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Complexity-performance trade-offs are investigated for dynamic resource allocation in load shar

ing networks with Erlang-type statistics. The emphasis is on the performance of simple allocation 

strategies that can be implemented on-line. The resource allocation problem is formulated as a 

stochastic optimal control problem. Variants of a simple least load routing policy are shown to 

lead to a fluid type limit and to be asymptotically optimal. Either finite capacity constraints or 

migration of load can be incorporated into the setup. 

Three policies, namely optimal repacking, least load routing, and Bernoulli splitting, are exam

ined in more detail. Large deviations principles are established for the three policies in a simple 

network of three consumer types and two resource locations and are used to identify the network 

overflow exponents. The overflow exponents for networks with arbitrary topologies are identified 

for optimal repacking and Bernoulli splitting policies, and conjectured for the least load routing 

policy. 

Finally, a process-level large deviations principle is established for Markov processes in the Eu

clidean space with a discontinuity in the transition mechanism along a hyperplane. The transition 

mechanism of the process is assumed to be continuous on one closed half-space and also continuous 

on the complementary open half-space. A similar result was recently obtained by Dupuis and Ellis 

for lattice-valued Markov processes satisfying a mild communication/controllability condition. The 

proof presented here relies on the work of Blinovskii and Dobrushin, which in turn is based on an 

earlier work of Dupuis and Ellis. 
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CHAPTER 1 

INTRODUCTION 

Economic pressures and reliability considerations generally lead to communication networks with 

load sharing capabilities and highlight resource allocation as a fundamental issue in network design. 

The objective of resource allocation in such systems is oftentimes consumer satisfaction, which may 

translate to minimizing consumer blocking or achieving fairness by load balancing. Regardless 

of its objective, an essential aspect of a resource allocation policy is implementability: Practical 

considerations require allocation policies to have low complexity, require little information about 

the network state, and be robust to changes in the traffic parameters. This thesis concerns trade-offs 

implied by these requirements. 

Two instances of resource allocation arise in transmission scheduling in wireless networks and 

dynamic routing in telephone switching networks. A wireless network consists of a number of 

base stations and users (as in Figure 1.1(a)). The users require communication channels that are 

available at the base stations, whereas each base station can serve the users within its geographical 

range. The resource allocation problem in this setting concerns the question of station selection. 

Similarly, in a telephone switching network, users demand channels that are available at the network 

links. In networks such as the multiparented network (see [1]) of Figure 1.1(b), there are multiple 

paths between pairs of users, and the resource allocation problem concerns path selection. 

In this thesis the mathematical abstraction of a load sharing network is a triple (U, V, N). Here 

U is a finite set of consumer types, V is a finite set of locations, and (N(u) C V : u 6 U) is a set of 

neighborhoods (see Figure 1.2 for examples). A demand for this network is a vector (A(u) : u 6 U) 

of positive numbers. In a dynamic setting A(«) denotes the arrival rate of type u consumers. Each 

consumer is served, starting immediately upon its arrival, for the duration of its holding time. The 

neighborhood N(u) denotes the locations that are available to type u consumers, in the sense that 

each such consumer can be served only at a location within N(u). Note that the abstraction of 

the wireless network of Figure 1.1(a) is the W network of Figure 1.2(b). An allocation policy is an 
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(a) (b) 

Figure 1.1 Two instances of resource allocation: (a) a typical wireless network with overlapping 
neighborhoods, and (b) a multiparented circuit switching network. 

algorithm that assigns consumers to locations within their respective neighborhoods. The load at 

a location is the number of consumers at the location. 

Load balancing is a possible guiding principle for resource allocation, whereby the load is allo

cated across locations as evenly as possible. There is a rich literature on load balancing, and both 

static and dynamic versions of the problem have been studied by numerous authors (e.g., [2], [3], [4], 

[5], [6], and references therein). It is well-known that load balancing can be an effective allocation 

strategy when the cost is convex (or the reward concave) as a function of the allocated loads. For 

example, x ( l ) 2 + x(2)2 is minimized over probability vectors (x(l),x(2)) by x(l) = x(2) = 1/2. 

This is connected with the convexity of the function f(x) = x 2 . 

A brute force approach for dynamic load balancing is the optimal repacking (OR) policy under 

which consumers are continuously repacked to balance the load at all times. Nevertheless, in 

many applications, repacking of consumers is not acceptable due to operational reasons. Besides, 

computational complexity of this policy may be too high for large networks. As an alternative 

strategy, one can consider the nonrepacking Bernoulli splitting (BS) policy under which consumers 

are assigned to locations randomly, so as to balance the mean load in the network. BS is a simple 

policy; however, it exerts only open-loop control, and it is not robust with respect to the network 

demand. Another reasonable allocation strategy is the popular least load routing (LLR) policy 

whereby each arriving consumer is assigned to a location with the least load in the associated 

neighborhood. The following chapters concentrate on the comparison of the OR, BS, and LLR 
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Figure 1.2 Two load sharing networks: (a) the single-location network, and (b) the W network. 

policies based on certain estimates on their performances. The emphasis is on the analysis of the 

LLR policy. 

Chapter 2 concerns the properties of the LLR policy implied by fluid limit approximations, 

which are deterministic weak limits of the network load, suitably normalized, for large values of 

demand. Under a stochastic model that incorporates mobility of consumers, but not finite capacity 

constraints on locations, the dynamic resource allocation problem is formulated as an optimal 

control problem with a long-term average convex cost. The fluid limit approximations of the 

network load under the LLR policy are obtained and used to establish the asymptotic optimality of 

LLR, in the sense of minimizing a suitably normalized version of the cost, for large values of network 

demand. Under a complementary model that incorporates capacity constraints on resources but 

not mobility of consumers, the problem is formulated as the minimization of blocking probability. 

Fluid limit approximations are obtained, and certain variants of the LLR policy are shown to be 

asymptotically optimal for large values of network demand. In the presence of both finite capacity 

constraints and mobility, it is shown that simple policies are not necessarily optimal, even in the 

asymptotic sense. 

The fluid limit approximation provides a description of the typical behavior of the network load. 

Although this description proves to be fruitful, there are reasonable questions that demand a finer 

analysis. In particular, (1) the three policies, OR, BS, and LLR, have the same performance in 

the fluid scale, and (2) certain events of interest, such as network overflow, correspond to large 
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deviations of the network from its typical behavior, and hence are not described accurately by 

the fluid limit approximation. Although network overflow is a rare event, it has a strong impact 

on network performance; it is therefore desirable to estimate its probability and mode accurately. 

In Chapter 3 we employ large deviations theory to study network overflow in terms of overflow 

exponents, which provide estimates on the probability of overflow within a fixed, long time interval. 

The three policies are then ordered based on their overflow exponents. 

Chapter 3 establishes an explicit large deviations principle (LDP) for the load process in the W 

network of Figure 1.2(b) under each policy of interest. Mobility of consumers is not incorporated. 

The LDP under the LLR policy entails a treatment of large deviations of Markov processes with 

discontinuous transition mechanisms, which is the subject of Chapter 4. Based on the obtained 

LDPs, the overflow exponents are identified for the three policies, and it is shown that the LLR pol

icy performs as well as the OR policy for small enough capacities, whereas it performs significantly 

better than the BS policy for the whole range of capacities. The methods used in the analysis of 

the W network generalize easily to identify the overflow exponents for arbitrary networks under 

the OR and BS policies. This generalization appears difficult under the LLR policy, for which we 

conjecture the general form of the overflow exponents. 
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CHAPTER 2 

FLUID SCALE ANALYSIS OF ALLOCATION POLICIES 

2.1 I n t r o d u c t i o n 

This chapter concentrates on load sharing networks in the dynamic setting and provides determin

istic descriptions for the network behavior under certain allocation policies. These descriptions are 

then used to estimate the performance of the policies of interest, and certain simple policies are 

shown to have optimality properties. 

To observe a typical behavior of the network load under the LLR policy, consider the load 

sharing network of Figure 1.2(b). Suppose that the network demand is A = (7,7,7) so that the 

arrivals of consumers of each type form a Poisson process of rate 7. Each consumer remains in 

the network for an exponentially distributed amount of time, with unit mean. Finally, suppose 

that initially location 1 has zero load, whereas location 2 has load 37. Figures 2.1(a)-2.1(c) depict 

typical sample paths of the normalized load, defined as the load divided by 7, at the two locations 

for 7 = 1,10,100, for the time interval [0,8]. In the limit as 7 goes to infinity, the normalized load 

converges to the deterministic trajectory depicted in Figure 2.1(d). Deterministic descriptions of 

this sort are commonly referred to as fluid limit approximations. 

This chapter focuses on the optimality properties of the LLR allocation policy (and variants) 

implied by the corresponding fluid limits. The main results of the chapter are that for large values 

of network demand, (1) the LLR policy is asymptotically optimal in the sense of minimizing a 

long-term average quadratic cost (Theorem 2.3.1, and for a model including migration, Theorem 

2.5.1), and (2) variants of the same policy achieve the minimum blocking probability in the case 

of locations with finite capacities (Theorem 2.4.1). The strategies of interest do not display the 

pathologies found in some finite capacity networks (as in [7]) so that optimality properties can be 

obtained via fluid limit analysis. 

The outline of the rest of the chapter is as follows. Section 2.2 gives some preliminary results 

regarding static load balancing. Section 2.3 defines the basic dynamic model in which consumers 
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Figure 2.1 Load under the least load routing policy. 

remain stationary in the network until departure, and locations have infinite capacities. The dy

namic resource allocation problem is formulated as a stochastic optimal control problem with a 

long-term average quadratic cost, which is to be minimized within a set of practical controls. The 

results for the static load balancing policy are used to provide a lower bound on the performance of 

arbitrary controls. Section 2.3.1 describes the LLR policy. Sections 2.3.2 and 2.3.3 identify the fluid 

limit approximations of the network load under LLR as the solutions to certain integral equations 

with boundary constraints. This solution converges to an optimal point in equilibrium, and Section 

2.3.4 exploits this fact to establish the asymptotic optimality of LLR. Section 2.4 considers the 

case in which locations have finite capacities, and the resource allocation problem is defined as the 

minimization of blocking probability. It is shown that a class of least relative load routing (LRLR) 

policies asymptotically achieve the smallest blocking probability for large arrival rates. A connec

tion with trunk reservation policies is discussed. Section 2.5, which can be read independently of 

Section 2.4, generalizes the results of Section 2.3.4 by considering an infinite capacity network in 

which consumers can migrate. A summary of conclusions and final remarks are collected in Section 

2.6. 
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2.2 P r e l i m i n a r i e s : T h e S t a t i c L o a d B a l a n c i n g P r o b l e m 

This section concerns the static load balancing problem, which plays an important role in the 

discussion of the dynamic load balancing problem of Section 2.3. Thus, as a precursor to the 

arguments therein, we define the static load balancing problem and provide three lemmas that 

characterize its solutions. 

Given a load sharing network (U,V,N), we say that an assignment a, given by (a*,* : u € 

U, v € V), is admissible if a > 0 and a*,* = 0 whenever w £ N{u). Given a demand vector A, an 

admissible assignment a satisfies demand A if J2v °ti.v = A(«) for all u € U. The load at location 

v €V corresponding to assignment a is given by q(v) = £ u o*,», and q = (q{v) : v 6 V) is called 

the load vector. 

Let Ax be the set of admissible assignments that satisfy demand A. Let $ : Rv -* R be 

a strictly convex, differentiable function which is symmetric in its arguments. The static load 

balancing problem (SLB) is defined as 

SL£(A,$) : Minimize($(q) : a € -4A). 

The proofs of the following three lemmas can be found in Section 2.7. 

Lemma 2.2.1 There exists a solution to SLB(\, $ ) . An assignment a E Ax is a solution if 

and only if for all u£U, and all v £ N(u) 

au<v = 0 whenever q(v) > m„(g), (2.1) 

where mu(q) = min„6^f(u) q{v). Furthermore, all such assignments yield the same load vector. 

Lemma 2.2.2 There exists a unique partition {Vi, Vi,••-, Vj) of V and a unique partition 

{Ui,U2,---,Uj} of U such that for any assignment a satisfying condition (2.1), and the corre

sponding load vector q, 

q{v) = <?(«') v,v'£Vi 1 = 1 , 2 , . - . , . / (2.2) 

q{v)<q{v') veVi, i/eVj i<j (2.3) 

a«.v = 0 v£Vi, ueUj i>j (2.4) 

N(u)nVi = Q ueUj i<j. (2.5) 
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Let the function 9 : R+ -¥ R denote the value of SLB as a function of the demand vector, i.e., 

$(A) = $(g), where q is the unique load vector corresponding to the solutions of SLB(A,$) . The 

following lemma holds: 

L e m m a 2.2.3 The function \P is convex. 

2.3 T h e B a s i c M o d e l 

Given a load sharing network (U, V, N), a demand vector A, and a positive number 7, consider 

the following stochastic description of the network dynamics: For each u 6 U consumers of type 

u arrive according to a Poisson process of rate 7A(«), the processes for different types of arrivals 

being independent. In this section we assume that each location has infinite capacity; therefore, 

the network can accommodate every consumer immediately. This assumption is relaxed in Section 

2.4, in which finite capacities are imposed on the locations. Each consumer has a holding time that 

is exponentially distributed with unit mean, independent of the past history. In the basic model it 

is also assumed that consumers do not change their types until they depart from the system. This 

assumption is relaxed in Section 2.5, which introduces a model such that consumers can migrate 

in the sense that their types change. 

Let Xt(v) denote the load at location v 6 V at time t, and set Xt = (Xt(v) : v 6 V). The 

consumer arrival and departure times, together with the allocation policy and an initial condition, 

determine the load process X = (Xt : t > 0). The performance measure for an allocation policy ir 

is the long-term average cost J*, defined by 

where $(x) = %2„x2(i;) for x € Rv. The dynamic load balancing problem is to determine the set of 

allocation policies that minimize J*. 

By Lemma 2.2.1, a wide class of convex functions would be appropriate for the instantaneous 

cost in order to focus on load balancing, in the sense that certain optimality properties remain true 

for any such cost function. In this chapter we concentrate on the quadratic instantaneous cost for 

convenience. 

J^ = liminfE 
7 T-*oo 

ijTT$(Xt)<fc|Xo = x0 
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Let Lt(u) denote the number of type u € U consumers in the network at time t, and set 

Lt = (Lt(u) :u£U). Note that consumer arrivals and departures, and hence the process L = (Lt: 

t > 0), are not affected by the assignment decisions. Therefore, the value of problem SLB(Lt,$) 

yields a lower bound on the instantaneous cost at time t under any allocation policy. The process 

(Lt(u) : t > 0) for fixed u is an M/M/oo queue length process with load factor 7A(u); hence the 

equilibrium distribution of L is described by a vector (Loo(u) : u £ U) of Poisson random variables 

with mean vector 7A. This implies the following lower bound on the cost of general allocation 

policies: 

Jl > HminfE 
7 T-K» 

i j f *(Lt)dt\XQ = x0 

= EWLco)) 

> *(7A). (2.6) 

Here, the last inequality follows by Lemma 2.2.3 and Jensen's inequality. 

Let ^i(Lt) denote the value of the problem SLB(Lt,$) under the additional constraint that 

the assignment a have integer coordinates. If repacking is allowed, then the optimal policy is 

clearly optimal repacking (OR), which continuously rearranges the consumers in the network so 

as to maintain $(Xt) = $f(6,) at all times t and achieves J°R = £[#/(£«,)]. The OR policy 

can be implemented at a cost of 0(|y| |f7| + |V|2) computations per consumer arrival and con

sumer departure, which may be impractical for large networks. Furthermore, frequent repacking 

of consumers may not be feasible due to operational constraints. These considerations lead to the 

study of nonrepacking policies that are much simpler in terms of computational complexity and 

information required about the network state. 

2.3.1 Least load rout ing 

This section describes the particular nonrepacking type allocation policy considered in the context 

of the basic model, namely the least load routing (LLR) policy. LLR is defined with the following 

assignment rule: 

• When a type u consumer arrives, it is assigned to a location v 6 N(u) with the minimum 

load. If multiple locations achieve the minimum in N(u), the consumer is assigned at random 

to one such location, each location having equal probability. 
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The LLR policy is a nonrepacking policy and costs |iV(u)| comparisons per consumer arrival of 

type u G 17. Another desirable feature of LLR is that it can be implemented in a distributed manner 

by using one independent assignment agent per consumer type. Each arrival can be assigned to a 

location based on partial information about the network state. Furthermore, LLR is robust with 

respect to the network demand. On the other hand, LLR is a myopic allocation policy and is not 

necessarily optimal for finite arrival rates. The LLR policy has been studied by a number of authors 

and has been shown to have a poor worst-case performance relative to the optimal nonrepacking 

policy (see [8]). 

Under LLR, the load process X is Markov on the state space Z\. For v £ V, define the operator 

Tv : Z\ -+ Z% as 

[ x(i/) else. 

Then the off-diagonal entries of the generator matrix of X are given by 

Q(x,y) = < x(v) \{y = T-lx (2.7) 

[ 0 else, 

where N~l(v) = {ueU:ve N(u)}. 

In principle, given a load sharing network, one can compute the equilibrium distribution of X 

and thereby the cost incurred under the LLR policy. However, it is computationally intractable 

to obtain an expression for the cost of LLR for arbitrary networks through an expression for the 

equilibrium distribution. As an alternative approach, we study the network for large values of the 

parameter 7 and, by obtaining fluid limit approximations, evaluate the performance of the LLR 

policy for arbitrary network topologies. 

2.3.2 C o n v e r g e n c e 

This section addresses the weak convergence of the network load as 7 tends to infinity. The main 

result, Lemma 2.3.3, characterizes the possible weak limits of the load process, properly normalized, 

via a semimartingale representation. 

Let the normalized load process X"1 be defined as Xy = "f~lX, where X denotes the network 

load under the LLR policy. Assume the existence of a finite number K such that i?Et/ X%(v)] < K 
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for all 7. Define 

and 

Alv(t)=£au,v(X7)ds. (2.8) 

For each v e V, the drift of the process X7(t;) at time t, given that A? = x, is 7""1 Hy6ftv (y(u) - 72(1;)) 

Q(yx,y), which by (2.7) is given by (EueAr-t(v) a«,«(^T)) ~ ^ZM- Therefore, the process W(v) 

defined Implicitly by 

X?(v) = XZ(v) + M7(v)+ £ AZ,v(t)-fx2(v)ds (2.9) 
u6W~K«) , / 0 

is a local martingale with MQ(V) = 0. (See Section 4.7.B and Problem 4.11.15of [9].) 

Lemma 2.3.1 For v 6 V, M7(v) ts a square integrable martingale, and 

EKMM) 2 ] < ±(2*£A(u) + K). (2.10) 
' u 

Proof. Let rn = inf{( : M?(v) > n}. Since the local martingale M^(u) has jumps of size 7-1 , 

the process M?AT (v) is bounded and hence is a square integrable martingale. Thus, 

2[(M%r.W)*] = E[ [M»] t A r n ] 

< -^E[number of jumps of X"*(v) in [0, t]\ 

< k2t^X(u)+K), 
I u 

where [AT^u)] is the quadratic variation process of hf(v). Fatou's Lemma implies (2.10). Finally 

(2.10) implies that M ' , (B) over any finite interval is uniformly integrable; hence it is a martingale. 

• 

Remark 2.3.1 By Doob's L2 inequality and Lemma 2.3.1, 

E[ sup (M7(v))2] < AE [(M?(v))2] = 0(y~l). 
0<3<t L J 
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Therefore, W(v) = > 0 for all veV. 

L e m m a 2.3.2 ( Tightness) If the sequence (XQ : 7 > 0) is tight, then the sequence of processes 

( ( X \ A " T ) : 7 > 0 ) is tight. 

Proof. By [9, Proposition 3.2.4], it suffices to show the tightness of (X"1) and (A"1) separately. 

Towards this end, the observation 

4U(°) = °» 
0 < AZJt)-Al„(s) < (t-s)\(u) 

for t > s, yields the tightness of (A"1) ([9, Corollary 3.7.4]). This, along with Remark 2.3.1 and the 

representation (2.9), implies that to establish tightness of (X"1), it suffices to establish the tightness 

of (foXJ(v)ds). Note that 

E[ sup A"7(v)] < £[ - ( to ta l number of arrivals in [0,t]) + £ X%(v)] 
7 v 

< t^\(u) + K. 
a<s<t 

Thus, for 17 > 0, Markov's inequality yields that 

p f a,, * ; w > ' C M + * ) < , , 
\o<s<t V J 

and the desired result follows by [9, Corollary 3.7.4]. D 

L e m m a 2.3.3 ( Convergence of Subsequences and Fluid Equations ) If XQ =*• x0, then every 

subsequence (X'1n,Ayn) has a further subsequence (X7"*, A7n*) such that (A"7"*, A7"*) => (x,A), 

where (x, A) satisfies the following fluid equations : 

xt(v) = x0(v) + g Au,v(t) - f xs(v)ds (2.12) 
u€JV-l(») ° 

Au,v(0) = 0, A„it,(i) nondecreasing, ^ Au,„(«) = A(«)t, (2.13) 
veiV(u) 

/ /{x s(u) > mu(x i)}dAu,„(s) = 0. (2.14) 
JO 
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Proof. Let (ynk) be a subsequence of 7* -4 00 such that (X7"*, A7B* ) converges weakly. 

Let (x,A) denote the limit. By Skorokhod's theorem ([9, Theorem 3.1.8]), the processes can be 

constructed on the same probability space such that the convergence is almost everywhere. The 

limit x is continuous with probability one and the convergence is uniform on compact time sets ([9, 

Lemma 3.10.2] and [9, Lemma 3.10.1] respectively); therefore, 

lim / Xy~(s)ds = f x(s)ds n-H»J0 Jo 

with probability one. Since M7n ->• 0, (x, A) satisfies Equation (2.12) with the initial condition x0. 

By (2.8), (X7"t,A7"t) satisfies conditions (2.13) and (2.14) for all k. The relation (2.13) defines a 

closed subset in the Skorokhod topology; hence it is satisfied by the limit A. Since 

f I{X:(v) > mu(X?)}dAZ,v(s) = 0, 
JO 

it follows that 

/ ' (X7(v) - mu(X7)) A 1 dAZ<v(s) = 0. (2.15) 

Jo 

By [10, Lemma 2.4], we can take a limit in (2.15) along the subsequence (7**) so that (x, A) satisfies 

(2.14). This establishes the lemma. ° 

2.3.3 The fluid l imit 

In this section we concentrate on the solutions to the fluid equations (2.12)-(2.14), existence of 

which is known due to Lemma 2.3.3. In particular, via a monotonicity argument, Lemma 2.3.5 

establishes that there is a unique load trajectory that solves the fluid equations, and Lemma 2.3.7 

identifies the limit point of this trajectory. We start with a remark. 

Remark 2.3.2 Equation (2.13) implies that AUtV has a density au>„ such that J2veN{u) au,v(t) = 

\(u) almost everywhere on the positive real line. Therefore, x and A are almost everywhere dif-

ferentiable, and whenever the derivatives exist, Au,„(t) = a„)V(£), xt(v) = (J2U
 a«,«W) ~ xt(v), and 

I{xt(v) > m*(x()}<%«,«(() = 0. 
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L e m m a 2.3.4 ( Monotonicity ) Suppose (x', A1) and (x, A) are two solutions to the fluid equa

tions (2.12)-(2.14) with xQ(v) > x0(o) for all veV. Then x't(v) > xt(v) for allveV and t > 0. 

Proof. To prove the claim by contradiction, suppose that the conclusion is false. Take e > 0 

so that t i defined as follows is finite: 

ti = inf{t > 0 : xt(v) - x't(v) > e for some location v 6 V}. 

Since x't and xt are continuous, the set F defined as follows is nonempty: 

F = {v 6 V : xtl (v) = x'tl (v) + e}. 

Let e' = max{z t l (v) — x'tl (v) : v 6 F°} and to, €i be such that c7 < e0 < ei < e, and 6% > 0. By 

the continuity of solutions, there exists to with 0 < to < h such that 

xs(v) - x's(v) > e i for v e F, s € [t0, h) (2.16) 

xs(v) - x's(v) < 60 for u 6 F 6 , 5 € [r0, h). (2.17) 

Note that Z«eF*(oM - x'to(v) < \F\e = E„ 6 F x t l ( i ; ) - x'tl(v) so that 

^M -*,„(«)) > EKM-'LM)-

This, together with (2.12) and (2.16), implies the existence o f a u 6 ( / such that 

2] <^As)ds > I 
vQN(u)nF Jt° »6iV(u)nF 

fl Y. ***(*)**> T £ <»*»- (2.18) 

By Remark 2.3.2, for almost all s 6 [*o,*i) such that the integrand of the left-hand side of (2.18) is 

positive, 

min x,(u) < min x,(u). (2.19) 

In view of (2.16) and (2.17), this implies that 

min x'.(u) < min x's(v). (2.20) 
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Thus, for almost all such s, the integrand of the right-hand side of (2.18) equals A(u), which is 

an upper bound to the integrand of the left-hand side. This contradicts (2.18) and hence also the 

existence of tx for any e > 0. D 

L e m m a 2.3.5 ( Uniqueness of Load Trajectory ) If (x, A) and (x', A1) are two solutions to the 

fluid equations (2.12)-(2.14) with XQ = x0 , then xt = x\ for all t > 0. 

Proof. Use Lemma 2.3.4 twice with x0 < x0 and x0 > Xo- ° 

R e m a r k 2.3.3 Note that the fluid equations and the initial state x0 do not necessarily deter

mine A uniquely. For a simple illustration, suppose that V = U = {0,1}, N(u) = V for u € {0,1}, 

and A = (1,1). Let Au,v(t) = (l/2)t, and AUt„(t) = /{« = v}t. Both (x,A) and (x, A) satisfy the 

fluid equations with x0(v) = 0 and xt(v) = 1 — e~l for all v. 

The uniqueness result of Lemma 2.3.5 removes the need to pass to a subsequence for the con

vergence of X"1 in Lemma 2.3.3. 

Corol lary 2.3.1 If XQ ==> xo, then X"1 => x, where for some process A, (x, A) is a solution 

of the fluid equations (2.12)-(2.14) with the initial condition x0. 

Let a be an assignment that solves the static problem SLB(\, $) with the corresponding load 

q. It is easy to verify that (q(l — e~£), at) is a solution to the fluid equations with zero initial state 

and that this solution converges to q exponentially fast as t —• oo. The next two lemmas show that 

starting from any initial state x* converges to q exponentially fast. 

L e m m a 2.3.6 Let (U, V, N) be an arbitrary load sharing network. For any (x, A) that satisfies 

(2.12) and (2.13), 

E *,(«) = E *o(t,)e-< + £ A(u)(l - e-1). 
V V u 

In particular, lim*_»co £ « xt(v) = %% A(«) uniformly for all x0 in bounded subsets of Rv. 

Proof. Equations (2.12) and (2.13) yield the integral equation 

E='M = £*o(") +1EA(«) - f^s^ds, 

which yields the desired result. • 
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Lemma 2.3.7 ( Insensitivity to Initial State ) Let (x, A) be a solution to the fluid equations 

with XQ > 0. Then 

ii*» - ?iuP < c-» nigiUp v E ^ w ) , 

where || • \\mp denotes the supremum norm. In particular, lim^oo ||x t — q\\mp = 0 uniformly for all 

xQ in bounded subsets of R\. 

Proof. Let t; € V be arbitrary. By Lemma 2.3.4, xt(v) > g (w) ( l - e - t ) ; thus 0 < xt(v) -q(v)(l-

e"4) < Ev(xt(v') - ?( t / )( l - e" ' )) . By Lemma 2.3.6, & / * * ( , / ) - g(«0(l - e~')) = £ • zoO^e" ' ; 

therefore, 

-q(v)e-< < xt(v) - ?(t;) < (-q(v) + E * o ( t O ) « _ l -

This establishes the lemma. • 

2.3.4 A s y m p t o t i c o p t i m a l i t y of l ea s t l oad r o u t i n g 

This section establishes the asymptotic optimality of LLR for the optimal control problem for

mulated in Section 2.3. In Section 2.3.3 it was shown that the finite dimensional distributions of 

the normalized load process converge as 7 -»• 00, and the limit process converges to an optimal 

point q as t -> 00. Lemma 2.3.9 establishes the convergence of the equilibrium distribution of the 

normalized load process to the deterministic distribution concentrated at q. These facts are used 

to prove Theorem 2.3.1 on the asymptotic optimality of LLR. 

In what follows, PM denotes the distribution of the process X"1 when XQ has distribution ft. Also, 

Ho is the deterministic distribution concentrated at the zero state, and p 7 denotes the distribution 

of X 7 given XQ = 0. We start with an auxiliary lemma. 

Lemma 2.3.8 Given e > 0, there exists a 7^ such that whenever 7 > yc, 

PK fe**» < * + E A(«)J > 1 ~ « for any t> 0. 

Proof. Starting from the zero state, the total load in the system at any time t > 0 is stochasti

cally dominated by a Poisson random variable with mean 7%% A(«). Chebychev's inequality yields 

the desired result. 0 
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Lemma 2.3.9 ( Convergence of Equilibrium Distributions ) Let q be the unique load vector 

corresponding to solutions of SLB(\,$) and v be the distribution of the equilibrium load X7,. 

Then for all e > 0, 

Jim v(\\Xl-q\\aup>e)=0. 

Proof. Let e > 0 be fixed. Note that v(\\X2o ~ ? IUP >e) < liminfr^oo f«,(ll*T - ?IUP > f) 

so that it suffices to show that 

Pt*(\\X}-q\\mp>e)<t 

for all sufficiently large T and 7. Towards this end, appeal to Lemma 2.3.7 to fix 0 so that 

||X( - g||,up < e/2 whenever t > 6, for all x such that £trxo(°) < e + %]^A(u). By the time 

homogeneous Markov property of X"1, 

P* (ll*r-?IU >() = P^_e (I1*7~?II«P > 4 

whenever T > 0. Therefore, to prove the lemma, it suffices to establish the following claim: There 

exists a y'c such that whenever 7 > 7^, 

f%._, (||X7 - q\UP > e) < e for all T > 6. (2.21) 

To argue by contradiction, suppose that the claim is false. Then one can construct a sequence 

(pt) with f -»• 00, such that fit = ft*.-* for some choice of t(£) > 0, and 

Pi*{\\Xi-q\\suP>e)>e. (2.22) 

By Lemma 2.3.8, (/%() is tight; therefore, by Lemma 2.3.3, there exists a subsequence fn - • 00 such 

that if XQ1 ~ Ptfn then X*n => x, for some x as in Lemma 2.3.3. Hence there exists an n£ such 

that 

Pit* (ll*f" " * * IU > «/2) < c/2 (2.23) 

whenever n > n£. However, by the choice of 9 and Lemma 2.3.8, for all fn sufficiently large, 

Ptfn (ll=, - q\\suP > e/2) < e/2. (2.24) 

17 



Observations (2.23) and (2.24) contradict (2.22), hence proving (2.21), which establishes the lemma. 

a 

T h e o r e m 2.3.1 ( Asymptotic Optimality of LLR ) Given an allocation policy ir, let J* denote 

the cost under ic when the network demand is j \ . Then 

, - 2 jLLR liminf 7 " V ' > Iim 7 " z < " > 0. 

Proof. Note that in equilibrium 7-X'7)(t;) is stochastically dominated by a Poisson random 

variable with mean 7%%A(«), for all v € V. Consequently, E[(XZ>(v))p]=0(l) for all p € Z+. In 

particular, ( (A'7)(u))2 : 7 > 0 ) is uniformly integrable. Thus, by Lemma 2.3.9, 

J%7"4 
- 2 jLLR _ lim E 

i r- foo 
E%w)' 

L v 

= E Ek(»))' 
= *(A) > 0. 

Inequality (2.6) implies that for any allocation policy %-, 

7 - % > 7 _ 2*(7A) 

= *(A) 

for all 7 > 0. This proves the theorem. 

2.4 F i n i t e C a p a c i t i e s 

This section considers a variation of the basic model in which each location has a finite capacity. 

Namely, we assume that the load of a location cannot exceed its capacity, and arrivals to the 

congested neighborhoods are dropped. In this setting, a natural objective for the allocation policy 

is to minimize the percentage of consumers dropped in the system. We concentrate on a broad 

class of practical allocation policies, namely the least relative load routing policies, in which new 
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consumers are assigned to the location with the least relative load. The relative load of a location 

is defined by applying a normalization function to the actual load. Theorem 2.4.1 establishes that 

such policies asymptotically achieve the smallest loss probability for large arrival rates. We then 

provide stronger results on two members of this class, namely the least ratio routing (LRR) and 

the maximum residual capacity routing (MRCR) policies. 

The use of a binary valued normalization function would model trunk reservation strategies, 

studied in a similar context by Hunt and Kurtz [7]. However, we require the normalization functions 

to be strictly increasing; thus, trunk reservation strategies are not covered in this chapter. In doing 

so, we avoid the pathologies associated with trunk reservations in heavy traffic, and can therefore 

establish optimality results. The drawback of our approach is that more feedback information 

about the network state is required to implement the allocation policies. 

To describe the dynamic model of interest, let a capacity vector K = (n(v) : v 6 V) be a 

vector of positive numbers. Given a load sharing network (U, V,N),a. capacity vector n, and a load 

vector A, consider the limiting regime of Section 2.3.2. Suppose that in each system indexed by 7, 

each location v has capacity [7K(U)J . A location is called full if its load and capacity are equal, 

and a consumer is lost if, upon its arrival, all of the locations in its neighborhood are full. Lost 

consumers cannot be assigned later; hence they are treated by the system as if they never arrived. 

The problem of interest is to find allocation policies that minimize the loss probability Py(Loss), 

which is defined as 

Ry(Loss) = liminf 
^[number of consumers lost in [0, t j 

^ ™ «7E«A(«) 

In light of Section 2.3, we start with some definitions regarding an associated static problem. 

Given a capacity vector n, define Bx,K as the set of admissible assignment vectors a such that 

J2v au,« < A(«) for all u, and q(v) < K(V) for all v, where q denotes the load vector determined by 

assignment o. The static load packing problem (SLP) is the simple assignment problem defined as 

SLP(\,K) : Maximize^ q(v) : a 6 #&.«). 
V 

Towards the end of characterizing certain solutions to SLP, we have the following definition: 

Definition 2.4.1 A function f : Rv —• Rv is called a normalization function if for all v 6 V, 

the real valued function f(-,v) has the following three properties: 
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(%) f(q,v) depends on q only through q(v), 

(it) f(q,v) is a strictly increasing and continuously differentiate function of q(v), such that 

9f(q, v)/dq(v) > S for some 8>0, 

(Hi) f(q, v) = 0 when q(v) = K(V). 

Consider the following two conditions on a generic assignment a, where q denotes the load vector 

corresponding to a, and mv.(f(q)) = min*^, , ) f(q,v): 

Condition 2.4.1 a*,* = 0 whenever f(q,v) > mu(f(q)). 

Condition 2.4.2 %]* au,„ < X(u) only if f(q, v) = 0 for all v 6 N(u). 

Let the function $ : Rv -+ R be defined as $(?) = ^ /0
, (v) f(q, v)dq(v). Note that $ is convex, 

however, not necessarily symmetric in its arguments. The following three lemmas are proved 

in Section 2.7. The first lemma concerns a static load balancing problem, the second concerns a 

connection between static load balancing and load packing, and the third gives a sufficient condition 

for optimality in SLP(X, K). 

Lemma 2.4.1 ( Load Balancing ) There exists a solution to SLB(X, $ ) . An admissible assign

ment a which satisfies demand A solves the SL\B(A,$) if and only if a satisfies Condition 2.4-1 . 

Furthermore, all such assignments yield the same load vector. 

Lemma 2.4.2 ( Truncation ) Let a solve SLB(X, $) with the corresponding load vector q, and 

let a be the assignment defined by 

Then a 6 Bx,K and a satisfies Conditions 2.4.1 and 2-4.2 with the corresponding load vector q(v) A 

K(V). 

Lemma 2.4.3 ( Sufficiency ) An assignment vector a 6 Bx,K solves SLP(X, K) if there exists a 

normalization function f such that both Conditions 2-4-1 and 2-4-2 hold. For a given normalization 

function, there exists an assignment a € Bx,K that satisfies Conditions 2.4-1 and 2.4-2, and all such 

assignments yield the same load vector. 
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To treat the lossy network in the context of the already existing theory, we introduce a new 

location u& and define an extended load sharing network (U, V, N) by U — U, V = V U {%}, 

and N(u) = N(u) U {%}, where %((%.) = oo. A load process (X(v) : v 6 V) corresponding to an 

allocation policy JT can be extended to a load process (X(v) : v £ V) on (U, V, N) by letting Xt(v£) 

denote the number of blocked consumers that would have been in service at time t if they were not 

blocked. We continue to use X to denote the extended process, and let X7(u) = y~lX(v) for all 

veV. 

The solution of SLP(X, K) provides a lower bound for the loss probability of any allocation 

policy. 

L e m m a 2.4.4 For any allocation policy v and any 7 > 0, 

where q is the load vector corresponding to a solution of SLP(X, K) . 

Proof. Consider the load process X on (U, V, N), and assume, without loss of generality, that 

X starts with the zero initial state. Let 

Sk = Holding time of the ktk arrival to u&, 

P(t) = Number of arrivals to t%, in [0,t). 

Note that 0(t) is the number of consumers lost by time t in the original system (U, V, N). By the 

construction of X, 

£[f E *.(«)<&]-£[/*E*.(«))<k] = E[f Xs(vL)ds] 
J° Z& J° v&r JO 

< 4Est] 
J f c = l 

= E\8(t)l (2-25) 

where the last step follows by the independence of (s* : k > 1) and 0(t). For every s, E[Xy] is the 

load vector corresponding to an assignment in 5A,*; therefore, by the choice of q, I ^eK E[X?(v)] < 

E«6V9(U) so that E[JQ J2vtv X3(v)ds] < tfY^&f li?)- Rearranging (2.25) and observing that 
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m&£,«• X(s)ds] = yZ. A(») £(1 - e-)ds yield 

The result follows by dividing each side by %% A(«) and letting t -* oo. 

In the context of finite capacity constraints, we investigate a class of allocation policies which 

are named least relative load routing (LRLR) policies. Given a normalization function / , an LRLR 

policy is defined by the following assignment rule: 

• Upon arrival, a consumer of type u is assigned to a location v 6 N(u) with the minimum 

relative load, f(X'l,v), provided that the minimum relative load is less than zero. Otherwise, 

all of the locations in N(u) are full, and the consumer is lost. 

Consider the extended load process (X(v) : v e V) under an LRLR policy. Intuitively, this 

process is lossless, and it is also governed by LRLR with the normalization function extended by 

defining f(q,v^) = 0~. The process Xy is Markov and has the following representation: 

X7(v) = XZ(v) + M?(v)+ E AZtV(t) ~ fQ X:(v)ds, 
ueAT-t(v) 

where 

<„(*) 
Jo I{rnu(f(Xs)) = 0}X(u)ds if v = vL, 

and M7(u) is a local martingale with MQ(V) = 0. Given that (X7) is tight, the methods of 

Section 2.3.2 can be applied to establish the tightness of (X~>, A7) and characterize the possible 

weak limits. Namely, the following lemma holds: 

Lemma 2.4.5 Suppose (XQ) is tight. Then every subsequence (X"ln,A"ln) has a further sub

sequence (X7n*,A7nfc) such that (X7"*, A7n*) = > (x,A), where (x,A) satisfies the following fluid 

equations: 

xt(v) = xQ(v) + E *.,»(*) - / x*(v)ds, (2.26) 

A„,„(0) = 0, AUiV(t) nondecreasing, (2.27) 
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0 < xt(v) < K(v), E K«(t) = Hu)t, (2.28) 
o€iV(a) 

/ I{f(xs, v) > mu(f(xs))}dAv,v(s) = 0 „ # % , (2.29) 
JO 

I I{mu(f(xs)) < Q}dA*tVL (s) = 0. (2.30) 
Jo 

Call t a regular point of a function g : R -+ R\f g is differentiate at t, and let gt denote the 

derivative of g at a regular point t. The following lemma is proved in Section 2.7. 

Lemma 2.4.6 Let g be an absolutely continuous function, and let a 6 R- Then gt = 0 for 

almost all t such that gt = a. 

Lemma 2.4.7 ( Monotonicity ) Let (x', A1) and (x, A) be two solutions to the fluid equations 

(2.26)-(2.30). Then, 

(i) Ifx0(v) > xQ(v) for all veV, then x't(v) > xt(v) for allveVandt>0. 

(ii) If in addition x0(u£,) > x0(u£,), then x{(«/,) > x«(%) for all t > 0. 

Proof. For (%), the proof of Lemma 2.3.4 applies directly by replacing Fc by F° n V and using 

f(xs) and f(x's) in place of x , and x's in inequalities (2.19) and (2.20), respectively. 

To prove (ii), for each t define 

Ft = {v e V : xt(v) = K(V)}, Fl = {veV: x't(v) = n(v)}, (2.31) 

Gt = {u € U : N(u) C Ft}, G't = {ueU: N(u) C F/}. (2.32) 

By part (i), Ft C F[, and Gt C G't for all (. By Remark 2.3.2 applied to (2.26)-(2.30) and 

Lemma 2.4.6, for almost all t, 

( E ««.«(*)) - K(u) = *«(") = ° for all w € Ft, 
u6C?t 

( E < » W ) " «(«) = 4 M = 0 for all u e F/. (2.33) 
u€G{ 
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Therefore, for almost all t, 

it(vL) = it(vL) + E **(«) 
t»eFe 

= E^w-cE^N-r.w, 
4(%) = x't(t/L) + E *'<(") 

»eF, 

< EM«)-(E44)-4W, 
u6G, «€F t 

where the inequality follows by (2.33) and the definitions (2.31) and (2.32). Hence if et = x't(vi,) — 

X((%), then et > —et for almost all t. This, along with the hypothesis eo > 0, proves (ii). D 

Corol lary 2.4.1 ( Uniqueness ) If (x, A) and (xr, A') are two solutions to the fluid equations 

(2.26)-(2.30) with x0 = x0, then xt = x\ for all t > 0. 

We now concentrate on the properties of the unique trajectory x that corresponds to the so

lutions of the fluid equations (2.26)-(2.30). The proof of the following lemma can be found in 

Section 2.7. 

L e m m a 2.4.8 Let gt(i) be absolutely continuous, i = 1,2, • • •, / , and set mt = min,-&(*')• Then 

m is absolutely continuous, almost every t is a regular point for g(l), • --,g(I), m, and for all such 

t, rht = gt(i) for all i such that gt(i) = mt-

Note that by the continuous differentiability of / , there exists A such that &3uv < A whenever 

0 < qf(v) < K(V) for all u 6 V. Let q be the optimal load vector corresponding to the assignments 

satisfying Conditions 2.4.1 and 2.4.2. Extend q to V by setting g(t%,) = (£„A(u)) - 5 Z „ 6 K ? ( U ) . 

The next two lemmas establish the convergence of x to the load vector q. 

L e m m a 2.4.9 Given e > 0, there exists r0(e) such that for all v 6 V, 

xt(v) > q(v) - e (2.34) 

whenever t > r0(e). 
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Proof. We first establish the inequality (2.34) for v 6 V. Let {Vlt V2, - • •, Vj} and {Uu (/-%, ' , Uj} 

be the unique partitions of V and U, respectively, defined by Lemma 2.2.2 when condition (2.1) 

is replaced by Condition 2.4.1, and the vector q is replaced by f(q) in (2.2) and (2.3). Let 

j 6 {1,2, • • -, J} and define 

m\ = inf f(xt,v), 

Pi = | t ; € | J % : f(*t,v) = mi\, 

Nm(Fj) = { u : i V ( « ) n F / ^ 0 a n d i V ( « ) n ( ( j K ) = 0 } , 
i= i 

with the understanding that (Jf=1 Vf = 0. Let / / denote the value such that f(q, v) = // for all 

v 6 Vj. Assume that t is a regular point of m? such that m\ < fj — eS. Then by the explanations 

indicated in parentheses, 

l * ? K = E^Ff A**'") (Lemma 2.4.8) 

> ^ E v g F / ^ W ( Definition 2.4.1) 

> ^ (E) U 6 ^. (F^) *(u) ~~ ZẐ eF̂  ̂ «W) ( Definition of Fj and the fluid equations ) 

> KZueN-(F>) M«) - E V 6 F / (?(«) - tS/A)) ( Definition of Ff ) 

> |F/|e<J2/A. ( Definition of Nm and 9 ) 

Therefore, if t > sup„ |/(0, u)|A/e^, then m{ > fj - eS, so that f(xt, v) > f(q, v) - ef for v e Vj, 

which in turn implies that xt(v) > q(v) - e for v e Vj. Since j is arbitrary, (2.34) holds for all 

t > sup„ |/(0,u)|A/e<S2, and v € V. 

To complete the proof of the lemma, note that by Lemma 2.3.6, there exists a rj(e) such that 
XI(VL) + I2veVjxt(v) > EuecoM") - * for all t > rj(e). Therefore, for all such t, xt(vL) > 

(J2ueUj Hu) - i - E«ev> «("))+ ^ 1(VL) - c This proves (2.34) for u = VL and establishes the 

lemma with r0(e) = (supv |/(0, u ) | A / e ^ V Tj(e). a 

Lemma 2.4.10 ( Insensitivity to Initial State ) If (x, A) is a solution to the fluid equations 

(2.26)-(2.30), then lim^oo ||*t - tfllsnp = 0 uniformly for all x0 in bounded subsets of R\. 
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Proof. Fix f > 0 and let E*ef %(«) < l- Given e > 0, set e0 = e/(|V| +2) . Appealing 

to Lemma 2.3.6, let Ti(f,e0) be such that for all t > n(f,eo), H%gyZ((u) - ZZ„A(u)| < e0, or 

equivalently | J2v^v(xt(v) - q(v))\ < fo- If O T-0(e0) V n(l, e0), then Lemma 2.4.9 implies that 

inf (xt(v) -q(v)) > - e 0 > - e . 
vev 

This in turn implies that 

sup(xt(w) - q(v)) < E (z«(w) - °(v) + «o) 

= E ( x , ( u ) - , ( u ) ) + (|y| + l)eo 
vev 

< (M+2)eo = e, 

which yields the desired result. • 

Lemma 2.4.11 ( Convergence of Equilibrium Distributions ) Let q be the unique load vector 

corresponding to assignments satisfying Conditions 2.4-1 and 2-4-2, and v be the distribution of the 

equilibrium load AL7,. Then for all e > 0, 

Jim u(\\XZt-q\\np>e)=0. 

Proof. The proof of Lemma 2.3.9 applies directly by using Lemmas 2.4.5 and 2.4.10 in place 

of Lemmas 2.3.3 and 2.3.7, respectively. O 

Theorem 2.4.1 ( Asymptotic Optimality of LRLR ) Let P^(Loss) denote the loss probability 

of an arbitrary allocation policy IT and P^RLR(Loss) denote the loss probability of the LRLR policy 

for some normalization function f. Then 

UmMPI(Loss) > Iim Pl;RLR(Loss) = 1 - % 5 \ ^ \ 
7-*0O 1 - -Y-KXJ 7 "£.u A(U) 

where q is the load vector corresponding to a solution of SLP(X,K). 
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Proof. The collection (X7 , : 7 > 0) is dominated by normalized Poisson random variables and 

is uniformly integrable. Therefore, 

HmP^R(Loss) = lim Hm inf E[ttUmb*r o f c o " f m e * l o s t i n P>» <%, 

= E^)&^^^' 

EuA(«)' 

= ^ _ E ^ y , W 
E„A(u) • 

where the second step follows by Little's Theorem, and the third step is a consequence of Lemma 2.4.11 

and the uniform integrability of pf7,: 7 > 0). The theorem now follows by Lemma 2.4.4. • 

Having proven the optimality properties of generic LRLR policies, we now focus on two particu

lar elements of this class, namely the least ratio routing and the maximum residual capacity routing 

policies. In the next two sections, we obtain a stronger version of Lemma 2.4.10 for these policies 

and provide explicit solutions of the fluid equations (2.26)-(2.30) for certain initial conditions. 

2.4.1 Least ra t io routing 

In this section we focus on a particular least relative load routing policy, namely the least ratio 

routing (LRR). The LRR policy is defined as the LRLR policy associated with the normalization 

function f(q, v) = — 1 + q(v) /K(V). Note that LRR assigns each consumer to the location with the 

least load-to-capacity ratio, A"7 (u)/«(«). 

Let a and q be defined as in Lemma 2.4.2. Define the trajectories a and z as follows: 

Ou,v(t) = < 

*<»> • { r 

2*. veV t< ln(q(v)/(q(v) - *(«))+), 

M » ) M » ) v£V t> \n(q(v)/(q(v) -«(»))+), 

. Et.ev(5u,v - autV(t)) v = vL, 

)(i-r')A/!(i)) veV, 

*"') E . A(«) - Ever %M v = %. 

It is straightforward to verify that (2, J"0"a(s)ds) solves the fluid equations (2.26)-(2.30) with the 

zero initial state. 
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Lemma 2.4.12 ( Convergence Rate of LRR ) Let q be the unique load vector corresponding 

to assignments satisfying Conditions 2.4-1 and 2.4-2. If (x, A) is a solution to the fluid equations 

(2.26)-(2.30), then 

sup |x t(u) - q(v)\ < e _ t (sup,(u) V E *o(u) 

Proof. By Lemma 2.4.7, for all w e V, xt(v) > zt(v). Also, 

**(») - zt(v) < E(**N - *(»)) = «"' E *<>(«)-

These inequalities, together with the fact that 

? ( t / ) ( l - e - ' ) < * ( « ) < ? ( « ) 

for all v € V, yield the desired result. 0 

2.4.2 M a x i m u m r e s i d u a l c a p a c i t y r o u t i n g 

The maximum residual capacity routing (MRCR) is defined as the LRLR policy associated with the 

normalization function f(q,v) = q(v) — n(v). Note that the MRCR policy assigns each consumer 

to the location with the maximum residual capacity defined as yn(v) — Xt(v). 

Let a be an optimal assignment satisfying Conditions 2.4.1 and 2.4.2, and let q be the load 

vector determined by a. Extend a to (U, V, N) by setting aUiVL = A(u) — Ewe^0*."- Let ZQ denote 

the vector such that z0(v) = K(V) for v 6 V, and 0 < ZQ(VL) < oo. Direct verification yields that 

(z,A), defined by 

*(«) = zo(«)e- t + ? ( y ) ( l - e - t ) 

AUfV\t) = ttu,t/t> 

is a solution to the fluid equations (2.26)-(2.30) starting with the initial state z0. 

Lemma 2.4.13 ( Convergence Rate of MRCR ) Let q be the unique load vector corresponding 

to assignments satisfying Conditions 2.4-1 and 2-4-2. If (x, A) is a solution to the fluid equations 

• 
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(2.26)-(2.30) with an arbitrary initial state XQ, then 

sup !*,(«;) - q(v)\ < e-' ((q(vL) V x0(vL)) + E «(«) ) • 

Proof. Let ZQ be an initial state vector defined as ZQ(V) = K(V) for v € V and ZQ(VL) = xo(u&), 

and let z denote the load trajectory starting with ZQ. By Lemma 2.4.7, for all v 6 V, 

xt(v) < zt(v) 

= zo(u)e-* + , ( u ) ( l - e - ' ) . 

On the other hand, for any v € V, 

zt(v)-xt(v) < E ( z t ( t / ) - x t ( t ; ) ) 

= e _ t E ( z o ( u ) - x o ( u ) ) 

< r ' j ;K(») . 

Therefore, 

(zQ(v) - , („) - E «(«))e - ' < xt(v) - ?(u) < (zo(v) - ?(«))e-{, 
t<6V 

and the desired result follows. • 

2.5 T h e M i g r a t i o n M o d e l 

In this section we consider locations with infinite capacities and generalize the basic model of 

Section 2.3 by allowing consumers to change their types while they are in the system and also by 

including type-dependent departure rates. Towards this end, Lemma 2.5.1 identifies the weak limits 

of the network process as solutions to certain fluid equations. An example shows that the fluid 

equations do not necessarily uniquely determine the transient behavior of the load; nevertheless, 

by Lemma 2.5.5, the limit point is unique. These facts are used to establish Theorem 2.5.1 on the 

asymptotic optimality of LLR. 

The analytical description of the migration model involves a routing matrix R, such that R = 

[r„,u']c/x[f, where rUtU/ > 0 for u ^ u', and £u'eC/ ru,u' < 0 for all u 6 U. Given a load sharing 
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network (U,V,N), an arrival rate vector A, and a routing matrix R, consider the load balancing 

problem of Section 2.3. Suppose for all u, u' 6 U such that u' j ^ u, each type u consumer transforms 

into a type u' consumer with rate rUtU» or departs from the system with rate — £u 'e l / *"«,*'- Each 

arrival is assigned to a location via the LLR policy. In addition, when a consumer changes its type, 

it is reassigned using LLR. Its location may or may not change. We assume that R is nonsingular, 

so that every consumer eventually departs from the system. Let Lt(u) continue to denote the 

number of type u consumers in the network at time t. It can be verified by direct substitution that 

the equilibrium vector (L\%,(%) : u € U) is a vector of independent Poisson random variables with 

mean vector yp, where p = -A/2 - 1 , so that the normalized cost of any allocation policy is lower 

bounded by $(/>). This section extends the analysis of Section 2.3 to the more general setting. 

Let the contribution of type u to location v at time t, denoted by Ct(u,v), be the number of 

type u consumers at location t; at time t. Define C7(«»«>) = y~lCt(u,v), and Ly(u) = y~1Lt(u). 

Note that X?(v) = I ^ C 7 ( u , v ) , and L"[(u) = %^C 7 (« ,o ) . Under LLR, C is Markov on the state 

space Z+xV, and CP(u, v) can be represented as 

C7(u, v) = C2(u, v) + M?(u, v) + A7
 v(t) + J ru,uC7(u, v)ds, 

where 

and My(u,v) is a local martingale with MQ(U,V) = 0. Given that (CQ1) is tight, the methods of 

Section 2.3.2 can be applied directly to establish the tightness of (C7 , A7) and characterize the 

possible weak limits. Namely, the following lemma holds: 

Lemma 2.5.1 Suppose (C7) is tight. Then every subsequence (CPn, A7n) has a further sub

sequence (C7n*,A7nfc) such that (C7"t,A7"*) =*- (c,A), where (c,A) satisfies the following fluid 

equations: 

ct(u, v) = c0(«, v) + AUtV(t) + I ru>ttc,(u, v)ds (2.35) 
Jo 

A„,„(0) = 0, A„,„(t) nondecreasing, E A«.t,(«) = A(«)*+ E / '•(t»,)ru\«<fc. (2.36) 

f I{xs(v) > 7n«(x,)}dA«,,(s) = 0, (2.37) 
JO 

where xt(v) = Eu6/v-*(«) c ' ( u - v ) and ^(") = E«eVv(u) ct(«, v). 
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1 3 0 

- 1 0 0 
0 - 3 0 
0 0 - 7 

Figure 2.2 An example to illustrate the nonuniqueness of the solutions to the fluid equations 
(2.35)-(2.37). 

Table 2.1 Two assignment regimes for the network of Figure 2.2. 

u\v 
1 
2 
3 

At(u,v) 
1 2 3 

: /2 t/2 0 
3t/2 3t /2 0 

0 0 0 

ct(u,v) 
1 2 3 

(1 - e- ' ) /2 (1 - e"{)/2 0 
( l - e - 3 t ) / 2 ( l - e " 3 t ) / 2 0 

0 0 (.9495 x 107)e"7t 

u\v 
1 
2 
3 

At(u,v) 
1 2 3 
t 0 0 

1 - e~£ 3£ - 1 + e _ t 0 
0 0 0 

ct(u, v) 
1 2 3 

1 - e~' 0 0 
( e - t _ e - 3 t ) / 2 l-(e-t + e~3t)/2 0 

0 0 (.9495 x 107)e"7t 

The following example shows, in contrast to Lemma 2.3.5, that the initial state co and the fluid 

equations (2.35)-(2.37) do not necessarily determine a unique load trajectory x. 

Example . ( Type dependent departure rates, no routing ) Consider the load sharing network 

and the routing matrix of Figure 2.2. Suppose c0(3,3) = .9495 x 107, and CQ(U, V) = 0 otherwise. 

Let r = In 10, and consider the two assignment regimes (c, A) and (c, A) for t 6 [0, r] as listed 

in Table 2.1. It is straightforward to verify that both (c,A) and (5, A) satisfy (2.35)-(2.37), and 

xt(v) = xt(v) for v 6 V and t 6 [0,r]. Note that r = inf{( : x t ( l ) = xt(2) = x t(3)}, and 

x r ( l ) = .9495. Under both regimes, at time r , the instantaneous rate of decrease of load at 

location 3 is 7(.9495), whereas the instantaneous rates of decrease of load at locations 1 and 2, 

respectively, are each upper bounded by 3(.9495). The difference is larger than the flow rate of 

type 2 arrivals; therefore, there exists a S > 0 such that (2.35)-(2.37) are not violated only if all type 

R = 
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2 arrivals are directed to location 3 during [T,T-TS\. Under (c, A), type 1 arrivals can split evenly 

between locations 1 and 2 and maintain x t( l ) = xt(2) for t € [r, r •+- b~\. However, under (cyA), 

at time r location 1 discharges at an instantaneous rate of .9 + 3(.0495) = 1.0485, and location 

2 discharges at an instantaneous rate of 3(.9495) = 2.8485. The difference between the discharge 

rates is greater than the flow rate of type 1 arrivals; therefore, there exists a 5' > 0 such that all 

type 1 arrivals are directed to location 2, and x£(l) > x t(2) for t 6 (T,r-\-Sr\. Thus, CQ together 

with the fluid equations (2.35)-(2.37) does not determine x uniquely. O 

We now concentrate on the properties of the load trajectories corresponding to the solutions 

of the fluid equations. By the definition of the demand vector, the coordinates of p are strictly 

positive; however, the extension of the results to nonnegative p is trivial. 

Lemma 2.5.2 Given l0 6 R+, lim^oo ||/t - p| |^p = 0 uniformly for 0 < lo < Jo. 

Proof. By Equations (2.35)-(2.37), lt satisfies 

lt = l0 + Xt-r f Rlsds, 
Jo 

which can be solved to yield 

lt = l0e
Rt-rp(I-eRt), 

where the exponential eRt of the matrix R can be defined by a power series. Since eRt -4- 0 

exponentially, lt converges to p exponentially fast, uniformly for /0 < lo- This establishes the 

lemma. 0 

The following auxiliary lemma is proved in Section 2.7. 

Lemma 2.5.3 Suppose that a+ < on for 1 < i < J, and wmin — mini<t-<j «;,-. Then 

E a*wi ^ E fi»'l0«"+ (E ai ~ E 6*')u'""'n. 
i i i i 

Lemma 2.5.4 Let q denote the unique load vector corresponding to the solutions ofSLB(p, $ ) . 

Given lQ € R+ and e > 0, there exists ti(l0, e) such that for all v 6 V, 

xt(v) >q(v)-e 
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whenever t > ti(T0,e), and 0 < lo < T0. 

Proof. Let {Vi, V2, • • •, Vj} and {U\, U2, • ~,Uj} be the unique partitions of V and U, respec

tively, defined by Lemma 2.2.2 adapted to SLB(p,$). It is enough to show that 

inf xt(v) >qj-e (2.38) 

for all j 6 {1,2,--. ,7}, and t > ti(To,e), where qj is the value such that q(v) = qj for all v € Vj. 

Towards this end, for each j 6 {1,2, • - -, J} define 

mJ
t = inf xt(v), 

F/ = j u e U ^ : xt(») = m j i , 

ct(u,F3
t) = E d(%,v)' 

«eF/ 
j-i 

N'(F?) = {«:iV(«)nF/^0andiV(«)n((Jv;)=0}, 
f=i 

with the understanding that \J°=l Vi = 0. 

Let rmin = minu{-ru>tt} and rm a x = max«{-ru,g}. Given e > 0, let e0 < ermtn(2 %^ %%' |rUiU/|)_I. 

Appeal to Lemma 2.5.2 to fix (o(A), (o) such that suptt |/£(u) — p(u)\ < eo for all t > to(J"o» eo) when

ever 0 < lo < To. To prove the lemma by induction on j , let j = 1, and choose t > t0(TQ,e0). 

Suppose that t is a regular point of m l and x, and that 

m\ <qi-e. (2.39) 

Then, by Lemma 2.4.8 and the fact that Nm(F{) = N~l(F{), 

\F?\m\ = E'«(") 
«€F t

l 

= E AM + E ' M E ru.u,-£*(«.*?)(-»•«.«) 
u€W(F,1) ttgt/ u'eAf(F, l)\{u} «*€tf 

= E AM+EW") E r«.u'" E Q(«,F^)(-r.,J. (2.40) 
ueiV'CF,1) ti€l/ u 'gW(F, l) \{u} u€Af(F t

l) 
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By the choice off, ct(u, F(
l) < p(u)+e0, so that Lemma 2.5.3 and (2.39) can be used to bound the 

third term on the right-hand side of (2.40) to obtain 

\Fl\rhl > E A(«)+E<*(") E *"*,*,- £ &»(«) +«b)(-r«*) 
u6iV(F t

l) «€«/ u'€iV»(F t
l)\{u} ugJV(F t

l) 

- ( l^ | (9 i -e ) - E &»(«) + *)] 

Note that E«giV(Ft)P(u) ^ l^ l f i , and lt(u) > p(u) - e0. This, together with the identity 

p(u)(-rUiU) = X(u) + J2u'^uP("0ru',u and the choice of e0, yields that 

\F}\m\ > - e o ( E E ru.u'+ E (-ru.u))+6|F t
l | rm t n 

\«6t/u '6yV(F e
l) \{u} tt€JV(Ft») / 

- 2 • 

Thus, for almost all regular points t of m such that t > to(To, eo), ml > ermtn/2 whenever m\ < gi-e. 

Therefore, (2.38) holds for j = 1 for all t > Tl(T0, e) = t0(T0, e0) + 2 £Jp (u ) 4- e0)/ermt-„. 

As the induction hypothesis, fix j 6 {2,3, •••,«/}, and suppose that given e0 > 0, for each 

p e {1, • • -, j - 1} there exists a T^fo, eo) such that 

"if > ?P - «o 

whenever t > I^tfo, eQ). 

Leteo < min{erm,n(4(|C/'|+|y|)rT„ax)-l,ermt-n(4EttEU'ku,u'|)~1}, and chooser > max{to(To,e0), 

Tl(T0,€o),---,T}~l(T0,€o)}. Suppose that t is a regular point of mJ and x, and m\ < qj - e. Note 

that the methods used in the case j = 1 imply that 

|F/K = E *'W 
«€F/ 

> E A ( « ) + E W E r«.u' 
ueN-{Fi) u u'e;v(F/)\{u} 

- E ct(«,F/)(-rtt,tt)- E ct(u,Fl)(-r^) 
u6JV*(F/) u6/V«(F/)e 
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> -<o(E E r«.«' + E (-r«,«))+«|F/|rm,n->W E c.(«,F/). 
\ tt u.'€N'(F})\{u) ueiV(Ft

l) / «6iV»(F/)e 

By (2.5), the choice oft, and the induction hypothesis, 

E ct(u,Fj) < E o»(*)+«b)- E (%-w 

< « m , n 

~ 4rmox" 

Hence by the choice of e0, |F/|m^ > ermfn |F/|/2. Thus, there exists a Tj(T0,e) such that mj > 

qj — e for all t > TJ"(/o, e). This completes the induction step and the proof of the lemma with 

tl(T0,e) = TJ(To,e). a 

Lemma 2.5.5 ( Global Convergence ) Letx be the load function corresponding to an arbitrary 

solution of the fluid equations (2.35)-(2.37), and q be the unique load vector corresponding to the 

solutions of SLB(p, $) . Then lim^oo ||x* — ?||TOp = 0 uniformly for all l0 in bounded subsets of 

R%. 

Proof. Fix To e R%, and let /0 < T0. Given e > 0, set e0 = e/(|V| + 1), and appealing 

to Lemma 2.5.2, let t0(T0,eo) be such that |E«ey(**(") ~ ?(u))l < «o for all t > t0(To,c0). If 

t > fo(fo, eo) V hijo, eo), then Lemma 2.5.4 implies that 

which in turn implies 

inf (xt(v) - q(v)) > - e 0 > - e , 

sup(X((u) - q(v)) < E (x '(u) - ?(») + co) 

= T,l*t(v)-q(v)) + \V\eo 
vev 

< (\V\ + l)e0 = e. 

This proves the desired result. 
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Let Pp denote the distribution of the process C 7 when CQ has distribution fi and fio denote 

the deterministic distribution concentrated at the zero state. The proof of the following lemma is 

immediate: 

Lemma 2.5.6 Given e>0, there exists a yc such that whenever y > ye, 

P*> [ E J 7 M < * + E ^ W j > 1 - e for any t> 0. 

Lemma 2.5.7 ( Convergence of Equilibrium Distributions ) Let q be the unique load vector 

corresponding to solutions of SLB(p,$) and v be the distribution of the equilibrium load A"7,. 

Then for alle>0 

^Um * ( | | X 7 - g | U P > e ) = 0 . 

Proof. The proof of Lemma 2.3.9 applies directly by redefining p 7 as the distribution of C 7 

and by using Lemmas 2.5.1, 2.5.5, and 2.5.6 in place of Lemmas 2.3.3, 2.3.7, and 2.3.8, respectively. 

a 

Theorem 2.5.1 ( Asymptotic Optimality of LLR ) Given an allocation policy ir, let J* denote 

the cost under IT when the network demand is yX. Then 

liminf y~2JZ > lim y~2J^LR > 0. 
T-HX) T — 7-KX) y 

Proof. The proof of Lemma 2.3.1 applies directly by using Lemma 2.5.7 in place of Lemma 2.3.9 

and p in place of A. • 

2.6 Conc lus ions a n d D i s c u s s i o n 

This chapter concentrates on the dynamic load balancing problem and studies the performance of 

practical allocation policies, namely LLR and the class LRLR. When there are no capacity con

straints on the resources, LLR is shown to achieve asymptotically the most balanced load in the 
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2) U 

(a) 

K(l)=l K(2)=l 

00 

Figure 2.3 The counter examples for the optimality of (a) sticky LLR, (6) LRLR under finite 
capacities and migration. 

sense of minimizing a wide class of long-term average costs. LLR is also robust to migration, pro

vided that consumers are reassigned according to LLR whenever their types change. On the other 

hand, when the resources have finite capacities, LRLR policies asymptotically achieve the minimum 

possible loss probability. The desirable aspects of the considered policies are low computational 

complexity, decentralized implementation, and robustness to arrival and migration rates. 

The reassignment of migrating consumers is important for the asymptotic optimality of LLR 

in the migration model. The network of Figure 2.3(a) is an example in which LLR is not optimal 

without reassignments. Let A = (0,1) and the routing matrix be 

R = 
- 1 0 

1 - 1 

Hence all consumers arrive as type 2 and migrate to become type 1 before leaving the system. 

Suppose that consumers are assigned using LLR upon arrival; however, they maintain their original 

locations even though they migrate. Then at any time t, all of the load in the network is at location 

2; hence the limiting normalized cost of this policy is 4. A simple calculation yields that the LLR 

policy splits the load equally between the two locations, thus having a limiting normalized cost of 

2. 
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Optimality properties of the policies discussed in this chapter do not necessarily persist in the 

case of finite capacities and migration. In particular, myopic policies, which accept a consumer 

whenever possible, may not be asymptotically optimal. As an example to illustrate this, consider 

the network of Figure 2.3(b) in heavy traffic. Let A = (1,1,3), K = (1,1), and the routing matrix 

be 

"" - 1 0 0 

R= 0 - 1 1 

0 0 - 1 

Hence type 2 arrivals first visit location 1 and then location 2 before exiting the system. Without 

loss of generality, assume that location 2 gives higher priority to exogenous arrivals, in the sense 

that an exogenous arrival blocks a migrated consumer that is already in location 2, provided that 

location 2 is full at the time of arrival. Since exogenous arrivals suffice to overload location 2, all 

type 2 arrivals are bound to be lost. Any myopic policy blocks half of type 1 arrivals and has a 

limiting consumer loss probability of 0.7. On the other hand, a policy that blocks type 2 arrivals 

regardless of the system state has a limiting consumer loss probability of 0.6. We therefore conclude 

that the optimal policies have considerably more complex structures under the more general case. 

There are other asymptotically optimal policies that are not of repacking type. In particular, 

let the assignment a be a solution to 5L£(A,$) , and consider the Bernoulli splitting (BS) policy 

under which each arriving type u € U consumer is assigned to location v € N(u) with probability 

Ou,v/X(u) independently of previous events. Under this policy and the basic model of Section 2.3, 

the equilibrium load at each location v € V is a Poisson random variable with mean yq(v), where 

q denotes the load vector corresponding to the assignment a. It is therefore easy to see that the 

BS policy achieves the optimal normalized cost in the limiting regime of interest. Similarly, if a 

is a solution to problem SLP(X,K), then the BS policy asymptotically achieves the minimum loss 

probability in the case of finite capacity constraints. However, this policy explicitly uses the traffic 

parameters; therefore, it is not robust with respect to the network demand. Furthermore, it exerts 

only open-loop control; hence one expects a finer analysis to reveal the superiority of LLR to BS. 

This suggests a large deviations analysis to compare the policies that are optimal in the fluid scale, 

which is the approach taken in the following chapter. 
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2.7 P r o o f s of L e m m a s 

This section contains the deferred proofs from previous sections. We start with the proof of 

Lemma 2.2.1 by first giving an auxiliary result. 

L e m m a 2.7.1 Let $ : R* —• R be strictly convex and differentiate, and $„ denote the vth par

tial derivative o / $ . J / $ is symmetric in its arguments (i.e., $ (x ( l ) , • - , x ( d ) ) = $(x(p(l)) , • • •, x(p(d))) 

for any permutation p ) , then for all v, v' 

x(v) > x(u') = > $„(x) > $«,(x). 

Proof. Since the conclusion involves only two arguments, we can assume without loss of 

generality that d = 2. For (a, b) € R2, define ga,b(a) = *(<*(<%, 6) + (1 - a)(b, a)). Then, ga,b(a) = 

($i — $2) (a — b), where the partial derivatives $1 and $ 2 are evaluated at a(a,b) + (1 — or) (b,a). 

Note that by the strict convexity of $ , ga,b is strictly convex for 0 ^ 6 . Also by the symmetry of $ , 

9a,b(a)\a=i = 0; therefore, for a # 6 , ga,b(<*)\a=i > 0. This implies ($i(a,6) - $2(0 ,6) ) (a-6) > 0, 

which proves the claim. D 

Proof of L e m m a 2.2 .1 . The problem SLB(X, $) is a convex optimization problem on a 

compact and convex set; thus, there exists a solution. 

To establish the second statement of the lemma, we argue by contradiction in each direction. 

In what follows, ip(a) denotes the value $(?) induced by the assignment a. First, let a satisfy (2.1), 

and suppose that a is not a solution to SLB(\,$). Then there exists an admissible perturbation 

vector h such that 

E Aw,« = 0 for all % 6 # (2.41) 

v€N[u) 

hu,v > 0 whenever (%„,„ = 0, /t*,„ = 0 whenever v 6 N(u)c (2.42) 

*(= + ;A)_#,) ^ ^ ^ ^ ^ < ^ ^ ^ 

By (2.42) we have that for all u and v 6 N(u) 

hu,v < 0 =*- au,v> 0 

=> ?(") < q(v') for ail v' e N(u) 

= > $«(?) < $«,(?) for all v' 6 N(u) (2.44) 
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by using Lemma 2.7.1 in the last step. Now for u 6 U define 

@« (?) = max($*(g) : &*,« < 0) , K = Ev-J»«..<o >*«.*, 

$+(q) = min($„(g) : >»«.» > 0) , h+ = E v ^ B > 0 *«.»• 

Then by (2.41) A+ = - A " , and by (2.44) $+( , ) > @J(g), and therefore for all u 6 U, 

E E **.*•(*)>£**(•*(«)-••to)*0* 
« vgJV(u) u 

which contradicts (2.43). 

To show that the converse also holds, suppose that a does not satisfy the condition (2.1). In 

particular, let u be such that for some v, v' 6 N(u), 

a*,* > 0 and q(v) > q(v'). 

Then by Lemma 2.7.1, $„(g) — $v>(q) > 0; thus, there exists a S small enough such that it is possible 

to decrease au,„ and increase aUtV> by an amount 5 without violating the constraints of SLB(X, $) 

and obtain a smaller value for $ . Therefore, a cannot be a solution. 

Finally, by the strict convexity of $ , there is a unique load vector corresponding to the solutions 

o fS££(A ,$ ) . O 

Proof of L e m m a 2.2.2. It is straightforward to form the partition {Vi, V2, • • •, Vj} that satis

fies (2.2) and (2.3). This partition is unique since q is the same for all assignments a satisfying (2.1). 

Let a be an arbitrary assignment satisfying (2.1), and define the set of subsets {Ui,U2, • --,Uj} of 

tf as 

U{ = {u e U : a(u, v) > 0 for some v in V,-}. 

By (2.1), (2.4) and (2.5) hold; therefore, {Ui,U2,---,Uj} is a partition of U. 

It remains to show that any assignment satisfying (2.1) yields the same {Ui, U2, • • •, Uj). Sup

pose a is another such assignment which yields {Ui, U2, • • -, Uj}. To prove the claim by contradic

tion, assume that there exists a u e U such that u 6 Uj n Ui, where i < j . Since u e Uj, by (2.5) 

N(u) n Vi = <f>. Therefore, a(u,v) = 0 for all v 6 Vj. This contradicts the assumption that u 6 Ui 

and establishes the uniqueness of {Ui ,U2,---, Uj}. O 
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Proof of L e m m a 2 .2 .3 . For i = 1,2, let A,- 6 R%, and at solve SLB(A,,$) with the corre

sponding load vector %. Then for any a 6 [0,1], 

a * ( A 0 + (1 - ot)*(A2) = a*(f t ) + ( l - a ) * ( f c ) 

> $(aqi + (1 - a)q2) 

> V(aXl + (l-a)X2). 

The second step follows by the convexity of $ . The third step follows by the definition of $ and 

the fact that aai + (1 — ot)a2 is an admissible assignment that satisfies aXi + (1 — ot)X2 with the 

load vector aqi + (1 — a)q2. D 

Proof of L e m m a 2 .4 .1 . The proof of Lemma 2.2.1 applies by replacing q(v) with f(q,v) and 

by noting that (2.44) follows by the definition of $ . 0 

Proof of L e m m a 2.4.2. It is straightforward to see that a € 5A,« and that q is the load vector 

corresponding to o. To show that a satisfies Condition 2.4.1, suppose that f(q,v) > mu(f(q)) for 

some u,v with v € N(u). Then by Lemma 2.4.1 there exists a t / E N(u) such that f(q,vr) < 0. 

Since q(v') = q(v') for all v' with / ( ? , t/) < 0, mu(f(q)) = mu(f(q)), and therefore, 

m v) > f(q, v) > m*(/(?)) = mu(f(q)). (2.45) 

Since o,,t„ satisfies Condition 2.4.1, (2.45) implies that &%,,, = 0; thus, a*,* = 0, and Condition 2.4.1 

is satisfied. 

To show that Condition 2.4.2 is satisfied, note that if J^^v < A(w), then there exists a 

v 6 N(u) such that a„,v > 0 and q(v) > K(V). This implies that f(q,v') > 0 for all v' 6 N(u) and 

hence that f(q, v') = 0 for all v' € N(u), establishing Condition 2.4.2. O 

Proof of L e m m a 2.4.3. Let / be a normalization function and a be an assignment satisfying 

Conditions 2.4.1 and 2.4.2 with / and the corresponding load vector q. To prove the optimality 

of a, argue by contradiction. If a is not a solution to SLP(X,K), then there exists a perturbation 

vector h such that 

fiu,v = 0 veN(u)c, 

hu,v > 0 if a«„, = 0, (2.46) 
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E ^ » < <v)-q(v), 
u 

EK« < 'MtO-E0*.'" 
V V 

EE^.» > °-
U V 

We use induction to arrive at the desired contradiction. Let 

Uo = {tt:E /^.»>°}' 
Uj+l = C/y U {u g Uj :/!«,„< 0 for some v 6 N(Uj)}, j > 0. 

By inequality (2.49), Uo is nonempty. Inequality (2.48), Condition 2.4.2, and the Definition 2.4.1 

of the normalization function imply that 

q(v) = K(V) for all u € AT(&o). (2.50) 

By (2.47), E„€Ar(%) E « ^«,« < 0, and by the definition of Ob, Et,etf0 E«em%) V » > °J therefore, 

Ui ^ U0. V u £ Ui\ Uo, then inequality (2.46) implies that a*,* > 0 for some v 6 N(U0). By 

Condition 2.4.1, / (g,u) = 0 for all v € N(u). This, along with (2.50), implies that 

q(v) = K(V) for all u 6 #(C/i). 

As the induction hypothesis, assume that q(v) = K(V) for all t; € N(Uk). By the definition of 

(Uj : j > 0), EueUt+i E«eJV(£/fc) ^».» > 0 ; therefore, the argument of the base case yields that 

Uk+i^Uk and q(v) = K(V) for all v 6 N(Uk+i). 

This contradicts the finiteness of the network, and hence the existence of h, proving the optimality 

of a. 

Lemma 2.4.2 establishes the existence of an assignment a € BX,K that satisfies Conditions 2.4.1 

and 2.4.2. To prove the uniqueness of the load vector by contradiction, let a and a be two such 

assignments with the corresponding load vectors q and q such that q ^ q. Let 

F = {v:q(v)>q(v)}. 
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If o e F , then for any «, 

a u , „ > 0 =>- f(q,v)<f(q,vr) for all v' 6 F° CI tf(u) 

=> /(g,v) < / ( ? , u 0 f o r a l l t / e F c n A T ( u ) 

=*• E^« = M«), 
«eF 

where the second step follows by the strict monotonicity of / , and the third step follows by Condi

tion 2.4.1. However, this implies that IXCFC"* . " ~ <*«,«) k 0 for any u € U, which contradicts the 

definition of F and proves the desired result. D 

P roof of L e m m a 2.4.6. By the absolute continuity of g, g exists almost everywhere ([11, 

Corollary 5.12]). Thus, it suffices to prove that the set {t: gt exists, gt = oc,gt^ 0} has Lebesgue 

measure zero. However, all of the points in this set are isolated; hence the set contains at most 

countably infinite elements and therefore has zero measure. O 

Proof of L e m m a 2.4.8. Since gt(i) i = 1,2, •••,! are absolutely continuous, so is m. 

Therefore, g(l),---,g(I),m are almost everywhere differentiable. Let t be a regular point of 

g ( l ) , ' - , g ( f ) , n i a n d {ii,---,ir} be such that gt(ii) = ••• = gt(ir) =mt. Note that 

max 6 W = max lim M M z ^ z l M 
I<Jfc<r ' l<Jfc<re\0 e 

< lim inf max ^ ^ - ^ - ^ 
~ e \ 0 l<k<r € 
< l i m i n f m t - m t - e 

t \ o e 

Similarly, 

= mt. 

mm gt(ir) > hmsup = mt, 
i<k<r

 e \ o ( 

and the proof of the lemma is complete. 

P roof of L e m m a 2.5.3. 

E otto,- = E °»*u'«+E(a« ~ fi«)u,t 
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< E^'+Ete-8*") 
t i 

since a,- < 6; for all t. 

vf„ 
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CHAPTER 3 

ANALYSIS OF OVERFLOW 

3.1 I n t r o d u c t i o n 

This chapter concerns load sharing networks in the basic stochastic model of Section 2.3 and 

analyzes network overflow under the optimal repacking (OR), Bernoulli splitting (BS), and least 

load routing (LLR) allocation policies (see Sections 2.3 and 2.6 for definitions of OR and BS policies, 

respectively). Namely, given a load sharing network (U, V, N), a demand vector A, and a positive 

number y, It is assumed that consumers of type u £ U arrive according to a Poisson process of 

rate 7A(u), the processes for different types of arrivals being independent. The holding time of 

each consumer is exponentially distributed with unit mean, independent of the past history. Given 

K > 0, the overflow time of a location v € V is the first time that its load, Xt(v), exceeds the 

designated capacity [yiz\, and the network overflow time is the minimum over all v of the overflow 

times of location v. 

Under allocation policy ir, the overflow exponent of the network, F*(K), and the overflow expo

nent of a location v, Fir(w, K), are defined as 

F*(K) = - lim lim 7 " 1 log P( Network overflow time < T | * 0 = 0) 

F*(u, K) = - lim lim 7 _ l log P( Overflow time of location v < T\XQ = 0). 

It is easy to see that F*(K) = minvev FK(v,n) whenever the above quantities exist. A crude 

interpretation of the overflow exponent of the network is that for fixed but large T, P( Network 

overflow time < T\Xo = 0) « exp(—7F*(fs)). Note that larger values of the overflow exponent 

indicate larger overflow times. The approach taken in this chapter is to compare allocation policies 

based on the corresponding overflow exponents. The rest of this section states the main results. 

We start with the two basic networks of Figure 1.2. 
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The Single-Location Network. The single-location network of Figure 1.2(a) has been studied 

extensively in the context of Erlang's model for circuit switched traffic. In particular, the following 

theorem can be obtained by applying the results in [12, Section 12]. Details of the proof are given 

in Section 3.3, since the basic notation and concepts carry over to analysis of more general network 

topologies. 

Theo rem 3.1.1 (Single Location) The overflow exponent of the single-location network exists 

and is given by Hx(i)(0, n), where 

ffA(i)(*,y) = J^(log(-^)) dz, y>x>0-

Intuitively, for x < y, Hx(i)(x,y) is a measure of how unlikely it is for the normalized load, 

starting at level x, to reach level y within a fixed, long time interval. Note that Hx(i)(x,y) = 0 

for 0 < x < y < A(l), since such transition is not a rare event in this case. The reader is referred 

to [12, Section 12] for large deviations exponents for transitions within fixed time duration. For 

simplicity, we concentrate here on long time intervals. 

The W Network. In the W network of Figure 1.2(b) it is assumed without loss of generality 

that A(l) > A(3). We first discuss two upper bounds on the network overflow time that apply to 

any allocation policy and then provide three theorems that identify the overflow exponents under 

the policies of interest. The proofs of the theorems are the subjects of subsequent sections. 

Stochastic ordering arguments provide the two upper bounds on the overflow time of the W 

network under any allocation policy: 1) The Single-Location Bound: The load at location 1 is 

stochastically larger than the load of a single-location network with demand T A ( 1 ) . Hence the 

overflow time of a single-location network with capacity [yn\ and demand 7A(1) dominates the 

overflow time of location 1, which in turn dominates the overflow time of the network. 2) Pooling 

Bound: The network necessarily overflows if the total load exceeds [27/cJ. Thus, the overflow time 

of the network is dominated by the overflow time of a single-location network with capacity [27/cJ 

and demand 7(A(1) + A(2) + A(3)). 

We now discuss the three policies, starting with some essential definitions. For real x, a, and 

6 such that a < b, let [x]b
a denote the number in the interval [a,b] that is closest to x. Let 

q(l) = A(l) +pA(2) and q(2) = A(3) + (I - p)A(2), where p is chosen to minimize \q(l) - g(2)|. 
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More explicitly, 

q(l) = [(A(l) + A(2) + A(3))/2]A$+A(2) and q(2) = [(A(l) + A(2) + A(3))/2]^J+ A ( 2 ) , 

and p = [(A(3) - A(l) + A(2))/2A(2)]J. The assumption A(l) > A(3) Implies that q(l) > q(2). 

Consider first the BS policy under which each type 2 consumer is assigned to location 1 with 

probability p or to location 2 with probability (1 — p). The load at each location v behaves as 

in a single-location network with demand yq(v), independent of the other location. In turn the 

overflow exponent of each location can be obtained by appealing to the single-location result, and 

the overflow exponent of the network is equal to that of the more heavily loaded location 1. 

Theorem 3.1.2 ( BS ) For v = 1,2, the overflow exponent of location v under the BS policy 

exists and is given by FBS(v, n) = #,(v)(0, K). In particular, FBS(K) = ff,(i)(0, K). 

As for the BS policy, the network load under the OR policy can be represented in terms of 

single-location loads. Under the OR policy, overflow of location v implies that either the number 

of type 2v — 1 consumers exceeds [7«J, or the total number of consumers exceeds 2[7^] . The 

following theorem holds: 

Theorem 3.1.3 ( OR ) For v = 1,2, the overflow exponent of location v under the OR policy 

exists and is given by F°R(V,K) = ^A(I)+A(2)+A(3)(0, 2K) A H A ( 2 « - I ) ( 0 , « ) . In particular, 

pOR(K) = FOR ( 1 ) K) = [ *A(1)+A(2)+A(3)(0, 2K) if K < K0 

\ / T A ( 1 ) ( 0 , K ) ifn>K0, 

where K0 is the larger root of n0 = K0log(K0X(l)/q(l)q(2)) -f A(2) -|- A(3). 

The overflow exponents under the LLR policy are identified by the following theorem, for which 

we provide somewhat detailed comments. For simplicity, it is assumed that if the locations are 

equally loaded, an arriving type 2 consumer is assigned to location 1. 

Theorem 3.1.4 ( LLR ) Forv = 1,2, the overflow exponent of location v under the LLR policy 

exists and is given by 

pLLR , . f *,(i)(0,«) + ff,(2)(0,«) «/K < M«) 

\ Hqil)(0,K.(v))-rHq{2)(0,K.(v)) + Hx(2v-i)(K.(v),K) ifn>Km(v), 
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where K*(V) = q(l)q(2)/X(2v-l). In particular, FLLR(K) = FLLR(l, K), which can also be expressed 

as 

FLLR(K) = [ £rA(l)+A(2)+A(3)(0,2«) if K < K.(l) 

1 #A(1)+A(2)+A(3)(0, 2/C.(l)) + ffA(l)(t.(l)» 4 ifK > K»(l). 

Remark 3.1.1 To see the equivalence of the two expressions for FLLR(K), note that (i) if 

q(l) = q(2), then ff,(1)(0, K) + ff,(2)(0, K) = ffA(i)+A(2)+A(3)(0, 2K) for all K and (ii) ifq(l) > q(2), 

then A(l) = q(l) > q(2) = K . ( 1 ) ; hence H , ( 1 ) ( 0 , K ) + H , ( 2 ) ( 0 , K ) = ffA(i)+A(2)+A(3)(0,2K) = 0 

whenever K < %.(!), so that FLLR(K) = FLLR(l, K) = 2TA(i)(0,«) for all K. 

Here we give an intuitive explanation for the formulas appearing in Theorem 3.1.4. In this para

graph and in the following paragraph, the "load" at a location is understood to be the normalized 

load for some suitably large value of y. Focusing first on location v = l, refer to Figure 3.1, which 

pictures the extremal trajectories associated with Theorem 3.1.4 for v = 1. Consider first the case 

q(l) = q(2). If K < q(l) = q(2), then FLLR(1, K) = 0, which is expected since overflow of location 

1 is not a rare event for such K. If q(l) = q(2) < K < /c,(l), then overflow in location 1 typically 

occurs because the whole network becomes overloaded, and both locations maintain roughly equal 

loads. For larger values of K, the most likely scenario is that first the loads at the two locations 

together build up to level K«(1 ) , and then the load at location 1 continues to grow to level K. The 

given value of K»(1) minimizes the expression for FLLR(1,K). Finally, consider the case in which 

q(l) > q(2). Then FLLR(1,K) = HX[I)(Q,K) as explained in Remark 3.1.1, and the typical scenario 

for overflow of location 1 is that the load at location 1 reaches K, while the load at location 2 relaxes 

towards its mean q(2). 

Now focusing on location 2, let us give an intuitive explanation for the expression for the 

overflow exponent FLLR(2,K). Consult Figure 3.2. If q(l) = q(2), the explanation is similar to 

that for FLLR(l, K), so assume that q(l) > q(2). If K < q(2), then FLLR(2, K) = 0, since for such K 

network overflow is not a rare event. If q(2) < K < q(l), then the load at location 2 can grow to level 

K, while, even without any large deviation occurring at location 1, all type 2 arrivals are assigned 

to location 2. Thus, it makes sense that FLLR(2,K) = H,(2)(0,/c) for such values of K. Finally, if 

K > q(l) > q(2), as the load at location 2 begins to build beyond q(2), the load at location 1 begins 

to build beyond q(l), even though the two loads are not equal. In that way, all type 2 consumers 

are assigned to location 2, even after the load at location 2 exceeds q(l). Eventually, the loads at 
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Figure 3.1 The most likely scenario for the overflow of location 1 of the W network under the 
LLR policy, for the cases (a) q(l) = q(2), (b) q(l) > q(2). 
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Figure 3.2 The most likely scenario for the overflow of location 2 of the W network under the 
LLR policy, for the cases (a) q(l) = q(2), (b) g(l) > q(2). 
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Figure 3.3 The network overflow exponents of the three policies, along with the single-location 
and pooling bounds, for a = 0.5. 

the two locations simultaneously become approximately equal to KAKM(2). If K > K«(2) , then the 

load at location 2 unilaterally continues to increase to level K. It is interesting to note that the 

initial segments of the most likely trajectories depend on K as K ranges over n > q(l) > q(2), as 

illustrated by the multiple trajectories in Figure 3.2(b). 

As a numerical example to compare the three policies, consider the W network with demand 

A = (1 - or, 2a, 1 — a), where 0 < a < 1. The network overflow exponents under the three policies 

are plotted in Figure 3.3, along with the single-location and pooling upper bounds, for the case 

a = 0.5. The OR policy employs the tightest possible control; hence the network overflow time 

under OR dominates the network overflow time under any allocation policy. Furthermore, in the 

W network, F°R(k) is equal to the smaller of the single-location and pooling bounds. From a 

practical point of view, the OR policy has drawbacks such as high computational complexity and 

the required repacking of consumers. For the values of K < K . ( 1 ) , the simple and nonrepacking 

LLR policy performs as well as any other policy, in the sense that FLLR(k) = F°R(K). For larger 

values of K, the nonrepacking nature of LLR reveals itself, and LLR is outperformed by OR. The 

BS policy only exerts open-loop control, and its performance is significantly worse than the LLR 

policy for the whole range of capacities as illustrated in Figure 3.3. 
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Figure 3.4 FLLR(K) for several values of a. 

Consider also the dependence of FLLR(K) on a, illustrated in Figure 3.4. Larger values of a 

correspond to increased load sharing capability of the network for the same total demand, so it is 

not surprising that FLLR(K) is increasing in a. Note that when a = 0 and a = 1, FLLR(K) achieves 

the single-location and pooling bounds, respectively. 

Networks with Arbitrary Topologies. We next consider the overflow exponents of networks 

with arbitrary topologies under the three policies. Define the function $ : Rv —• R as $(z) = 

£ w 6 v(x(u)) 2 for x e Rv. Given a load sharing network (U, V, N) and a demand vector A, let a 

denote an assignment that solves the problem SLB(X, $) of Section 2.2, and let q denote the load 

vector corresponding to a. 

The BS policy assigns each type u consumer to location v 6 N(u) with probability o1t,„/A(u) 

so that the load at each location v behaves as an independent single-location network load with 

demand yq(v). Straightforward adaptation of Theorem 3.1.2 (details are omitted) yields that the 

overflow exponent of location v 6 V exists and is given by #,(„) (0, K). 

To analyze the OR policy in general networks, let Lt(u) continue to denote the number of type 

u consumers in the network at time t, and Lt = (Lt(u) : u 6 U). Note that the process L is a 

vector of independent single-location load processes with demand vector 7A, and the network load 

at time t is determined by Lt only. The network overflow time is the first time t such that there is 

a subset F of locations such that J2u-.Niu)cF Lt(u) > [yn\\F\. In turn Theorem 3.1.3 can be easily 
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generalized to show that the overflow exponent of the OR policy exists and can be expressed as 

minFCK HX{F)(0,K\F\), where A(F) = E„:iv(u)cFA(«)-

Except for simple network topologies such as the W network, the load process under the LLR 

policy has discontinuous statistics along complicated geometries. Due to this fact, establishing ex

plicit large deviations principles for arbitrary load sharing networks appears difficult. Nevertheless, 

the form of the overflow exponents provided by Theorem 3.1.4, together with the extremal paths 

of Figures 3.1 and 3.2, suggests the following conjecture: 

Conjecture 3.1.1 For each v 6 V and K > 0, FLLR(v, K) can be identified as follows: Let S 

range over the set of set-valued functions of the form S = (S(x) : 0 < x < K), where v € S(x) C V 

for 0 < x < K, and S(x) C S(x') for x > x'. Associated with each such S and 0 < x < K, define 

R(x) ={ueU : N(u) c S(x) U {v' : q(r/) > x}}, N(x,u) = N(u) n S(x) for u 6 R(x), and 

Ax = (A(u) : u 6 R(x))r and let (q(v',x) : xf 6 S(x)) denote the unique load vector corresponding 

to the solutions ofSLB(Xx,$) on the subnetwork (R(x),S(x),N(x)). Then 

The rest of the chapter is organized as follows: Section 3.2 consists of the basic definitions 

regarding the techniques employed in the analysis, namely the theory of large deviations. Theo

rem 3.1.1 regarding the single-location network is proved in Section 3.3, and Theorems 3.1.2-3.1.4 

regarding the W network are proved in Section 3.4. A large deviations principle for the W network 

under the LLR policy is stated as a proposition in Section 3.4 and is proved in Section 3.5. 

3.2 Def in i t ions 

Given a positive integer d, let Rd denote the d dimensional Euclidean space. A collection v = 

(v(x) : x E fld) is called a rate-measure field if for each x, v(x) = v(x, ) is a positive Borel measure 

on Rd, and sup, v(x, Rd) < oo. For each positive scalar 7, a right continuous Markov jump process 

X"1 = (XI: t > 0) is said to be generated by the pair (7, v) if given its value at time t, the process 

Xy jumps after a random time exponentially distributed with parameter yu(X"t, Rd), and the jump 

size is a random variable A, where 7A has distribution v(Xt)/v(Xt ,Rd), independent of the past 
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history. The polygonal interpolation of the process X"1, X"1, is defined as 

where T& is the ktk jump time of Xy. Since AT7 has a finite number of jumps in bounded time 

intervals, Xy has sample paths in C[0,Oo)(-R<£), the space of continuous functions <f>: [0,oo) —>• i ^ 

with the topology of uniform convergence on compact sets. 

The following are some standard definitions of large deviations theory: Let Px denote the 

probability measure governing the process Xy given XQ = x, and suppose that X? takes on 

values i a D c i f ' for each 0 < t < T. The sequence (Xy : y > 0) is said to satisfy the large 

deviations principle in C[0tT\(D) with the rate function F : C[0JT\(D) x D - f R+U {+00} if for each 

xo € D, the function F(., xo) is lower semicontinuous, and for any sequence (xy : 7 > 0) such that 

lim-y-Hjo*7 = x0 and Borel measurable S C C[QtT](D), 

I i m s u p 7 - l l o g P r - r ( ( * ? r : 0 < * < r ) e S ) < - i n f T ( & x 0 ) 

l u n i n f 7 - l l o g P r , ( ( X 7 : 0 < t < r ) 6 5 ) > - mfJ (^ ,xo ) , 

where 5 and S° denote the closure and the interior of S, respectively. The rate function F is called 

good if for each x0 € D and / > 0, the level set {<£ 6 C[0tT](D) : r(<f>, x0) < 1} is compact. 

R e m a r k 3.2.1 If the sequence (X"1 : 7 > 0) satisfies the large deviations principle in C [ 0 , T ] ( £ ) 

with the good rate function T, then the following inequalities hold for each 4> 6 C[0>T](D): 

lim lim sup 7 " 1 log sup Px( sup \X? - <f>t\ < 6~) < ~r((f>,<f>o) 
&\o 7_»oo |x-tfoI<* o<t<T 

lim lim lim inf 7 _ I log inf Px( sup \X? - &| < 6) > -r(<f>,<f>o). 
5\0 p\0 -T-+CO & | * -*o |<p o<t<T 

Two sequences (Xy : 7 > 0) and (Y"1 : 7 > 0) on the same probability space are exponentially 

equivalent if for each S > 0, l im 7 _ f o o 7~ l logF(sup 0 < t < r |A7 — Y?\ > 5) = - 0 0 . In this case, if 

(Xy : 7 > 0) satisfies the large deviations principle with a good rate function T, then so does 

(Y*1: 7 > 0) ([13, Theorem 4.2.13]). 
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3.3 T h e S i n g l e - L o c a t i o n N e t w o r k 

This section presents the proof of Theorem 3.1.1. The essential ingredient of the proof is Lemma 3.3.1, 

which establishes a large deviations principle for the load process. In view of Lemma 3.3.1, the 

proof of Theorem 3.1.1 hinges on the solution of a variational optimization problem that is provided 

by Lemma 3.3.4. 

The normalized load process X"1 = y~lX is a Markov jump process that takes values in R+. 

It is generated by the pair (7,^), where for each x 6 R+, v(x,{l}) = A(l), v(x, {-1}) = x, and 

i/(x, {1, — 1}C) = 0. Note that yv(x, {!}) and yv(x, {—1}) are the consumer arrival and departure 

rates, respectively, when the normalized load is x. The polygonal interpolation of the normalized 

load process, Xy, satisfies a large deviations principle as identified by the following lemma. The 

lemma is a slight variation of the results in [12, Section 12], which assume a bounded state space, 

and it follows by taking A(2) = 0 In Lemma 3.4.1. Its proof is therefore omitted. 

Lemma 3.3.1 The sequence (Xy : 7 > 0) satisfies the large deviations principle in C[0tT\(R+) 

with the good rate function rA(1), where for each (p € C[o,T](#+) and x 6 R+, 

[ +00 oi 

if <()Q = x and <j> is absolutely continuous 

otherwise, 

and 

AA(D(6, A) = & log rt+ 2ACi)4A(1) J + * + A(1) - 7 # + 4A(i)6. 

R e m a r k 3.3.1 For fixed X(l) and<f>t, the function Kx{i)(<f>u it) is a strictly convex, nonnegative 

function of 4>t- Furthermore, AA( l)(^ t,^ t) = 0 if and only if 4>t = A(l) — <f>t, in which case we say 

that <j> relaxes under A(l). 

R e m a r k 3.3.2 Note that AA(1)(<fo, <&) > inf*>o A.x(i)(4>u <*&)/<* = it log(<&/A(l)). The equal

ity holds if and only if <j>t = <f>t — X(l), in which case we say that <f> relaxes in reverse time under 

A(l). Thus, for absolutely continuous (f>, 
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and therefore, rx(i)(<f>, <h) > #A(i)(0o>0r) for all <f> such that 0 r > <£o > A(l), with equality if and 

only if $ relaxes in reverse time under A(l). 

Lemma 3.3.2 For each x > 0, y € R, and e > 0, AA(t)(x + 6, y) < AA(i)(x, y) + £. 

Proof. The lemma follows by the fact that for all x > 0 and y € R, 

0AA(1)(x,y) 2A(1) ^ 
3x y + y/y2+4X(l)x-

a 

Lemma 3.3.3 For each 0 < x < y, 

inf{rA(1)(<£,x) :<^0 = ar, sup <ftt > y} = inf{rA(l)(<£,x) : <f>o = x, sup <f>t > y}. 
0<t<T 0<t<T 

Proof. To prove the lemma, it suffices to show that 

inf {rA(1)(.£, x) : <f>o = x, sup <f>t>y}< inf{rA(l)(<0, x) : fa = x, sup <j>t > y}. (3.1) 

Fix e > 0. By the goodness of FA(i) there exists a solution <j> to the right-hand side of inequality 

(3.1), and clearly TA(l)(0,x) is finite. Set M = sup0<t<T<fo < oo, and choose B large enough so 

that inf0o<M AA(1)(z, it) > rA{1)(<£, x)/T whenever it > B. Then the set S = {t 6 [0, T] : it < B} 

has positive measure; therefore, f 6 C[0tT](R+) defined by fo = <fo and & = 4>t + el{t 6 5} satisfies 
suPo«<T& > y- Lemma 3.3.2 and the fact that dA.x(i)((pt,y)/dy is bounded on 5 imply that 
rA(i)(f>s) < rA(i)(#,x) + /(e) for some /(e) -» 0 as e -» 0. The arbitrariness of e > 0 proves the 

lemma. • 

Lemma 3.3.4 For each 0 < x < y, 

inf{rA(1)(^,x) : 0o = x, sup <j>t > y, T > 0} = Hx{1](x,y). (3.2) 
0<t<T 
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Proof. By the nonnegativity of AA(i), it suffices to show that inf{rA(1)(^,x) : 4>o = x, far = 

y,T>0} = HX(i)(x, y). Consider the following three cases: 

Case 1: x < y < A(l). There exist a T > 0 and <f> 6 C[0,r](.ft+) such that <f>o = x, <fo = y, and 

<j> relaxes under A(l). By Remark 3.3.1, FA(i)(&x) = Hx{i)(x,y) = 0. The nonnegativity of rA ( l ) 

implies equality (3.2). 

Case 2 : A(l) < x < y. There exist T > 0 and a (f> 6 C[0tT\(R+) such that <po — x, fa = y, and 

<j> relaxes in reverse time under A(l). Remark 3.3.2 implies equality (3.2). 

Case 3 : x < A(l) < y. Fix e > 0. Note that the nonnegativity of AA(t) and Remark 3.3.2 

imply that the left-hand side of (3.2) is bounded below by Hx(i)(y A (A(l) +e ) ,y ) , and therefore by 

#A(i)(A(l),y) = Hx(i)(x,y)- The lemma is established by constructing T > 0 and <f> 6 C[o,j](i2+) 

such that FA(i)(0,x) is arbitrarily close to Hx(i)(x,y): Set ^o = x, and let <j> relax under A(l) until 

it reaches level x V (A(l) - e); then satisfy it = (y A (A(l) + e) - x V (A(l) - e))/e until it reaches 

level y A (A(l) + e); and from then on, relax in reverse time under A(l) until time T such that 

<frr = y. By Remarks 3.3.1 and 3.3.2, rA ( 1 )(0,x) = ffA(1)(y A (A( l )+e ) , y )+ / ( e ) for some/(e) - » 0 

as e -+0 . The arbitrariness of e > 0 and continuity of ff\(i) imply inequality (3.2). 0 

Proof of T h e o r e m 3.1.1. The fact 

{ sup X? - 7 _ 1 > K} C { Overflow time < T} C { sup X? + y~l > K} 
0<t<T 0<t<T 

together with Lemma 3.3.1 and the exponential equivalence of (Xy — y~l : y > 0) and (Xy + y~l : 

7 > 0) imply that 

l imsup7 _ 1 logP( Overflow time < T\X0 = 0) < - inf{rA(1)(^,0) : sup <f>t > K}, 
7-+oo 0<£<T 

lim inf y~l log P( Overflow time < T\X0 = 0) > - inf {rA ( 1 )(^, 0) : sup <& > K } . 
7-»oo o<t<r 

By Lemma 3.3.3, lim^_»«) y~l log P( Overflow time < T\X0 = 0) exists; in turn Lemma 3.3.4 im

plies that limr-»ooHm7_ foo7-1logP( Overflow time < T\X0 = 0) = -# A ( 1 ) (0 , /c ) . This establishes 

the theorem. • 
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3.4 T h e W N e t w o r k 

This section consists of the proofs of Theorems 3.1.2-3.1.4. We start each proof by establishing 

the large deviations principle satisfied by the network load, then formulate and solve a variational 

optimization problem that yields the desired conclusions via large deviations bounds. 

3.4.1 B e r n o u l l i s p l i t t i n g 

The Bernoulli splitting (BS) policy is to assign each type 2 consumer to location 1 with probability 

p = [(A(3) - A(l) + A(2))/2A(2)]& or to location 2 with probability 1 - p, independently of the past 

history. Thus, under the BS policy, X(l) and X(2) are independent single-location network loads 

with demands yq(l) and 7?(2), respectively. 

Let X"1 denote the polygonal interpolation of the normalized load process Xy. Note that 

the processes Xy(l) and Xy(2) are independent, and each satisfies a large deviations principle 

in the complete separable metric space C[O,TJ(/2+) with a good rate function. Therefore, X"1 = 

(X'r(l),X~T(2)) satisfies a large deviations principle in the product space with the good rate function 

given by the sum of individual rate functions (see [13, Theorems 4.1.18 and 4.1.11, Lemma 1.2.18, 

and Exercise 4.1.10]). 

L e m m a 3.4.1 The sequence (X"1 : y > 0) satisfies a large deviations principle in C[O,T] (^+) 

with the good rate function VBS, where for each <j> e C[Qj^(R\) and x 6 R\, TBS(<f>, x) = 

rq{l)(<f>(l),x(l)) + Tqi2)(<f>(2),x(2)). 

For K > 0 and v = 1,2, define the set 

Q(u, K) = M { <f> e C{QX](R\) : 4>o = 0, sup &(„) > K }. 
T>o °<t<T 

The following lemma gives the solution of a variational optimization problem associated with the 

overflow of each location. 

Lemma 3.4.2 For each K > 0 and v = 1,2, inf{rBS(<f>, 0) : <£ € Q(u, K)} = Hq{v)(0, K). 

Proof. The same proof applies for both locations; therefore, only location v = 1 is considered. 

If (f> 6 fi(l, K), then <£T(1) = « for some r > 0, so the definition of TBS and Lemma 3.3.4 imply that 

rBS(<f>,0) > Hq(l)(0,K). Thus, in{{TBS(<f>,0) : 4> £ $2(1,K)} > Hq(l)(0,K). The proof is completed 
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by constructing a 0 6 $2(1, K) such that TBS(<f>,Q) is arbitrarily close to fl,(1)(0,/c): Fix e > 0 and 

appeal to Lemma 3.3.4 to choose T > 0 and 0(1) € C[0,T](ZZ+) such that 0o(l) = 0, 0 r ( l ) = K, 

and r, ( 1 )(0(l),O) < # , ( 1 ) ( 0 , K ) + e. Let 0(2) 6 C[ 0 ,TI(H+) be such that 0o(2) = 0 and 0(2) relaxes 

under q(2). Note that 0 = (0(1), 0(2)) € $2(1, K) and TBS(0,O) < ff,(1)(0,*e) + e. The lemma 

follows by the arbitrariness of e > 0. O 

Proof of Theo rem 3.1.2. The proof of Theorem 3.1.1, with Lemmas 3.4.1 and 3.4.2 in place 

of Lemmas 3.3.1 and 3.3.4, respectively, and an adaptation of Lemma 3.3.3, applied separately 

on each location v, establishes the existence and the desired form of FBS(V,K). The fact that 

ff,(i)(0,K) < ff,(2)(0, K) implies FBS(K) = FBS(l,K). a 

3.4.2 O p t i m a l r e p a c k i n g 

The optimal repacking (OR) policy is to continuously rearrange the consumers in the network so 

as to minimize the maximum load in the network subject to the neighborhood constraints. For 

each type u 6 U, let Lt(u) continue to denote the number of type u consumers in the network 

at time t. The processes L(l), L(2), and L(3) are independent single-location network loads with 

demands 7A(1), 7A(2), and 7A(3), respectively. Under the OR policy, the value of the load at time 

t is determined by the value of the process L = (L(1),L(2),L(Z)) at time t only. In particular, 

\Xt — m(Lt)\ < 1, where the mapping m : R%. -f R\ is defined by the relations 

m(Lt,l) = [(Lt(l) + Lt(2)-rLtm/2)L
L

t^i-Lt{2) 

m(Lt,2) = [(Lt(l) + Lt(2) + Lt(3))/2]W+L<{2). 

The following lemma identifies the large deviations principle satisfied by the network load under 

the OR policy. 

Lemma 3.4.3 Define the mapping M : C[0tT](R%) -4- C[0,r](#+) ^ * f ( f ) , = m(&), 0 < t < 

T. The sequence (X"1 : 7 > 0) satisfies a large deviations principle in C[0tT\(R\) with the good rate 

function TOR, where for each 0 6 C[0<T\(R\) and x 6 R\, 

r°R(4>,x)= inf {FA(i)(f (!),&(!)) + I W f (2),&(2)) + rA(3)(f(3),&(3))} 

M{i)=<l>, M(£)o=x 
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with the understanding that the infimum over an empty set equals +00. 

Proof. Let IP denote the polygonal interpolation of the scaled process y~lL. Note that the 

sequences (Xy : 7 > 0) and (M(Ly) : 7 > 0) are exponentially equivalent; thus, it suffices to es

tablish the desired large deviations principle for (M(Ly) :y > 0). By Lemma 3.3.1, Ly(l), Ly(2), 

and Ly(3) satisfy large deviations principles in C[O,T](.R+) with good rate functions FA(i), rA(2), 

and rA(3), respectively. Therefore, the sequence (Ly : 7 > 0) satisfies the large deviations prin

ciple in C[0tT](R+) with the good rate function f, where for each f 6 C[0tT](R%) and x 6 R%, 

r(f,x) = rA(1)(e(l),x(l)) + rA(2)te(2),x(2)) + rA(3)(f(3),x(3)). Continuity of the mapping M and 

the Contraction Principle ([13, Theorem 4.2.1]) imply the statement of the lemma. O 

Lemma 3.4.4 For any positive integer d, x € R^., y 6 R?, and positive a € R^ 

d d d 

E Aa(tt)(x(u),!/(tt)) > A^d aM($2 x(u)> IT»(«))• 
u = l ^ " = l V ' u = l u = l 

Proof. Note that aAa(x,y) = Aaa(o-x,ay) for a > 0 and that A™* . . ( , ) is convex on 

R+ x R as can be verified by checking that the Hessian matrix is positive semidefinite. Therefore, 

and the lemma follows. • 

Lemma 3.4.5 For each K > 0 and u = 1,2, 

inf{rOR(0,O) : 0 € $2(o, K)} = ffA(i)+A(2)+A(3)(0, 2K) A ffA(2„-i)(0,K). 

Proof. The same proof applies for both locations; therefore, only location v = 1 is considered. 

Let 0 € $2(1, K) be absolutely continuous and f 6 C[0yT\(R%) be such that 0 = A4(f). Define 
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r = inf{( > 0 : 0,(1) = K}. If 0T(2) < 0T(1), then necessarily £T(1) = K; hence the definition of 

T°R and Lemma 3.3.4 imply that roft(0,O) > #A(i)(0,*). Otherwise, 

rOR(0,O) > J^(A A ( l ) (6( l ) ,6( l ) ) + AA(2)(6(2),et(2)) + AA(3)(€»(3),6(3)))A 

> j T AA(1)+A(2)+A(3)(et(l) +6(2) +6(3),6(1) +6(2) +6(3))<ft (3.3) 

> #A(1)+A(2)+A(3)(0,2K), (3.4) 

where inequality (3.3) follows by Lemma 3.4.4, and inequality (3.4) follows by Lemma 3.3.4 and the 

monotonicity of ffA(i)+A(2)+A(3)(0, *)• Thus, inf{rOH(0,O) : 0 6 $2(1, K)} > ffA(i)+A(2)+A(3)(0, 2K) A 

HX(I)(0,K). The proof is completed by constructing a function 0 6 $2(1, K) such that rOft(0,O) is 

arbitrarily close to the established lower bound. Fix e > 0 and consider the following two cases: 

Case 1: #A(i)+A(2)+A(3)(0, 2K) < #A(i)(0,K). Appeal to Lemma 3.3.4 to choose T > 0 and 

f 6 Cp,T](4.) s u c h that(o = 0, £r = 2K(A(1), A(2), A(3))/(A(1)+A(2)+A(3)),and rA(tt)(e(u),0) < 

Hx(*)(0,ZT(u))+e for each 1 < u < 3. Then M(S) € $2(1, K) and r°R(M(t),0) < HX{1)(0,ST(1)) + 

HX(2)(0,ZT(2)) + #A(3)(0, €r(3)) + 3e = ffA(1)+A(2)+A(3)(0, 2K) + 3e. 

Case 2: ff\(i)+A(2)+A(3)(0»2K) > fTA(1)(0,K). Appeal to Lemma 3.3.4 to choose T > 0 and 

£(1) 6 C[o.n(#+) s u c h t h a t &(1) = 0. ft-(l) = K, and rA(1)(e(l),0) < HA(1)(0,K) + e. Let 

f = (e(l),^(2),e(3)), where &(2) = 6(3) = 0, and ((2) and ((3) relax under A(2) and A(3), 

respectively. Then M(£) G $2(1, K) and TOR(M(Z),0) < B~XW(0,K) + e. 

Set 0 = M(£). The lemma follows by the arbitrariness of e > 0. D 

Proof of Theorem 3.1.3. The proof of Theorem 3.1.1, with Lemmas 3.4.3 and 3.4.5 in place 

of Lemmas 3.3.1 and 3.3.4, respectively, and an adaptation of Lemma 3.3.3, applied separately 

on each location v, establishes the existence and the desired form of F°R(v, K). The fact that 

tfA(1)(0,K) < ffA(3)(0,K) implies F°R(K) = F°*(l , K). D 

3.4.3 Least load rou t ing 

The least load routing (LLR) policy is to assign each new consumer to an admissible location that 

has the least load within its associated neighborhood. In the W network of Figure 1.2(b), we assume 

that when both locations have the same load the assignment decision is made in favor of location 1. 

The normalized load process, Xy, is a Markov jump process that takes values in R+. The process 
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Xy has jumps of magnitude y~l in the four directions, ef = (1,0), e j = (0,1), et = (-1,0), and 

e j = (0, —1), and is generated by the pair (y,v), where for each x 6 R\, 

"(=,{:[}) = z(l) , 

"(«,{«?» = r(2), 

i J + U J AW + A(2) k"4l)<42) 
I A(l) ifx(l)>x(2), 

A(3) i fx( l )<x(2) 

A(3)+A(2) i fx( l )>x(2) . 

Let Xy denote the polygonal interpolation of Xy. The following proposition establishes a large 

deviations principle for the network load under the LLR policy. The proof of the proposition can 

be found in Section 3.5. 

Proposition 3.4.1 The sequence (Xy : y > 0) satisfies the large deviations principle in 

C[o,T\(R+) M#A the good rate function TLLR, where for each 0 6 C[0,r](#+) and x 6 R\, 

T*LLR(X \ j Jo A(0t, it)dt if 0o = x and 0 is absolutely continuous i(, * J /o
rA(0 t,0 t)A if 

(<f>, x ) = i 
[ +oo otl otherwise, 

and A satisfies 

[ AA(1)(0,(1),0,(1)) + AA(2)+A(3)(0,(2),0\(2)) t/0,(l) > 0,(2) 

A(0„0t) = j A,(1)(0,(1), 0,(1)) + A,(2)(0,(2), 0,(2)) z/0,(l) = 0,(2) 

I AA(1)+A(2)(0,(1),0,(1))+ AA(3)(0,(2),0,(2)) t /0 , ( l )<0,(2) . 

The following three lemmas provide the solutions of the two variational optimization problems 

regarding the overflow of each location. In particular, Lemma 3.4.6 concerns location 1 and Lemma 

3.4.8 concerns location 2. Lemma 3.4.7 provides an auxiliary result that is used in the proof of 

Lemma 3.4.8. 

Lemma 3.4.6 For each K > 0, 

inf{r"*(0,0) : 0 € $2(1, K)} = tfA(1)+A(2)+A(3)(0, 2(K.(1) A K)) + F A ( 1 ) ( K . ( 1 ) A K, K). 
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Proof. Given absolutely continuous 0 € $2(1, K), let r = inf{£ > 0 : 0,(1) = K} and T1 = 

sup{t < r: 0,(1) = 0,(2)}. By the nonnegativity of A, 

r"*(0,0) > J* A(0,, it)dt + £ A(0,, it)dt. 

Lemmas 3.4.4 and 3.3.4 can be used to bound the terms on the right-hand side as 

j T A(0,, it)dt > £ AA(1)+A(2)+A(3)(0t(l) + 0,(2), 0,(1) + it(2))dt 

t #A(1)+A(2)+A(3)(0, 0 T ' ( 1 ) + 0T ' ( 2 ) ) , 

j\(4uit)dt > ^AA(I)(0,(l),0,(l))rf« 

> HxW(4>r>(l),K)-

This, along with the observation <f>T>(l) = 0T'(2)» implies 

inf{r"«(0,O) : 0 € $ 2 ( 1 , K ) } > M^{ ffA(l)+A(2)+A(3)(0,2s) + # A ( 1 ) ( S , K ) } 

= ffA(l)+A(2)+A(3)(0,2(K.(l) A K)) +HXW(K.(1) A K,K). (3.5) 

The proof is completed by constructing a function 0 6 $2(1, K) such that TLLR(<p, 0) is arbitrarily 

close to the right-hand side of inequality (3.5). Fix e > 0 and consider the following two cases: 

Case 1: q(l) = q(2). Appeal to Lemma 3.3.4 to choose T > 0 and 0(1) 6 C[0yT](R+) such that 

0o(l) = 0, 0r(l) = K . (1) A K, and r,(1)(0(l),O) < # , ( 1 ) ( 0 , K . ( 1 ) A K) + e. Set 0 = (0(1), 0(1)). 

If K < K.(l), the construction is complete and rLLR(0,O) < ^A(i)+A(2)+A(3)(0,2K) + 2e. Else, 

if K > K»(1), then for some small 8 < K - K«(1), extend 0 further by setting 0, = (1,1) for 

T < t < T + 5 (this insures that fo+s > ?(!)) and by letting 0(1) relax in reverse time under 

A(l) and 0(2) relax under A(2) + A(3) for T + 5 < t < V, where V is such that 0 r ( l ) = K. Note 

that 0,(1) > 0,(2) for T + 6 < t < T'; hence S can be chosen small enough so that TLLR(<f>, 0) < 

*A(1)+A(2)+A(3)(0, 2 K . ( 1 ) ) + ffA(1)(K.(l), K) + 3e. 

Case 2: q(l) > q(2). Note that in this case Remark 3.1.1 implies FLLR(1,K) = ffA(l)(0,K). 

Appeal to Lemma 3.3.4 to choose T > 0 and 0(1) 6 C[0tT](R+) so that 0o(l) = 0, 0r(l) = K, and 

r"A(i)(0(l).O) < HX(I)(0,K) + e. Let 0(2) € C[0tT\(R+) be such that 0o(2) = 0 and 0(2) relaxes 
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under A(2) -f A(3). Set 0 = (0(1),0(2)). Note that 0(1) can be constructed as in the proof of 

Lemma 3.3.4 so that 0,(1) > 0,(2) for 0 < t < T, and therefore, TLLR(4>,0) < ffA(1)(0, K) + e. 

Figure 3.1 sketches the function 0 constructed above. The lemma follows by the arbitrariness 

of e > 0. 0 

L e m m a 3.4.7 For each s > 0 and absolutely continuous 0 6 C[o,%](A+) such that 0o = 0 and 

0 r = (s,s), 

Jo A(0„ it)dt > ff,(1)(0,s) + Hq(2)(0,s). 

Proof. It is convenient to use the representation 

jf A(0,,0,)dt = jT (Ap(lf,)(0,(l),0,(l)) + Ap(2,,)(0,(2),0,(2)))d«, (3.6) 

where 

' (A(1),A(2) + A(3)) i f 0 , ( l ) > 0 , ( 2 ) 

(p(l,t),p(2,t)) = < (q(l),q(2)) if 0,(1) = 0,(2) 

(A(1) + A(2),A(3)) i f 0 , ( l ) < 0 , ( 2 ) . 

For each v = 1,2, define T(V, X) = inf{( > 0 : </>t(v) = x} for 0 < x < s, and define at(v) = 

I{it(v) > 0, 0,(u) > 0,(u), 0 < z < t} and 0?(u) = supo<*<,0z(u) for 0 < t < T. Note that the 

function 0*(u) is absolutely continuous, and 

<f>1(v) = 0,(u), it(v) = it(v) and r(u,0"(u)) = t for almost all t such that at(v) > 0. (3.7) 

Therefore, if s > q(v), then 

rT . rT(».5) 
/ A^,,)(0,(u),0,(o))A > r ^ Ap{v<t)(<l>t(v),it(v))dt 

JO Jr(v,q(v)) 
rr{v,s) 

> / A^,)(0,(«),0,(u))o-,(u)d( 
7 T ( « , 9 ( V ) ) 

= r ' Ap(t,,T(„^.(u)),(0r(t;),0r(t;))o-,(t;)</t (3.8) 
Jn»,»(v() 

s j C M * W h , U *•!«.)»)"<"* (3-9) 
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Here equality (3.8) follows by the observation (3.7), inequality (3.9) is a consequence of Re

mark 3.3.2, equality (3.10) is implied by the fact that i"(v)at(v) = 0*(u) for almost all t, and 

equality (3.11) follows by a change of variables. Inequality (3.11), together with representation 

(3.6) and the nonnegativity of Ap(1?,) and Ap(2,t)t implies 

jf**.*)* > ^i«(—^_j)*+ JQ t ( ( #h I (_i_)*, 

+ £w*(an^)Msdraj)*- <3 1 2> 
We complete the proof by obtaining appropriate lower bounds for each of the terms on the right-

hand side of inequality (3.12). Note that if r(l ,x) = r(2,x), then (/>(l,r(l,x)),/>(2,r(2,x))) = 

(g(l),g(2)); else, if r ( l ,x) < r(2,x), then p(l,r(l,x)) = A(l), and if r(l ,x) > r(2,x), then 

p(2,r(2,x)) = A(3). Therefore, (p(l,r(l,x)),p(2,r(2,x))) takes values in the set 

{(g(l),,(2)), (A(l),?(2)), (A(1),A(2) + A(3)), (A(1),A(3)), (,(1),A(3)), (A(l) + A(2), A(3)) } , 

and a simple calculation yields 

'°«(^W) £ ,0g(A(2JTM3))- (314) 

Since q(l) > q(2) implies A(2) + A(3) = q(2), inequalities (3.13) and (3.14), together with inequality 

(3.12), imply that f0
T A(0,, it)dt > Hq(l)(0,s) + Hq(2)(0, s). This establishes the lemma. O 

Lemma 3.4.8 For each K > 0, 

inf{r" R (0 ,0) : 0 € $2(2, K)} = ff,(1)(0, K.(2) A K) + ff,(2)(0, K.(2) A K) + H A ( 3 ) (K . (2 ) A K, K). 
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Proof. Given absolutely continuous 0 6 $2(2, K), let r = inf{( > 0 : 0,(2) = K} and r1 — 

sup{t < T : 0,(1) = 0,(2)}. By the nonnegativity of A, 

r"*(0,O) >f A(0,,0,)dt + |TA(0, ,0 , )dt . 

Lemmas 3.4.7 and 3.3.4 can be used to bound the terms on the right-hand side as 

j T A(0„0,)dc > ^,(i)(0,0X1)) + ^,(2)(0,0T'(2)), 

j T A(0„ it)dt > ffA(3,(0T'(2), K) A (ffA(1)(0T,(l), K) + i?A(2)+A(3)(^r'(2), K)) . 

This, along with the observation 0T'(1) = 0T'(2), implies 

inf{r"*(0,O):06$2(2,K)} > J n f J Hq{l)(Q,s) + Hql2)(Q,s) 

-r HX(3)(S, *) A (ffA(i)(s, K) + /yA(2)+A(3)(*,«))} 

= ff,(l)(0, K . (2 ) A K) + Hq{2)(0, K . ( 2 ) A K) + ffA(3)(K.(2) A K, K). 

The proof is completed by constructing a function 0 6 $2(2, K) such that YLLR(<f>, 0) is arbitrarily 

close to the right-hand side of the above inequality. Fix 0 < e < 1 and consider the following three 

cases: 

Case 1: K < q(2). Choose T > 0 and 0 6 C[0,r](#+) such that 0o = 0 and 0(1) and 0(2) relax, 

respectively, under q(l) and q(2) so that 0 r = K(q(l)/q(2), 1). Note that 0,(1) = (q(l)/q(2))<f>t(2) 

for 0 < t < T; therefore, r " * ( 0 , 0 ) = 0. 

Case 2: q(2) < K < K»(2) . Let T > 0 and (0, : 0 < t < T) be constructed as in Case 1 with 

K = (1 - e)g(2). Extend <f> by setting 0 = (K V g(l),K) for T < t < T + e. Note that 0r+e is 

on the line segment with end points (q(l),q(2)) and (K V q(l),K.). If K = q(2), this completes the 

construction. Else, if K > q(2), extend 0 further by letting 0(1) and 0(2) relax in reverse time, 

respectively, under q(l) and q(2) so that 0r» = (K V q(l), k) for some time V > T + e. Note that 

in this case (0,(1) - q(l))/(<j>t(2) - q(2)) = (K V q(l) - ? ( 1 ) ) / ( K - q(2)) for T + e < t < T', so that 

0 traces out the line segment from 0r+£ to 07//, and thus, 0,(1) > 0,(2) for 0 < t < T'. Therefore, 

r " -*(0 ,0) = /f , ( l , (0, K) + Hq{2)(0, K) 4- /(e) for some /(e) -» 0 as e -» 0. 
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Case 3 : K > K«(2) . Let T > 0 and (0, : 0 < t < T) be constructed as in Case 2 with K = K«(2) . 

Note that K»(2) > q(l); thus, 0 r ( l ) = 0r(2) = K«(2) . Extend 0 by letting 0(1) relax under 

A(l) + A(2) and 0(2) relax in reverse time under A(3) so that 0i*(2) = K at some time T' > T. Note 

that (0,(1) - ,(1))(0,(2) - q(2)) = ( K . ( 2 ) - ? ( 1 ) ) ( K , ( 2 ) - q(2)) and 0,(2) > 0,(1) for T < t < V; 

therefore, r " * ( 0 , 0 ) = Hq(l)(Q, K , ( 2 ) ) + Hq(2)(0,K.(2)) + ffA(3)(K.(2), K) + /(e) for some /(e) -*• 0 

a s e - ^ 0 . 

Figure 3.2 sketches the function 0 constructed above. The arbitrariness of e > 0 establishes the 

lemma. O 

Proof of T h e o r e m 3.1.4. The proof of Theorem 3.1.1, with Proposition 3.4.1 and Lemma 

3.4.6 (Lemma 3.4.8) in place of Lemmas 3.3.1 and 3.3.4, respectively, and an adaptation of Lemma 

3.3.3, applied on location 1 (location 2), establishes the existence and the desired form of FLLR(1, K) 

(FLLR(2,K)). Since ffA(i)(0,K) < £TA(3)(0,K) and K»(U) minimizes the expression #,(i)(0,K.(u) A 

K) + ff,(2)(0,K«(u) A K) + #A(2«-i)(*.(%;) A K,K) for each u = 1,2, it follows that FLLR(K) = 

F " H ( 1 , K ) < F L L R ( 2 , K ) . 0 

3.5 L a r g e D e v i a t i o n s P r i n c i p l e for t h e W N e t w o r k u n d e r Leas t Load R o u t i n g 

This section proves Proposition 3.4.1, the large deviations principle satisfied by the normalized 

load process Xy under the LLR policy. The proof entails an application of the theory of large 

deviations of Markov processes with discontinuous transition mechanisms (see Chapter 4, [14], [15], 

[12]). The transition mechanism of Xy changes smoothly in the two open halves of R\ separated 

by the hyperplane {x 6 R2 : x( l ) = x(2)} so that the process Xy nearly conforms to the conditions 

of Theorem 4.2.1 of Chapter 4. The theorem does not apply directly, however, because for o = 1,2 

the log rates \og(u(x,e~)) are neither bounded above (since u(x,e~) -¥ oo as x(v) -¥ oo) nor 

continuous and finite over R\ (since u(x,e~) -¥ 0 as x(u) —• 0). We therefore establish Lemma 

3.4.1 by approximating Xy by a sequence of auxiliary processes each of which conforms to the 

conditions of Theorem 4.2.1 and adapting the techniques used in [12, Section 12.6] for the one-

dimensional Erlang model. 

The outline of the proof is as follows: Lemma 3.5.2 identifies the large deviations principle 

satisfied by each auxiliary process. Lemma 3.5.6 establishes the goodness of the rate function 

pLLR gased on a coupling of the auxiliary processes with the load process, Lemmas 3.5.8 and 

3.5.9 prove the large deviations upper and lower bounds. We start with the following lemma: 
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Lemma 3.5.1 For xi,x2 > 0, ai,a2 > 0, y € R, and B 6 (0,1), 

inf { jSA^(*ltyi) + (l-/3)A*,(x2,%f2) } = A0,lHi-0)*t(0
xi + (1-B)x2,y). (3.15) 

Vie/* , I O C " 

0vi+(i-0)v2=v 

There exists a unique solution to the left-hand side of (3.15) that satisfies 
yi + V(yi)2 + 4<rixi % + \ / W * + 4<r2X2 

2Vt = 2V2 * {3-16) 

Proof. The function /9A^(xi,ft) + (1 - B)Aai(x2, (y - By{)f(l - 8)) -+ oo as |yi| -»• oo and 

is strictly convex in jft. Therefore, it achieves its minimum at a unique stationary point, which 

satisfies equality (3.16) with y2 defined by Byi + (1 — B)y2 = y. The quantity on both sides of (3.16) 

is the nonnegative root of the equation avz
2 — yvz — xv = 0 for each v = 1,2. This quantity is 

therefore equal to the nonnegative root of the equation (fio\ + (1 — 0)&2)z
2 — (Byi + (1 - B)y2)z — 

(Bxi + (1 - 8)x2) = 0 so that 

yi + yfiyTiT~+ 4<rixi ^y2 + y/(y2)
2 + Aa2x^ _y + y/y2+ 4(8<n + (1 - 0)<T2) (BXX + ( 1 - B)x2) 

2ax 2a2 2(8ax + (1 - B)a2) 

Equality (3.15) follows by direct substitution. 0 

Given 0 < e < 1, let Yy,t denote the Markov process generated by the pair (y,vc), where for 

each x € R2, 

"'(=, {<[}) = lxWYA ^(z, {e+}) = ( ^ J + 

L A(l) 

and let Yy,e denote the polygonal interpolation of Yy,t. 

X(2) i fx(l)<x(2) 

ifx(l)>x(2), 

x(l) < 2(2) 

z(l) > x(2), 
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Lemma 3.5.2 For each 0 < e < 1, the sequence (Yy,t : y > 0) satisfies the large deviations 

principle in C[0fT](R2) with the good rate function Te, where for each 0 6 C[0tT\(R2) and x € R2, 

[ +oo 

it)dt if 0o = x and 0 is absolutely continuous 

otherwise, 

andAe(0,,0,) = A([0,]£
1/£,0,) 

Proof. Let A° = {x G R2 : x(l) = x(2)}, A+ = {x e # 2 : x(l) < x(2)}, and A~ = {x € R2 

x(l) > x(2)}, and let the rate-measure fields i>+,£ and v~'e be defined as 

"**« - {[! (x) if x 6 A+ _ _ J *e(x) if x 6 A" 

(x(l), x(l)) if x 6 A" V X ~\ limg\o ve(x(2) + f, x(2) - 6 ) if x 6 A+. 

Note that f+,£, u~,e, and y"1^ satisfy the conditions of Theorem 4.2.1; therefore, the sequence 

(Yy'e : 7 > 0) satisfies a large deviations principle with the good rate function Te, where for 

x,yeR2 

Ac(x, y) = f{0, € A+}A+'<(x, y) + /{0, 6 A°}A°'£(x, y) + /{0, 6 A-}A~'£(x, y), 
2 

AM*,y) = £ ^ P f(y(«) - ((ec - l ) ^ ' ( x , e+) + (e~c - l ) y ^ ( x , e")) } , (3.17) 

A°'£(x, y) = inf_ _ { BA+*(x, y+) + (1 - B)A~*(x, y") }. 
0</?<l. V+eA-,y-6A+ 

0y++(l- j3)y-=y 

Applying [12, Exercise 7.24] on each term on the right-hand side of equation (3.17) yields that 

A+"'(x,y) = AA(1)+A(2)([x(l)]ye,y(l)) + AA(3)([x(2)]£
1/£,y(2)) for x € A+, 

A-'(x,y) = AA(1)([x(l)]e
1/e,y(l)) + AA(2)+A(3)([ar(2)]t

1/t,y(2)) for x e 7F. 

To complete the proof of the lemma, it remains to evaluate Aa,e(x,y) for x 6 A0. Note that 

for absolutely continuous 0, 0, 6 A" for almost all ( such that 0, 6 A°; therefore, it suffices to 

consider the case when y 6 A0. Fix x,y € A". For any y+,y~ 6 ft2 and 8 e [0,1] such that 

8y+ + (l-B)y- = y, 

8A+><(x,y+) + ( l- /?)A-'£(x,y-) 
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= MA(i)+A(2)([*(l)]e
1/e, ?+(!)) + ^AA(3)([x(2)]K\ y+(2)) 

+ (1 - ^)AA(1)([x(l)]ye,y-(l)) + (1 - /3)AA(2)+A(3)([z(2)]K\y-(2)) (3.18) 

> AA(1)+/JA(2)([x(l)]£
l'<, y(l)) + A(i_f)A(2)+A(3)([x(2)]X', y(2)) (3.19) 

> Q mf^{ AA(1)+^A(2)([x(l)]£
1/e, y(l)) + A(i_0,)A(2)+A(3)([z(2)]K\ y(2)) X3.20) 

= A,(1)([x(l)]^,y(l)) + A,(2)([x(2)]ye,y(2)). (3.21) 

In the above argument inequality (3.19) follows by applying Lemma 3.5.1 separately on the first and 

third and the second and fourth terms on the right-hand side of equality (3.18). Since x(l) = x(2) 

and y(l) = y(2), each of the terms of the right-hand side of inequality (3.19) is the same convex 

function evaluated at A(l) + BX(2) and (1 - B)X(2) + A(3), respectively. Equality (3.21) follows by 

straightforward minimization. 

We next identify A°,£(x,y) with the right-hand side of inequality (3.21) by establishing the 

existence of 8 6 [0,1], y+ € A~, and y~ 6 A+ such that /?y+ + (l -B)y~ = y and both inequalities 

(3.19) and (3.20) are satisfied with equality. Inequality (3.20) is satisfied with equality if 8 = 

[(A(3) - A(l) + A(2))/2A(2)]&. If 8 = 0 (/? = 1), then take y~ = y (y+ = y). Otherwise, by 

Lemma 3.5.1 there exist y+,y~ 6 R2 such that 8y+ + (1 - B)y~ = y, inequality (3.19) is satisfied 

with equality, and the following two conditions hold: 

y-(l)W(ir( l))2 + 4A(l)[x(l# _ y+(l) + VV(1))2 + 4(A(1) + A(2))[x(l# 
2A(1) " 2(A(1) + A(2)) **-"> 

y+(2) + )/(y+(2))2 + 4A(3)[x(2)]t
l/c _ y-(2) + ^/(y(2))» + 4(A(2) + A(3))[x(2)]e

x/t 

2A(3) " 2(A(2) + A(3)) '^"U) 

The left-hand side of equality (3.22) is increasing in y~(l) and decreasing in A(l); therefore, (3.22) 

and (3.23), respectively, imply that y+(l) > y~(l) and y~(2) > y+(2). This, together with the 

assumption that 8y+ + (1 - B)y~ 6 A°, implies that y~ €A+ and y+ 6 A~. The proof of the 

lemma is complete. D 

For x € R+ and e = 0 set [x]£
l/e = x, so that T = re |£=0. 
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Lemma 3.5.3 Let S be a finite set of positive numbers. For each / > 0 there exists an M > 0 

such that for any absolutely continuous <f> 6 C [ 0 , T ] ( # + )
 and 0 < e < 1, 

f inf A0([<t>t]\ft,it)dt < f = > sup (0, - 0o) < M. 
Jo (r€S 0<t<T 

Proof. Examination ot dAa(x,y)fdx yields that A,(*,y) is increasing in x whenever y > a; 

thus, limy-Kjo A<r(x,y)/y = co uniformly in x £ R+ and a € 5 . Given f > 0, choose a constant 

B(Z) large enough so that in(<res^eR+ A,(x, y)/y > I whenever y > B(l). For absolutely continuous 

0 6 C[o,T](#+) and 0 < r < T, 

> f . litdt 

> [Tl(]>t-B(l))dt 
Jo 

> l(4>T-<t>o-B(l)T). 

Choosing M = B(l)T + 1 establishes the lemma. 0 

Lemma 3.5.4 ( Relative Compactness ) For each xo 6 A+ and / > 0, the collection C(l) = 

Uo<e<i{0 : r e (0 ,x o ) < 1} is relatively compact in C[o,r](A+). 

Proof. If 0 € C(l), then 0 is absolutely continuous, 0o = xo, and for some 0 < e < 1, 

I > I Ac(<f>t,it)dt 
Jo 

> fT inf AA[MD]lAit(l))dt+ / \ f AX[0,(2)]£/',0,(2))<&, (3.24) 
Jo <T€S JO <T€S 

where 5 = (A(1),?(1),A(1) + A(2), A(3),?(2), A(2) + A(3)}. Lemma 3.5.3, applied separately on 

the terms of the right-hand side of (3.24), implies the existence of a finite Af > 1 such that 
suPo<t<T \<f>t\< M for all 0 e C(l). 

Fix S > 0. Choose a constant B(S) large enough so that inf0<r<Af>€S Acr(x,y)/|y| > 21/5 

whenever |y| > B(S). Let ((sj,t:) : j = 1, •••, J) be a finite collection of nonoverlapping intervals 
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in [0,T], and set D = \Jj(sj,tj). Given 0 6 C(l), let 0 < e < 1 be such that r c (0 ,x o ) < f. Then 

J 

El0t7-0,J < [ \it\dt 
i= i JD 

= / —^-^A'(0,,0,)d(+ f |0, 
JDn{ui*t\>B(5)} Ae(0,,0t) Von{(:|^«|<g(f)} 

|A 

< l + B(S)'£i\tj-Sj\. 

Thus, £ / = l |0 t j - 0 , J < 5 whenever £ / = t |*,- - Sj\ < 8/2B(S), uniformly for all 0 € C(l). The 

Arzela-Ascoli Theorem implies the relative compactness of C(l). 0 

L e m m a 3.5.5 ( Lower Semicontinuity) Given x0 6 R\, the function TLLR(-,XQ) : C [ 0 , T ] ( # + ) -*• 

R+ U {+00} is lower semicontinuous. 

Proof. Let (0m : m > 1) be a sequence such that 0 m -)• 0 in C[o,r](#^). To prove the lemma, it 

suffices to show that TLLR(<t>,x0) < lim infm_K» TLLR(4>m,xQ). Assume, without loss of generality, 

the existence of /,Ar > 0 such that VLLR(<t>m,xQ) < I for all m > k. The proof of Lemma 3.5.4 

shows that the sequence (0m : m > k) is uniformly absolutely continuous; therefore, 0 is absolutely 

continuous, 00 = XQ, and by the explanations indicated in parentheses, 

r " « ( 0 , x o ) = /0
T A(<f>t,it)dt (Definition of TLLR) 

< liminf£\vo/oTA£(0,,0,)a'f (Fatou's Lemma) 

< lim inf£\o Km inf,*.**, fj Ae(0^, i?)dt (L.s.c. property of T£) 

< lim inf£\o lim infm_K„ (/0
r A(<f>? A 1,0>)efc + 2eT) (Lemma 3.3.2) 

= lim infm_>oo TLLR(<pm, x 0) . (sup0<,<T I0M ^ bounded) 

This establishes the lemma. • 

Lemma 3.5.6 ( Goodness ) TLLR is a good rate function. 

Proof. Note that for each / > 0 the level set {0 : r L L H (0 ,x o ) < /} is contained in C(l). 

Lemmas 3.5.4 and 3.5.5 imply, respectively, the relative compactness and closedness, and therefore 

the compactness, of the level set. • 
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Lemma 3.5.7 For x0 6 R\ and closed F C C[o,T](#+), 

inf rLLR(0,xo) < lim sup inf r£(0,xo). 
^eF £\^o ^sf 

Proof. Without loss of generality, we may assume the existence of an f > 0 such that 

inf^6fre(0,xo) < I for each 0 < e < 1. For each such e, appeal to the goodness of the rate 

function r e to choose a 0£ € F such that f£(0£,xo) = inf^gf»r£(0,xo). By Lemma 3.5.4 the col

lection (0£ : 0 < e < 1) is relatively compact; hence there exists a sequence en -¥ 0 and 0 6 F such 

that 0£n -4- 0. Define 

ccn = l *o + (M) 0<t<en 

1 (tn,tn) + 4>Ctlen *n<t<T v — T 

Note that ££n -^ 0, and 

[T A(?t»,et
n)dt = I'" A(?f,(l,l))dt+ / rA£»((en ,en)+0£ l e n ,0£!£ n)dt 

Jo Jo Jcn 

< f"(A(x0, (1,1)) + 2en)rfi + f (A£"(0£n,0>) + 2en)dt, (3.25) 
Jo Jo 

where the first step follows by the definition of A£" and the construction off", and the second step 

follows by Lemma 3.3.2 and the nonnegativity of A£n. Therefore, by the explanations indicated in 

parentheses, 

i n f ^ F r " « ( 0 , x o ) < r "« (0 ,x o ) (0 6 F ) 

< Iiminf„_,oor£LR(f",xo) (Lemma 3.5.5) 

< lim inf„_*» F£" (0£», x0) (Inequality (3.25)) 

< limsup£\^o inf^gF r£(0, x0) (Definition of 0£), 

and the lemma is established. 0 

For each y > 0 construct Xy on an appropriately extended probability space, and for each 

0 < e < 1 construct the process Yy'c on the same space as follows: Let N(l) and N(2) be 

mutually independent Poisson processes, which are also independent of Xy, each having rate 7e. 

Set YS* = Xy. Let r = inf{i > 0 : Xy £ [0,1/e]2 or Nt # 0}. At every time t < r such that Xy 

jumps, Yy,c takes the same jump. In addition, for u = 1,2, at every time t < r such that X?(v) < e 
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and N(v) jumps, Yy,e(v) jumps down by y~l with probability (e - X?(v))/e. After time r the 

construction is done so that Yy,t is generated by the specified pair (y,uc). 

Let Xy and Yy,c denote the polygonal interpolations of AT? and Yy,c, respectively. 

Lemma 3.5.8 ( Upper Bound ) For any closed F C C[o,T](#+)> xo € R+, and sequence (xy : 

7 > 0) such that xy -^ x0 , 

lim sup 7 " 1 logPr, {(X? : 0 < t < T) 6 F) < - inf rLLR(<f>,x0). 

Proof. Note that for each y > 0 and 0 < e < 1, 

Pxi((Y?'c:0<t<T)€F) > Px-, ((Y?'£ : 0 < t < T) 6 F, sup |Yp'£| < -, NT = 0 j 
v ' \ o<t<T e / 

= Pxy ((X? • 0 < * < T) € F, sup | ^ | < -, NT = 0 ) 

= FXT ( (X? - 0 < t < T) e F, sup |A7| <-) PX-,(NT = 0) 
\ o<t<T ej 

> (px-r((Xy:0<t<T)eF)-Px-r(sup \X^\>-)) 
\ v ' o<t<T e J e 

where the second step follows by the construction of the processes Xy and Yy>e, and the third step 

follows by the independence of Xy and N. In view of the above inequality, 

lim sup 7-^ (ogPr-, ((Xy : 0 < t < T) € F) < 

(lim sup 7 - 1 log Px-, ((??'' : 0 < K T ) 6 F ) + 2eT*} \f lim sup 7 - 1 log P=, ( sup \X?\ > - ) (3.26) 
\ Tf-foo ^ ' J -Y-+0O o<t<T e 

for each 0 < e < 1. Note that s u p 0 < , < T \Xt\ is stochastically dominated by a Poisson random 

variable of mean 7(A(1) + A(2) + A(3))T; hence the second term in the right-hand side of inequality 

(3.26) is arbitrarily large for small e. Therefore, 

Urn sup 7 - 1 log Pxy ((Xy :0<t<T)eF) < lim inf lim sup 7 " 1 log Px-, ((??'' :0<t<T)eF) 
-y-»oo v ' t \0 7-foo \ ' 

< - lim sup inf T£(0, x0) 
£ \ o ^GF 
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< - i n f TLLR(<f>,x0), 

where the second step is a consequence of Lemma 3.5.2, and the third step follows by Lemma 3.5.7. 

This establishes the lemma. O 

Lemma 3.5.9 ( Lower Bound ) For any open G C C^tT\(R\), x0 € R\, and sequence (xy : 

7 > 0) such that xy -*• x0, 

lim inf 7" 1 logP*-, ((X? : 0 <t <T) € <?) > - inf rL L f l(0,xo). 
r TOO \ / ip^Cx 

Proof. Fix e > 0 and 0 € G. Without loss of generality, we may assume that 0 is absolutely 

continuous and 0o = xo- Let 5 > 0 be small enough such that the open ball of radius 65 around 

0, B(<f>,65), is contained in G. By Lemma 2.3.3 of Section 2.3.2, as 7 -» oo, the process (X? : 

0 < t < T) converges weakly to a Lipschitz continuous function (x, : 0 < t < T) that satisfies 

x,(l) A x,(2) > 0 for t > 0. Let d = supo<,<r |x,|, and choose a positive a < 5/d such that 

\4>t — 0»| < 5 and |x, - x,| < 5 whenever \t — s\ < a. 

Construct ^ as 

( xt 0<t<a 

(2d,2d) a<t<2a 

it-2* 2a<t<T. 

It can be easily verified that |& - 0,| < 5£ for 0 < t < T, and (,(1) A &(2) > x,(l) A xa(2) > 0 for 

a < t < T. Choose positive n < (x*(l) A xa(2) A S)/2 small enough, and choose 5 and a smaller, if 

necessary, so that 
/ A*(&,6)<& < /"<r(A(x<r,(2s,2s)) + 4<y + 277)dt+ / (A(0,_2(r,0,_2(T) + 6<y + 2T?)dt 

J<r Jo Jla 

< J A(0„0,)df + | , 

where the first inequality follows by Lemma 3.3.2 and the fact that for u = 1,2, xa(v) < £,(u) < 

xc(v) + 25tora<t<2a and 0,_2,(u) < (,(0) < 0,_2<r(u) + Z5 for 2a<t<T. Finally, appeal to 
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the time-homogeneous Markov property of Yy,v and Lemma 3.5.2 together with Remark 3.2.1 to 

choose p < n small enough so that for large enough 7, 

inf Px-,( sup \Y?« - e,| < V I % " = r) > exp (-y( f A"(£t,£t)dt + f ) ) . 
|x-6r|<P »< ,<r \ J<r 2 / 

For large enough 7, 

P*i((X?:0<t<T)€G) > Pxy((X7:0<t<T)€B(<f>,68)) 

> P r - , ( ( X T : 0 < ( < r ) € B ( f , n ) ) (3.27) 

> F^,( sup \Xy-St\<p) 
0<t<<r 

, inf Pxy( sup \X7-tt\<ri\Xy = x) (3.28) 
|r-&r|<P <r<(<T 

= F r ^ S U p |XT - X,| < /)) 
0<t<<r 

inf Px-r( sup IVT'" - &| < 771 5™ = x) (3.29) 
|*-6r|<P »<,<T 

> ^expf-7(jTTA"(e„et)^+|)) 

> lexp f-7(jT A(0„0,)di + e)J. 

In the above argument, inequality (3.27) follows by the fact that B(£,n) C B(£,S) C B(<f>,68), 

inequality (3.28) is a consequence of the choice of p and the Markov property of Xy, and equality 

(3.29) is implied by the choice of n and the construction of Yy,Tl. The arbitrariness of e > 0 implies 

that 

liminf 7 - 1 logP*, ((X? : 0 < t < T) € (?) > - r " f t ( 0 , x o ) , 

and the arbitrariness of 0 6 G establishes the lemma. • 
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CHAPTER 4 

LARGE DEVIATIONS OF MARKOV PROCESSES WITH 

DISCONTINUOUS STATISTICS 

4 .1 O v e r v i e w of P r e v i o u s W o r k 

This chapter establishes a large deviations principle (LDP) for a Markov random process in Rd 

with a discontinuity in the transition mechanism along a hyperplane. The transition mechanism 

of the process is assumed to be continuous on one closed half-space and also continuous on the 

complementary open half-space. The following paragraphs give an overview of the related work 

and identify the contribution of the present chapter. The formulation and proof of the main result 

are the subjects of subsequent sections. 

In their paper, Dupuis and Ellis [16] established an explicit representation of the rate function 

in the case of a constant transition mechanism in the two half-spaces. The paper [16] proves an 

LDP for the process observed at a fixed point in time, though an underlying process-level LDP is 

implicit in the paper. 

Subsequently, Blinovskii and Dobrushin [14] and Malyshev et al. [17] derived process-level LDPs 

for the case of a constant transition mechanism in each half-space, using different approaches. The 

work [17] is somewhat restrictive in that the first coordinate of the process is assumed to take 

values in a lattice, and when off the hyperplane, the process can step at most one unit towards 

the hyperplane at a time. This condition prevents jumps that strictly cross the hyperplane of 

discontinuity. On the other hand, the work [17] allows the process to have a different transition 

mechanism in each open half-space and on the hyperplane itself. The paper [14] does not rely on 

a lattice assumption; the jump distribution need not even be concentrated on a countable number 

of points, and jumps strictly crossing the boundary can occur. 

The book by Shwartz and Weiss [12] establishes an LDP for a process on a half-space with a flat 

boundary that cannot be crossed. The transition mechanism can vary continuously on both the 

open half-space and on the hyperplane boundary. The method is lattice-based and also includes 
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the assumption of at most unit jumps towards the boundary. The model applies to processes with 

continuous transition mechanisms in two half-spaces separated by a hyperplane only if a symmetry 

condition holds. A somewhat different explicit representation for the rate function is given in [12], 

though as noted by Remark 4.2.1 below, it can be easily related to the expression of [16]. The paper 

[18] establishes a large deviations style upper bound, which is tight for the flat boundary process 

of [12], but which is not always tight for the case of two half-spaces separated by a boundary. 

The paper by Dupuis and Ellis [15] establishes LDPs for Markov processes with transition 

probabilities that are continuous over facets generated by a finite number of hyperplanes. For 

example, two intersecting hyperplanes generate nine such facets. While in general the paper [15] 

does not identify the rate function explicitly, It does state an explicit integral representation for 

the case of a single hyperplane of discontinuity. The integrand in the representation given in [15] 

and [14] has the form established in the original paper [16]. The paper [15] assumes the processes 

are lattice-valued and satisfy a mild communication/controllability condition. 

The LDP established in this chapter is based on an adaptation of the construction in [14]. 

Like [14], it therefore does not require lattice assumptions as posed in all previous papers with 

piecewise continuous transition mechanisms. The present chapter is restricted to the case of a 

single hyperplane of discontinuity. The method described in [15] accommodates the continuous 

variation of transition mechanisms throughout the proof, while it is not clear how to directly 

incorporate continuous variation of transition mechanisms in the approach of [14]. The tact taken 

in this chapter, therefore, is a two-step procedure: First, an LDP for a piecewise-constant transition 

mechanism is identified, and then the LDP is extended to cover a continuously varying transition 

mechanism within the half-spaces. 

Another contribution of this chapter is to somewhat streamline the proof of [14] and to show 

that the method is appropriate in either continuous or discrete time. 

4.2 S t a t e m e n t of t h e M a i n R e s u l t 

Let A° denote the hyperplane {x G Rd : x(l) = 0}, and set A+ = {x e Rd : x(l) > 0} and 

A~ = (x 6 Rd : x(l) < 0}. Given two rate-measure fields u+ and v~, let A+ , A", and A" be 

defined as follows: 

M±(x,C) = f (e«- l ) i^ (x ,dz) , x ,C€/P* 
jRd 
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A±(x,y) = sup{yC-M±(x,C)}, y 6 R? (4.1) 
<€Rd 

A°(x,y) = inf_ _{8A+(x,y+) + (l-8)A-(x,y-)}- (4.2) 
O<0<1, y+eA~, y~€A+ 

/?y++(l-j3)y-=y 

Consider the following conditions regarding rate-measure fields. 

Condition 4.2.1 ( Boundedness ) There exists a finite number m such that v(x, R1) < m for 

all x € Rt. 

Condition 4.2.2 ( Exponential Moments ) For each Q e R1, there exists a finite number b 

such that fRd(e* - l)v(x,dz)/v(x, Rd) < b for all x 6 Rd. 

Condition 4.2.3 ( Uniform Continuity ) For each x, x' € R?, the measures v(x) and v(xr) are 

equivalent. Furthermore, given a positive number e, there exists a corresponding positive number 5 

such that (1 + e)_ l < di/(x)/du(xr) < (1 + e) whenever |x - x'| < S. 

The main result of the chapter is the following theorem: 

Theorem 4.2.1 Let t/+ and u~ be two rate-measure fields on R?, each of which satisfies Con

ditions 4.2.1-4.2.3, and v+(x, A~) > 0 and v~(x, A+) > 0 for some (equivalently all) x 6 Rd- Let 

Xy denote the Markov process generated by the pair (7, v), where 1/ is given by 

J „+(*) ./x€A+ 
u(x) = < 

[ u~(x) ifx e A~, 

and let Xy denote the polygonal interpolation of Xy. Then the sequence (Xy : 7 > 0) satisfies the 

large deviations principle in C[Q<T](Rd) with the good rate function F, where for each 0 € C[QtT\(Rd) 

and each x0 6 Rd, 

I /o A(0,, it)dt if 0o = x0 and 0 is absolutely continuous 
T(0,xo) = < 

[ +00 otherwise, 

and A satisfies 

A(0,,0,) = /{0, € A+}A+(0,,0,) + /{0, 6 A°}A°(0„0,) + /{0, G A"}A-(0,,0,). (4.3) 
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Remark 4.2.1 ( Alternative Representation of A° ) Let n = (1,0, • • •, 0) 6 A"*, and define 

ifyeA^ 
[ +oo otherwise. 

Then 

A°(x,y)= inf {/3A+(x,y+) + ( l - 0 ) A - ( x , y - ) } . 
O<0<1. y+€Rrf, y~eRd 

/3y++(l-/?)y-=y 

It is easy to check that A+(x, •) is the Legendre-Fenchel transform o/infa>o M+(x, —cm); therefore, 

by [19, Theorem 16.5], A°(x, •) is the Legendre-Fenchel transform o/infa>0 Af+(x, —orn)VAf~(x, •). 

In particular, for y € A", 

A°(x,y)= sup { y ( - inf M~(x, (u,C(2),.-.,C(d))) V M+(x, («,C(2),".,CW)) } • 

Mote also that ifv+(x, A+) = 0 (as in the case of a process in A~ with a flat boundary that cannot 

be crossed), then infa>0 M
+(x,C - an) = M+(x,Q and 

A"(x,y)= sup{yC-M-(x,C)VM+(x,C)}, 
<€Rd 

as found in [12]. 

The proof of Theorem 4.2.1 can be easily adapted to yield the following theorem for discrete-time 

Markov chains. 

Theorem 4.2.2 Let (/+ and u~ be two probability-measure fields on Rd, each of which satisfies 

Conditions 4.2.2-4.2.3, and i/+(x, A~) > 0 and v~(x, A+) > 0 for some (equivalently all) x e R6-

For 7 > 0, let (Xy : k 6 Z+) denote the Markov chain such that given A%, the scaled increment 

y(X%+l - X2) has distribution ^(X1), where 

\ *+(x) x/x€A+ 
v(x) = t 

{ u~(x) ifxeA~, 

and let Xy denote the polygonal interpolation of the process (X7 t, : t > 0). Then the sequence 

(Xy : 7 > 0) satisfies the large deviations principle in C[0t-r\(Rd) with the good rate function T, where 

A+, A - , and A° are defined by Equations (4.1)-(4.2) with M±(x,Q = logfR<texp(zQv:t(x,dz). 
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The proof of Theorem 4.2.1 is organized as follows. Section 4.3 contains some observations that 

are instrumental for the proof. Section 4.4 extends the work of Blinovskii and Dobrushin [14] to 

continuous-time random walks, hence proving the theorem in the special case of constant transition 

mechanisms in each half-space. In view of this, Sections 4.5 and 4.6 establish, respectively, the large 

deviations lower and upper bounds in the general case. Goodness of the rate function is shown in 

Section 4.7. 

4 .3 P r e l i m i n a r i e s 

This section contains preliminary results regarding the proof of Theorem 4.2.1. Lemma 4.3.2 

establishes that the process Xy and its polygonal interpolation Xy are close in a certain sense so 

that they have equivalent large deviation probabilities. The section concludes with Lemma 4.3.3 

on the sensitivity of the rate function to variations of the rate measures. 

L e m m a 4.3.1 Given x 6 Rd and y > 0, let yAx have distribution v(x)/v(x,Rd). Then for 

each 5 > 0, lim sup.,.**, 7 " 1 log sup, P(|A=| > 5) = - c o . 

Proof. If |AX | > 5, then for some coordinate 1 < i < d, \Ax(i)\ > 5/y/d. This, together with 

the union bound and Chernoff's inequality, implies that 

sup F( |AX | > 5) < 2dexp(-acy5/y/d) sup E[exp(ayAx(i))] for each a > 0. 
x x,l<i<d 

By Condition 4.2.2, sup x a < t < ( f F[exp(oryAr(i))] is finite, and it does not depend on 7 so that 

lim sup 7-1 logsupP(|A(x)| > 5) < -aS/Vd. 
Tf-»oo r 

The arbitrariness of a > 0 yields the desired result. D 

Lemma 4.3.2 ( Exponential Equivalence ) For each 5 > 0, 

lim sup 7 - 1 logsupP r( sup \Xy - Xy\ > 5) = -00 . 
-y-foo x 0<t<T 
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Proof. Let Nj- denote the number of jumps of Xy in the interval [0, T]. Note that if 

sup0<t<r|A7 Xt\ > 5, then at least one of the first iVj + 1 jumps of Xy has size larger 

than 5. Therefore, for each y > 0, B > 0, and x 6 #*, 

Px( sup \X? - X?\ >5) < Px(Nt > yB) + Px( sup \X? - X?\ > 5, N^-<yB) 
0<t<T 0<t<T 

< PAN} > IB) + (yB +1) supP(\AX,\ > 5), 

where y&x has distribution i/(x)/u(x,Rd). By Condition 4.2.1, uniformly over all initial states, 

Nj. is stochastically dominated by a Poisson random variable with mean ymT. Therefore, given 

K > 0, B can be taken large enough so that 

lim sup y~l logsup Px( sup | X? -X?\>6) < (lim sup y~l log sup PX(N% > yB) j 
T-KXJ x 0<t<T \ 7-K» x J 

U (lim sup 7-1 logsup P(|A=| > 5)) 
\ 7-K» X J 

= lim sup 7-* logsup P=(W2 > 7B) (4.4) 
-r-»oo x 

< -K, 

where (4.4) follows by Lemma 4.3.1. The arbitrariness of K > 0 proves the lemma. D 

Given a Bore! measure p. on Rd, define 

A„(y) = sup (yC - f (e* - l)p(dz)\ , ytR?. 

Lemma 4.3.3 If VQ and v\ are two positive, finite Borel measures on Rd such that (1 + e) - 1 < 

duofdvi < (1 + e) for some e > 0, then for all y 6 Rd, 

A„(y) > (l + e ) ^ A ^ ( y ) - e ^ ( ^ ) . 

Proof. Define %(e) = supu€R{(l + e)2eu - e(1+£)u}. Straightforward evaluation yields that 

%(e) = e(l + e)(1+£)/£. For each ( € Rd, 

f (e* - l)u0(dz) = f e*u0(dz)-uo(Rd) 
jRd JRd 
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< (1 + e) /" <*vx (dz) - (1 + e ) ~ S (&) (4.5) 
jRd 

< (1 + e)"1 / e*«l+4t,l(dz) + (x(€)-l)(l + e)-lvi(Rd) (4.6) 
JRd 

< (1 + c)"1 / (e2^l+^-l)ul(dz)-reeul(R
d), (4.7) 

JRd 

where inequality (4.5) is a consequence of the hypothesis, (4.6) is implied by the definition of %(e), 

and (4.7) follows by the fact that %(e)/(l + e) < ee. This in turn implies that for any y 6 R?, 

A,*(y) = s u p j y C - [ (e« - l)v0(dz)\ 
C6R<* I JRd ) 

> sup (yC - (1 + e)"1 f (e*«1+£> - l ) ^ ( d z ) l - ee^Rf1) 

= (1 + e)"1 sup (yC(l + e) - / (ez«1+£> - l)*i(dz)) - e e ^ ( / ^ ) 

= (l + e ) - ^ ( y ) - e ^ ( ^ ) . 

This proves the lemma. • 

4.4 T h e P i e c e w i s e H o m o g e n e o u s C a s e 

This section establishes Theorem 4.2.1 for the case in which the two rate-measure fields are constant. 

The result, stated as Lemma 4.4.1 below, can be proved by adapting the proof of the analogous 

result for discrete-time piecewise-homogeneous random walks, as presented in [14]. Here, we outline 

the sufficient modifications of that proof, while at the same time pointing out how the argument 

in [14] can be somewhat streamlined. 

Lemma 4.4.1 If u+, u~ and Xy satisfy the conditions of Theorem 4-2.1 with i/+(x) = y+ and 

v~(x) = v~ for two fixed measures u+ and v~, then the sequence (Xy : y > 0) satisfies the large 

deviations principle with the good rate function F. 

Let (sf : t > 0) denote a compound Poisson process with rate measure vf so that the probability 

distribution P± of the random variable sf is a compound Poisson probability distribution with a 

log moment generating function Gp given by 

G$(Q = log fe«P±(dz) = / (e* - l)uf(dz) = M*( ( ) . 
jRd JRd 
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(The first arguments of M± and A* are suppressed in this section since the rate-measure fields 

are constant.) Thus, A* is the Legendre-Fenchel transform (denoted Hp in [14]) of G%. The 

expression T(0, xo) of Theorem 4.2.1 is thus identical to the rate function N(<f>) defined in [14]; 

hence we simply refer to [14] for the properties of A*, A°, and F. In particular, it is shown in [14] 

that r is a good rate function. 

A representation of Xy: The key to the proof in [14] is to combine two independent homo

geneous random walks to produce a single, piecewise-homogeneous random walk. The continuous 

time process Xy can similarly be constructed by combining the processes s + and s~, as shown 

below. The random variables sf/t obey the Cramer Theorem as t —»• +oo, with the rate function 

A*. Furthermore, the exponential tightness property and local large deviations properties hold 

exactly as for the discrete time case stated in Proposition 5.3 of [14]. 

We next define an "unsealed" process X so that the process Xy has the same distribution as 

the process ((X-,t)/y ' t > 0). The process X is conveniently defined via a jump representation, 

using the following jump representations of s*. Let (J±(k) : k > 1) be independent, identically 

distributed random variables with the probability distribution vf(-)/vf(Rd). Let (U±(k) : 6 > 1) 

be independent, exponentially distributed random variables with parameter i/f(Rd). Also, for 

convenience, set J^(0) = U±(Q) = 0. Then s* can be represented as 

sf = J±(0) + --- + J±(k) if U±(0) + --- + U±(k)<t<U±(0) + -- + U±(k+l). 

Of course it is assumed that s + is independent of s~. Given an initial state Xo, let X denote the 

Markov process for which the corresponding variables (U(k) : k > 0) and (J(k) : k > 0) are defined 

recursively as follows: (7(0) = 0, n^(0) = 0, J(0) = X0, and 

f n+(k + 1) = n+(fc) + 1 U(k + 1) = U+(n+(k + 1)) 

\ n~(k + 1) = n~(k) J(k + 1) = J+(n+(k + 1)), 
if Xo + J(l) + . . + J(k) € A+, then 

{ n"(fc + l) = n-(fc) J(k + l) = J-r(n-r(k-rl)) 

D) f n+(Ar + 1) = n+(Ar) U(k + 1) = U~(n~(k + 

{ n-(k + l) = n~(k) + l J(k + l) = J-(n~(k+\ 
else if X0 + J ( l ) + --• + ./(*:)€ A - , then 

Then X can be represented as 

Xt = X0 + J(l) + --- + J(k) if U(0)---+U(k)<t<U(0) + ---+U(k+l). 
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Note that the process ((X^t)/y -1 > 0) can be identified with the process Xy as desired. Define 

( 9 , : t > 0) as follows. If (7(0) + • • • + U(k) < t < (7(0) + -+(7(6 + 1), then 

^ ( 1 if X0 + J(l) + '-- + J(k)eA+ 

[ 0 else. 

Intuitively, X evolves according to s+ on the intervals in which 8, = 1. In particular, let r(t) = 

foQsds. Then for c > 0, 

A-, = X o + s + t ) + s - T ( t ) . (4.8) 

Identify Xy as the polygonal interpolation of the scaled process ((X^t)/y : t > 0). Let 5 + and 5~ 

denote the polygonal interpolations of ((s+J/y : t > 0) and ((s~^/y - t > 0), respectively. (For 

brevity we do not explicitly indicate the dependence of S± on 7.) It is useful to note that the 

relation (4.8) carries over to the scaled processes: 

^ = yo + 5+ t ) + 5 - T ( t ) , (4.9) 

where yo = X0/7, for all t > 0. 

Given r\ > 0 and T > 0, define the events 

K^n, T, 7) = {\S? - ( 4 ) / 7 | < »/, 0 < t < T} 

and set K(n,T,y) = /<T+(T7,T,7) f~l /<""(»/,T,7). Lemma 4.3.2 implies that the set K(n,T,y)c is 

negligible for the purposes of proving large deviations principles, in the sense that 

.Km, 7"1 log P[K(n, T, 7)=] = -00. 

Note that on the event K(n,T,y), \Xy - (Xyt)/y\ <nfor0<t<T. 

Due to the analytic considerations in [14], the proof of the large deviations principle in contin

uous time can be reduced to proving upper and lower large deviations bounds for the events of the 

form €(a,5,T) = {|A","r - at\ < 5,0 < t < T}, where T > 0 and 5 > 0 can be taken arbitrarily 

small. Here a, = xo + tv, where v 6 Rd and, with Xi = or, either xo.xi € A+ or xo.xi 6 A~. 

The key to proving these bounds is to bound the event £(a, 5, T) from inside and outside by simple 

events involving the process (S+,S~) and to appeal to the large deviations principle for (S+,S~). 
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This is essentially the same idea as in [14], translated for continuous time. Our proof is simplified 

somewhat in that (a) in the case of the upper bound, our proof makes better use of the large 

deviations principle for (S+,S~), which is common to both discrete and continuous time, and (b) 

we exploit the representation (4.9). These simplifications make the translation between discrete 

and continuous time more transparent. 

Lower bound: The three lemmas that follow identify events involving ( S + , S~) that are subsets 

of the event £(o-,5,T) whenever xo,Xi € A+. The case x0,Xi 6 A~ can be handled similarly. The 

large deviations lower bound for the process (S+,S~) can then be readily used to provide the 

required lower bound for P[S(a, 5, T)]. 

L e m m a 4.4.2 Ifxo,x\ € A + , then for 5 small enough, 

£(<r, 5, T) D {|y0 - x0 | < 5/2} n {|5,+ - tv\ <5/2,0<t< T}. (4.10) 

Proof. It is enough to note that for 5 small enough, Xy = yo + S,+ for 0 < t < T if the event on 

the right side of (4.10) is true. • 

Corollary 3.2 of [14] states that there is a vector b~ 6 A + such that A~(6~) < +oo. 

L e m m a 4.4.3 / / ( x 0 6 A+,xt e A°) or if (x0 6 A°,xi 6 A+), then there exist r\ = n(S) -» 0 

and K — K(5) —• 0 as 5 -t 0 so that 

£(a,5,T) D {\S?-tv\<T,,Q<t<T}n{\Sr-tb-\<n,0<t<K} 

n{|yo-xo|<,?}n#(n,r,7). (4.11) 

Proof. Assume that (x0 € A°, xi 6 A + ) . Take K = 5n/b~(l), where n = n(5) is yet to be specified, 

and suppose that the event on the right side of (4.11) is true. We first prove the following claim: 

T — T(T) < K. If this claim is false, let u denote the minimum positive value such that u — r(u) = K. 

Then K < u < T and 

x:(i) = yo(l) + 5T
+

(u)(l) + 5,7_T(u)(l) 

> -ri + (u-K)v(l)-n + Kb-(l)-T) 

> Kb~(I)-ZT) = 2T). 
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On the event K(n, T,y),Qt = 1 whenever Xt(l) > n so that u cannot be a point of increase of 

t — r(f). The claim is thus true by proof by contradiction. 

Thus, for 0 < * < T, 

\X7-o-t\ < |*r-(*o + S,+)| + |s0 + S,+ -o-,| 

< l=o - !to| + ( sup |5+ - S + | ) + f sup \S-\) + \tv - 5 + | 
\t-K<r<t J \,0<r<& / 

< V + (MK + 2rj) + (\b-\K + v) + l = Cn, 

where the constant C depends only on v and 6~. Taking r\ = 5/C, the event S(o-,S,t) is true, and 

the lemma is proved in the case (x0 6 A + , x i 6 A°). The proof in the case (x0 € A°,xi 6 A + ) is 

similar and is omitted. O 

Lemma 4.4.4 If x0,xi 6 A", and if 0 < 8 < I, i>+ € A~, and v~ € A + are such that 

v = Bv+ + (1 - B)v~, then there exist v = n(5) ->- 0 and K = K(5) -> 0 as 5 -y 0 so that 

6(a,5,T) D {\S+-tv+\<n,0<t<8T + K}n{\Sr-tv-\<T),0<t<(l-8)T + K} 

n{|yo - xo| < v}rH<(n,T,y). (4.12) 

Proof. Take K = 5n/(v~(l) - u+ ( l ) ) , where n = n(5) is yet to be specified, and suppose that the 

event on the right side of (4.12) is true. We first prove the following claim: \r(t) - 8t\ < K, or 

equivalently, \t — r(t) — (1 — B)t\ < K, for 0 < t < T. If this claim is false, let u denote the minimum 

value of t such that the inequalities are violated. Then either r(u) = /3U+K or U—T(U) = (1—B)U+K. 

By symmetry we assume without loss of generality that « — r(u) = (1 — B)u + K, and hence also 

T(U) =8U-K. Thus, 

xz(i) = i/o(D + sr
+

(tt)(i) + s;_T(tt)(i) 
> -77 + (8u - K ) « + ( 1 ) - n + ((1 - B)u + K)V~(\) - n 

= K ( u - ( l ) - u + ( l ) ) - 3 r 7 = 2n. 

On the event K(n,t,y), 0 , = 1 whenever X't (I) > n so that u cannot be a point of increase of 

t — r(t). The claim is thus true by proof by contradiction. 
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Thus, for 0 < t < T, 

\X7-*t\ < | ^ - ( x 0 + 5++5 (-_ / ? ) t)| + |S+- iStu+ | + |5 ( -_^- ( l - /3 ) t t ; - | 

< | y o - x o | + ( sup | 5 + - 5 + | ) + ( sup | 5 r - -5 ( -_ 0 ) t | )+T / + r/ 

< rj + (2|v+|K + 2r/) + (2\V~\K + 2n) + 2n = Cn, 

where the constant C depends only on u + and v~. Taking n = 5/C, the event £(cr, 5, t) is true, and 

the lemma is proved. • 

Proposition 3.4 of [14] shows that the conditions y± £ A ± and 0 < 8 < 1 in (4.2) can be replaced 

by the conditions y* 6 A± and 0 < 8 < 1 without changing the value of A°. Thus, Lemma 4.4.4, 

with its condition that v± E A± (rather than v± 6 A*) and 0 < 8 < 1, suffices for the derivation 

of the required lower large deviations bound for £(a,5,T). 

Upper bound: The two lemmas that follow identify events involving (S+, S~) that contain the 

event £(a,5,T) whenever xo,Xi € A+. The case xo,xi € A~ can be handled similarly. The large 

deviations upper bound for the process (S+,S~) can then be readily used to provide the required 

upper bound for P[£(o~, 5, T)]. The first lemma is easily verified and is stated without proof. 

L e m m a 4.4.5 If x0,xl 6 A+, and {xo,x%} <£ A°, then there exist n = n(5) -» 0 and K = 

K(5) -*Q as 5-+0 SO that 

£(a, 5, T) C {\S£_K -(T- K)V\ < r,} U K(n, T, y)c. 

L e m m a 4.4.6 / / x 0 , x i 6 A°, then for 5, K, e > 0, £(o,5,T) C {(S+,S~) 6 F2*}, where F2* 

and F are the subsets ofC[0fT\(Rd x Rd), defined as follows: 

F2S = {(0+, 0~) : sup \it - <(>tI < 25 and sup \ij - 0 t"| < 25 for some ( 0 + , 0") 6 F} , 
0<«<T 0<t<T 

and F denotes the closed set Fi U F2 U F3 U F4 , where 

Fi = {(0+,0-): sup (|0+|+ |0rl)>e} 
0<(<K 

F2 = { ( 0 + , 0 - ) : 3 r € K r - K ] : 0 + 6 A 3 , 0 f _ T e A + , 0 + + 0f_T = l;r} 

F3 = {(0+, 0") : |0+,_« - (T - K)u| < e + |«|«} 

87 



F4 = {(0+, 0") : |0f _« - ( r - K)v| < e + |u|K}. 

Proof. Suppose the event £(o~, 5, T) Is true. Since 

£(a, 5, T) = {|y0 + 5+ t ) + 5 " r ( t ) - <r,| < 5,0 < t < T}, 

it follows (take 4 = 0) that |yo — xo| < 5 so that 

\St(t) + 5t"r(0 -vt\<25,Q<t< T. (4.13) 

To complete the proof of the lemma we consider three cases. 

Case 1: Suppose K < r(T) <T-K. Let A = 5+
( T ) + 5f_T(T) - vT, and note that |A| < 25. 

Note by the construction of the process Y, if &T = 0, then 5+(x) € A~, whereas if 9 r = 1, then 

(T) 
ST-T(T)

 6 A+- Define (0+,0~) by setting 

^ ^ - ) = { ( ^ ^ - A ( T = ^ A l ) ) i f 8 r = 0 

I (S,+ - A ( ^ j A l ) , 5 D if 0 T = 1 

for 0 < t < T. Then (0+, 0") 6 F and sup0<,<r 15,* - 0^| < 25 so that (5+, S~) € F28. 

Case 2: Suppose r(T) > T - K. Let «0 = min{( > 0 : r(t) — T - K), and let tx = t0 - (T - K). 

Then T - K < t0 < T and 0 < h < K. Also, r(t0) = T - K and t0 - r(t0) = «!, so by (4.13), 

\ST-K + 5,7 ~ (h + r - K)U| < 2& (4.14) 

We assume in addition that 

sup |S,-| < e, (4.15) 
0<t<ic 

for otherwise (S+,S~) € F C F2*. Combining (4.14), (4.15) and the fact 0 < h < K yields that 

|5+_„ - ( r - K)V\ < 25 + e + \V\K. 

Therefore, (5+, S~) 6 F 2 5 . 

Case 3: Suppose T(T) < K. This case is the same as case 2 with the roles of S+ and S~ 

reversed. Lemma 4.4.6 is thus proved. • 
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Lemma 4.4.5 immediately implies that if XQ, xt 6 A+, and {x0, xi} gt A", then 

Hm lim sup 7 - 1 log P[£(<r,5,T)] < -TA+(v). 

Similarly, Lemma 4.4.6 yields the appropriate large deviations upper bound if xo,xi 6 A°: 

Lemma 4.4.7 If xo,xi 6 A°, then 

lim limsup7-llogP[£(<r,S,r)] < -TA°(v). 
8-*0 7-foo 

Proof. Let r * denote the rate function T with A = A*. The process (S+,S~) satisfies a large 

deviations principle with the good rate function F+ + T - , so by Lemma 4.4.6 for each K, e > 0 

lim limsxipy-1 log P[£(a,5,T)] < - l im inf {r+(0+,O) + r"(0-,O)} 

= - inf jr+(0+ ,o) + r-(0-,o)}. 

To complete the proof of the lemma, it suffices to show that for each p > 0 there exist K, e > 0 

such that for each j 6 {1,2,3,4} 

,,+ Lnf> c {r+(f, °) + r - (0" , 0)} > TA°(v) - p. (4.16) 

Note that inequality (4.16) holds for j = 2 for all p,e,K> 0. Choose L > TA*(w). The fact that 

A±(y)/\y\ ->• 00 as |y| —>• 00 Implies the existence of *c(e) —• 0 as such that for each e, 

so that (4.16) holds for j = 1. Since 

inf {r+(0+,O) + r-(0",O)}= inf (T - «(e))A+(y+) -»- TA+(u) as e -» 0 

and A+(u) > A°(v), inequality (4.16) holds for j = 3, and similarly for j = 4, for sufficiently small 

e. a 

89 



4.5 The Lower Bound 

This section establishes the large deviations lower bound for Theorem 4.2.1 roughly as follows. 

Given 0 € C[o,r] (#"*), the process Xy is approximated by a "patchwork" Markov process with 

a time-varying transition mechanism that for each t is constant on each half-space. The time 

variation is determined by <f> and a partition of [0,T]. Lemma 4.4.1 Is used to prove a local lower 

bound inequality for the patchwork process. Then by comparing the quantities on each side of this 

inequality to the corresponding quantities for Xy, a local lower bound is obtained for Xy. Following 

standard techniques, this local lower bound is shown to imply the lower bound for Theorem 4.2.1. 

For T > 0, a partition of the interval [0,T] is a finite sequence 9 = (#o,-—,#j(6)) such that 

0 = 0O < 9t < - • - < 9J{J)) = T. Given 0 € CptT](Rd) and a partition 9 of [0, T], let Xy*>9 denote a 

Markov process with a time-varying transition mechanism: For each i € {0, • • -, J(9) — 1}, Xy,*,e in 

the time interval (0,,0,-+i] is generated by the pair (7,^), where for each x e Rd the rate measure 

Vi(x) satisfies 

, , / " + W %"zeA+ 
Vi(l) = i 

[ u-(<j>gt) i f x E A " . 

Also let A*8- denote the function A defined by Equation (4.3) when v+(x) = f+(0%) and v~(x) = 
y - ( W . 

Lemma 4.5.1 ( Intermediate Lower Bound ) For each T > 0, partition 9 = (90, • -,#/(*)) of 

[0,T], and absolutely continuous 0 6 C[0<T\(Rd), 

J(e)-i - + i 

lim lim lim inf 7-1 log inf Px( sup \Xy'*'B - 0,| < 5) > - Y] / A*«<(0,,0,)<%. 
S\0p\0 Tf-+oo \x-4>o\<p 0<t<T ^ JB, 

Proof. We prove the lemma by induction on J(0). Lemma 4.4.1, along with Remark 3.2.1 

and Lemma 4.3.2, implies that the statement of the lemma holds whenever J(9) = 1. As the 

induction hypothesis, let k > 1 and suppose that the lemma holds for any T > 0 and partition 9 

of [0,T] such that J(9) = k. Then Ve > 0 35k(e) > 0 such that V<J € (0,5k(e)) 3pk(5,e) such that 

V> € (0,pk(5, e)) 3yk(p, 5, e) such that for 7 > 7 ^ , 5, e), 

&-i rei+l 

y~l log inf Px( sup \Xy'*>6 - 0,| < 5) > - V] / A ^ (0„ it)dt - e. (4.17) 
|*-4o|<P 0<{<flk i^QJei 
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By the time-homogeneous Markov property of the pair (Xy'*'8,<f>), Ve > 0 3<J(e) > 0 such that 

V* e (0,5(e)) 3p(5, e) such that Vp 6 (0, p(5, e)) 3y(p, 5, e) such that for y > y(p, 5, e), 

7 ^ kg , inf Px( sup \X7M-<f>t\<5\Xl'*'9 = y)>-[ek+tA+°i(<j>t,it)dt-e. (4.18) 
|y-*«fcl<P Bk<t<8k+l

 J8k 

To show that the claim holds for J(9) = k + 1, fix e > 0. For all 5 € (0, 5(e/2)), a = (5 A 5k(e/2) A 

p(5, e/2))/2, p £ (0, p&(&, V2)), and y > y(a, 5, e/2) V yk(p, or, e/2), 

7"'log, inf Px( sup | X T ' ^ - 0 , | < 6 ) > 7 _ l Io g i inf Px( sup |X^-* - 0,| < a) 
\x-<tm\<i> 0<t<0 f c + t |*-*ol<P 0<t<Bk 

+7-' log, inf P=( sup | A 7 ^ - 0 , | < < J | J ^ ^ = y) 
|y-*« f c l«* Bk<t<Bk+l 

> - £ / A^(0„0,)d(-e, 

where the first step follows by the Markov property of Xy,*'e and the fact that a < 5, and the second 

step follows by the statements (4.17) and (4.18) together with the choice of a. This completes the 

induction step and establishes the lemma. 0 

Given T > 0, a partition 9 of the interval [0, T], <p 6 C [ 0 , T ] ( ^ ) , and x € Rd, let P2'T and Pr
r'*,'>T 

denote, respectively, the probability distributions of (X? : 0 < t < T) and (A?'*'* : 0 < t < T), with 

XQ = XQ'*' — x. Note that both measures are concentrated on the space of piecewise constant 

functions that take values in Rd, equal to x at time 0, are right continuous, and have a finite number 

of jumps in [0,T]. There is a version D of the Radon-Nikodym derivative dPy<T/dPy'4''e'T, which 

satisfies for any such function u> 

D M = expf -7y o Mw„^)-4w%,),#*))<&) FJ *» ^(Aw&), (4.19) 

where 7V"r(w) denotes the number of jumps of w in [0,%/], rjt and Aw& denote, respectively, the time 

and size of the kth jump of w, and £(t) = max{0,-: 9i < t}. 

Lemma 4.5.2 ( Local Lower Bound ) For each 0 6 Cp^R?) and XQ € Rd, 

lim lim lim inf 7"1 log inf Px( sup \X? - 0,| < 5) > -F(0, x0). 
5 \ 0 p \ 0 nr-foo & |x-s0 |<P 0<i<T 
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Proof. We may take F(0, xo) < oo so that 0 is absolutely continuous and 0o = x0. Fix e > 0. 

Since both i/+ and v~ satisfy Condition 4.2.3, there exists a 5 > 0 such that 

whenever |x — x'| < 25. Appeal to the uniform continuity of 0 on [0, T] to choose a partition 

9 = (0O, - - •, 9JW) of [0, T] such that supfl.<,<fl.+I |0, - 0* | < 5 for each t € {0, - - -, J(9) - 1 } . Then 

Lemma 4.3.3 applied to the definition of A*"* implies that 

J{8)-i g AB)-i g 

E / A+°i(<t>uit)dt < V / ' ((l + e)A*<(0„0,) + (l + e)eem)<ft 

= (l + e)r(0,xo) + (l + e)eemT. (4.20) 

Let NT'*'6 and N? denote, respectively, the number of jumps of X"*'*'9 and Xy in the interval 

[0,T]. Appeal to Condition 4.2.1 to choose a B large enough so that 

lim sup 7"1 log Pro (N?Afl > yB) < -F(0,xo). 
7-foo 

The choice of 9 and Equation (4.19) imply that for each y > 0 and ig f f 1 , 

P=( sup \X?'*'6 -4>t\<5) < Px( sup \X?'*>6 - 0,| < 5, Nf** < yB) + Px(Nl<*>9 > yB) 
0<t<T 0<t<T 

< ey«mT+B>Px( sup |%r - <f>t\ <5,Nl< yB) + Pr(JV£*'* > yB) 
0<t<T 

< ey<mT^Px( sup \X7 - 0,| < 5) + P , ( ^ ^ > 78), (4.21) 
o<t<r 

where the second step uses the fact that log(l+e) < e. Inequality (4.21), together with Lemma 4.5.1 

and inequality (4.20) on the left-hand side, and the choice of B on the right-hand side imply that 

- ( l + e ) r (0 ,x o ) - ( l + e)eemr < 

( e(mT + B) + lim lim lim inf y~l log inf Px( sup \X? - 0,| < 5) j V (-F(0, x0)). 
\ « \ , O p V Tf-*oo |x-<fo|<p 0<t<T ) 

The lemma follows by the arbitrariness of e > 0. 
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Given 0 € C[0tj](Rd) and 5 > 0, let B(0,5) continue to denote the open ball of radius 5 around 

0. 

Lemma 4.5.3 ( Lower Bound ) For any Borel measurable S C C[o,rj(i?£)» xo € #*, and 

sequence (xy : 7 > 0) such that lim.,-** xy = x0, 

lim inf 7-^ logP*-, ( (*? : 0 < t < T) 6 S) > - lnf^r(0,xo). 

Proof. Fix 0 € S°, and let 5' > 0 be such that 5(0, <f) is contained in S for all 5 < 5'. Lemma 

4.3.2 and Lemma 4.5.2 imply that 

KmMy-llogPxi[(X? :Q<t<T)eS) > lim lim lim inf 7" l log inf Px( sup \X? -4>t\ < 5) 
*r+°o \ ' S\0p\0 Tr-»oo \x-x0\<p 0<t<T 

> lim lim lim inf y~l log inf Px( sup |A"? - 0,| < 5) 
~ S\0p\0 Tr->co 6 |x - ro |<P 0<t<T 
> -r(0,xo). 

Since 0 6 5° is arbitrary, the lemma follows. • 

4.6 The Uppe r Bound 

This section establishes the large deviations upper bound for Theorem 4.2.1 by adapting the meth

ods of Section 4.5. 

Lemma 4.6.1 ( Intermediate Upper Bound ) For each T > 0, partition 9 = (90, - • -, 9j^) of 

[0,T], and absolutely continuous <f> € C[Q>T](Rd), 

lim lim sup 7- 1 log sup Px( sup \X?'*' - 0,| < 5) < - V / A*°i (<t>t, it)dt. (4.22) 
5\0 -,-foo |r-*ol<* 0<t<T ^ J8, 

Furthermore, if 0 is not absolutely continuous, then the left-hand side of (4.22) equals -00. 

Proof. By induction on J(0). Lemma 4.4.1, along with Remark 3.2.1 and Lemma 4.3.2, implies 

that the statement of the lemma holds whenever J(9) = 1. As the induction hypothesis, let k > 1 
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and suppose that the lemma holds for any T > 0 and partition 9 of [0, T] such that J(9) = k. To 

show that the claim holds for J(9) = k + 1, note that by the Markov property of X"''*'8, 

7 - l Iog sup Px( sup I*?-** - 0,| < 5) < 7" lIog sup Px( sup |A7'*'* - 0,| < 5) 
\x-<po\<5 0<t<Bk+l | * -*o |<* 0<t<flfc 

+7-xlog sup Px( sup I ^ T ^ - 0 , 1 <5\Xl>*'e=y). 
\y-4>ekl<s Bk<t<ek+l 

Therefore, if 0 is absolutely continuous, then the induction hypothesis and the time-homogeneous 

Markov property of the pair (Xy,*'B, 0) imply 

lim lim sup y~l log sup Px( sup \X?'+'e - 0,| < 5) < - f" f '" A*% (0„ 0,)dt. (4.23) 
5\° Tf-*oo \x-4o\<S 0<t<8k+l £oJei 

Otherwise, either (0, : 0 < t < 9k) or (0, : 9k < t < 6&+i) is not absolutely continuous; hence the 

left-hand side of (4.23) equals — oo. This completes the induction step and establishes the lemma. 

O 

Lemma 4.6.2 ( Local Upper Bound ) For each <f> € C[0tT](Rd) and x0 6 Rd, 

lim limsup7_ l log sup Px( sup |A? - <f>t\ < 5) < -P(0,xo). (4.24) 
S\0 ir-»oo | r - ro l<* 0<t<T 

Proof. Without loss of generality, we may assume that 0 is continuous and 0o = xo, since 

otherwise the left-hand side of (4.24) equals —oo. Fix e > 0, and choose 5 > 0 such that 

Cl*')-1* £ $ * & + «> - in")-*£$*(!+«» 

whenever |x — x'| < 25. Appeal to the uniform continuity of 0 on [0, T] to choose a partition 

9 = (0o, • • •, 0j(«)) of [0, T] such that sup„.<,<„,+, |0, - <f>0i \ < 5 for each i € {0, • • -, J(9) - 1}. 

Let Nj. and TV?*'* denote, respectively, the number of jumps of Xy and Xy>'l>,0 in the interval 

[0,T\. By the choice of 9 and Equation (4.19), for each x G R?, y > 0, and B > 0, 

Px( sup \Xy - 0,| < 5) < Px( sup \Xy - 0,| < S,N} < yB) + PX(N} > yB) 
0<t<T 0<t<T 
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< ey«mWpx( sup \X7'*'e - 0,| < 5, Nf < yB) + PX(N} > yB) 
0<t<T 

< ey«mT+Vpx( sup |A7'*'" - 0,| < 5) + PX(N} > yB), (4.25) 
0<t<T 

where the second step uses the fact that Iog(l + e) < e. By hypothesis, uniformly for all initial 

states, iVj is stochastically dominated by a Poisson random variable with mean ymT. Therefore, 

if 0 is not absolutely continuous, then inequality (4.25), along with Lemma 4.6.1 and choice of 

arbitrarily large B on the right-hand side, implies that the left-hand side of (4.24) equals —oo, and 

the lemma holds. 

If 0 is absolutely continuous, then the choice of 9 and Lemma 4.3.3 applied to the definition of 

A** imply 

E / A*'i(0„0,)<a > £ / ((l + e)- lA*'(0,,0,) + eem)dt 
t=0 JOi t=0 J8i 

= (l + e) - l r (0 ,x o )+eemr . (4.26) 

Appeal to Condition 4.2.1 to choose B large enough so that 

lim sup 7-1 logsup P„(A% > yB) < -F(0,xo). 
Tf-t-OO X 

Then inequality (4.25), together with Lemma 4.6.1, inequality (4.26), and the choice of B, Implies 

that 

lim lim sup 7"1 log sup Px( sup \X? - 0,| < 5) < 
S\0 T,-+OO | x - r 0 | < * 0<1<T 

( - (1 + e)-xr(0, x0) - eemT + e(mT + B)) V (-F(0, x0)). 

The lemma follows by the arbitrariness of e > 0. 0 

Lemma 4.6.3 ( Exponential Tightness ) Let (xy : 7 > 0) be a sequence such that Iim _̂+oo x"* = 

xo. For each a > 0 there exists a compact Ka C C[Qj^(Rd) such that 

lim sup 7"1 logFX7 ((X? : 0 < t < T) £ Ka) < -a. 
7-»CO V ' 
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Proof. The lemma follows by [12, Lemma 5.58] through a straightforward adaptation of [12, 

Corollary 5.8] so as to incorporate the continuous support of the measures v(x), x € R?. O 

Lemma 4.6.4 ( Upper Bound ) For any Borel measurable S C C[0 ,TJ(#'£) , x0 6 Rd, and 

sequence (xy :y> 0) suck that lim-y-Kx,xy = xo, 

lim sup 7 - ' logPx, ((Xy :0<t<T)eS)<- inf_F(0,xo). 

Proof. Fix e > 0. For each 0 € 5, appeal to Lemma 4.6.2 and Lemma 4.3.2 to choose a 5+ > 0 

such that 

lim sup 7-1 log Pr-, ((XT :0<t<T)€ B(0,54j) < -F(0 , x0) + e, 

and appeal to Lemma 4.6.3 to choose a compact subset K of C[0tT](Rd) such that 

lim sup 7-1 logP^ ({X? :0<t<T)^I<)<-(-A inf_F(0, x0)). 
-r-+oo ^ ' e ^ € 5 

By the compactness of 5(~l K, there exists a finite subset { 0 I , - " , 0 / } C S such that 5 n K C 

uLi5(^*» V)? hence for each 7 > 0, 

Pn ((*7 : 0 < t < T) € S) < Pxt ((X? : 0 < t < T) g tf)+£ PX-> ( ( # : 0 < t < T) € B(0 \^ . ) ) 

This in turn implies 

lim sup 7 _ l log Pxi ((X? :0<t<T)eS) < (-(-A inf r(0, x0))) V max {-r(0\ x0) + e} 

< f - ( 7 A ln[F(0, x0)) ) V (~ m&r(0, x0) + e) . 

The lemma now follows by the arbitrariness of e > 0. 0 
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4.7 Goodness of t h e R a t e Function 

This section concludes the proof of Theorem 4.2.1 by establishing the goodness of the rate function 

r. 

Lemma 4.7.1 ( Lower Semicontinuity ) Given x0 € Rd, the function F(-, x0) : C[otTj(#£) ~^ 

R+ U {+00} is lower semicontinuous. 

Proof. Let (0m : m > 0) be a sequence such that 0m -*• 0 in C^p^R1). To prove the lemma 

it is enough to show that F(0, xo) < lim inf„,_•«> r (0 m , xo). Fix e > 0 and a sequence xy -4- x0. By 

Lemma 4.6.2, there exists a 5 > 0 such that 

lim sup 7-1 log Px-, ((X
y : 0 < t < T) 6 B(<t>, 5)) < -F(0, x0) + e. (4.27) 

-|r-»oo v ' 

Let Mc be such that sup0<,<r |0r - 0,| < J whenever m > Afe. By Lemma 4.5.3, 

limin{y-llogPx-,((X7:0<t<T)eB(<l>,5)) > - ^ m f ^ T(0', x0) 

> -r(0OT,xo) (4.28) 

for all m > Mc. Inequalities (4.27) and (4.28) imply that r(0m ,xo) > F(0,xo) - e whenever 

m > Mc, and the lemma is proved. 0 

Lemma 4.7.2 ( Goodness ) The rate function F is good. 

Proof. In view of [13, Lemma 1.2.18.b], the lemma is implied by Lemmas 4.5.3, 4.6.3, and 

4.7.1. D 
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CHAPTER 5 

CONCLUSION 

We concentrated on complexity-performance trade-offs in dynamic resource allocation in load shar

ing networks. Realizing the difficulties involved in the exact analysis of arbitrary network structures, 

we first focused on the optimality properties of certain simple allocation policies Implied by the 

corresponding fluid limit approximations. Explicit fluid equations were obtained, and through a 

characterization of their solutions it was shown that the LLR policy asymptotically achieves the 

most balanced load in the sense of minimizing a wide class of long-term average costs. LLR is 

also robust to migration, provided that consumers are reassigned according to LLR whenever their 

types change. When the resources have finite capacities, the class of LRLR policies asymptotically 

achieve the minimum possible blocking probability. From a practical point of view, important prop

erties of the considered policies are low computational complexity, decentralized implementation, 

and robustness to arrival and migration rates. 

The fluid limit approximations considered here are essentially process-level laws of large numbers 

for load sharing networks; thus, they provide only a first-order description of the network behavior. 

This description does not appear to be accurate enough to contrast certain allocation policies. In 

particular, the OR, BS, and LLR policies appear to have the same performance in the fluid scale. 

The second part of the thesis concerned a finer analysis to order the three policies: The theory of 

large deviations was employed, and network overflow was studied in terms of overflow exponents. 

The overflow exponents for each policy were obtained in the simple W network, and it was shown 

that the LLR policy performs as well as the OR policy for small values of capacities, whereas it 

performs significantly better then the BS policy for the whole range of capacities. The general form 

of the overflow exponents for arbitrary network topologies is identified for the OR and BS policies 

and conjectured for the LLR policy. 

Obtaining overflow exponents for the LLR policy entails establishing large deviations principles 

(LDPs) for Markov processes with discontinuous transition mechanisms. An explicit LDP was 

established in the case when the discontinuity is along a single hyperplane, and it was used to 
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obtain the overflow exponents in the W network. The established LDP generalizes the work of 

Blinovskii and Dobrushin and holds under somewhat more relaxed technical conditions than those 

required by related results In the literature. 

The results of this thesis suggest maximization of overflow exponents as a guiding principle 

for capacity allocation and policy design in load sharing networks. Although obtaining overflow 

exponents for general networks appears difficult, rigorous study of simple examples, such as least 

ratio routing and maximum residual capacity routing in the W network, may yield good heuristic 

arguments. These issues remain to be explored. 
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