ( » v (^)land ^ PG(q))R(cju)V ^  are

continuous at (JO .o
6) If B € H x (U) then «>-Pr (ib)g ((1))B(u.) and PG(o))R(u))B(«»

are continuous at cju .o
Proof: 1) Let x 6 X and e,,...,e be as in the corollary to lemma 4.2.j. p

Since PR(aj)-t = 1 " PR(UJ)’ “'■"R (U))X is continuous at ^  and e may be

constructed to form a locally continuous basis for R(m)x. As in lemma 

4.1 construct such that

x = ̂ (u^e^Cto) + . .. +an ((u)en ((jo) .

Then

^(L(U))Ir (co))x = 2  or (iu)L(u))e (ou)

Pr (uj)G( oj) 6Hom(X,R(^)) is the skew projection operator on R((jd) along G(o)).
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and u) -*jj,(L(u)) Ir (uj)) is continuous at w .
0

2 ) This follows immediately from

M<(X(co)L({o)) = X (uu)p. (L(OJ) ) .

3) The result follows from

M-C^Cgd) + L 2 (oj) = M- (L^(o))) + jj,(L2 (a))>.

4) Construct a locally continuous natrix representation with

respect to a basis (e^...^^) on a neighborhood V of The inverse of

Mat L(u)) also varies continuously at Define |S_ :V~*C according to

Mat L(uj)'1 = [P (<u)].

Choose x £ x  and construct cn f . . .  a as in 1). ThenI p
-1 P -1 P PH(L(w) )x = i§1Qfi(u,)L(tt)) ei(w) = ig1(»i(0u)j|1^ i(aj)ej (o})>.

5) Choose basis functions e.,....e for R and e e for G1 p p+1 n
and let satisfy

V (0)) = 0^ (to) (to) + ... + ĉn (to) en (to) .

Then

PR (W) G ( w)  VlC°J) = “l'(l")'61'(W) + '' • + “p<(w)ep (a,) ’

6) Let u € U. Then

Letting

V(fR(»)G(»)B("))U = PR » C W B(,)U-

v (to) = B(a))u = v(B((0))u

we have that v is continuous at to . The desired result follows from 5) ando '

the proof is complete.
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4.2. Eigenvalue Behavior

We shall now construct a singularly perturbed system. We call Q 

the parameter space and o)q the singular point. For applications, the 

importance of non-Euclidean parameter spaces is not as yet clear. However, 

for our purposes, the structure of a topological space will be sufficient. 

We shall not cloud the relevant issues by imposing additional structure on 

Q.

A generalized singularly perturbed system is a family of linear 

time-invariant systems described by

E(oo)x = A(tu)x + B(^)u (4.8)

where E, A 6 h (X), B £ h (U), and <JU ranges over Q. Furthermore, we requireX  X
that

det(E(U) )s - A(U) )) $ 0 (4.9)

and that E(^ ) be singular.

The singularity of E(0)o) and the continuity of E and A at work 

together to create the "singular" behavior of singularly perturbed systems. 

For example, we shall now see that, in general, systems of the form (4.8) 

have eigenvalues which can be separated into two classes according to 

magnitudes in a natural way.

Consider the characteristic polynomial det (E (o>)s-A(U))) of (4.8). 

Since forming the determinant involves only sums and products of the entries 

of E (to) and A(ou) we have

de t (E (oj) s -A (u>) ) =Yn (aj)sn +... + Y-^Utfs + Yq (to) (4.10)

where Y. :^-*C is continuous at cu , i = 0,...,n. Let l o



56

r =max{i I Y^(u) ) f  O] . (4.11)

Lemma 4,3. Let f (uo,s) = Yn (oj)sn + ... + Y q (uj) where Y : Q~»C, i = 0,.,.,n are

continuous at to satisfying Y , (<0 ) = ...= Y (to ) = 0. Y (CO ) t  0, r <n, but o r+I o n o r o
otherwise arbitrary. Then there exists a neighborhood V of U)Q and maps

0 , X,,... ,\ , ct. ,... ,cr : V -*C, continuous at to , with a. (to ) = 0,o' 1 r 1 n-r 5 o i o
1 = l,...,r, 0o (to)^O for all 0), and such that

f(to,s) =0o (to)(in1 (ai ((o)s-l))(i| 1(s-Xi(aj)))

for every to 6V.

Proof: Let g(U),s) = Yq (to) s11 + . . . + Yn (to) . A bound on the roots of a polyno­

mial over C given in [26], p. 62 implies that there exists at least one 

root 6^ of g(tu,s) satisfying

U)1

1
,Y (to) r n-r
-2--- S  (l-ELH)
lYr(gu)li=lU  i ' (4.12)

whenever Yr(to) ^ 0. Since Yr(tOQ) ^ 0, there is a neighborhood of to

throughout which (4.12) holds. Define on according to

a1((r)
if Y (to) + 0 n

0 if Y (to) = 0 n v '
V

The construction of guarantees that if 0 is a root of g(ou,s) then 

(Jf(to) =0. From (4.12) is continuous at with G (̂t0o) =0.

Let C(V1) be the set of all maps from into C, continuous at 

t0Q. Using pointwise addition and multiplication, C(V^) is a commutative 

ring with identity. Hence (see [25],p. 334) there exist Y0j ..*,Y ^6:G(V^)

such that
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g = ( s - a 1 )(Yosn-1 + ...+ Yrl„1)

where g is considered as a polynomial over C(V̂ ). Multiplying and equating
coefficients at (D yields Y .. (<d )=...- Y (a) ) = 0 and Y (co ) ^ 0.o J r+lv o n - 1  o ' r x o '

The above arguments may be applied n-r times yielding a neighbor­

hood V of CD and maps c. ,. .. , 0 ,...,0 : V -*C. continuous at U)n-r o 1 ’ n-r o r o
with a, (CD ) = ...= cr (cd ) = 0 such that 

1 o n-r o
. ,.n-r,, r, . , x n-r. N

g = (-i) (0 rs + ... + 0o)in1(s”cji)*

From the construction of the a. we have that 0 is not a root ofi
0 (cu) sr + . . . + 0 (cd) so 0 (u>) ^ 0 for any CD £ V . Let V = Vy n-r n-r

Clearly,

n-r
f (o),s) = (0o (o))s + ... + 0 r(a)))in 1 (ai(ci))s-l).

From the continuity of 0_̂  and a it follows that there exist X^,...,Xr :V-»C,

continuous at (jo such that o
r r0q (CD)s + ... +0r(CD) =0o(O))ini(s -Xi(0)))

for all cu£v. This completes the proof.

We thus have that the eigenvalues of the system (4.8) are 
1 1X-, (cd) , .. . ,X (CD) and  7 —r,. .., —--- 7 - 7  where X. and a. are continuous at

1 7 3 ’ r v y a-(cd) ? J o (oj) 1 1
1 n-r

cd̂  and C7 (CD̂ ) = 0. Hence there is a characteristic separation of the modes 

of all systems of the form (4.8) according to magnitudes.

It is now a straightforward task to prove proposition 3.1.

Proof of Proposition 3.1. Let with the topology induced by the norm

(3.20) and choose CD € T. Then from lemma 4.3
. p n-r-p

det (Lf s - I -Bf(u> I F)) = oc(cd) ( ^  (s -T^ (cd) )) (7^ (S.,(cd)s-1))
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for some p£n-r where <2 (0̂ ) ^0 and 6 ^(cd) = 0. Clearly,

det (Lfs - I - Bf (to I F) ) ^ 0

is satisfied throughout a neighborhood of (JD . Alsoo

\ ( “0) £ ° ( e , a )

implies

f- <j(e ,a )

throughout a neighborhood of GDq. Finally,

6 i(cju) ^ 

so

a(Lf,I + Bf(m I F)) 11 a(E,A) = 0

throughout some neighborhood of ou Hence 7 is open in Q and the proof is 

complete.

4.3. Slow and Fast Subspaces

Since the system (4.8) is a descriptor system at ii)Q, the slow

and fast subspaces are already defined at eg • We shall now extend theiro
definitions to a neighborhood of cô . From lemma 4.3 there exists a

neighborhood V of cu such that |X.((JU)| <|— r| for all uc6V. We now re-
°i^ '

define Q,=V so that the natural eigenvalue separation occurs at all points

of Q. Since we are concerned only with local properties of (4.8) about 

the restriction of Q to a neighborhood of CD causes no problems.

To facilitate the definition of slow and fast subspaces we need
the following lemma.
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Lemma 4.4. Let E, A €H (X) satisfy (4.9). Then there exists X :Q-*c, 

continuous at cu such that X(oj) 6 C - cr(E(oj) ,A(oj)) for all 03 €Q.

Proof: Let i] : Q - C  be continuous at oĵ  with 11(0)̂ ) j£cr(E(oj ),A(03 )). Then

there exists a neighborhood V of 03̂  such that Tj(a)) ^X.(as), i = l,...,r and 

|,|K U)) I < l“ ; ^ l  > i = l,...,n-r. Hence 7](03) j£ct(E (oj) ,A(oj) ) for all oj € v .  

Define X(oj) =Tj(03) for 03 €v and let A(w) satisfy A(m-).^a(E(w) ,

A(a))) for 0)6Q-V. This completes the proof.

Choosing X as in lemma 4.4 we may now define the slow subspace
at 03 as

r - 1  1SO") =Ker 1n 1((X(o,)E((u) -A (to)) E(u>) - ̂  ^  ((ju) I) (4.13)

and the fast subspace at 0) as

n-r
F(0J) = Ker ^ ( ( X ^ E ^ )  - A (03) ) _1E (OJ) -

CT. (OJ)
X(uj)o-̂ (a))-l I)

Let
, P od n

det (Is - (X (oj)E (03)-A(03)) E (03) ) = i21(s ‘ T] ) 'i03

(4.14)

(4.15)

with i^j implying li.^ T|. . As demonstrated in the proof of theorem 2.1,l(Ju juj r 7
1 . . -1X(oj)-X. (03) 1S an eiSenvalue of (X(0))E(oj)-A(03)) E (oj) and so may be identi­

fied, after proper indexing with ![.,„> i = l,...,q,a for some q - The re-
_ i  cj, (<")

maining eigenvalues of (X (03)E(03)-A(0J)) E(oj) are Y (u )0 (oj) - 1 and may be 
identified with 1 = H^j+l,. .. ,p . Hence we may give an alternate

definition of S (0)) and F (03) as the direct sum of eigenspaces. Note the

resemblance to (2.7) and (2.8).
^  n.

S(iu) = ® Ker((l(u))E(Uj)-A(U)))"1E(U)) - T). I)-1- 103
P,03

F(») =i=® +1Ker((X(a))E(iD)-A(u)))' - T^ I)
lUJ

(4.16)

(4.17)
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Clearly, the definitions (4.16) and (4.17) are equivalent to 

(4.14) and (4.15). (4.14) and (4.15) are usually to be preferred, however,

since they are given in terms of operators that vary continuously with uo 

at U)̂ . It follows immediately from lemma 2.1 that S (0)) and F(oo) are 

independent of the particular choice of the function X for all 0) €Q. From 

the definitions and the properties of and a as outlined in lemma 4.3 

it is clear that dim S(oo) =r and dim F(oo) =n-r for all id. Also, S(ou) ©F(cd) 

= X for all U). From (4.13), (4.14), and lemma 4.2 we have that S, F : 

are continuous at oo .

4.4. System Decomposition

We now extend the decomposition for descriptor systems to a 

neighborhood of the singular point. We first extend the algorithm (2.10) - 
(2.13) to all of Cl. Let J^, ; Q - * X be defined by

= (X( oo)E( cd)-A( cd) ) ‘ 1E ( cd) | S(oo) (4.18)

J2 (^) = (X(uu)E(oo)-A(ou))’'1E(oo) I F (oo) . (4.19)

Define M, M : Q-*Hom(X,X) by
f

- 1

M(oo)x = {J-j_(oo) x if x 6 S (oo)

(X(W)j (o))-i) if x €F(cd)

and

(4.20)

M(cd) -M(uj) (X (oo)E (oo)-A( oo) ) ” 1 . (4.21)

Finally, let Lg, Lf : Q - Z  be given by



61

Lg (u>) *= \(CD)I -  J ĵ Cod) " 1 (4.22)

and

L f (<u) » ( X W ^ W - D ' ^ C oj). (4.23)

Clearly, M(ud) and M(u>) are invertible for each (JD 6 0. From proposition 4.1 

we have J-̂ , Lg6 Hg(X), J^, L^6 Hp(X), and M, M€H^.(X).

At this point we are ready to state the main decomposition result. 

Theorem 4.1. For each oj

1) S(cu) and F(ou) are both M(tu)E(u))- and M(oj)A(ou)-invariant.

2) M(co)E(a)) I S(oj) = I, M(U))A(U)) |f (U))=I.

3) M(<u)E(u>) I F(<D) = L f(a)), M(a))A(ou) | S (oj) = Lg (ct) .
4) det(Lf (tu)s-I) = .|J(a.((i))s-i).

5) det(Is-Ls(u))) = jLn 1 (s-\i(a))).

Proof: 1) - 3) follow immediately from the definitions and from

( X ( cd) E ( gu) -  A ( a ) ) ) " 1A(a)) =X(a)> (X(au)E(oo) -  A ( oj) ) “ 1E ( cu) -  I .

To prove 4) note that

n-r ^ ( oj)
dec(ls -J2(w)) = .2l(s -x((u)a_(U))

Then from (4.23) we have the desired result. 5) follows similarly by 

observing that

det (:Is - (»)) = ,5l(s - ) .

This completes the proof.

From lemma 2.2, M is independent of X and hence so are Lg and L^.

From 6 ) of proposition 4.1 we may define B €HC(U) and €H„(U) accordings b  f Jb
to
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V"*> " ps w r w B W (4.24)

and

= PF (tU)S(U))B(U,)- (4>25)

We have finally arrived at the decoupled system equivalent to (4.8). Letting 

the solution x of (4.8) be decomposed by S (<*0 and F (UJ) into x = xg +x^ we 

define the slow subsystem

xg = Lg(uj)xg + B g((u)u

and the fast subsystem

(4.26)

Lf (CD)xf = Xf + Bf (0))u.

The initial condition x is decomposed intoo

x (a)) = P„ , . „, .x 
s o K } S(u))F(u)) o

and

x n (uj) = „ . .X .fov J F(0D)S((JU) o

(4.27)

(4.28)

(4.29)

From 5) of proposition 4.1, x and x,. are continuous at d> .
5 so fo o

We have thus achieved an exact decoupling of (4.8) according to 

eigenvalue magnitudes. Continuity at the singular point has been preserved 

everywhere possible. The decomposition at u> coincides with the descriptor 

decomposition developed in Chapter 2. We shall use the decoupling results 

in a variety of situations in later chapters.
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CHAPTER 5

TRAJECTORY CONVERGENCE

5.1. Solution of Descriptor Equations

In this chapter we shall consider two questions. The first 

concerns one justification for calling (2.24) the solution of (2.20). Con­

sider the class of all singularly perturbed systems whose system operators 

converge to those of a given descriptor system. Given one member of that 

class, its solution may or may not converge as uj~*ujo . We would like to 

find the set of all possible limiting solutions of such systems. If there 

exists only one possible limit then it would make sense to call that the 

solution of the descriptor equation. Since each descriptor system is the 

limit of a singularly perturbed system, it would be convenient if at least 

the possibility of convergence of solutions existed. Of course we have to 

decide what definition of convergence of functions to use. It would be 

helpful if more than one notion of convergence gate the same result. So far 

no other author has taken such an approach to the solution of (2 .2 0 ).

The second problem is that of determining when the solution of a 

singularly perturbed system does converge. More will be said about this 

later0

We first consider generalized functions (see [24]) from [O,00)

into X and Uo Let K(X) be the C-vector space of infinitely differentiable

maps from (-“ j00) into X having compact support0 A sequence (0^) in K(X)

converges to 0 € k (X) if and only if the supports of all the 0^ are contained
i iin the same bounded interval.and 0jc“,0 uniformly for i = 1,2,3,.... The 

class of generalized functions is the set of all continuous linear func­

tionals on K(X). We shall consider only a subspace &q (X) of the generalized
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functions0 $ (X) consists of all x with (x,0) =0 whenever 0 has support

contained in (-°°,0]. In other words, (X) consists of all x such that 

x = 0 on 0 ).

If x : [O,00) —*X is Lebesgue measurable and integrable on any 
compact interval then

(x,0) =J q <x(t),0(t) >dt (5.1)

defines the corresponding x € &  (X). For v €X, the functional 6 v defined 

by

( 6 v,0 ) = (-1 ) 1 < v,0 1 (O) > (5.2)

is the multivariable generalization of the Dirac delta (differentiated i

times) 0 We shall consider the two most common topologies on ^(X), the

weak and strong topologies (see [24])„ A sequence (x1 ) in & (X) is said toxC o
converge weakly to x €& (X) if (x,,0 ) -► (x,0) for every 0€K(X). We needo x
not even consider the definition of strong convergence0 For our purposes 

it suffices to state that strong convergence implies weak convergence and 

the two limits are equal'*'.

Consider the descriptor variable system (2.5) and the class of 

all singularly perturbed systems converging to it in the sense of its de­

fining operators. We could attempt to show that there is only one limit 

for the solution to achieve, but we are already satisfied with the defini­

tion of the solution of the slow subsystem (since this is merely a state 

equation). In fact, only the natural response of the fast subsystem is in 

question since the forced response is the solution of (2 o2 0 ) in the ordinary 

sense for u £C^(U). We especially need to justify our use of the unforced

*"The three topologies on K(X) and $ (X) are all Hausdorff and satisfy the
first axiom of countability. Hence, we need consider only countable 
sequences. Also, no sequence has more than one limit.
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part of (2.24) since it does not even satisfy (2 .2 0 ).

Let Rk “*R€/?( and (T^) be in X  with T^ invertible in Hom(R^,R^) 

and -* T €Hom(R,R), T nilpotent with index q. Let v^ — v £R. We need to 

consider the solution of

T. x = x k (5.3)

with initial condition v, .k
Theorem 5.1. If e(T^ converges weakly to some limit then that limit

q-1 . , .
is t V

Proof: We have for 0 €K(X)
- 1tT q

(e(Tk‘1 )vk,0 ) = / " < e  k vk,0(t)>dt = .S1 (-l)1 < T kvk ,01-':L(O)>

tT - 1

+ ( - l ) qJ’” <T^e k vk)0q ( t ) > d t

by integration by parts. Choose an orthonormal basis (e^,...,en) of X and

let

Since

tT- 1

e vfc - a lk<C)e1+...+aA (t)e

^(t) = ^l(t)e1 + * * « + ^n (t)en

K T kq)e. = nljU^ + . . . + r t .ken .

K T kq) = 0 ^(Tk))q,

M-(T^) -»0 and Tj^.^-^0 as k-*°°. Since 0^ €K(X), we may define T. . €K(X) by

T..(t) = M t ) e . .  iJ i j

Then
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-1tT,
O k 5 LJ

j*" P̂" -~k ur
J ^ j k (t)^ t)dt <e V1,» ,-4 (t) > - C 441 J

for some , i,j=l,...,n and

(■*oo q a n r00 a
J0 < T ke > dt = i5 1J 0 < H-(Tkq)(e vk > ^ i<t)ei >dt

1 --sOO

= . 2 T|. .J a . .  (t)£. (t)dt-O.i, J=1 ijle o jkv /rxv '

Hence,

(e(Tk1 )vk’0) '’i=l( ' 1 ) 1  v t 1 v .0 1 "1 (O) > = (-’s ^ ’Vv.fi)

for all 0 €K(X) and the proof is complete.

We therefore know that the only possible limit of the solution 

of the fast subsystem (4.27) (unforced) in the weak topology on $ (X) ds 

in fact what we have been calling the solution all along. To reinforce 

this convergence argument, consider the strong topology on $q (X). If the 

unforced solution of (4.27) converges in the strong sense then it must 

converge weakly. Since the two limits must be the same, Theorem 5.1 holds 

for strong convergence as well. The labeling of (2.24) as the "solution" 

of the fast subsystem is inescapable. It should be stressed, however, that 

(2.24) can be called the solution only in the limiting sense. Once again, 

it does not satisfy the equation (2 .2 0 ).

5.2. Sufficient Conditions for Convergence

Although the previous section shows that only one limiting solu 

tion of a singularly perturbed system can exist, the question of whether 

or not that limit is actually achieved is still unanswered. In this sec­

tion we shall develop conditions which guarantee convergence of the solu­

tion as tt̂ o) .
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For several reasons it is important to know if the system trajectory 

converges with ou. Since in practice a descriptor system can usually be 

viewed as the limit of a particular singularly perturbed system, establish­

ing trajectory convergence serves as justification for considering a des­

criptor system as a viable model. A descriptor system which has not been 

identified as the limit of a particular singularly perturbed system, or for 

which trajectory convergence has not been established may have hidded 

instability due to the disappearance of the fast modes in the limit.

In terms of numerical considerations, it is easier in some cases 

to compute the solution of an rth order descriptor system than an nth order 

state variable system. If trajectory convergence has been established, a 

computational savings may be obtained by setting the parameter to U) and 

calculating the corresponding solution, sacrificing a small amount of 

accuracy.

Convergence of the solution of the standard system (1.5) is 

understood (see [20],[28], and [34]-[36]). Necessary and sufficient condi­

tions for existence of a limiting solution can be stated in terms of the 

limiting system alone. This can be done, however, only because the assump­

tion of the form (1.5) contains implicitly the assumption of one particular 

way of approaching the limiting system. In our formulation many different 

approaches are possible leading to a much more difficult problem. To 

guarantee convergence of solutions, some statements must be made not only 

about the limiting system, but also the way in which it is approached.

Convergence of the solution of the slow subsystem (4.26) in 

various senses is relatively easy to establish. We shall be concerned
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mainly with characterizing convergence of the solution of the fast sub-
1system (4.27) in terms of the behavior of the fast eigenvalues a.(ct) *

For convenience we assume that is invertible when (jd^ ca)̂ . That is,

W is an isolated singularity.

Let : Q x [O,03) xc"(U) xX-'X be given by

tL (0) ) " 1 ,t (t-T)Lf(0 ) ) ‘ 1

e xfo(u))+je Bf(U))u(T)dT if iû UJo

) = <
q -1

’iSoh^o) Bf(“0 )ul(t> if “ = “<

(5.4)

where u1 (0) is the ith right-hand derivative of u at 0. Clearly, 

agrees on (0 ,°°) with the solution of the fast part of (4 .8 ) at U) with con­

trol u and initial condition x .o
From (5.4) it is clear that understanding the behavior of 

e(L£(cu) )̂ plays an essential role in the study of convergence. We now 

characterize convergence of e(L^(00) )̂ in terms of the fast eigenvalues

aj (“r
Consider the smallest rectangle in C, symmetric about the real

axis, enclosing the eigenvalues —   ̂ r . (See Figure 5.1.) Let

a(ou) =max Re

b(U)) = min Re

C. (03)
J

1

a.(o))

c (a)) = max j Im a. (U3) J

Define

Here "Im" denotes imaginary part.

(5.5)

(5.6)

(5.7)
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Im

The eigenvalues of L̂ (co)Figure 5.1.
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Y (cu) = mini ---- 2 2 a(cu) + c (ou) b(cu)2 + c ((jd)2
(5.8)

As a part of any sufficient condition for convergence that we 

shall derive, it will always be assumed that a ( cjo)  - »  as c u - » ( u ^  and hence 

b(uo)-j-00. Actually, it can be shown that this is in fact necessary for 

most types of convergence. Thus we may restrict attention to a neighborhood 

V1 ^o ^ ̂ ^l ~ ^ 0} a (tlJ) < *̂ Define p^ : [0,1] -*C by

D M  = | I M , J ^ | i 2n y . fM  +.1 — )P^Cy) I 2 + a (U))|e * Y afcuV*Y a (cu) (5.9)

Y (CO) 1p parametrizes a circle with center at — M — 7 ~T rcu r Y a(cu)
Let p = 6  +Tl 1.(̂JD (JJ '00

Lemma 5.1. 6 (y)<G, o . (cu) is enclosed bv P , and----  ---— CD J CU

and radius 1 2 a(cu)1*

Ip (y) - a (CU)|J 10)

for j-1 , . .. ,n-r and each y 6 [0 ,1 ] , 0) - {cuq).

Proof: Choose j,y, and cu. We have

From (5.9),

Y(cu) £ -a(cu)
a(0))2 +c(CU) 2

1

a(cu)

cu < 0 .

Let a . (cu) 
J

w + zi. Then

b (cu) £ a (cu)
w +  z

and

\~~2 Z 2 ̂ £ C(UJ)* w +  z
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Equivalently,

, x 2 , 2 ^ 1
(w ~ 2a + z — p

Z m  4a (03)

, 1 . 2  2 1(w “ TTTt ) + z ^ -----o
2b(tt,) 4b (oo) 2

2 . / 1 n2 ^ 1

” (Z' 2 cW ) 4c (a, ) 2

( 5 . 10 )

2 . , . 1 .2  ̂ 1w +  ( z + — ~— —) ^
2 c(uu)/ 4c (ou)2 *

Hence, (ct) is contained in the region determined by four circles as in

Figure 5.2. The five points of intersection are b W t p W ^ ; 0
a.(oj)Z + c(0))Z b (go) + c(u>)

From the geometry it is clear that w £ - Y ((jo) . From (5.10) it follows that

so

2 2 *. w + z - w
a(0))

(, . M .  J _ ) 2  n ! £ .(M + i _ w +  , I M + M + J ̂ a(iu)' +z  ̂o + , / „ J w + C /. + 9oAiA +a ((d)

= y3Y (a)) 1 2
 ̂ 4 a(a)); *

a (go) 16 2 a (uj) 2v J a (o>)

Thus, cij (CD) is enclosed by the circle with center at I M +_ L _
4 a(iu) and radius

3Y (03) 
4

I M
4

and the proof is complete.

Lemma 5.2. If a(a))->-co, b (O))0a ̂  -* 0, and c (<D)0S ̂  0 as 0) —»cô for

every 0>1 then e(L̂ (a)) ^)-»0 pointwise on (O,00) and uniformly on [€,°°)

with respect to the pseudometric d (see (4.4)) for all € > 0 .X
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Figure 5.2. The region containing cr̂. (to)

Re

F P -  6774
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Proof: Let t ^ € > 0 .  Then

tLf (u))
I  eS(sI '  L f ( i«))'1ds

where the path of integration is parameterized by p , Henc
t ^

t L f  (uj) " 1
1 „ ,leP“ (T) P- (y)^(e )ll :-------------  ^(adj(p (y)I - Lf(uj)))dy|2P1 0 o n-r

rr
O)

j W y) -

l r1 U P® < y > |-|p i < y > l<:—  J2 TT 0 ---------------- - ||M-<adj (p (y)x - L
V H p ( y )  - cf (u,) I “  f ^ > > ) i ! d y
J  'JJ J

where "adj" denotes the (classical) adjoint. Since P^(y)-*0 as u>-*a;
uniformly in y,

^(adj (p_(y)I - L^(ou))) -> -P*(adj Lf (u>0>)
0)

uniformly in y and there exists a neighborhood V of and N > G  such that

lladj (p^(y)I -Lf(aj)||<N

for all go € V - , y € [05 1] .

We have for U) - {^1,

,, , v 1 v 2 ■ . 2 y  (03) 1 1 /
(6 0)(y) ' 4 "a(to)) + V y) - (r f J - + 7 M ) ( 4  a ^ )}

so

V y >

6 , „ ( y )2 + \ ( y ) 2 2 ( M + 1 ) '  5
«£ — a (go)

a(u))

since Y(uq) < a (co) * Thus
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P (y), -r^ciO)oj _ oe s* e

From

' - ' M l03

it follows that for oj^vOVL - la) j
1  o

N <
tL̂ (o)) " 1 

> f  ) | | *

2 ,
3 ea(0)) x m + _L_). n
_______ _ 2 a(QQ; iN

( ^ >

n-r

which is independent of t. If n-r =1 we need only show that

2

I £3Letting 0 = e we have

€a(u)) 
e"*______
a(uu)Y(<u) 0 .

,2a (0))

a(oj) (• a (03)
aToj)2 +c(0J)2

.,2a(03) , 1  , , â(o)) 2= H> + ---- J  (c(tt3)0 v
a(U3)

and

,2a (03) , , s
----------- *----2((b(u)ea(w))2 + (c(U))0a(“3)2)

«(«>)<--- -̂ - r ) a(oi)b(03) + C(U3)

For n-r > 1 set 0 = e2 n̂ r ^  . Then

3 6a(0J) ,2a (W) n-r- 1

Y(ID)n-r-1 Y (03)

But

0
2a (03)
a (co) ----  = a(«))02a^ > +Ii_(c(«))0aW ) 2

a(u3)2 +c(0))2
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and

0
2a (OD)

b(ct) 2 +c(w ) 2
6

1 ,,, , N a(uo).2 a(ou).2x
= bO*0 ((b(t")? ' + (c(u))?) > >•

Finally, setting 0 = e ^ n and applying similar arguments gives
|£a(iO)

a(o))Y (ou)n-r
0 .

This completes the proof.

Lemma 5.2 establishes convergence of the exponential provided 

a ^ ) - * - 03 and certain growth conditions on b((JD) and c(ou) are satisfied. For 

example, if

b(uo) ̂  N a (id) k (5.11)

for some N, k > 0  then the condition b (ct) 0a 0 holds for every 0>1. The 

rate of growth of b(ou) and c (U)) must be less than any exponential of a(U)). 

Lemma 5.3. If a(OO) - * - 03 then there exists a neighborhood V of such that

CO tLf (uu) 
e

- 1

1 1 a (<J0)

n-r

for all uj £ V - (u) 3.

Proof; As in the proof of lemma 5.2,

tL.p(a))'"1
lie f

n-r
S' (id) ' 1 2 a Ccu) J

i  p (y )
“ Idy

0

so, by Fubini’s theorem,
t

“ tLf(Oi) ” 1 n - r  y 1 I 1 °? PujCy),Jjle ||dtSN(fA_) + — |/o/je Idt dy

N(.— —— ) (X W - -j---i— )(   ) £ — N (■— —  ) (— i— ) 2^Y(^);  ̂2 a(0))M 2a(0J); 2 S' ( « 0 ; Sa(cu); *
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Since a (0)) there exists a neighborhood V of 0) witho

(^ > )2

Then
CO tLf(0)7'

J lie Io

n-r n-r
dt <  ( 1 ) s |b W  +  c.< »  |

V O) a(iu)

and the proof is complete.

We now establish sufficient conditions for convergence of 

Theorem 5.2. Let a (03) -» b(O))0a ^ - » O ,  and c (to)0a ̂  -* 0 for every 0 >
COand let u 6 C (U) have all its derivatives bounded. If there exists a 

neighborhood V of and a positive integer p such that

|Lf(0J)l <

for all 03 £V - {cu } then, as oj-’O) , o o

a W n-r

b(U))2 +c(u, ) 2

* f ( “>, ’ >u >x0) "’ * f ( l“o , ‘ ’ u ,x o )

pointwise on (0 ,co) and uniformly on [£,°°) for every

€ > 0 and each x CX.o
Proof: For (ju^OD^, integration by parts gives

§f (03, t,u,XQ) = e
tLf (03)- 1

xfo(03) - i^Q Lf (aj)1 Bf (0))u1 (t)

tLf(tt))'1 p ± ht—OL^oo)'1
+ e A L fW 1 Bf(u))u (0)+Lf(U))PJe. B£(i«)uP (T)dT.

o
From

a (Q3)
b (CO) 2 + C(0J) 2

b (03)
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it follows that Lf(tt)P ~*0 so pSsq. Hence, from lemmas 5.2 and 5.3, the 

desired result follows.
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CHAPTER 6

FURTHER STRUCTURAL PROPERTIES

6.1. Slow Subsystem

It is often advantageous to know that if a certain dynamical 

system property holds for a singularly perturbed system at then it also

holds throughout some neighborhood of . For example, in this chapter we 

shall see that controllability behaves in this way. Hence, controllability 

at 0) is sufficient to guarantee existence of the optimal solution of the LQ 

regulator problem (see Chapter 7) throughout a neighborhood of U) . This 

fact will result in a computational savings.

In this chapter we shall consider various results of tnis type. 

Applications to the pole placement problem will be discussed.

In section 4.3 we restricted the parameter space O to a neighbor­

hood of so that the eigenvalues of the system X_̂ (U)) and - - are

separated by magnitudes for all u)6:Q. Since each X^ is continuous at oû ,

the parameter space can be further restricted so that X_̂  (ouq) ^ X (oû ) implies

^(<*0 f  (^) for all uj 6 Q. Accordingly, the functions X_̂ can be partitioned

into equivalence classes, X^ and X being in the same class if and only if

X. ((*) ) = X . (d ). We can reindex the X. such that X19...,X comprise one 
1 o j o  1 1 ’ n^ r

equivalence class, X X another, etc. up to n, =r.
n 2 ^

Consider the eigenspace
n .

si(») = Ker ,+l«X <«» ' A(*))‘V » )  -
i- 1

n .■ i
= Ker j=nn 1+ 1 < V » > - * . j O U  

J 1-1 J
( 6 . 1)
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where n Q =0 and X is as in lemma 4.4. From lemma 4.2 and the fact that 

S.(oj) has constant dimension throughout Q it follows that S. is continuous
1 i

at ouq for i = 1,...,k. Also,
k

s(“) = i® 1Si(«j). (6.2)

Lemma 6.1. Let : Q -*97{ be continuous at ou . Then there existst p o
R : Q~*7/( such that

1) R is continuous at ou .o
2) R(0))CR1 (u)) + ...+R (a)) V 0) € Q .

3) R(cu ) = R (0) ) + ...+ R (oo ) .v o ' l o p o

Proof; Let L : Q->Hom(X^,X) be defined by

L(oj) (xl 9 ,x ) = P n  ,  . X .  +P R 1 (0)) 1 + PR (cu)Xp'

Then uj-»L(U)) is continuous at a) and by lemma 4.2 there exists R : 

continuous at (UqJ with R(ou) ̂ Ker L(uo)* for all U) and R ^ )  = Ker L(u)q)*. 

Let R(uu) =R(0))J-. Then R is continuous at oû ,

R(cu) c: Ker L(03)^x = R (CD ) + .. . + R (ou ).
1 o' p o'

This completes the proof.

Since X. is continuous at ou , ReX.(U) )< 0 implies that Rek.(uu)<0 J o’ 3 o' r ^

throughout some neighborhood of uu . Let X . (uu X. (oo ) be the stable
Xl  ° ^P °

members of a(E(cu^) ,A((Uo)) . Continuity at uoq of and lemma 6.1 give the 

following result.

Proposition 6.1. Let A (uu) be the eigenspace corresponding to the stable
P

eigenvalues of the system (4.8). Then ou 

and there exists a neighborhood V of 0Uq

-* ® S. (ou) is continuous at ou 
j - 1  l . ' oJ P

such that (ou)dA(u)) for
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every cu GV.

Proposition 6.1 states that for small perturbations the slow 

subsystem is at least as stable when perturbed as it is at 0)̂ . Also, the 

stable subspace is well-behaved about U) .

We next consider the controllable subspace ft (<ju)  of the slow 

subsystem (4.26).

Proposition 6.2. There exists R : Q ~>Tf( such that

1) R is continuous at U) .o
2) R((A)) cift (u)) VooGQ.

3) R(ou ) = ft ( cjo ).o s o

Proof: Since

v(Lg (0))1 Bs (CD)) = n (Ls (id) )1 v(Bs (cu) ),

i vVo)“*v(L (cd) B (ou)) is continuous at U) . Hence, from lemma 4.2 there s s o
exists R^ : Q continuous at u)q, with R^ (cjo) c: Xm(Lg (0>) LBg ((a) )  ) for all 

u; and R. (u) ) = Im(L (u) )1B ((A) )). Let R be as in lemma 6.1 with p = r.l O S O S O r
Then 1) holds and

R((A)) C R  (U)) + . . . + R ((A)) a  ImB ((A)) + Im(L (<u)Be (W) ) + ...+Im(L ((D))jl r s s s s s

= ft (0)) s x

for all cu € q  so 2) holds. 3) follows similarly. This completes the proof.

Thus, the slow subsystem is at least as controllable when per­

turbed as it is at U)q. The slow controllable subspace is well-behaved

about 0) . o
To conclude this section we consider stabilizability.
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Proposition 6.3. If ^ ( cdq) is a controllable mode then 4̂ (co) is controll­

able throughout some neighborhood of u^.

Proof: By hypothesis,

Im(X. (»o)I - Ls (u.o) ) + Im Bs (o)o) = S (w,) .

From proposition 4.1 and lemma 4.2 there exist R^, continuous at

0) , with o

R l (CD) C  Im M- (X (CD) I - Lg (CD) )

and

R2 (uj)c=lm v (b (CD)) 

for all ou€Q and such that

w + w = s < v -

From lemma 6.1 and the constant dimensionality of S,

Im |i(X. (o))I - L (CD))+Imv(B (cd))=X

throughout a neighborhood of Q and the proof is complete.

Corollary: If the slow subsystem is stabilizable at then it is stabiliz-

able throughout some neighborhood of gd .

6,2. Fast Subsystem

Since many different singularly perturbed systems, with various 

types of fast mode behavior, share the same limiting descriptor system, no 

information concerning stability of the perturbed fast subsystem can be 

extracted from the fast subsystem at the singular point. Hence, we cannot 

make statements analogous to those of the previous section about stabiliz-
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ability and convergence of the stable eigenspaces. However, we can 

describe behavior of the controllable subspace.

Let (uj) be the controllable subspace of the fast subsystem 

(4.27). If L^w) is not invertible at a certain tu, then (4.27) must be 

decoupled according to the descriptor system decomposition outlined in 

Chapter 2. The resulting slow and fast subsystems (subsystems of (4.27)) 

then have well-defined controllable subspaces as given in Chapter 3. The 

vector sum of the slow and fast controllable subspaces is then the controll­

able subspace of (4.27).

Proposition 6.4. There exists R : such that

1) R is continuous at U) .o
2 ) R(tt>) eft (CD) VouCQ.

3) R(cuq) = R f(«0).

Proof: Choosing an arbitrary (0 and proceeding according to the algorithm

(2 .1 0 ) - (2.14) yields the decomposition =F(uu) with

Lf (<#) I
and

l£<X> I f2 = l2

where is invertible and L^ is nilpotent. In fact, the system decomposi­

tion takes the form

h = L i lxx +  L i lBiu 

L2X2 = X 2 + B 2U

where B1 =PF^ B f(0)) and B2 = P Bf (a)) . 

subspace corresponding to subsystem 1 is

The part of the controllable
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B^) + . . . + Im(L-̂  B^) — (Im B^ + . . . + L-̂  Im B^)

= Im BL + ... + L in”r“LI:m

by the Cayley - Hamilton theorem and the - invariance of Corresponding

to subsystem 2 we have

&2 = I m B 2 + ... + L 2n"r'1ImB2.

Thus,

W  = R-l e  ̂ 2

= ImBf(U>) + ... + L f (cu)n“r"1ImBf (uj).

The result follows from lemmas 4.2 and 6.1. This completes the proof.

It is gratifying to note that we have defined controllability 

for descriptor systems in such a way that controllability at uo implies 

controllability throughout a neighborhood of U)q.

6.3. Application to Pole Placement

From propositions 6.2 and 6.4 and lemma 6.1 it follows that 

statements identical to those .in propositions 6 . 2  and 6 . 4  hold for ft((jj) = 

ft (00) © R, (ud) . As an application of this and the results of the previous 

two sections we now show how some modes of the perturbed system can be 

placed approximately by designing a feedback gain for the system at 0)̂ . 

Here we are generalizing results of [16].

First, since controllability at implies controllability for 

small perturbations, the existence of a feedback gain that achieves 

arbitrary eigenvalue assignment in the perturbed system can in some cases 

be established by testing the system at for controllability. If a mode
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of the limiting sysLem is controllable and if it is shifted as desired by 

linear feedback then, from local continuity of slow eigenvalues, the same 

feedback gain applied to the perturbed system results in eigenvalues only 

slightly different from those desired. Hence, for small perturbations, 

modes controllable at uĵ  can be approximately assigned as desired by consi­

dering only the limiting descriptor system.

In fact, as outlined in section 3.5, given a certain degree of

controllability of the limiting system, a feedback gain may be constructed

such that the closed-loop system at ou has slow subsystem (in the descriptor

sense) of dimension rank E(^ ) with all modes controllable. These can beo
assigned with linear feedback yielding an approximate assignment in the 

perturbed system. Unfortunately, this is the best that we can do. All 

information about the position of the remaining n-rank E(UUQ) eigenvalues of 

the perturbed system is lost at (JU . In order to place the remaining eigen­

values, the subsystem decomposition must be calculated at the perturbed 

value of w and the gain calculated accordingly. Nevertheless, some computa­

tional convenience is achieved since the feedback gains may be calculated 

for the slow and fast subsystems individually. The modal separation 

eliminates some of the problems associated with stiff numerical computations.
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CHAPTER 7

THE LINEAR QUADRATIC REGULATOR

7.1. Preliminaries * 2

In this chapter we consider the optimal control problem with 

quadratic cost and singularly perturbed system constraint. A similar 

problem pertaining to the standard system (1.5) was considered in [15].

We shall need to solve the regulator problem for the descriptor system 

at CD . The LQ regulator has been considered in [10] for descriptor systems 

using dynamic programming, but we shall take a Hilbert space approach. The 

Hilbert space methodology is more suitable for dealing with questions about 

convergence of the optimal control with respect to U).
2Let L (x) he the set of Lebesgue measurable maps x : [O,00) -»X

satisfying

(7.1)
o

2After identifying functions which are equal almost everywhere, L (X) is a

Hilbert space with inner product defined by

■■CO

<x,y> = JQ <x(t),y(t) >dt (7.2)

2 2 2 2 for all x,y (L (X). Define L (U) similarly. L (X) xL (U) is also a Hilbert

space with inner product

<(x,u),(y,v) >= <x,y > + <u,v > . (7.3)

Recall the definition (2.21) of e(T) for T^Hom(X,X). For
2x 6 L (X) it is known (see [22],p. 158) that if T is stable then the con-

2volution e(T)*x : [0,co) -*X belongs to L (X) and
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|e(T)*x||* ||x||j' || etT||dt <®. (7.4)

Throughout this chapter we shall consider only singularly

perturbed systems with ) = 0, Lp((D) invertible for ou £ CD . and L (to )t o  r o s o
stable. We further assume that LP(CD) is stable for do f  0) . Hencet o J

T](ju * “*X defined by

( tLs (u>) tLf(aj) " 1

6 Xso(aj) + e  Xfo(oo) if (Djfe(Do

j tL (to )
e S ° x (CD ) 

[  s o x o '

(7.5)
if a) = a)

is in L (X) for 0) in some neighborhood of Cl) . We now restrict Q to ao
2

neighborhood of 0Jq such that T]̂  6 L (X) for all 0) £0. Clearly, Tĵ  is the 

natural response of (4 .8 ).
2 2If we define J  : L (U) -»L (X) by

0)(u) =\

e(Ls (0)))* Bs(uj)u + e(Lf(a))"1 )*Lf(a))"1Bf(u))u if <d t  <dq

(7.6)
e(L (a) ))*B (CD )u - B ((ju )u if (D = CD . o b o r o o

then ^ ( u )  is the forced response of (4.8).

7.2. Problem Formulation 

Let

A((U) = l (x,u) 6 L2 (X) x L2 (u) |x -  J (u)i. (7.7)
00

Since aP^ is a linear map, A((D) is a subspace of j }  (X) x L2 (U). In fact, from 

(7.4) it follows that is continuous so A (CD) is closed for all (D £Q. The 

solution of the regulator problem minimizes the cost functional
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J(x,u)=j || x(t) | |2 + || u(t)||2dt (7.8)o

over the constraint set (T| , 0) 4- A(d) for each Since J(x,u) = |l (x,u) ||2 ,
2 2we can view the problem as a minimum norm problem in L (X) xL (U). Since 

A(tu) is closed, we have from the projection theorem (see [23]) that a 

unique pair (x^jU ) £ 0] , 0) + A(0)) that minimizes J exists for each cu 60. 

Furthermore,

< V V  = (V 0) - pA(00) < V O> (7.9)

where is the orthogonal projection operator on A(w) .

The problem that this chapter addresses is not that of finding 

explicitly the solution of the regulator problem since this has already 

been done via the algebraic Riccati equation. The Riccati equation will 

not come into consideration to any significant extent in this chapter. The 

problem that we shall consider can be dealt with much more simply from a 

geometric point of view.

Our problem is that of establishing conditions under which
2x ~*x and u (-*u/it in the L sense as 0)-*U) . If (x ,u ) converges then forCO CD 0) 0) O CO Co &o o

each € > 0  there exists a neighborhood V of a) such that if 0) £v then

ilu -u II < € (7.10)
0) 0) vo

} - xJ < e  <7-u )o
and

)-utu > < €  (7a2) o o
since and J are continuous. Thus, for small perturbations about 00̂ , 

the solution u of the regulator problem at (I can be applied to the(1) OO
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perturbed system with only a slight deviation from the optimal trajectory

and optimal cost. It will be shown that solving the problem at GO

explicitly for u^ is simpler computationally than solving the problem at 
o

go^ oô  for u^. Hence, a computational savings can be achieved at the cost 

of slight suboptimality.

7.3. Reduced-Order Solution at Go   o

As a result of the reduction in order that occurs in the system

at (J0q, solving the regulator problem explicitly at GÔ turns out to be
simpler than solving it for some other GO. To see tnis, choose an ortho-

normal basis (e^,...,er) of 8(00̂ ), an arbitrary basis (er+p  • * •»en)

F(U0q) and an orthogonal basis (v]_> • • • >vm) U with l|v_J|=Y, i = l,...,i
2 2for some Y > 0* If u 6 L (U) and x € L (X) with x = xg + x^, xg (t) € S (go ) , 

xf(t) £F(U) ), and

»m

X  ( t ) = Q'1(t)e1 + .. . + » r(t)er (7.13)

X f  ( t ) = 3 (t)e ,,+... +P(t)e lv ' r+1 n-r n (7.14)

u(t) = Y (t)v, + .. . +Y (t)v lv ' 1 m v 7 m (7.15)

then

j(x,u)=J* a(t)'a(t) + 2a(t) N0(t) + P(t) Q0(t) + Y2Y(t)*Y(t)dt (7.16)

where a(t), ^(t), and Y(t) are column vectors consisting of the o^(t), 

p^(t), and Y (t) and
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N =

Q =

< £ l,er+l> *** < e l,en >

< e , e  < e , e  >
r ’ r+ 1  r 3 n

< e ,. ,e ,_>... <e , , se >  r+1 r+1 r+1 n

< e , e > ... < e , e >n r+ 1  n J n

(7.17)

(7.18)

If (x,u) 6 (1^,0) +A((0o) then x(t) =xs (t)+xf (t) = x g (t) - Bf (l»o)u 

so we may equivalently minimize

*  00 f JU

J(xq,u) = J(xs - Bf (a)Q)u,u) =J Qf(t) a(t) - 2 o?(t) NKY(t)

+ Y(t)* (Y2I+K*QK)Y(t)dt (7.19)

where K = Mat B(U) ).f o
In [31], pp. 46-48 it is shown that the optimization problem 

with cost (7.19) and system

i(t) =Ga(t) +HY(t) ( 7 . 20)

may be reduced to that, of minimizing

J(<*,0) =J a(t)*(I -NK(Y2I +K'QK)~1K V ) a ( t )  + 0(t)* (Y2I + K  QK)0(t)dt (7.21)

subject to

a(t) = (G -H(Y2 I+K*QK)" 1KVN')a(t) +H0(t) (7.22)

if I-NK(Y 2 I + K  QK) N is positive semidefinite.
- - o * _i* *

Lemma 7.1. There exists Y >0 such that I - NK(Y I + K  QK) K N is positive

definite.
2 & - 1 * *Proof: The matrix T=NK(Y I + K  QK) K N is clearly Hermitian, positive

semidefinite since Q is positive definite. We need to show only that for
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some Y >0 the eigenvalues of T are less than unity. Since the eigenvalues 

of a matrix are bounded above by its norm, it is sufficient to show that

ii 2 *  ~ ln  1(Y I + K  QK) i  < -rpV-
W m r

for some Y.

According to a well-known result, there exists p > 0  such that

IIlII < p s(l)

for all L e e ™  where § is the spectral norm. Let P be the minimum eigen­

value of K QK and let

Y >Vmaxip||NK|i^ -P, ol.

Then

!I(Y2I + k 'qk) _1!| <p ?((Y2I + K QK)"1) = -T2—  < — •
y 2 + h ||n k ||2

This completes the proof.

Setting G=Mat L (uu ) and H=Mat B (uo ) and choosing Y as in s o  s o
lemma 7.1 we may solve the regulator problem at uQq by minimizing J subject 

to (7.22) which necessitates the solution of an rth order Riccati equation. 

Compared to the nth order problem for u)/^o, the rth order problem is a 

considerable computational simplification. The remainder of this chapter 

is dewoted to finding conditions under which the solution of the reduced 

order problem is close to that of tne full order perturbed problem.

7.4. Convergence of A(ou)

In order to establish convergence of the optimal solution (x ,u^) 

it is convenient to establish convergence of A(U)) with respect to a certain
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2 ometric on the closed subspaces of L (X) x L (U). Let 7l{ be the set of closed 

subspaces of a Hilbert space H. In [32] and [33] a metric p on 7/( is 

discussed giving two equivalent expressions. Let

sup sup
p  (R,T) = ||pp - p j l  -maxi x€R D[x,T], x € t  D[x,R]i

X ^ 1 X ^ 1R T

for any R, T £T/( where

(7.23)

D[X’T] = y€Tl|x_yl (7.24)

Note that p) is a generalization of the metric space considered in

Chapter 4. 1

“ tL̂ (tu)
Theorem 7.1. If J He ||dt —*0 as 0)-»cu then the mapping U)-»A(U)) is

o
continuous at 0) with respect to P.

Proof: Observe that

sup D[(x,u),A(ou )]2 ^ sup D[ (^ (u) ,u) ,A(^q)]
_(x,u)e A(u>) ° u U Z (U)
(x,u) ^ 1 U £ 1

= sup inf \\(J
u 6 L (U) v €L (U)
Hull £ 1

(u) “k  (u),u-v) | | 2 ̂  sup lk(u) (u) 112
u ( L  (U)
iiuii & i

0)

= |L/ -

Similarly,

sup D[ (x,u),A(UJ)] Si Ik  -a?
(x,u) eA(tu )
(X,u)|| 1

0) UL

- 1

( “ li t L f (0j )  IIso from (7.4) convergence of J e ||dt to 0 and stability of L fuj 'i
o s o'

guarantee that
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p (A (cju) , A ( ojq ) ) -» 0

as 0) -> U) and the proof is complete.

7.5. Convergence of the Optimal Solution

We now give sufficient conditions under which oo(x^u^) is

- 1
continuous at CJO .

° tLfO) co tLf((U) 0
Theorem 7.2. If J ||e ||dt- * 0 and J ||e ||

° o
(A) (x ,u ) is continuous at 00 .

00 00 o
Proof: First observe that

,, ti^OO)"
|T] -T|' '(JO !0)

dt -* 0 as CU-*ou then o

nloo tL f (oo) 2
*VJ lie II ||xfo(uj)|| dt + ||e(Ls (<fl»xso(uj) -e(Ls(tt)o))xso(mo)

so stability of L (uo ) and tne second hypothesis of the theorem imply s o

(JO '(D . But the first hypothesis guarantees that
o

P -» pAO) A(0Uq)

from (7.23). From (7.9) we have

< W  - <xu> >u«, )»ll\o o  o o o

and the desired result follows.

Since the hypothesis of theorem 7.2 implies that

co tL (oo) ” 1 0

J lie || dt <00 (7.25)

throughout a neighborhood of 00 and since
1 °

= tL (ID)'1 ® 2tRe FOB) ” if Re
J lie H dtiJ e J dt = <
O o

a. (oo) 
J

Jg 0

(7.26)

2 Re (oo)
J

if Re cr. (oo)J
< 0
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for all U)£Q, j=l,...,n-r, it follows that it is necessary for Lf(0U) to be 

stable throughout a neighborhood of in order that the sufficiency condi­

tion of theorem 7.2 hold.

The sufficient condition of theorem 7.2 guarantees that the

reduced order problem at may be solved yielding only a slightly sub-

optimal control which is close to the optimal control and which generates a
2trajectory close to the optimal trajectory in the L sense. Under most 

circumstances it is reasonable to interpret the convergence criteria of 

theorems 7 . 1  and 7 . 2  as conditions on the behavior of the boundary layer 

in singularly perturbed systems, for if the natural response converges 

uniformly to zero in the integrals are essentially measures of the

intensity of the boundary layer effect in [0,€). The integral convergence 

conditions state that the effect of the boundary layer becomes 

vanishingly small as
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CHAPTER 8

ALTERNATIVE FORMULATIONS AND CONCLUSIONS 

8.1. Algebraic Interpretations

Although it was not explicitly stated in previous chapters, there

are abstract algebraic interpretations for many of the results encountered

so far in our study of singularly perturbed systems. These interpretations

have not been explored in much detail yet, but they are presented here for

completeness and as a suggestion for further study.

To begin with, consider the set of all mappings X :Q-»C, continuous

at a) . Such mappings have been considered extensively, starting with Chapter

4, but we have not considered properties of the set of all such maps. Denote

the set by C(co ). With little effort it can be shown that C(u) ) is a commuta- o o
tive ring with identity using pointwise addition and multiplication. Letting

p(ojQ) denote the subset of C ( c o n s i s t i n g  of all A with A((jOq )=0, it can be

shown that is an ideal of 0 (0^). Lemma 4.3 may be interpreted as a

factorization theorem for polynomials over C(oo ).

Let Q be the set of maps x : Q-*X, continuous at cu . Using x o
pointwise addition and scalar multiplication, (2̂  is a C(a>o) - module. Let 

T/( be the set of subspaces of X and R : Q-+Y/1 be continuous at tsû with dimen­

sion p for all 0) For example, R may be the slow or fast subspace map

S or F as defined in Chapter 4. R may be identified with a submodule of 

( the following natural way. As outlined in lemma 4.2 choose a basis

(x, (tu) , .. . ,x ((D)) of R(U)) with x. continuous at uu . Then x. and
L P 1 O 1 X

£x^,...,Xpi is linearly independent since
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O' (OO)x., (03) + . . . 4- 0? (U))x (0)) = 0 (8 .1 ). L i .  P P

implies oc(u>) =0 for all u), i=l,...,p. Let (y.(<J&) ,... ,y (U))) be another
P

basis of R(OD) , continuous at to . Then

yi(cu) = + .. . + 3 p (^)xp (oJ) (8 .2 )

with 3 ^C(O) ) by lemma 4.1. Hence,i o J 3

span{y^,... ,y ] c spanlx^.. .,xp} . (8 .3 )

By reversing the argument,

span[x^,... ,xpj <= spanly^,... ,y J (8.4)

so we may naturally and without ambiguity identify R with spanix.,...,x J.
P

In our study of singularly perturbed systems we considered

operator valued maps A 6 H (X). Members of H (X) can be identified withR R
linear transformations on the submodule R by setting

(Ax) ((f) = A(<t)x(U)).

H (X) admits the structure of a C((o ) - algebra. Let K o

(A + B) («>) = A(W) +B(0J)

(AB) (to) = A(cu)B(U))

(AA)((ju) = \((o)A(<u)

(8.5)

( 8 . 6)

(8.7)

( 8 . 8 )

for A, B (X).K.
Following the same line of reasoning it can be seen that the set

(2 of all maps u : Q-*U that are continuous at 0) is a C(to ) - module. Also u o CT 3

Hr (U) is a <3(0̂ ) - module of linear transformations from into Q̂ ,.

Consider pencils (i.e. first degree polynomials) over the algebra
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Hr, (X). Using lemmas 4.1 and 4.2 it is easily shown that all the bases of K
the submodule R have the same number of elements. For G, LQI (X) eachR
basis of R determines r x r  matrix representations of G and I, with entries

1
in C(a)Q). It also determines a matrix representation of the pencil (G,L) 

with entries in the 0(03̂ ) - algebra C(U3q)[s] of polynomials over C(CUq) in 

the indeterminate s. The determinant of the pencil (E,A) may be defined 

by forming the determinant of Mat (E,A) in the usual way with respect to 

some basis yielding

det(E,A) €C(U>o) [s] . (8.9)

A simple argument shows that det(E,A) is independent of the basis chosen.

Consider A €H (X) and let R
p

det(I,A) = Y in i (s-Tip (8 .1 0 )

where I is the identity element of H (X) and Y 6 C(o) ) is invertible.R o
(¥ is invertible if and only if Y(w)^ 0 for all oj £ Q) . Define

a (A) = lT|i li=l,...Jp} (8.11)

The 7]̂  can be considered as eigenvalues of A.

We are now in a position to interpret the central singular pertur­

bation decomposition result, theorem 4.1, algebraically. Suppose that 

E, A £ Eg (X) with
r n-r

det(E,A) “ V i = l (S"Xi))(i=l(<Jis_1)) (8.12)

where 0o 6C(a)Q) is invertible and ). This can be done according to

^The pencil (G,H) is often written Gs -H.
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lemma 4.3. Theorem 4.1 states that

(E,A) = N * (K,L) (8.13)

where N is an invertible constant polynomial over H (X), n*" denotesX
polynomial multiplication, and K and L are both S- and F-invariant with

K 1 S = I  6H (X)
D ( 8 . 1 4 )

L 1 F = I  6 H (X)
r ( 8 . 1 5 )

ct(k If ) = {CTi l i = l , . . . , n - r } ( 8 . 1 6 )

ct(l Is ) = l \  | i = l , . . . , r } . ( 8 . 1 7 )

Theorem 4.1 may be interpreted as a canonical factorization result for 

regular pencils (i.e. with det(E,A) ^ 0) over (X).

8.2. Geometry of the Space of Linear Systems

Let T be the complex Euclidean space of ordered pairs of n x n  

matrices (E,A). There is an obvious one-to-one correspondence between F 

and differential equations Ex=Ax. Hence each point of F can be inter­

preted as a linear system of one of the following three types: 1) a state

variable system if E is nonsingular, 2) a descriptor variable system if E
2is singular and det(Es-A) $0, 3) a degenerate system if det(Es-A) =0.

Viewing linear systems in this way is natural since a small perturbation of 

a given system in the Euclidean norm is equivalent to a small perturbation 

in the system parameters.

Studying the geometry of T adds valuable insight into the nature 

of descriptor variable and singularly perturbed systems. With little effort

|This implies, of course, that E is singular.
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it can be shown that descriptor and degenerate systems together form a 

hypersurface in V contained in the boundary of the set of state variable 

systems. The property of being state variable is a generic property of T.

It is an unfortunate fact that for every descriptor system in F 

there exists a sequence of state variable systems converging to it with 

the corresponding sequences of eigenvalues diverging to + “ , That is, if 

a descriptor system is perturbed in the wrong direction, the perturbed 

system will have tremendous instability, the smaller the perturbation, the 

greater the instability. It is as if every descriptor system is perched 

precariously on the edge of a cliff. A step in one direction will result 

in only a slight change in its characteristics. A step in the other direc­

tion will have disastrous consequence. The importance of establishing 

simple conditions that guarantee trajectory convergence is clear. If a 

designer fails to account for the possibility that a descriptor system’s 

parameters are slightly different from what he thinks they are, his whole 

design could fail miserably.

Let D C F  be the set of degenerate systems, One way to view the

question of trajectory convergence is to consider the map § : r-D~*$ (x)X o
which associates with each pair (E,A) the solution of Ez=Az for initial 

condition x £X. If a topology is placed on $ (X) (e.g. see Chapter 5) then

we need to ask questions about the weakest topology on F that makes ^continuous.

§nce the nature of the resulting neighborhoods of a descriptor system is understood,

the behavior of the solutions of a singularly perturbed system

(which is nothing more than a map from Q into T, continuous at , or the

parameterization of a particular path in F) can be determined by checking

to see if an arbitrarily small neighborhood of the descriptor system
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contains the image of some neighborhood of cdq.

So far in this section we have considered only pairs of 

matricies corresponding to unforced systems with fixed initial conditions.

In order to study the behavior of a forced system with a parametrically 

varying initial condition, T must be the space of 4-tuples (E,A,B,x) where 

B is n x m  and x is nxl. Our previous discussion of geometry and induced 

topology carries through with only minor changes.

8.3. Suggestions for Further Research

In the area of descriptor variable theory there are many avenues 

which have yet to be explored. For example, although observability of descriptor 

systems has been considered in [7], the descriptor variable equivalent of 

observers from state variable theory have not been developed. In a stochastic 

environment the Kalman filter might also have a natural extension to descriptor 

systems. There are many fundamental control-theoretic concepts such as the 

Maximum Principle and various stochastic and adaptive control techniques that

have yet to be considered in the context of descriptor variable theory.

Clearly, the problem of trajectory convergence in singularly

perturbed systems.has, for tne most part, not been solved except for certain 

standard systems. The general case that we have considered still requires 

a great deal more work. The resolution of this issue is essential. As we 

have seen in the last section, the survival of the descriptor variable 

approach to system modeling depends on it.

As with descriptor systems, many system-theoretic concepts have 

not as yet been extended to singularly perturbed systems. In Chapter 7 we 

studied the regulator problem for Lg(a)o) stable and =0. The same
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problem needs to be considered with the two assumptions dropped. It is 

safe to say that if a problem has not been studied in the context of 

descriptor systems then it needs to be studied in the context of generalized 

singularly perturbed systems. If a given system is close to a descriptor 

system in the Euclidean norm then conditions are needed to insure that one 

need only consider the nearby descriptor system. If a designer is guaranteed 

that the application of some design technique to the descriptor system will 

yield results close to those that would come from working with ;the given 

system, then he may choose to apply that technique to the reduced order 

descriptor system. Such an action often results in increased computational 

efficiency. Of course, the price is always inferior system performance.

8.4. Conclusions

In this thesis three central points have become clear. First, 

there are many alternative ways to view descriptor variable and singularly 

perturbed systems. They range from the matrix oriented approaches which 

exist in most of the literature to the geometric theory developed in Chapters 

2 through 7 to the algebraic ideas discussed briefly in this chapter. 

Certainly, there are other interpretations as well that no one has even 

thought of yet. The more ways that existsto look at a problem, the more 

likely it is that the problem will be solved in the near future.

The second point is that descriptor systems must be considered 

as members of the space T. Since they are located in such precarious 

positions in F, failure to consider their spatial relationships with nearly 

state variable systems could result in unexpected system behavior, to put
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it mildly. The question of trajectory convergence has yet to be answered 

satisfactorily.

Finally, there are still many important control-theoretic con­

cepts that have not been extended to singularly perturbed systems. We 

have made some progress in the pole placement and regulator problems in 

Chapters 3 and 7, but many other problems still exist.
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