
December 2000

Loki: A State-Driven Fault Injector for
Distributed Systems

Ramesh U.V. Chandra

UILU-ENG-00-2221
CRHC-00-09

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Puttie reporting Ouraen lor this collection o! information is estimated to average 1 hour par response. including the lima lor reviewing instructions, searching axis ting data sources,
gathering and mamumvig the data needed. and completing and reviewing me collection ol information. Send comment regarding this burden estimates or any other aspect ol this
collection ol information, including suggestions lor reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Oavis Highway. Suite 1204. Arlington. VA 22202-4302. and to (he Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND OATES COVERED
2000

4. TITLE AN0 SUBTITLE
L ok i: A S ta te -D r iv e n F a u lt I n j e c t o r fo r D is t r ib u t e d S y stem s

5. FUNDING NUMBERS

F 3 0 6 0 2 -9 6 -C -0 3 1 5
F 3 0 6 0 2 -9 7 -C -0 2 7 6 .
F 3 0 6 0 2 -9 8 -C -0 1 8 7

6. AUTHOR(S)
Rame sh U .V . Chandra

7. PERFORMING ORGANIZATION NAMES(S) AND ADORESS(ES)
C o o rd in a ted S c ie n c e L a b o r a to ry
U n iv e r s i t y o f I l l i n o i s
1308 W est Main S t .
U rbana, IL 61801

3. PERFORMING ORGANIZATION
REPORT NUMBER

UILU E N G - 0 0 - 2 2 2 1
(CRHC-00-09)

9. SPONSORING / MONITORING AGENCY NAME'S) AND A00RE5S(ES)
DARPA/IT0
3701 F a ir f a x D r iv e
A r l in g t o n , VA 2 2 2 0 3 -1 7 1 4

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The vjews, opinions and/or findings contained in this report are chose o f the author(s) and should not be construed as
an official Department o f the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION COCE

1 3 . ABSTRACT (Maximum 200 words)

Fault injection is an important and effective method of validating dependable systems. However, a
distributed system can fail in subtle ways that depend on the state of multiple parts of the system. This
suggests that faults should be injected in a distributed system based on the global state. However, it is
practically impossible to maintain the global state of a distributed system at runtime, with minimal
intrusion into the system. Hence, fault injection based on the global state of a distributed system is
difficult.

This thesis presents work on a fault injector, called Loki, that addresses the challenges of global-state-based
fault injection in distributed systems. In Loki, fault injection is performed based on a partial view of the
global state of a distributed system. Once faults are injected, a post-runtime analysis, using off-line clock
synchronization, is used to place events and injections on a single global timeline and determine whether
the intended faults were properly injected. Finally, experiments containing successful fault injections are
used to estimate the specified measures. The contributions of this thesis include an enhanced Loki runtime
that allows dynamic entry and exit of nodes in the system, and a new and flexible method for obtaining a
wide range of performance and dependability measures in Loki.

14. SU8JECT TERMS
1. D ependable d i s t r i b u t e d s y s te m s; 2 . V a l id a t io n ; 3 . F a u lt
i n j e c t i o n ; 4 . S t a t e - d r iv e n f a u l t i n j e c t i o n ; 5 . M easure la n g u a g e ;
6 . S t a t i s t i c a l m easure e s t im a t io n

15. NUMBER IF PAGES

83

16. PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OR REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

U NCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)

Prescnbad by ANSI Sid. 239-18

LOKI: A STATE-DRIVEN FAULT INJECTOR FOR DISTRIBUTED
SYSTEMS

BY

RAMESH U.V. CHANDRA

B. Tech., Indian Institute of Technology, Madras, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois

The Defense Advanced Research Projects Agency Information Technology Office funded
the work in this thesis under the contracts F30602-96-C-0315, F30602-97-C-0276, and F30602-
98-C-0187.

iTT̂ - ^ N l 4

To my mother, father, and teachers, who are equivalent to God on earth.

iii

Acknowledgements

I would like to thank my advisor Prof. William H. Sanders for his invaluable guidance and

support and for always being there to discuss and clarify any matter, be it on the academic

front or the research front. I would also like to thank Dr. Michel Cukier for the excellent

role he played as an additional research advisor by acting as a good sounding board for my

ideas.

I owe a lot to the research atmosphere at the PERFORM lab, and I thank all the

members of the lab, namely, Ryan Lefever, Kaustubh Joshi, Jennifer Ren, Paul Rubel, Sudha

Krishnamurthy, Robert Waldrop, Jay Doyle, David Daly, Dan Deavours, Patrick Webster,

and Amy Christensen, for having created a very conducive atmosphere for me to work in. In

particular, I would like to thank my research partner, Ryan Lefever, who patiently put up

with all the long discussions on research issues. Working with him as a team was a pleasure

and he played a key role in making Loki a complete fault injection tool. I would like to

thank all my friends in Champaign for providing wonderful company during my stay there.

I thank Jenny Applequist for her invaluable help in administrative matters, and for the help

in “which-hunting,” among other advice, during the preparation of my technical documents.

Last but certainly not the least, I would like to thank Amma, Daddy, Anna, Bujji, and

Prahladh.

Abstract

Distributed systems are being increasingly used to build critical systems. This necessitates

the validation of their dependability. Fault injection, using a representative set of faults, is

an important and effective method of validating dependable systems. However, a distributed

system can fail in subtle ways that depend on the state of multiple parts of the system. This

suggests that faults should be injected in a distributed system based on its the global state.

However, it is well known that it is practically impossible to maintain the global state of a

distributed system at runtime, with minimal intrusion into the system. Hence, fault injection

based on the global state of a distributed system is difficult.

This thesis presents work on a fault injector, called Loki, that addresses the challenges of

global-state-based fault injection in distributed systems. In Loki, fault injection is performed

based on a partial view of the global state of a distributed system. Once faults are injected,

a post-runtime analysis, using off-line clock synchronization, is used to place events and

injections on a single global timeline and to determine whether the intended faults were

properly injected. Finally, experiments containing successful fault injections axe used to

estimate the specified measures. The contributions of the work in this thesis include an

enhanced Loki runtime that allows dynamic entry and exit of nodes in the system, and

a new and flexible method for obtaining a wide range of performance and dependability

measures in Loki.

v

Table of Contents

C hapter 1 I n t r o d u c t io n .. 1
1.1 M otivation... 1
1.2 Related W o rk ... 3
1.3 Organization of the T h es is ... 6

C hapter 2 Overview of the Loki Fault In jec to r ... 7
2.1 Introduction.. 7
2.2 Loki Concepts... 8

2.2.1 Partial View of Global S ta te .. 8
2.2.2 N ode.. 9
2.2.3 Fault Injection C am p aig n ... 9

2.3 Evaluation of a System Using Loki .. 10
2.4 The Runtime Phase... 10
2.5 Analysis P h a s e ... 13
2.6 Measure Estimation P h a se ... 16

C hapter 3 Loki R untim e A rc h ite c tu re .. 18
3.1 Introduction... ... 18
3.2 The Previous Loki R u n tim e .. 18

3.2.1 Overview of the Previous Runtime ... 18
3.2.2 Performance Analysis.. 19

3.3 Shortcomings of the Original Runtime .. 21
3.4 Design Choices for the Enhanced Loki R u n tim e .. 21

3.4.1 The Design Choices... 22
3.4.2 Comparison of the Design Choices.. 23

3.5 Architecture of the New Loki R u n tim e .. 26
3.5.1 Central Daemon... 26
3.5.2 Local Daemon.. 28
3.5.3 State Machine.. 30
3.5.4 State Machine Transport.. 32
3.5.5 Fault P arser... 32
3.5.6 Recorder... 34
3.5.7 P r o b e .. 36

3.6 Operation of the New Loki Runtime.. 37

vi

3.6.1 Normal Operation .. 37
3.6.2 On a Node C ra sh ... 39
3.6.3 On a Node R e s ta r t .. 39
3.6.4 On a Host Crash and R e b o o t ... 40

3.7 Benefits of the Enhanced Runtime A rch itec tu re .. 40
3.8 Limitations of the Current Loki Im plem entation.. 41

Chapter 4 Measure Estimation in L o k i ... 42
4.1 Introduction.. 42
4.2 Overview of Measure Estimation in L o k i ... 42
4.3 Measures Defined at the Study L e v e l... 45

4.3.1 Predicate ... 45
4.3.2 Observation Function.. 47
4.3.3 Subset Selection.. 48
4.3.4 Study-Level Measures ... 49

4.4 Measures Defined Across Studies ... 50
4.4.1 Simple Sampling M easures... 50
4.4.2 Stratified Weighted M easu res... 51
4.4.3 Stratified User M easures.. 53

Chapter 5 Example of a Fault Injection C a m p a ig n .. 54
5.1 Introduction.. 54
5.2 Test Application ... 54
5.3 State Machine Specification.. 55
5.4 Fault Specification.. 60
5.5 Instrumentation and Probe Design .. 61
5.6 Campaign E xecution... 63
5.7 Campaign A nalysis.. 65
5.8 Measure Specification and Estim ation... 66

Chapter 6 C onclusions... 69

R eferen ces ...71

vii

List of Figures

2.1 Evaluation of a System using L oki... 11

3.1 Original Loki Runtime Architecture.. 19
3.2 Correct Fault Injection Probability as a Function of Time Spent in a State

(10ms Linux Timeslice) ... 20
3.3 Correct Fault Injection Probability as a Function of Time Spent in a State

(lms Linux T im eslice)... 21
3.4 Design Choices for the Loki Runtime Architecture... 23
3.5 The New Loki Runtime A rchitecture .. 27

4.1 Measure Estimation in L o k i .. 43
4.2 Predicate Value Timeline Example .. 46

5.1 Election P ro to c o l.. 56

Chapter 1

Introduction

1.1 M otivation

The dependability of computer systems is very important, considering the pervasiveness of

computers in our everyday life. However, the level of dependability required varies from

system to system; for example, a computer system controlling a medical system must be

much more dependable than a web server, which should be more dependable than a home

user’s desktop. Thus, each computer system should be validated to ensure that it meets the

required dependability levels.

Before moving further, a few definitions are in order. A fault is any physical influence

that could potentially cause the system to deviate from its intended functionality. An error

is the effect of the fault on the system and thus is the result of the fault. If the system is not

able to cope with the error then a failure of the system results [1]. Note that not every fault

leads to an error and not every error results in a failure. Coverage is the probability that

the system recovers (i.e., does not have a failure) given that a fault occurred. Dormancy

is the amount of time between the occurrence of a fault and its manifestation as an error.

Latency is the amount of time from the occurrence of an error to either failure of the system

or detection and system recovery. Coverage, dormancy, and latency are important properties

of a dependable system that need to be evaluated.

Ideally, validating a system should involve running it in a configuration and environment

1

similar to that in the field for sufficiently long enough to determine the system’s dependabil­

ity. However, this is not possible in practice. Therefore, in practice, two methods are used:

system modeling and fault injection.

System modeling involves developing a formal mathematical representation of the system

and solving it to determine the system’s properties. It requires a detailed knowledge of the

complete system and its execution. Modeling has the advantage that the behavior of the

system over a long period of time, and in a variety of configurations and environments, can

be obtained in a relatively short period of time. However, by its very nature, a model cannot

mimic the actual system completely; hence, results from modeling could be less accurate

than those from runs of the actual system. Also, some parameters needed by a system

model have to be obtained from the system itself. In practice, these parameters are very

sensitive, and an inaccurate estimation would lead to wrong overall values for the properties

of the dependable system.

Experimental evaluation of the system and, in particular, fault injection can be used

to obtain the required parameters. Fault injection is the process of generating faults in a

system at a rate much higher than the rate at which they appear in the system’s actual

environment. This is done because it would take too long to wait for faults to occur by

themselves in the system. From the generated faults, observations are collected that are

used to determine the system’s properties. A tool that helps in the process of fault injection

is called a fault injector. Fault injection is used for two different purposes: fault removal and

fault forecasting.

Fault removal uses fault injection to stress the system under study to verify whether the

system behaves as given in its functional specification. Thus it is used during the building

of the system to remove any design and implementation deficiencies (“bugs”) in the system.

Fault forecasting is done after the system has been completely implemented. It uses fault

injection to evaluate the efficiency of the long-term operational behavior of the fault-tolerance

mechanisms in the system. One good way of using modeling and fault injection together

2

to evaluate a system is as follows. First, a model of the system design is developed. Then

a prototype is implemented and evaluated to obtain the parameters needed for the model.

The parameters are then fit into the model to check whether the system design is adequate.

If not, the design is modified and the above process is repeated until the design is adequate.

The final system design is then implemented and fault-injected for fault removal. Finally,

fault forecasting is done on the system before it is deployed.

If the system under consideration is a reliable distributed system, a failure of a component

in the system could result from a fault in the component itself or from the propagation of a

fault in another component of the system. Thus, failures in the system depend on the global

execution state of the system, i.e., the combined state of all the components in the system.

For that reason, during fault injection of a reliable distributed system, a fault injector needs

to keep track of the global state of the system. Other desirable features of fault injection in

a distributed system include verification that the faults have been injected in the intended

global states, and a flexible measure estimation method.

This thesis focuses on the development of a fault injection tool, called Loki, to assist

in the evaluation of a system’s dependability, particularly when the system is a distributed

system. More specifically, Loki provides a framework for specifying and injecting faults

in a distributed system based on the global state of the system. The results from the

fault injection experiments are collected and a check is performed, by constructing a global

timeline from the results, to verify the correctness of the global-state-based fault injections.

Loki also provides a mechanism for specifying and computing a wide range of dependability

and performance measures from the fault injection results.

1.2 Related Work

There are several fault injection and measurement tools already in existence, several of which

are targeted specifically to distributed systems. These tools are well-suited for the applica­

3

tions for which they are intended. However, they do not meet all the requirements necessary

for distributed system fault injection, namely fault injection based on global state, verifica­

tion of the correctness of faults, and accurate computation of a wide range of performance

and dependability measures. This section gives a brief description of these tools.

JEWEL [2] is a measurement system that performs monitoring and evaluation tasks of

distributed (and local) systems based on user-defined specifications. A graphical visualiza­

tion tool is used to display the results on-line (i.e., in real-time). JEWEL also provides

off-line analysis of the collected results. However, it can only observe the system under

study; it cannot control the system’s environment by injecting faults. Also, it uses hardware

clocks in the system that are synchronized to maintain a global clock.

CESIUM [3] is a testing environment based on the centralized simulation of distributed

executions and failures. The distributed execution of the processes in the system under

study is simulated on a single machine in a single address space, with network interaction

and system clocks simulated by the CESIUM environment. The code of the system under

study is not instrumented; therefore, decisions and observations cannot be made based on

the internal state of a process, and fault injections cannot be targeted to specific states of

operation within a node. In addition, this simulation-based approach cannot fully mirror the

operation of the system in a real environment; hence, for proper evaluation of the system, it

is desirable to experiment on a real system. Also, no mechanism for obtaining measures is

present in CESIUM.

The DOCTOR [4] fault injector is one of the tools developed to evaluate the HARTS

distributed real-time system. Memory, CPU, or communication faults can be injected prob­

abilistically or based on past history. However, faults cannot be injected based on the global

state of the distributed system. Also, the correctness of the injected faults cannot be ver­

ified. DOCTOR has an integrated synthetic workload generator that can be used during

the evaluation of the system. During the evaluation, performance and dependability data is

collected. However, there is no mechanism for obtaining measures. Timing is done using a

4

hardware solution, which requires a shared backplane bus not available to all systems.

EFA [5] is designed to be used mostly for verification of the system, i.e., checking whether

the system works according to its functional specification. The EFA fault injector generates

random fault cases, user-defined fault cases, and/or fault cases derived from an analysis of

the source program of the fault-tolerant system. It allows the user to express fault locations

and types using a special language. EFA also provides support for controlling the sequence

of concurrent events in a distributed system. However, EFA’s approach may be too intrusive

to the system. Also, it provides neither verification of the proper injection of faults nor a

mechanism to obtain measures.

The Orchestra [6] fault injector integrates into the system under study as a layer that can

be inserted anywhere in a layered protocol stack. Orchestra allows for fault injection based

on the local state of a node; however, it does not provide a formal means for exchanging

information between nodes, and does not allow fault injection based on the global state.

Additionally, it does not provide a means for generating measures.

SPI [7] provides a flexible framework for distributed system evaluation and visualization.

It is based on the event-action programming model, in which “ea-machines” observe events

in the system and execute actions. Though SPI was developed primarily with measurement

and evaluation in mind, it can also be used for fault injection. However, it can neither

check for proper fault injection nor generate measures. This system currently runs on SUN

workstations and the Intel Paragon.

The NFTAPE [8] fault injection tool was developed to inject both hardware- and software-

based faults. To do this, the tool is divided into system-independent and system-dependent

parts. The system-independent part executes the experiments, monitors the system, and

collects observations. The actual fault injection is done by lightweight fault injectors that

are system-dependent. This makes NFTAPE very portable. However, the tool does not

verify that the fault injections have taken place in the right global states and also does not

provide a means of obtaining accurate measures.

5

All the tools described above have been successfully applied to many systems. However,

they do not have all the capabilities needed for fault injection in distributed systems. Specif­

ically, most of them lack the ability to inject faults based on the global state of the system.

Also, they do not verify that the injected faults are correct. Additionally, most of them

do not have capabilities to specify and compute accurate measures from the results of the

fault injections. The goal of the work described in this thesis was to design a fault injection

and evaluation tool, called Loki, which has the above capabilities necessary for evaluation of

distributed systems through fault injection.

1.3 Organization of the Thesis

The remaining chapters describe the design of the Loki fault injector. More specifically,

Chapter 2 presents the ideas underlying Loki and gives an overview of the workings of Loki.

Chapter 3 describes the runtime architecture, its mechanism, and some implementation

details. Chapter 4 details the mechanisms for specifying and computing a wide range of

dependability and performance measures in Loki. Chapter 5 gives an example of how to use

Loki for fault injection. It describes a simple example system and explains step-by-step the

process of evaluating the system using Loki. Finally, Chapter 6 presents conclusions and

suggestions for future work.

6

Chapter 2

Overview of the Loki Fault Injector

2.1 Introduction

As mentioned in Chapter 1, a fault injector for distributed systems needs to keep track of

the global state of the system. However, it is well known that tracking the global state

of a distributed system at runtime, with minimal intrusion into the system’s behavior, is

impossible in practice. A possible solution to this problem would be to synchronize the

execution of all the components of the system at every state change and determine whether

faults are to be injected. However, this is very intrusive to the system under study, and would

cause it to deviate greatly from its normal execution. Another solution would be to have

the fault injector maintain very loose synchronization by sending notifications among the

components at every state change, and inject faults in a component based on the component’s

view of the global state. However, the component’s local view of the global state could be

outdated, because the system could have changed state while the state change notifications

were in transit. This would cause the fault injector to inject faults in incorrect states.

Measures obtained from such incorrect fault injections would not be valid.

The distributed system fault injector Loki, which is the main contribution of this thesis,

solves this problem and makes fault injection based on the global state of a distributed

system practical. This chapter explains the basic concepts underlying Loki and details the

method by which Loki solves the above problem. Additionally, it also briefly describes the

7

various steps in the evaluation of a system using Loki.

2.2 Loki Concepts

This section describes the basic concepts of Loki. First, the concept of partial view of

global state, which is central to Loki, is explained, along with the concepts of state, local

state, and global state. Then the concepts of a node and Loki runtime are introduced, and

the organization of a fault injection process into campaigns, studies, and experiments is

explained.

2.2.1 Partial View of Global State

The concept of state is fundamental to Loki. It is assumed that at the desired level of

abstraction (for fault injection and measure estimation), the execution of a component of

the distributed system under study can be specified as a state machine with state transitions

triggered by local events in the component. In other words, at any time, a component is

in a particular local state, and it transitions to a new state only when an event occurs in

it. The new state is computed using a transition function, and is uniquely determined by

the old state and the event. The global state of the system is the vector of the local states

of all of its components. During the fault injection process, it may be necessary to inject

faults in a component based on the state of other components of the system. To do so,

it is not necessary to keep track of the complete global state of the system at all times;

instead, it is sufficient to track an “interesting” portion of the global state that is necessary

for the injection of the required faults in the component. This interesting portion is called

the partial view of the global state, and its selection depends on the particular system under

study and the faults to be injected.

8

2.2.2 Node

In Loki, the distributed system (under study) is divided into basic components (which are

processes in the current implementation), from each of which state information is collected

and into each of which faults are injected. Each of these basic components of the distributed

system, together with the attached Loki runtime, is called a node. The Loki runtime is the

Loki code that executes along with the distributed system and maintains the partial view

of the global state necessary for fault injections. It also performs fault injections when the

system transitions to the desired states and collects information regarding state changes,

fault injections, and their occurrence times. The Loki runtime can be divided into two main

parts: one that is independent of the system under study, and the other that is dependent

on it. The state machine, state machine transport, fault parser, and recorder constitute the

system-independent part, while the probe is the system-dependent part. These units of the

runtime together perform all of the functions that are mentioned above.

2.2.3 Fault Injection Campaign

Structurally, the process of fault injection using Loki consists of one or more fault injection

campaigns. A fault injection campaign for a particular distributed system is made up of

one or more studies. For a study, each component of the distributed system is defined by

a state machine specification1 and a fault specification. The state machine specification

describes the execution of the component at the desired level of abstraction. It consists of

the set of states, the transitions between these states, and the events in the components that

trigger these transitions. The fault specification consists of a set of faults and a Boolean

expression for each fault that specifies the states in which particular state machines should

be when the fault is injected into the component. Details of both these specifications are

1Note that a state machine specification is a description that is dependent on the system under study.
However, the state machine is independent of the system, and is a component of the runtime that tracks the
state given in the specification.

9

given in Chapter 3. Note that the division of the fault injection process into campaigns and

the division of a campaign into studies is left to the discretion of the user. However, it is

desirable that a study consist of a set of correlated fault injections and a campaign consist

of all the related studies, since combining results across different campaigns is not possible

while obtaining measures in Loki. Each study consists of a set of experiments, each of which

is one run of the distributed application along with the fault injections corresponding to

the study. Thus, an experiment can be thought of as an instance of its study, with the

state machine following the state machine specification, and fault injections being performed

according to the fault specification. Multiple experiments (instances) are conducted for each

study to obtain results that are accurate.

2.3 Evaluation of a System Using Loki

After the campaigns have been specified, the actual evaluation of the system has to be

performed. Figure 2.1 illustrates the process of evaluating a system using Loki. Procedurally,

the process can be divided into three main phases, namely the runtime phase, the analysis

phase, and the measure estimation phase. There are also synchronization-message-passing

mini-phases before and after each experiment in the runtime phase. Note that each of these

three phases is executed for each experiment within every study, in each campaign. The

following sections describe these phases in detail.

2.4 The Runtime Phase

The runtime phase is the phase during which fault injections are performed during exper­

iment runs. It involves running the distributed system, injecting faults into the system

at appropriate times, collecting observations, and recording them. To do this, the runtime

phase makes use of the Loki runtime. During the running of an experiment, the Loki runtime

10

Runtime Phase

Uses the Loki runtime
to inject faults and
collect observations

2 +

Local Timelines

1 —I----- h

-J-+
Analysis Phase

Off-line clock
synchronization and
elimination of
experiments with
incorrect fault injections

Measures

Measures

Coinwt Cotwnl CoknO C(im4

Measure Analysis

Study-level and
campaign-level
measures

V__ /

Single Global Timeline

I I I I I I M I I y I II

Figure 2.1: Evaluation of a System using Loki

attached to each node performs the above functions on that node.

The Loki runtime interacts with the system under study using the system-dependent

probe. The probe has to be defined by the system designer as part of the application

instrumentation. The probe notifies the node’s runtime of local events occurring in the

node’s component. The fault injections into the component are also performed by the probe.

The state machine specifications are used in maintaining the partial view of the global

state, and the fault specifications are used in triggering fault injections. The state machine

tracks the local state of the component using the state machine specification and the probe’s

local event notifications. The state machine transport notifies the remote state machines of

local state changes and also receives state change notifications from the remote state ma­

chines. The local state is used along with the remote state change notifications to maintain

the required partial view of global state. Whenever the partial view of global state changes,

the node’s fault parser evaluates all the Boolean fault expressions given in the fault speci­

fication. If a fault expression that was previously false now transitions to true, the parser

instructs the probe to inject the corresponding fault, and the probe then does the actual

fault injection.

During the course of an experiment, the recorder records the times at which local state

changes and fault injections occur, into a local timeline. A detailed explanation of the Loki

runtime and the functions of its various components are given in Chapter 3. Note that the

runtime uses only the user-specified state change notifications between nodes to keep track

of the partial view of the global state. Also, a LAN separate from the one used by the

system can be used for transmitting the notifications. Additionally, to be as non-intrusive

to the system as possible, the runtime does not block the system while these notifications

are in transit. That means that the system could change state while the notification is in

transit; this implies that the partial view could sometimes be out-of-date. That could lead

to incorrect fault injections in some experiments. If we did not remove these experiments as

described in the next section, this could lead to incorrect measures.

12

2.5 Analysis Phase

The analysis phase prevents the errors that are mentioned in the previous section by con­

ducting a post-runtime check on every fault injection to determine whether it has indeed

been performed in the desired state. An off-line check is used to avoid the expense and

intrusiveness of an on-line check. The results of the incorrect fault injections are discarded,

and only the correct fault injections are used in computing the measures. The post-runtime

check involves placing the local timelines from each of the state machines into a single global

timeline, and then using the fault specifications to determine whether each fault was injected

in the right state. This process is explained in detail below.

In particular, Loki uses an off-line clock synchronization algorithm to calibrate the clocks

on the multiple machines on which the fault injector operates, so that all the local timelines

of an experiment can be combined into a single global timeline. One machine’s clock is taken

as the reference, and the offset and drift rate of other machines’ clocks are estimated relative

to the reference clock. These offsets and drift rates are then used to place all the times onto

a single global timeline.

Methods used to calibrate clocks in distributed systems include hardware methods, soft­

ware methods, or a combination of the two. The choice of a method involves a trade-off

among accuracy, intrusiveness, and portability. Hardware methods are highly accurate and

not very intrusive, but they are generally system-specific. Conversely, software methods

increase the portability, but decrease accuracy and increase intrusiveness. Finally, the hard­

ware in the methods combining hardware and software reduces the intrusion and improves

accuracy compared to the pure software methods. Since portability is an important concern

in Loki, and the accuracy provided by software-based methods is sufficient, a software-based

approach is used in Loki. However, the time is read from the hardware clock of the processor

(whenever possible) to improve the accuracy of measurement.

The analysis phase assumes that the drifts of the processor clocks of the different machines

13

in the distributed system are linear. Therefore, if there are m machines in the system,

numbered 1 to m, we have the following relation between the processor clock time Ci(t) on

machine i and the processor clock time Cj(t) on machine j , where t is the physical clock

time:

Cj{t) « Oij + PijCi(t), i j = 1 ,... ,m (2.1)

where is the offset between the clocks of machine i and machine j at t = 0, and is

the drift of the clock of machine j with respect to the clock of machine i.

If a machine r is chosen as the reference machine, the calibration of the clocks of the

machines in the system is reduced to a computation of ari and ft.*, for i = 1 ,... ,ra. (It

can be easily seen that arr = 0 and (3rr = 1.) The method used in Loki to compute these

values is described in detail in [9]. It involves passing synchronization messages in two

synchronization-message-passing mini-phases before and after each experiment during the

runtime phase, and using a convex hull algorithm to compute the required values. Note that

the synchronization messages are passed before and after each experiment and not during

the experiment, so that the intrusiveness into application execution is reduced. Furthermore,

note that the algorithm does not compute exact values for ari and (3ri. Instead, it computes

the lower and upper bounds, a~ and a j , and (3~ and /?£, respectively. Unlike confidence

intervals for which a value has a high probability of being in a certain interval, the correct

values of ari and (3ri are always in the intervals [a“ ,a j] and respectively (even

though their exact values are unknown). It has been shown in [9] that this algorithm works

well in practice and yields bounds on estimates of ari and (3ri that are acceptably small.

As mentioned above, every local state change and fault injection in a node are recorded

in its local timeline. The times used in the local timeline are the local times of the machine.

During the conversion of the local timelines of all the nodes into a single global timeline,

the occurrence times of all the events and fault injections have to be projected into a single

14

(reference) timeline. Suppose an event occurred on machine i at physical clock time T (i.e.,

local time on machine i is C*(T)). Then, from Eqn. (2.1), we have the reference clock time

as

Cr(T) =
Pri

However, since only the bounds for ari and (3ri are known, only the upper and lower

bounds of Cr(T) can be found. This is done as follows:

Ci(T) - a+

f t

Cicn -
f t

Therefore, an event occurring at time T on the physical clock time on machine i corre­

sponds to an event occurring between bounds Cr(T)~ and Cr(T)+ on the reference machine

r. Using this method, the events in the local timeline of all the nodes can be projected onto

a (reference) global timeline. In practice, the difference between the bounds Cr(T)~ and

Cr(T)+ has been found to be quite small if all the machines in the system are on a LAN

(i.e., average message delay between the machines is small) [9].

After the conversion to the global timeline, all the fault injections are checked to de­

termine whether they were proper, i.e., they have occurred in the correct global state as

specified in the fault specification. This is done with a check that sees whether the time

interval between the upper and lower global-time bounds of a fault injection completely

lies within the time interval between the upper and lower global-time bounds of the correct

global state. More specifically, the upper bound of the state start time and lower bound

of the fault injection time are used to determine whether the fault was injected after the

state was entered. Likewise, the lower bound of the state end time and upper bound of the

fault injection time are used to determine whether the fault was injected before the state

Cr(T)~ =

Cr(T)+ =

15

was exited. If both the criteria are met, the fault was injected as intended. Note that even

if both criteria are not met, it may be the case that the fault was injected correctly, but

Loki conservatively assumes that it was not, to be sure that no experiments with incorrect

fault injections are mistakenly deemed to be correct. This procedure is repeated for each

injection that should have been made in the experiment; the experiment is only marked as

successful if all the injections in the experiment were done correctly. If any of the fault

injections were done incorrectly, the experiment results are discarded and are not used for

measure computation.

2.6 Measure Estimation Phase

By the end of the analysis phase, the results of all the experiments with incorrect fault

injections have been discarded, and only the results of the experiments with correct fault

injections have been retained. The next phase in Loki, namely the measure estimation

phase, allows the user to obtain measures from the results of the correct fault injections.

He or she can use these measures to assess the dependability and performance of his/her

distributed application. For this purpose, Loki contains a flexible language for specifying a

wide range of dependability and performance measures. Also, Loki uses several statistical

features to estimate these measures with high accuracy. In Loki, measures are defined at

two levels: the study level and the campaign level. A measure at the study level consists

of an ordered sequence of (subset selection, predicate, observation function) triples, and is

associated with all the experiments in a study. Once these sequences have been defined for all

studies, measures are defined across studies using one of the following two approaches. The

first one, called simple sampling measure, considers the experiment results of all the studies

to be similar, i.e., to be instances of the same random variable. The second approach,

called “stratified sampling,” considers the experiment results of each study as a separate

random variable. These random variables are then combined to get a campaign measure.

16

If the function used to combine the random variables is a linearly weighted function, the

obtained campaign measure is a stratified weighted measure. If it is a user-defined function,

the obtained measure is a stratified user measure. Chapter 4 explains the measure estimation

process in Loki in greater detail.

17

Chapter 3

Loki Runtime Architecture

3.1 Introduction

The Loki runtime manages the runtime phase of the fault injection process. During every

experiment execution, it maintains the partial view of the global state for each of the com­

ponents of the distributed system. It also performs fault injections and collects observations

when necessary. This chapter describes the architecture of the Loki runtime in detail. More

specifically, the original Loki runtime and its shortcomings are first detailed. Then the de­

sirable features of an enhanced runtime, which overcomes the shortcomings of the original

runtime, are presented. The different designs that could have been used for the enhanced

architecture are then identified and described. Based on its advantages, one of the designs

is chosen for implementation of the enhanced runtime and is explained in detail.

3.2 The Previous Loki Runtime

3.2.1 Overview of the Previous Runtime

The original Loki runtime is shown in Figure 3.1. The original version of the runtime

provides the core functionality required for fault injection in Loki. It consists of a state

machine, state machine transport, fault parser, recorder, and probe for each node in the

18

System
Under Stud}

Probe

Notification

Loki Runtime

State
Machine Recorder

Fault
Parser

Stale
Machine
Transport

System

Under Stud}

Probe

Notification

InjectFault

Node 2

Loki Runtime

State
Machine Recorder

Fault
Parser

State
Machine
Transport

System

Under Stud)

Probe

Notification

Noden

Loki Runtime

Stale
Machine Recorder

Fault
Parser

State
Machine
Transport

LAN1

Figure 3.1: Original Loki Runtime Architecture

system. The functionalities of these components (except the state machine transport) are

similar to those of the corresponding components in the new runtime, and are described

in detail in Section 3.5. Using local event notifications and remote state notifications, the

original runtime maintains the partial view of the global state of the distributed system

that is necessary for fault injection. When the system transitions to the desired states, it

instructs the probe to perform fault injections. It uses Boolean fault expressions and provides

the user with considerable freedom in his/her choice of fault types. The runtime also collects

observations regarding state changes and fault injections that are used for off-line analysis

and measure computation. A detailed description of the original Loki runtime architecture

can be found in [10].

3.2.2 Performance Analysis

The main goal in designing the original version of the runtime was to prove the concepts

underlying Loki. The secondary goal was to obtain an efficient runtime implementation with

very low intrusion and high efficiency in fault injection and measurement. To verify that

these goals were met, a performance analysis of the original Loki runtime was conducted,

the detailed results of which are presented in [10]. A simple test application was used

during the performance analysis, and the efficiency of Loki in injecting faults was measured.

19

Figure 3.2: Correct Fault Injection Probability as a Function of Time Spent in a State (10ms
Linux Timeslice)

This involved varying the amount of time the application spent in a particular global state

in which a fault was to be injected, and measuring the percentage of time the fault was

correctly injected by Loki. This measurement was done for two values (10ms and 1ms)

of the underlying OS’s (Linux’s) timeslice, to determine the effect of the OS on Loki’s

performance. Figures 3.2 and 3.3 show the measurement results when the OS timeslice is

10ms and 1ms respectively. It can be easily seen that the original Loki runtime was able

to inject faults in the desired global states if the application stayed in the state for a time

greater than a couple of OS timeslices. This shows that the actual time taken by a notification

message on the network, and the overhead incurred due to the fault injection by Loki, are

minimal compared to the OS context switching overhead incurred during the sending and

receiving of a notification message. It also shows that the accuracy of fault injection can be

further improved if the OS overhead in sending and receiving messages was decreased. Thus,

the original runtime was an accurate and minimally intrusive runtime implementation that

proved Loki’s basic concepts.

20

Time in state (ms)

Figure 3.3: Correct Fault Injection Probability as a Function of Time Spent in a State (1ms
Linux Timeslice)

3.3 Shortcomings of the Original Runtim e

Despite its advantages and accuracy, a major shortcoming of the original runtime is that it

is static in nature, i.e., it does not allow nodes to exit from or enter into the runtime system

dynamically. This means that nodes can be started only at the beginning of the experiment

and can exit only at the end of the experiment. However, that limitation is unacceptable,

because processes can crash and restart during the fault injection of a general distributed

system. Another minor point of note is that in this runtime, state machines in the same

host communicate using TCP/IP that could be optimized using some form of interprocess

communication (IPC), such as shared memory or pipes.

3.4 Design Choices for the Enhanced Loki Runtime

As mentioned in the previous section, it was necessary for the enhanced runtime to support

dynamic entry and exit of nodes. Also, the new runtime needed to maintain the low intrusion

and high efficiency of the previous runtime, both during normal execution and during node

entry and exit. Note that to achieve the dynamic entry and exit of nodes, the design of

21

most of the core Loki runtime components (i.e., state machine, fault parser, recorder, and

probe) and their interaction did not need to be changed. Only the transport mechanism

needed to be redesigned so that a dynamically entering node’s state machine can establish

communication with all the existing state machines in the system. Consequently, the new

transport mechanism should have low delays during normal notification message delivery (as

in the previous transport mechanism), and also have low overhead and low intrusion during

the entry and exit of nodes.

3.4.1 The Design Choices

Three possible high-level designs were identified for the enhanced Loki runtime architecture.

They are shown in Figure 3.4. These designs use daemons to provide the functionality

needed by the enhanced runtime. A daemon is a process that always executes in the system,

independent of the entry or exit of nodes, and monitors all the nodes associated with it.

The distinction between the three designs is in the number of and organization of daemons

in the system and in the number of nodes associated with each of the daemons. In the

centralized design, there is a single global daemon that caters to all the nodes in the system

through TCP/IP links. The partially distributed design has one daemon per host machine;

this daemon caters to all the nodes on that host using IPC connections (such as shared

memory). In the fully distributed design, there is one daemon per node, connected to the

node by IPC. In both of the distributed designs, the daemons themselves are connected to

each other using TCP/IP.

In each of the three designs, communication between the nodes’ state machines can be

done in one of two ways: either the state machines communicate directly with each other,

or they communicate via the daemons. If they communicate directly, the nodes will have

direct TCP/IP connections in addition to the connections with the daemons. In all of the

above designs, when a node crashes, its corresponding daemon detects the crash (because of

the breaking of the communication link), and writes the crash event information to the local

22

Centralized Design Partially Distributed Design Fully Distributed Design

Figure 3.4: Design Choices for the Loki Runtime Architecture

timeline of the node’s state machine. When a node restarts, it uses its daemon to establish

communication with all the other state machines in the system. If the communication

between the state machines is direct, the new node obtains information about all the state

machines in the system from the daemon and establishes TCP/IP connections with all of

them. Otherwise, it establishes a connection only with its daemon and communicates through

it.

A Local Daemon

| Global Daemon

Q Node

----- IPC Connection between a Daemon
and a Node

------TCP/IP Connection for
State Notification Messages

........TCP/IP Connection between Daemons
for State Machine Information

3.4.2 Comparison of the Design Choices

The advantage of the centralized design, irrespective of whether the communication is

through the daemon, is that it is completely dynamic, in that new hosts can be added

to the system at runtime. The disadvantage is that there could be a relatively long delay in

detecting a node crash, since the detection is based on the breaking of a TCP/IP connection.

If the communication is through the daemon, an extra advantage of this design is the low

overhead and low intrusion on entry and exit of a node, since the node’s state machine needs

to connect to and disconnect from only the global daemon. There are also disadvantages, in

23

that notification messages between state machines are slow since each message requires two

hops, and the system has limited scalability, since the global daemon could become a bot­

tleneck as the number of nodes increases. If the state machines communicate directly with

each other, there is an advantage in that notification messages between state machines are

faster. However, there is also a disadvantage in that on a node entry or exit, the node’s state

machine has to make or break TC P/IP connections with all the other state machines. As

the number of nodes increases, the overhead and intrusion of these operations could become

large.

Note that in the partially distributed design, the set of hosts in the system and hence

the location of local daemons on the hosts should be known prior to experiment execution.

Hence, independent of the communication mechanism, the disadvantage of this design is

that the set of hosts in the system is static, i.e., new hosts cannot be added to the system

during experiment execution. If communication is through the daemons, the advantages

of the partially distributed design are that there are low overhead and low intrusion on

entry and exit of nodes, multicast of notifications to state machines is more efficient, and

notifications between state machines on the same host go through IPC and hence are more

efficient. However, there is an added disadvantage, in that there is a slight increase in the

delay of notification messages between state machines on different hosts, since each message

involves two IPC communications and one TCP/IP communication. If the state machines

directly communicate with each other, the advantage is that the notification messages are

faster, but the disadvantage is the high overhead and intrusion on a node entry or exit, since

the node’s state machine has to make or break TCP/IP connections with all the other state

machines.

In the fully distributed design, the set of nodes must be known prior to experiment

execution. As a result, irrespective of the communication mechanism, the disadvantage of

this design is that the set of the nodes in the system is static, i.e., the number and location

of state machines in the system is static. If the communication is through the daemon, then

24

there is lower overhead and low intrusion during node entry and exit, and higher overhead

during notification messages than if the state machines communicate directly with each

other.

The main goal of the enhanced architecture is to provide dynamic entry and exit of

nodes such that a node that crashed on one host can restart on another host. Most reliable

distributed systems allow crashed processes to restart on different hosts, so this capability

is essential. However, the fully distributed design has a static list of nodes and hence only

supports restarts on the same host. Since this would be very restrictive, the fully distributed

design is not suitable for the enhanced Loki runtime architecture.

In the centralized design, there could be a delay before the global daemon detects a node

crash. This would cause an incorrect time for the crash event to be recorded in the local

timeline. Also, there is no method of finding out the magnitude of error in this incorrect time.

This could lead to incorrect analysis and hence incorrect measure estimations. Additionally,

the centralized design limits scalability both when the communication is through the daemon

and when the state machines communicate directly with each other. Hence, the centralized

design is not acceptable.

The static list of hosts in the partially distributed design is not a limitation in practice,

since all the hosts in a distributed system are generally known before experiment execution.

Comparing the two communication mechanisms in the partially distributed design, we find

that communication through daemons is more efficient than direct communication between

state machines. The communication using daemons offers more efficient multicast of noti­

fications, more efficient notifications between state machines on the same host, and lower

overhead on node entry and exit, as compared to direct communication between state ma­

chines1. Also, in communication using daemons, if the runtime portion of a node becomes

Assuming that the rate of processing of messages by a host is faster than the rate at which the network
delivers them, it might be argued that if the number of nodes on a host becomes large, the local daemon for
the host would become a communication bottleneck, since all the communication is queued at the daemon.
However, this is not the case, since all of the host’s communication is queued at the network interface of the
host anyway.

25

corrupted during fault injection, proper checks implemented at the local daemon could help

contain the effect of the fault. These checks could verify the validity of the notification mes­

sages being sent out by a node before transmitting them to the remote node. Furthermore,

since in current systems the IPC delay is on the order of 20/zs and the TCP/IP delay is on the

order of 150^s, we see that the overhead for notification messages in communication using

daemons is not dramatically larger than in direct communication between state machines.

Therefore, the design of choice for the new runtime is the partially distributed design with

communication through daemons.

3.5 Architecture of the N ew Loki Runtime

Figure 3.5 illustrates the new Loki runtime. It shows an example of a system with a runtime

that has four nodes on three hosts. Note that in addition to the local daemons of the

partially distributed design, there is also a central daemon to which all the local daemons

are connected. Each node of the runtime consists of the system under study along with

the state machine, state machine transport, fault parser, recorder, and probe. The state

machine, state machine transport, fault parser, and recorder are independent of the system

under study, while the probe is highly dependent on it. These components of the runtime

are described in detail in the following sections.

3.5.1 Central Daemon

There are two types of daemons in the Loki runtime: a single central daemon, and one local

daemon for each host in the distributed system. The central daemon is responsible for the

overall management of each experiment in the runtime phase. At the beginning of every

experiment, it starts up the local daemons and also instructs them to start up the state

machines specified by the user. The user can specify the state machines to be started at the

beginning of an experiment using the node file. The node file has entries of the following

26

Loki Node

Figure 3.5: The New Loki Runtime Architecture

format, one per line, for each state machine:

<SM NickName> [<HostName>]

If the optional <HostName> field is present, then at the beginning of every experiment,

the central daemon instructs the local daemon on <HostName> to start the state machine

<SM NickName> on that host. Otherwise, the state machine is not started at the beginning

of an experiment. During the execution of an experiment, the central daemon checks for

any abnormalities in the system execution, such as a local daemon crash. If an abnormality

occurs, the central daemon instructs the local daemons to kill all the state machines, and

aborts the experiment. Also, if an experiment takes longer than the timeout value specified

by the user, the central daemon considers the experiment as hung, instructs the local daemons

to kill all the state machines, and aborts the experiment.

When an experiment completes, the central daemon receives notification messages in­

dicating the experiment completion from all the local daemons. At this point it considers

the experiment complete and starts the next experiment. Currently, the central daemon is

integrated into the Loki graphical user interface and is described in greater detail in [11].

In the future, the central daemon may also take care of a host crash and reboot during the

execution of an experiment, as explained in Section 3.6.4.

3.5.2 Local Daemon

In Loki, there is one local daemon per host in the system, and it is connected to all the other

local daemons using TCP/IP links. The main functions of the local daemon are to take care

of entry, exit, crash, and restart of state machines, to provide communication between state

machines, to start and kill state machines based on the instructions of the central daemon,

and to check for experiment completion. These functions are explained below in greater

detail.

28

The local daemons, on being started by the central daemon, contact each other at the

user-specified ports. To do this, they make use of the daemon startup file, which has to be

specified by the user before the start of the experiments. The daemon startup file has one

entry per line of the following format, indicating the corresponding port for the local daemon

on each host.

<HostName> <PortNumber>

After the local daemons connect to each other using TCP/IP, they create a shared mem­

ory region and an associated semaphore and write the shared memory and semaphore infor­

mation, which are used by the state machines to contact the local daemons, into a daemon

contact file. The state machines on startup and on restart use this information to contact

the local daemons on their respective hosts. The format of each line of the daemon contact

file is as follows. It gives the shared memory and semaphore identifiers needed to contact

the local daemon on each host.

<HostName> <SharedMemoryID> <SemaphoreID>

Then the local daemons wait for connections from new and restarted state machines.

When a new state machine starts up, it contacts its corresponding local daemon, and the

local daemon spawns a separate thread to service the state machine’s notification messages.

Then two new pairs of shared memories and semaphores are created for communication

between the service thread and the state machine. The local daemon also obtains the state

machine’s process id and local timeline file name. The local daemon also acts as a watchdog

for all of its associated state machines. When a state machine crashes, the local daemon

detects the crash either due to the deletion of the shared memories and semaphores by

the state machine when it crashed, or because the state machine does not respond to the

29

watchdog messages. On a state machine crash, the local daemon writes a crash event and

crash state into the local timeline of the state machine, and notifies all the other local

daemons of the crash. The interaction of the local daemon with a restarted state machine

is similar to its interaction with a new one.

When a state machine wants to send a notification message to a remote state machine,

the state machine transport of the state machine sends the message to its service thread in its

local daemon. The service thread then sends the message to the local daemon of the remote

state machine using TCP/IP, which in turn passes it on to the remote state machine’s state

machine transport. When the central daemon wants to start a state machine on a particular

host, it instructs the local daemon on that host to perform this action. When the central

daemon wants to kill a state machine, it instructs its corresponding local daemon to do so,

which then uses the process id of the state machine to kill it. The local daemons also check for

experiment completion on every exit or crash of a state machine. An experiment is deemed

complete if there are no state machines executing in the system, i.e., all the state machines

have either exited or crashed. On the completion of an experiment, the local daemons notify

the central daemon of the experiment completion.

3.5.3 State Machine

A state machine keeps track of the partial view of global state necessary to inject faults in

the corresponding node’s application. Even though multiple nodes use the same executable,

there is one state machine per node, and it has to be given a unique name. For example,

during the fault injection of a replication scheme, each replica constitutes one node with a

unique name. The tracking of the partial view of global state includes tracking the local

state of the node’s application as well as maintaining the state of remote state machines

that is needed for fault injection. To keep track of the local state, the state machine uses

the state machine specification file provided by the user and the local event notifications

sent by the probe. The state machine specification file indicates all the states in which the

30

state machine can be, along with the transitions between them and the events that cause

these transitions, i.e., it specifies the application’s execution as a state machine at the level

of abstraction needed for fault injection. There is one state machine specification file for

each state machine. The state machine specification for a particular state machine has the

following format:

g lo b a l_ sta te_ lis t

< lis t_ o f_ s ta te s>

end_gl obal _s t a t e _1 i s t

e v e n t- lis t

< lis t_ o f _events>

end_event_list

state <state_l> [notify <nickname_li >, ... <nickname_lj >]

<event_l> <next_state_li >

< event_m> <next_state_lm >

s ta te <state_n> [no tify <nickname_ni > , . . . <nickname_7i; >]

<event_l> <next_state_7ii >

< event_m> <next_state_nm >

The l i s t .o f .s ta te s contains a list of the global states of all the state machines in the

system, with one state specified per fine. The lis t_ o f _events consists of the list of local

events in this particular state machine, with one event specified per line. After the event

list, the specification for each state is given. For each state, the list of state machines to be

notified when this state machine enters the state is specified after the n o tify keyword. The

31

new states to which the state machine transitions when an event occurs in the state are then

specified.

When a local event occurs in the node’s application, the state machine is notified of

it by the probe. The state machine then uses its current state, the event, and the state

machine specification to determine the new state and then transition to it. Also, it sends

state notifications (using the state machine transport) to any other state machines that are

to be notified of the state machine’s new state, as given after the n o tify keyword of the

state definition of the new state. The state machines use these state notifications to keep

track of the necessary state of the remote state machines. Furthermore, on every change in

its partial view of global state, the state machine notifies the fault parser.

3.5.4 State Machine Transport

The state machines make use of their respective state machine transports to send notification

messages to each other. When a node starts up, its state machine transport looks up the

daemon contact file and establishes a connection with the local daemon on its host. It can

then send notifications to and receive notifications from the state machine transports of other

state machines using the intermediate local daemons. When the state machine requests that

the state machine transport send a notification to a remote state machine, the state machine

transport adds the necessary headers and sends the notification to the remote state machine

transport through its own local daemon and the local daemon of the remote state machine.

When the state machine transport receives a notification for its state machine, it forwards

it to the state machine.

3.5.5 Fault Parser

On every change in the partial view of global state, the state machine notifies its correspond­

ing fault parser. The fault parser then checks whether a fault needs to be injected in that

32

g loba l state . I t makes use o f the fa u lt specifica tion p rovided by the user, and the p a r tia l

v iew o f g loba l state , to p e rfo rm th e check. Each e n try o f the fa u lt specifica tion is o f the

fo llo w ing fo rm a t:

<FaultNam e> < B o o le a n F a u ltE x p re s s io n > < o nce Ia lw ays>

I f the value o f the < B o o le a n F a u ltE x p re s s io n > tra n s itio n s fro m false to tru e because o f

a g loba l s ta te change, then the fa u lt <FaultNam e> has to be in jected , co n d itio n a l upon the

<once I a lw ays> fie ld . The <once I a lw ays> fie ld ind ica tes w hether the fa u lt is to be in je c ted

the firs t tim e the state is entered (once) or whenever the sta te is entered (always), fro m a d if­

ferent g loba l state. The < B o o le a n F a u ltE x p re s s io n > consists o f entries o f the fo rm (S ta te

M a c h in e :S ta te) com bined using the A N D (‘&’), O R (‘ I ’), and N O T (‘ ~’) operators. For

exam ple,

F I ((SM I:ELEC T) & (SM2: FOLLOW)) a lw ays

specifies th a t the fa u lt F I has to be in jected whenever (a lw a ys) the system enters the g loba l

sta te in w h ich the Boolean expression ((SM I:ELECT) & (SM2:FOLLOW)) is satisfied (i.e ., the

s ta te m achine SMI is in th e s ta te ELECT and state m achine SM2 is in the state FOLLOW) fro m

a g loba l state in w hich i t is n o t satisfied.

So, on every state change, the fa u lt parser parses a ll th e Boolean fa u lt expressions and

determ ines w hether any o f the m have trans itioned fro m false to tru e as a resu lt o f the sta te

change. For each o f the fa u lt expressions th a t has tra n s itio n e d fro m false to tru e , i t checks

w hether the <once I a lw ays> fie ld allows fo r fa u lt in je c tio n ; i f i t does, th e parser in s tru c ts

the probe to in je c t the fa u lt.

33

3.5.6 Recorder

The recorder is the component of the Loki runtime that records the relevant data into a local

timeline file. The relevant data includes the information regarding local state changes and

fault injections along with their times of occurrence, and also any messages that the user

would want to include in the local timeline. The format of the local timeline file is as follows:

CmySMni ckName >

st at e _machine_li st

< index 1> <SMNickName 1>

< index n> <SMNi ckName n>

end_state_machine_list

global_state_list

< index 1> <stateName 1>

< index m> <stateName m>

end_global_state_list

event_list

< index 1> < event Name 1>

< index k> <eventName k>

end_event_list

fault.list

Cindex 1> <faultName 1> <faultExpr 1> <once I always>

<index i> <faultName i> <faultExpr i> <once I always>

34

encLf ault.list

local_timeline

<recorded local timeline events>

end_l o c al _t ime 1 ine

In the above format, mySMNickName is the nickname of the state machine corresponding

to the local timeline. The state_machine_list contains one line for each state machine;

the line contains the index of the state machine and the state machine nickname. The

global_state_list contains the list of states in all the state machines and their correspod-

ing indices. The event_list contains the list of all the local events in the state machine

corresponding to the local timeline, along with their indices. The f ault.list contains the

fault specification for the state machine along with an index for each fault. The state ma­

chine, state, event, and fault indices are used in the local timeline events in place of the

corresponding names. This makes the local timeline compact and decreases intrusion during

recording of the local timeline. Each of the recorded local timeline events can be either a

state change or a fault injection. The format for a state change is as follows:

STATE.CHANGE <EventIndex> <NewStateIndex> <EventTime.Hi> <EventTime.Lo>

where <EventTime.Hi> is the upper 32 bits of the 64-bit event time and <EventTime. Lo> is

the lower 32 bits. The format for a fault injection is as follows:

FAULT_INJECTION <FaultIndex> <FaultInjectionTime.Hi> <FaultInjectionTime.Lo>

The fault injection time is also a 64-bit number and the <FaultInjectionTime.Hi> and

<FaultInjectionTime.Lo> correspond to its upper and lower 32 bits. STATE_CHANGE and

FAULT.INJECTION are numerical constants with values 0 and 1 respectively.

35

3.5.7 Probe

The probe is the system-dependent part of the Loki runtime. (Note that system-dependent

means that the user has to write the code for the probe implementation. Therefore, the

state machine is system-independent, even though the state machine specification is system-

dependent, since the state machine code is not written by the user.) The user should imple­

ment the probe while he/she is instrumenting the system under study. The two functions of

the probe are to notify the state machine of any local events occurring in the application,

and to perform the actual fault injection when instructed to do so by the fault parser. The

first thing to be done during the instrumentation process is to rename the mainO function

of the application to appMainO. However, the arguments of the mainO function need no

modification.

To notify the state machine of any local events, the probe makes use of the notifyEvent ()

method of the state machine and sends the event name and the time of its occurrence to the

state machine. However, the first event notification that the probe sends is considered as a

state and is used to initialize the state of the state machine. Note that since the state machine

uses the state machine specification to track the partial view of global state, the notifications

that are sent by the probe should be consistent with the state machine specification. The

probe should also implement the in je c tF au lt () method, which performs the actual fault

injection and returns the time of injection. Whenever the fault parser determines that a fault

is to be injected, it calls the in je c tF au lt () method of the probe along with the fault name.

The injected fault could cause a signal and a subsequent crash of the node. If the user’s code

has overridden the signal handler, then it should call the notifyOnCrashO method of the

state machine before it exits the process. This is done so that the local daemon corresponding

to the node registers the crash. When the state machine exits cleanly, it should notify its

local daemon using the notifyOnExitO method. Otherwise, the watchdog functionality of

the local daemon would consider the state machine to have crashed. For an example of a

36

probe, refer to Section 5.5.

Note that though the interaction between the probe and the rest of the Loki runtime

is by in-process method calls, the Loki probe could be designed to be very general, like a

wrapper around a process, or a layer in a protocol stack. This could be achieved by having

one part of the probe in the same process as the other components of the Loki runtime, and

having another part be the wrapper around a process or a layer in the protocol stack. The

two parts of the probe could interact with each other to obtain the desired result. Also, in

a similar fashion, probes can be designed both when the source code of the application is

available (by integrating the probe into the application), and when it is not (by making the

probe a wrapper around the application). However, when the source code of the application

is not available, the application has to provide a means for changing the arguments it passes

to any node it starts. This has to be done since the Loki runtime attached to the started

node needs arguments to identify its corresponding state machine.

Additionally, note that some state and event names are reserved in Loki. The reserved

state names are BEGIN, EXIT, CRASH, and RESTART, and the reserved event names are

CRASH, RESTART, and default.

3.6 Operation of the New Loki Runtime

This section describes the operation of the new Loki runtime under different circumstances.

Mores specifically, it first describes in detail the normal operation of the runtime. Then the

sequence of steps performed on a node crash and restart are detailed. Finally, the behavior

of the runtime on a host crash and reboot is described.

3.6.1 Normal Operation

At the beginning of an experiment, the central daemon starts all the local daemons. The

local daemons connect to each other and to the central daemon through TCP/IP. Then,

37

each of the local daemons creates a known shared memory region with semaphore and waits

for connection requests from the local state machine transports. The local daemons store

the identifiers of these known shared memory regions in a daemon contact file. The central

daemon then instructs the corresponding local daemons to start up only those state machines

that are specified by the user in the node file as state machines to be started at the beginning

of an experiment. New nodes can enter the system or existing nodes can leave the system

at any time during the experiment execution. When a node starts up, its state machine

transport looks up the known shared memory region of the local daemon in the daemon

contact file, and sends a connection request to it. The daemon, on servicing the request,

creates a new shared memory region along with the associated semaphore for communication

of notification messages. Each local daemon maintains the location of all the state machines.

When a state machine transport sends the local daemon a state change notification along

with a list of state machines to be notified, the daemon first looks up the local daemons

of each of the recipient state machines and then forwards the notifications to them. These

daemons in turn forward the notification to the state machine transports of the recipient

state machines using shared memory If there is a notification for a state machine that is

currently not executing, the notification is discarded with a warning message. Note that

the local daemon of the sending state machine needs to send only one notification per host,

even if multiple state machines on the host are receiving it. Also, notifications between state

machines on the same host go through shared memory and not through TCP/IP, and hence

are more efficient. When there are no more nodes executing in the system (because all of

them either crashed or exited), the experiment ends. At every state machine crash and exit,

the local daemons perform a local check for experiment end. If the local check indicates

that the experiment has ended, a local daemon sends a experiment end notification to the

central daemon. When the central daemon receives experiment end notifications from all the

local daemons, it considers that the experiment to have concluded, and then begins the next

experiment run. To prevent an erroneous application from executing indefinitely, the user

38

can specify an application timeout value. If the experiment times out, the central daemon

instructs the local daemons to kill all the state machines, and, after cleaning up the current

experiment, starts the next experiment.

3.6.2 On a Node Crash

When a node exits normally, the node’s state machine sends an exit notification to all the

other state machines. However, when the node crashes, the Loki runtime detects the crash

in one of two ways. First, if a signal is generated due to the crash, the signal handler for

the node deletes the shared memory region used to communicate with the local daemon

and the associated semaphores. Because of this deletion, the local daemon is notified of

the crash by the OS. It is assumed that the user has not overridden the signal handler. If,

on the contrary, the signal handler has been overridden, then the user’s code must call the

notifyOnCrashO method of the state machine explicitly upon a node crash. Second, the

local daemon functions as a watchdog and monitors all the state machines associated with

it. If any of the state machines times out, it is assumed by the local daemon to have crashed.

The user is given the flexibility to fix the timeout value. On detecting a crash, the local

daemon writes the crash event to the local timeline of the crashed node’s state machine and

notifies all the other daemons of the crash.

3.6.3 On a Node Restart

When a node crashes, the reliable distributed system could restart it, possibly on a different

host. The new runtime provides support for this node restart. When a node is started,

its state machine checks its local timeline to determine whether the node is a new one or

a restarted one. (Note that the timeline file is NFS-mounted.) A restarted node’s state

machine writes restart event information to the local timeline. This information contains

the name of the host on which the state machine was restarted, which is used during off­

39

line clock synchronization. Then the state machine connects to its local daemon much like

a new state machine would. The local daemon sends notifications to all the other local

daemons indicating that the state machine has restarted. The state machine then obtains

state updates from all the other state machines to update its view of the global state. After

that, the node executes like a normal node.

3.6.4 On a Host Crash and Reboot

If a host crashes, the local daemon on the host also goes down. The central daemon and the

other local daemons detect this because their TCP/IP connections with the crashed local

daemon break. The central daemon waits for the host to boot back up and restarts the local

daemon on it. The local daemon connects to the central daemon and all the other local

daemons, and the experiment execution continues normally. This support for host crash and

reboot has not yet been implemented in Loki.

3.7 Benefits of the Enhanced Runtime Architecture

Several design choices for the new Loki runtime have been considered, and the partially

distributed design with all communication through the daemons was chosen because of its

advantages over the other design choices. The main advantage of the enhanced Loki runtime

over the previous Loki runtime is that it allows dynamic entry and exit of nodes. Moreover,

it has some additional advantages. It offers more efficient multicast of notification messages

to state machines. Also, the notification messages between state machines on the same host

go through shared memory and hence are more efficient than in the previous Loki runtime.

Because of the hierarchical architecture, the new runtime is also more scalable, both during

normal execution and during entry and exit of nodes.

40

3.8 Limitations of the Current Loki Implementation

Currently Loki has been implemented in C ++ on Linux 2.2. Since the Loki library has to be

linked with the application code and function calls should be possible from application code to

Loki library and vice versa, the application has to be written in a language that provides this

support. Additionally, in the current implementation, Loki has a few other limitations, which

are listed below. These limitations are due to decisions made during implementation and

are not inherent in the concepts underlying Loki. Future implementations might overcome

these limitations.

• A network file system is currently needed for the proper functioning of Loki.

• The necessary state change notifications have to be manually specified by the user in

the state machine specification file. They are not automatically deduced by Loki from

the fault specifications.

• If the application starts up nodes on its own, it has to provide Loki with a way of

specifying the arguments to the nodes. If the application does not provide this feature,

changes in the application source code to implement this feature might be necessary.

• The application components cannot have arguments changing from one experiment

run to another, since the arguments are written into the study files of the components’

state machines.

• Every state machine that could possibly start during the execution of the system must

be given a unique name and must be specified before the experiments are run.

Chapter 4

Measure Estimation in Loki

4.1 Introduction

Measure estimation is a key component of performance and dependability assessment using

fault injection. It is important to note that the measures to be obtained are highly system-

and user-dependent; for example, computing the system’s coverage of a fault depends on

the user’s definition of a failure and recovery. Hence a fault injector should provide a means

for the user to obtain a variety of accurate measures from the results of the fault injection

experiments.

To this end, a flexible mechanism for measure estimation has been developed in Loki,

which is the subject of this chapter. The chapter first describes the flexible measure language

in Loki, which is used to specify a wide range of performance and dependability measures.

Included are the descriptions of the levels at which measures are specified and the different

types of measures at each level. The chapter then details the various statistical features used

by Loki to compute the specified measures with high accuracy whenever possible.

4.2 Overview of Measure Estimation in Loki

This section briefly describes the method of specifying measures in Loki. The later sections

describe this measure specification process, along with the terms used in this section, in

42

(a) Measures at the Study- (b) Subset Selection in Study Level Measures (c) Campaign-Level Measures (FOFV = Final
Level Observation Function Value)

Figure 4.1: Measure Estimation in Loki

greater detail. Figure 4.1 shows the measure specification process in Loki.

As shown in Figure 4.1, measures in Loki are specified at two levels: the study level and

the campaign level. A measure at the study level consists of an ordered sequence of (subset

selection, predicate, observation function) triples, and is associated with all the experiments

in a study. The output of applying a study measure to the global timeline of an experiment

is the final observation function value for the experiment, if the experiment passes through

all the subset selections successfully. Otherwise, the experiment is removed from further

consideration in the measure estimation process involving this study measure. Once the

study level measures have been specified for all studies, measures are defined across studies

using one of two approaches. The first one, called the simple sampling measure, considers the

experiment results of all the studies to be similar, i.e., to be instances of the same random

variable. The second approach, called “stratified sampling,” considers the experiment results

of each study to be a separate random variable. These random variables are then combined

to get a campaign measure. If the function used to combine the random variables is a linearly

weighted function, the obtained campaign measure is a stratified weighted measure. If it is a

user-defined function, the obtained measure is a stratified user measure. Figure 4.1(c) shows

these three types of campaign measures. A campaign measure takes the final observation

function values of the study measure applied to all the experiments as input and gives as

output, whenever possible, an accurate measure value.

The next few sections describe the measure estimation process in greater detail. More

specifically, they describe the measures at the study level, including the concepts of predi­

cate, predicate value timeline, observation function, observation function value, and subset

selection. They also detail the campaign measures, along with the different types of cam­

paign measures and the statistical computations performed to obtain accurate values for the

measures.

44

4.3 Measures Defined at the Study Level

Measures at the study level are based on three concepts: predicate, observation function, and

subset selection. Each measure is an ordered sequence of (subset selection, predicate, obser­

vation function) triples. These three concepts and the manner in which they are combined

to obtain the study level measures are described in detail below.

4.3.1 Predicate

Predicates in Loki are used to query the global timeline (which was generated during the

analysis phase described in Chapter 2) to identify whether certain conditions are satisfied. A

predicate is a function that queries the different attributes of the state machines (i.e., states,

events, and times), and is either true or false as a function of time.

Each predicate is an expression defined by tuples that are combined using AND, OR,

and NOT operators. Each tuple queries a particular state machine for the occurrence of

a state and/or event at specific times. Four different types of tuples can be defined in

Loki: (state machine, state), (state machine, state, time), (state machine, state, event), and

(state machine, state, event, time). The first type of tuple queries for the occurrence of a

specific state in a particular state machine during any time (i.e., no time is specified). The

second type is the same as the first except that it also specifies a time. The time can be

either an instant or a time interval. The third type of tuple queries for the occurrence of

a specific event in a specific state in a particular state machine. The fourth type is similar

to the third one, but it also specifies a time. When using the third and fourth types of

tuples involving events, the associated time must be a time interval. The outcome of a

predicate at a particular time is called a predicate value. The predicate applied to the global

timeline generated in the analysis phase is called a predicate value timeline. As explained in

Chapter 2, each event has two time bounds on the global timeline. To compute the predicate

value timeline, the predicate is evaluated at each of these time bounds. The predicate value

45

1-

--------------------- 1-------------------L_|----------------------hJ_l------ -------L -j-* .

10 20 30 40
Global Time

1--

--------- 1--------- 1—------ 1--------- i—-
10 20 30 40

Global Time

1-- ----------- ---------

------------- 1------------- H------------ h-U------- I—4—
10 20 30 40

Global Time

Figure 4.2: Predicate Value Timeline Example

timeline thus obtained contains a combination of impulses and steps.

Examples of predicates are given by the following expressions:

1. ((StateM achinel, S t a t e l , 10 < t < 20) I (StateMachine2, S ta te2 , 30 < t <

40)): the predicate is true during any time between 10 and 20 ms when StateMachinel

is in Statel, and during any time between 30 and 40 ms when StateMachine2 is in

State2. During all other times, the predicate is false.

2. ((StateMachine3, S ta te 3 , Event3, 10 < t < 30) I (StateMachine3, S ta te4 , Event4,

20 < t < 40)): the predicate is true at any time between 10 and 30 ms when StateMa-

chine3 is in State3 and Event3 occurs, and at any time between 20 and 40 ms when

StateMachine3 is in State4 and Event4 occurs.

3. ((StateMachine5, S ta te5 , Event5) I (StateMachine6, S ta te6 , 10 < t < 40)):

the predicate is true whenever StateMachine5 is in State5 and Event5 occurs, and dur-

46

G lo b a l T im e lin e

State Machine Begin State Event Time
StateMachine5 State5 Event5 11.2
StateMachinel StateO Event 1 12.4
StateMachine6 State5 Event6 13.1
StateMachinel Statel Event 2 18.9
StateMachine6 State6 Event 7 20
StateMachine5 State5 Event5 21.4
StateMachine3 State3 Event3 22.3
StateMachine3 State4 Event4 26.3
StateMachine2 StateO Event8 30.9
StateMachine5 StateS Event5 31.2
StateMachine2 State2 Event9 32.3
StateMachine6 State4 Event 10 32.3
StateMachine2 Statel Event 12 35.6
StateMachine6 State6 Event 11 37.9
StateMachine2 State2 Event 13 38.9
StateMachine5 State5 Event5 40.6

ing any time between 10 and 40 ms when StateMachine6 is in State6.

Figure 4.2 gives an example of a global timeline and shows the predicate value timelines

obtained on applying the above predicates to the global timeline. (The time bounds for

each event in the above global timeline are very close to each other. Therefore, in the above

figure, the predicate is evaluated only at the mean of the two time bounds.)

4.3.2 Observation Function

For each defined predicate, the user must specify an observation function. The observation

function is used by the user to extract the required information from the predicate value

timeline as a single value. The input to an observation function is a predicate value time­

line. The output of the function is called an observation function value. There are two

types of observation functions, namely predefined functions and user-defined functions. The

predefined observation functions in Loki are as follows:

1. co u n t (<U, D, B>, <1 , S, B>, START, END) : re tu rns the num ber o f tim es a tra n s i­

tio n from false to tru e (“U” u p -tra n s itio n), a tra n s itio n from tru e to false (“D” down-

tra n s itio n), o r bo th (“B”) occur, considering o n ly impulses (“ I ”), o n ly steps (“ S”), o r

b o th (“B”) d u rin g the in te rva l [START, END].

2. outcome (t) : returns the outcome of the predicate value at instant t (the outcome

will be an integer, either 0 associated with false or 1 associated with true).

3. d u ra tio n (< T , F>, x , START, END) : re tu rns the tim e d u ra tio n d u rin g th e in te rva l

[START, END] fo r w hich th e predicate is tru e (“T”) a fte r the rrth tim e a tra n s itio n fro m

false to tru e occurred, o r the tim e d u ra tio n fo r w hich the p red ica te is false (“ F”) a fte r

the x th tim e a tra n s itio n from tru e to false occurred.

4. in s ta n t (<U , D, B>, <1 , S, B>, x, START, END) : returns the instant correspond­

ing to the xth time a transition from false to true or a transition from true to false or

47

both occurred, considering impulses, steps, or both during the interval [START, END].

5. to tal_duration(<T , F>, START, END) : returns the total length of time during which

the predicate value is true or false during the interval [START, END].

If a user wants to specify a measure that cannot be specified using one of the predefined

functions, he/she can define his/her own observation function. In our implementation, a

user-defined observation function is any function that can combine predefined observation

functions with standard mathematical functions and can be compiled with a standard C

compiler.

The following expressions are three examples of observation functions defined using pre­

defined observation functions. The result obtained on applying them to the three predicate

value timelines of Figure 4.2 is also given for each example.

• count (U, B, 10, 35) counts the number of times an up transition occurs between

10 and 35 ms considering both steps and impulses. The results obtained for the three

predicate value timelines are, respectively, 2, 2, and 5.

• duration(T , 2, 10, 40) returns the length of time during which the predicate is

true after the second transition from false to true occurred. For the three predicate

value timelines, the obtained values are 1.4 ms, 0 ms, and 7.0 ms respectively.

• instan t(U , I , 2, 0, 50) indicates the instant of the second up transition between

0 and 50 ms (considering only impulses). The results for the three predicate value

timelines of Figure 4.2 are, respectively, 0 ms, 26.3 ms, and 21.2 ms.

4.3.3 Subset Selection

As explained above, a predicate and an observation function are defined for all experiments

included in the study. After obtaining the predicate value timelines and the associated

observation function values, a user might be interested in estimating a measure from a

48

subset of experiments of the study. Loki provides the user with the ability to select a subset

of experiments based on the observation function values. Using standard mathematical

functions that can be compiled with a standard C compiler and observation function values,

the user can define a subset function that returns true or false. Examples of subset selections

are:

• experiments for which the observation function value is between 2 and 10, and

• experiments that have positive observation function values.

4.3.4 Study-Level Measures

The three concepts used for measures at the study level, namely predicates, observation

functions, and subset selections, have been described above. This section explains the process

of combining these three concepts to obtain measures at the study level.

Suppose the user defined a triple (subset selection, predicate, observation function). After

defining this triple, the user might want to focus on a subset of experiments that is based

on the observation function values obtained upon applying this triple to all the experiments.

For this subset, a new predicate and a new observation function can be defined. This can be

represented as the following sequence of triples: ((subset selectionl, predicatel, observation

functionl), (subset selection2, predicate2, observation function2)). This process of selecting

a subset and defining a new predicate and new observation function can be repeated. A

measure at the study level is then defined by an ordered sequence of (subset selection,

predicate, observation function) triples, where the subset selection of the first triple selects

all the experiments in the study. The output of the last observation function of the ordered

sequence is called a final observation function value.

49

4.4 M easures Defined Across Studies

Final observation function values are processed inside each study and across studies to obtain

the campaign measure estimation. The campaign measure could be completely characterized

if its probability distribution could be obtained. However, in practice, the distribution cannot

be calculated. Therefore, for all practical purposes, knowledge of the moments is equivalent

to knowledge of the distribution function, in the sense that it should theoretically be possible

to exhibit all the properties of the distribution in terms of the moments [12] (pp. 108-109).

In practice, the properties obtained when calculating the first four moments are very close

to the properties of the real distribution.

The user can define campaign measures of three types: simple sampling, stratified

weighted, or stratified user. We now focus on each measure type and the statistical es­

timations associated with it.

4.4.1 Simple Sampling Measures

Simple sampling measures in Loki are used when the user does not want to differentiate be­

tween the final observation function values of different studies. These measures are obtained

by considering all the selected studies to be similar such that the final observation function

values (associated with all experiments of all the selected studies) are contained in a single

sample, i.e., they are all instances of the same random variable. In the following discussion,

let M be the number of studies, n* be the number of experiments in study z, N — J2iLi ni be

the total number of experiments in all the studies, and x ^ be the final observation function

value of the j th experiment of study i.

The first four non-central moments are then defined by the following expressions:

where k = 1, 2, 3,4
i=l j=l

50

The three central moments of orders 2, 3, and 4 can be obtained from the first four

non-central moments by the expressions in [13] p. 18, Eqn. (100):

^2 = fi2 ~ (ji'lf (4.1)

m = #4 - + 2 (p 'if (4.2)

M4 = ^4 “ 4#4^i + U4)2 ~ 3 W)4 (4.3)

Once the first four central moments are obtained, the skewness and kurtosis coefficients

are calculated using the following expressions:

A = & = 7 % ■ (4-4)
M (M2)

Finally, percentiles for various a-levels are obtained by using the Bowman and Shenton

approximation [14, 15]. Bowman and Shenton introduced a rational fraction approximation

for any percentile y7 of a standardized distribution (fii = 0,/i2 = 1) of the Pearson system.

This approximation uses a 19-point formula:

r ’ ()

7T7,i (y & , /%) = Y l X) aw (\ / a) $ for i = l ,2 (4.6)
0 < r+ s < 3

The values of atyr,s are given in [14, 15]. When /i3 > 0, the 7-percentile of the non­

standardized distribution is given by z^ = fii + y7. When fi3 < 0 , = fii — 1- 7)•

4.4.2 Stratified Weighted Measures

Stratified weighted campaign measures are estimated by building samples containing the final

observation function values for each selected study, computing the moments, and then using

a weighted function to combine the estimations of moments obtained for each study. There

51

are several practical and statistical reasons for focusing on stratified weighted measures when

evaluating fault tolerance mechanisms. For example, one very important parameter is the

coverage of a fault tolerance mechanism [16]. When considering several independent studies,

the overall coverage of the fault tolerance mechanism is defined by a weighted function

across studies [17]. From a statistical viewpoint, the functions for calculating the moments

are linear for linearly weighted combinations of the random variables representing the final

observation function values, i.e., f(a x + by) = cf(x) + df(y), where / is the function for

calculating a moment, x and y are random variables representing final observation function

values, and a, 6, c, and d are constants. Here we assume that the powers of random variables

representing the final observation function values are independent across studies. Another

statistical reason for considering stratified weighted measures is that the mean, a fundamental

statistical estimator, is a special case of them.

In addition to the notations introduced in Section 4.4.1, we define pi as the normalized

weight associated with the study i. Adapting the previous expressions to focus on each

study, we define the first four non-central moments for study i by:

The central moments associated with the overall campaign measure are obtained by

making the assumption that the random variables (and their powers) associated with the

for k = 1, 2,3,4

The central moments of orders 2, 3, and 4 are obtained for study i with equations similar

to the ones used for the simple sampling measures (Eqns. (4.1), (4.2), and (4.3)):

2̂,i = ~ (fii,i)2

4̂,z = M4,i ~ + 6 ^ 2 (Pl.i) — 3 (f a j)

52

various studies are independent from one another. The mean is obtained by fi[=

Moreover, the central moments of orders 2, 3, and 4 are then given by the following

expression:

M

Mfc = ^2piHk,i for k = 2,3,4
i= 1

Finally, the skewness and kurtosis coefficients and the percentile points are calculated as

explained for the simple sampling measures in Eqns. (4.4) and (4.6).

4.4.3 Stratified User Measures

A stratified user measure is a stratified measure in which the final observation function values

of different studies are combined using a user-defined function other than a linearly weighted

function. In case the user would like to define a combined campaign measure other than a

linearly weighted function, the statistical features presented above can no longer be used.

Indeed, the calculation of the first four moments associated with the campaign measure is

not a trivial task for any arbitrary function that combines final observation function values

of the various studies. The only result Loki gives for stratified user measures is a campaign

measure in which each final observation function value in the user-defined function is replaced

by the mean of the final observation function values for that study. However, the campaign

measure value thus obtained may have no statistical meaning.

53

Chapter 5

Example of a Fault Injection
Campaign

5.1 Introduction

The main goals of the Loki fault injection tool are fault removal and the evaluation of the

dependability and performance of distributed systems (fault forecasting). The success of

Loki in achieving these goals largely depends on how well it performs the required fault

injections in the system under study, while at the same time being very easy to use. This

chapter is intended to provide a step-by-step explanation of how a user can use Loki to

inject faults into his/her system and obtain the required measures. For that purpose, a test

application that resembles many real-life applications is selected as an example, and each

step in the process of fault-injecting it using Loki is described in detail.

5.2 Test Application

Quite obviously, the first step in fault-injecting any application is to have an implementation

of the application itself. The test application chosen for illustration of some of the capabilities

of Loki is a simple leader election application. Leader election is an important component

of many real-life distributed systems, such as group communication systems.

The application consists of n processes, and the function of the application is that the

54

processes elect a leader from amongst themselves. To do this, each process picks a random

number and sends it to the remaining n — 1 processes. At the end of that round, each process

has n numbers, and it selects the process that picked the highest number as the leader. In

case of ties, this arbitration is repeated until it is resolved. When the current leader fails

by crashing, the remaining processes elect a new leader using the same protocol. Crashed

processes can restart and join the system again.

5.3 State M achine Specification

After implementing the application, the next step is to specify the execution of the appli­

cation as a state machine at the desired level of abstraction required for fault injection. In

the case of the test application, the components of the application (i.e., all of the n pro­

cesses) have identical state machine abstractions. Note that in other applications, different

components of the distributed application might have different state machine abstractions.

The state machine abstraction of the test application components is shown as a graph in

Figure 5.1.

In the state machine abstraction of Figure 5.1, each vertex is labeled with the state name,

and each arc is labeled with the local event notification corresponding to it.

At the start of the application, the state machine corresponding to each process is in

the BEGIN state. If the process is a new one, a START event is generated within it,

and its state machine transitions to the INIT state. If it is a restarted one, a RESTART

event is generated within it, and its state machine transitions to the RESTART_SM state.

When a RESTART_DONE event is generated in the RESTART_SM state, the state machine

transitions to the FOLLOW state, since a restarted process will always be a follower. The

INIT state represents the initialization of the processes, which includes the setting up of

communication between the processes. After the initialization, an INIT_DONE local event

notification is generated in the process, and its state machine transitions to the ELECT

55

Figure 5.1: Election Protocol

state. The ELECT state signifies that the processes are performing the leader election. At

the end of the election, the state machine associated with the leader receives a LEADER

notification and moves to the LEAD state, while all the other state machines receive a

FOLLOWER notification and move to the FOLLOW state. If an error occurs in any of

the states other than the BEGIN and CRASH states, an ERROR notification is received by

the state machine, which then transitions to the EXIT state. When the leader crashes, a

LEADER_CRASH notification is received by the state machines of all the follower processes.

The state machine of the leader process receives a CRASH event notification and transitions

to the CRASH state. All the other state machines transition to the ELECT state, signifying

the start of a new leader election. If a CRASH event is received in the FOLLOW or ELECT

states, the state machine transitions to the CRASH state.

The state machine abstraction given in Figure 5.1 has to be converted into a script-like

textual format before it can be given as input to the Loki runtime. However, before that

can be done, the number of components in the application has to be decided upon, and their

corresponding state machines should be given unique names. These nicknames are used in

referring to the state machines subsequently. For the test application, assume that there are

three components (processes) and that their corresponding state machines are named black,

yellow, and green. Even though the state machine abstraction is the same for black, yellow,

and green, their textual state machine specifications might be different. This is because the

list of state machines to be notified on a state change might be different for each of them.

The notify list of the state machines is used to maintain the partial view of global state

necessary for fault injection, and hence depends on the fault specification (as described in

Section 5.4). The fault specification specifies the set of global states in which each fault

should be injected. The notify lists of state machines are obtained by observing the fault

specifications of all the components. This process of obtaining the notify lists could possibly

be automated in future versions of Loki.

The state machine specification for the state machine black is given below:

57

global_state_list

BEGIN

INIT

RESTART.SM

ELECT

FOLLOW

LEAD

CRASH

EXIT

end_global_state_list

event_list

START

INIT.D0NE

RESTART

RESTART_DONE

LEADER

FOLLOWER

LEADER.CRASH

CRASH

ERROR

end_event_list

state INIT notify green yellow

INIT.D0NE ELECT

ERROR EXIT

state RESTART_SM notify green yellow

RESTART.DONE FOLLOW

ERROR EXIT

state ELECT notify

FOLLOWER FOLLOW

LEADER LEAD

CRASH CRASH

ERROR EXIT

state LEAD notify

CRASH CRASH

ERROR EXIT

state FOLLOW notify

LEADER.CRASH ELECT

CRASH CRASH

ERROR EXIT

state CRASH notify green yellow

state EXIT notify

The state machine specifications for green and yellow are similar to that of black except

that the notify lists are different. The differences for green are as follows:

59

state INIT notify black yellow

state RESTART.SM notify black yellow

state CRASH notify black yellow

The differences for yellow are as follows:

state INIT notify black green

state RESTART.SM notify black green

state CRASH notify black green

5.4 Fault Specification

The fault specification stipulates the global state in which each fault should be injected.

The fault specification depends on the kind of faults to be injected into the application.

The actual fault injection code is implemented by the user in the probe during application

instrumentation. The Loki runtime itself does not need to know the kind and type of each

fault or the method by which it is injected by the probe. The type of faults to be injected

depends on the kind of evaluation the user intends to perform on the application.

For the test application, two example evaluations are as follows. The first evaluation

involves determining the coverage of an error in the leader. This is done by the injection

of a fault into the leader process; if this fault becomes an error and crashes the leader, the

probability that the leader process recovers is determined. The following fault expressions

are defined for this evaluation:

bfaultl (black:LEAD) always in state machine black

gfaultl (green:LEAD) always in state machine green

yfaultl (yellow:LEAD) always in state machine yellow

60

The second evaluation involves finding the correlation between an error in the leader

(leading to a crash), and a simultaneous error in another process. This is done by inject­

ing a fault into one of the follower processes when the leader crashes and then observing

the effect. The fraction of time the injected fault becomes an error is compared with the

fraction of time an injected fault becomes an error if it is not simultaneous with an error in

the leader. If leader is black and the follower is green, we have the following fault specifica­

tion in addition to bf a u lt l . Fault specifications for the other cases can be specified similarly.

g fa u lt2 ((b lack:C R A S H) & ((green:FOLLOW) I (g re e n :E L E C T))) once in state ma­

chine green

g fa u lt3 ((green:FOLLOW) I (g reen :E LE C T)) once in s ta te m achine green

Note that even though the state machine green changes state from FOLLOW to ELECT

when state machine black crashes as a leader, the fault g f a u lt2 is injected only once. This

is because the fault parser in Loki is positive-edge-triggered, i.e., it injects a fault only when

the value of the Boolean fault expression transitions from a false to a true. Also, note that

the type of fault injected is completely left to the user; for example, bf a u l t l could be a

corruption of a random location in the process’s stack. Furthermore, the state machine

specification given in Section 5.3 takes into consideration all of the above fault expressions.

5.5 Instrumentation and Probe Design

Since the test application involves the crashing and restarting of processes (state machines),

the original Loki runtime cannot be used to evaluate it. The new runtime has to be used for

this evaluation. Since the source code of the application is available, the probe code is made

a part of the application source code. First the mainO function of the application is renamed

61

as appMainO. The not i f yEvent () method of the state machine is used by the probe code to

send local event notifications to the state machine. The first call to not i f yEvent () is used

to set the initial state of the new or restarted state machine. Subsequent calls, at appropriate

locations where the local state transitions occur in the code, are used to send local event

notifications corresponding to the local state transitions. After being instrumented in this

fashion, the application is compiled with the Loki library. The Loki library contains the code

for the state machine, state machine transport, fault parser, and recorder. The instrumented

application code is shown below:

#include ‘‘ Probe.h * *

void appMain(int argv, char * argv[]){

if(new){ /* New state machine */

notifyEvent(INIT); /* Initialize state of state machine */

/* Perform application initialization */

notifyEvent(INIT.D0NE);

/* Perform election */

if(leader)

notifyEvent(LEADER);

else

notifyEvent(FOLLOWER);

} else { /* Restarted state machine */

notifyEvent(RESTART); /* Initialize state of state machine */

/* Perform any application initialization on restart */

notifyEvent (RESTART-DONE);

}

62

/* Wait until leader crashes */

notifyEvent(LEADER_CRASH);

/* Perform election */

if (leader)

notifyEvent(LEADER);

else

notifyEvent(FOLLOWER);

} while(true);

}

void sigHandler(int signal){

/* Perform cleanup */

notifyEvent(CRASH);

notifyOnCrashO;

exit(-1);

}

5.6 Campaign Execution

Before the instrumented application can be used in experiment runs for a study, a few files

have to be specified. First, a list of host names being used in the campaign execution should

be specified, one per line, in a machines file. Then, for each state machine (in a study), a

study file has to be specified, which has the following format:

<SMNickName>

<NodeFile>

do{

63

<StateMachineSpecificationFile>

<FaultSpecificationFile>

<InstrumentedApplicationExecutable Path>

<Appli c at i onArguments >

Now the campaign execution can begin. First, the central daemon is started, and then

the local daemons are started. The command to start the local daemons is

lokid <DaemonStartUpFile> <DaemonContactFile> <NodeFile> <CentralDaemonHostName>

<CentralDaemonPort>

Then all the state machines are started. The command to start each of them is

InstrumentedApplicationExecutable <StudyFile> <DaemonContactFile> <LocalTimelineFile

The experiment is allowed to run until completion. The output of each experiment execu­

tion consists of the local timelines of the state machines. Before and after every experiment,

timestamps are obtained, which are used for off-line clock synchronization during the analy­

sis phase. All the timestamps are stored together in a single timestamps file. To obtain the

timestamps, the following command is run on all the machines in the system:

getstamps <MachinesFile> <NumberOfSyncMsgs> <TimeBetweenSyncMsgs> <PortNumber>

<TimestampsFi1e>

If multiple studies are present in a fault injection campaign, the execution procedure for

each of them is the same as above. In the case of the test application, multiple studies are

executed to perform the two evaluations suggested in Section 5.4. More details about these

64

studies are given in Section 5.8.

5.7 Campaign Analysis

In campaign analysis, all the local timelines generated during the campaign execution are

converted to the corresponding global timelines. The first step in doing this is to compute

the bounds on a and (3 for each machine. This is done using the following command:

alphabeta <TimestampsFile> <MachinesFile> <AlphabetaFile> <MHzFile>

The a and /? of each machine are computed using the fastest machine in the system as the

reference machine, and are stored in the alphabeta file. The fastest machine is taken as the

reference machine, since there would be a loss of accuracy if the times on a fast machine were

mapped onto the times of a slower machine. The MHz file contains the speed of the fastest

machine in the system. After computing the a and (3 for each machine, the local timelines

of all the state machines for each experiment are placed into a single global timeline, so that

there is one global timeline per experiment. Also, the correctness of the fault injections is

determined. The following command performs both these operations.

makeglobal <AlphabetaFile> <MHzFile> <GlobalTimelineFile> <LocalTimelineFile 1>

<FaultInjectionResultsFile 1> ... <LocalTimelineFile n> <FaultInjectionResultsFile

n>

The ith local timeline file is the local timeline of the zth state machine for this exper­

iment. The fault injection results files contain indications of whether each fault has been

correctly injected in the corresponding state machine in this experiment. If any of the faults

are incorrect in an experiment, the experiment is discarded, and is not used in measure com-

65

putation. Note that the above campaign analysis is performed for each experiment within

each study. For the test application, the campaign execution and analysis are performed as

described above, and the global timelines are obtained for each of the experiments in which

fault injections were done correctly.

5.8 Measure Specification and Estimation

This section describes the method of obtaining the required measures from the global time­

lines using Loki. For the test application, the first measure corresponds to the first intended

evaluation given in Section 5.4, i.e., determining the coverage of an error in a leader process.

Let studies 1, 2, and 3 have only faults bf a u l t l , gf a u l t l , and yf a u l t l injected, respec­

tively. Consider study 1, in which bf a u l t l is injected into the state machine black when it

becomes a leader. To determine the coverage of an error caused by bf a u l t l 1, the following

study measure can be used:

((default, (black:CRASH), total_duration(T, START_EXP, END_EXP)), ((OBS.VALUE >

0), (black :RESTART_SM), (total_duration(T, STARTJEXP, ENDJEXP) >0)))

In the above study measure, START_EXP and END.EXP are Loki macros that take the

values of the beginning time and ending time of the current experiment, respectively. The

macro OBS-VALUE is the observation function value of the observation function of the previous

triple. In the first triple, the de fau lt subset selection selects all the experiments, and the

predicate and observation function determine the time spent by the state machine black in

the CRASH state as the observation function value. The subset selection of the second triple

checks whether this observation function value is positive, to filter out all the experiments in

which bf a u l t l has not caused an error and a subsequent crash in the state machine black.

xIt is assumed that the effect of the error is to crash the process and that it does not cause the process
to behave maliciously.

66

The predicate and the observation function of the second triple check whether the crashed

black state machine has been restarted (thus covering the crash failure). Thus, the above

study measure returns a 1 for an experiment if an error has resulted from the fault injection

and has been covered, and it returns a 0 for an experiment if the error has occurred but

has not been covered. Similar study measures, involving fault injections into the green and

yellow state machines, can be defined for studies 2 and 3.

Assume that the typical fault occurrence rates, wb, wg, and wy: are known for the state

machines black, green, and yellow, respectively. Also, assume that the coverages for black,

green, and yellow are c&, cg, and Cy, respectively. Then the overall coverage of the system, c,

is as follows:

_ WbCb + WgCg + WyCy

Wb + W g + Wy

Thus, given the fault occurrence rates, the overall coverage of the system can be estimated

from the study measures of studies 1, 2, and 3, using the statistical methods for stratified

weighted measures as described in Chapter 4. Note that here we assume that the faults

follow a “representative sample.” This means that we assume that during the fault injection

process, the faults with a higher fault occurrence rate are injected in a greater number than

those with a lower fault occurrence rate.

The second measure corresponds to the second evaluation, and estimates the correlation

between a leader crash and a simultaneous error in another follower process. Consider study

4, in which bf a u l t l and gf a u l t2 are injected. The study measure can be defined as follows:

((d e fa u lt, (b lack :CRASH), to ta l_duration(T , START_EXP, END.EXP)), ((OBS.VALUE >

0), (green:CRASH), (to ta l_duration(T , START_EXP, END_EXP) > 0)))

As in the previous study measures, the first triple gives the time spent by the black

67

state machine in the CRASH state. The subset selection of the second triple filters out all

the experiments in which bf a u lt l has not caused a crash in the black state machine. The

predicate and observation function check whether the fault g fau lt2 has caused the green

state machine to crash. Thus, this study measure returns a 1 if the black state machine has

crashed and gf au lt2 crashed the green state machine, and it returns a 0 if the black state

machine crashed and the green state machine did not crash. Computing the average of this

study measure gives the fraction of injections of gf a u lt2 that caused errors (i.e., crashes),

given that the leader process has already crashed. As a comparison, the fraction of faults in

the green state machine that transform to errors when the leader process has not crashed can

be computed by constructing a study 5 in which only the fault gf ault2 is injected, and then

using the following study measure in a manner similar to the study measures described above:

(default, (green:CRASH), (total_duration(T, STARTJEXP, END.EXP) > 0))

This comparison gives an idea of the correlation of the leader crash with errors in other

processes. Studies similar to studies 4 and 5 can be designed for other pairs of state machines,

and study measures similar to the above can be obtained. These study measures can then

be combined using the statistical techniques given in Chapter 4.

68

Chapter 6

Conclusions

This thesis presents Loki, a new tool for the evaluation of the dependability and performance

of distributed systems. Loki uses fault injection to perform this evaluation. It facilitates

fault injection based on a partial view of the global state of the system, i.e., the state of

multiple components of the system. It then performs a check to verify whether the faults

were injected in the correct global states, and discards all the experiments with incorrect

fault injections. Accurate measures are then computed from the results of the correct fault

injections. The work presented in this thesis includes the development of Loki’s runtime and

measures framework.

The Loki runtime allows the user to define state machine descriptions of the system’s

execution. The user also defines the fault specifications that specify the global state in

which faults have to be injected in the various components of the system. The runtime

of each node uses the state machine specifications, along with the local event notifications

of the probe and remote state notifications, to maintain the partial view of global state.

Whenever the partial view matches the global state needed for the injection of a fault, the

runtime instructs the probe to inject the fault. The runtime records all the state changes

and fault injections, along with their occurrence times, in local timelines. Note that there

is one local timeline per node. Synchronization messages are passed before and after each

fault injection experiment; these messages are used during off-line analysis to convert all the

local timelines into a single global timeline. The fault injections are checked for correctness,

69

and the experiments with incorrect injections are discarded.

The measures framework in Loki gives the user flexibility in specifying a wide range of

dependability and performance measures. Measures are specified at the study and campaign

levels. Each measure at the study level is composed of a sequence of subset selection,

predicate, and observation function triples. The study-level measures can be combined to

obtain simple sampling, stratified weighted, or stratified user campaign-level measures. The

framework also includes the computations to be performed on the results of the correct fault

injection experiments to obtain accurate measure estimations.

In the future, it is important that Loki be used to evaluate a few real-life distributed

systems so that the effectiveness of Loki as a distributed system evaluation tool can be

assessed. The execution of each real-life application will need to be specified as a set of state

machines, and a set of fault injections and measures will have to be decided upon. Then the

application has to be instrumented and experiments run to evaluate the system and, at the

same time, assess the effectiveness of Loki in injecting faults in the right global states and in

accurately obtaining the required measures. The process of instrumenting the application will

afford another opportunity for possible future work, namely in developing probe templates

for a variety of common fault types, such as memory, CPU, and communication faults.

Furthermore, in future work, a performance analysis of all the Loki runtime components

could be conducted and the performance could be improved, depending on the efficiency of

the runtime in injecting faults. For example, the fault parser algorithm could be optimized,

and techniques could be developed to allow state machines to send state change hints to

remote state machines well in advance of the actual state changes so as to increase the

efficiency of fault injection. Similarly, the measures framework could be enhanced based on

experience with real-life systems. Finally, the concepts developed in Loki could be applied

to other areas, such as online debugging of distributed programs using their global states,

and detection of security violations in distributed systems.

70

References

[1] J. Laprie, “Dependability of computer systems: Concepts, limits, improvements,” in

Proceedings of the 25th International Symposium on Fault-Tolerant Computing, Special

Issue, pp. 42-54, 1995.

[2] F. Lange, R. Kroeger, and M. Gergeleit, “JEWEL: Design and implementation of a

distributed measurement system,” IEEE Transactions on Parallel and Distributed Sys­

tems, vol. 3, pp. 657-671, November 1992.

[3] G. Alvarez and F. Cristian, “Centralized failure injection for distributed, fault-tolerant

protocol testing,” in Proceedings of the 17th IEEE International Conference on Dis­

tributed Computing Systems (ICDCS’97), pp. 78-85, May 1997.

[4] S. Han, K. G. Shin, and H. A. Rosenberg, “DOCTOR: An integrated software fault

injection environment for distributed real-time systems,” in Proceedings of the Interna­

tional Computer Performance and Dependability Symposium, pp. 204-213, 1995.

[5] K. Echtle and M. Leu, “The EFA fault injector for fault-tolerant distributed system test­

ing,” in Proceedings of the IEEE Workshop on Fault-Tolerant Parallel and Distributed

Systems, pp. 28-35, 1992.

[6] S. Dawson, F. Jahanian, T. Mitton, and T. L. Tung, “Testing of fault-tolerant and

real-time distributed systems via protocol fault injection,” in Proceedings of the 26th

International Symposium on Fault-Tolerant Computing (FTCS-26), pp. 404-414, June

1996.

71

[7] D. Bhatt, R. Jha, T. Steeves, R. Bhatt, and D. Wills, “SPI: An instrumentation devel­

opment environment for parallel/distributed systems,” in Proceedings of the 9th Inter­

national Parallel Processing Symposium, pp. 494-501, 1995.

[8] D. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. Iyer, “NFTAPE: A framework

for assessing dependability in distributed systems with lightweight fault injectors,” in

Proceedings of the 4th IEEE International Computer Performance and Dependability

Symposium (IPDS-2K), pp. 91-100, March 2000.

[9] D. A. Henke, “Loki - an empirical evaluation tool for distributed systems: The experi­

ment analysis framework,” Master’s thesis, University of Illinois at Urbana-Champaign,

1998.

[10] M. Cukier, R. Chandra, D. Henke, J. Pistole, and W. H. Sanders, “Fault injection based

on the partial global state of a distributed system,” in Proceedings of the 18th IEEE

Symposium on Reliable Distributed Systems, pp. 168-177, October 1999.

[11] R. Chandra, M. Cukier, K. R. Joshi, R. M. Lefever, and W. H. Sanders, Loki User's

Manual - version 1.0. Coordinated Science Laboratory, University of Illinois at Urbana-

Champaign, August 2000.

[12] A. Stuart and J. K. Ord, Distribution Theory, Kendall’s Advanced Theory of Statistics,

1. Edward Arnold, London, 1987.

[13] N. L. Johnson and S. Kotz, Distributions in Statistics - Continuous Univariate

Distributions-1. John Wiley & Sons, New York, 1969.

[14] K. O. Bowman and L. R. Shenton, “Approximate percentage points for Pearson distri­

butions,” Biometrika, vol. 66, no. 1, pp. 147-151, 1979.

72

[15] K. O. Bowman and L. R. Shenton, “Further approximate Pearson percentage points and

Cornish-Fisher,” Communications in Statistics, Simulation, and Computation, vol. B8,

no. 3, pp. 231-244, 1979.

[16] W. G. Bouricius, W. C. Carter, D. C. Jessep, P. R. Schneider, and A. B. Wadia,

“Reliability modeling for fault-tolerant computers,” IEEE Transactions on Computers,

vol. 20, no. 11, pp. 1306-1311, 1971.

[17] D. Powell, E. Martins, J. Arlat, and Y. Crouzet, “Estimators for fault tolerance cover­

age evaluation,” in Proceedings of the 23rd International Symposium on Fault- Tolerant

Computing (FTCS-23), pp. 228-237, 1993.

[18] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders, “Loki: A state-driven

fault injector for distributed systems,” in Proceedings of the International Conference

on Dependable Systems and Networks (FTCS-30), pp. 237-242, June 2000.

[19] M. Cukier, D. Powell, and J. Arlat, “Coverage estimation methods for stratified fault-

injection,” IEEE Transactions on Computers, vol. 48, pp. 707-723, July 1999.

[20] J. L. Pistole, “Loki - an empirical evaluation tool for distributed systems: The run-time

experiment framework,” Master’s thesis, University of Illinois at Urbana-Champaign,

1998.

73

