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ABSTRACT

Bus systems form the communication medium for computers, and a great deal 

of effort has been devoted to detecting errors which occur as information is 

transferred from one module to another. In this thesis we look at the problem 

of not only detecting faults which occur, but continuing to function in the 

presense of those faults. The lines of a bus are grouped together into two 

classes: synchronous address and data lines, and the control lines which 

govern the action of the synchronous lines.

The fault model which is assumed for the synchronous lines includes not 

only the classical stuck-at fault, but also bridging faults and transient 
faults. Two algorithms are presented which use time redundancy to guarantee 
correct transfer of information in the presense of a single fault. One 

requires a single retry and is applicable for stuck-at faults and adjacent 

bridging faults. The other algorithm removes the adjacency requirement, but 
requires either one or two retrys, depending on the type of fault.

The modules comprising the protocol system are represented using state 

machines, and the action of the system is monitored by observing the states of 

the modules and the levels of the bus lines. A State Machine Language (SML) 

is developed to represent a protocol system. SML representations of the 

modules form the input to a protocol exercise system which simulates the 
actions of the system and identifies errors which occur.

Knowledge of the prescribed behavior of the control lines allows the 

presense of stuck-at faults to be detected by the use of time-out escape 
sequences. The knowledge of the behavior of the control lines also permits 

dual-rail control signals to be used to guarantee continued operation in the 
presense of single faults. The expected levels of the signals as the protocol
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sequences through its actions allow identification of lines which are stuck at 

an incorrect value; the incorrect line can then be ignored as the module 

continues to function. Three algorithms are presented which will convert 

state machines for single-rail control signals to state machines which 

accommodate dual-rail signals. The system cost associated with this technique 

consists of the additional lines needed for dual-rail control signals and for 

implementing the time redundant transfer algorithms, and the additional 

hardware needed to implement the algorithms. For a standard bus this means 

about a 40$ increase in the number of lines and approximately doubling the

hardware dedicated to the bus control function.
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CHAPTER 1 

INTRODUCTION

±._L. Introduction

In this thesis we treat the following question:

"How can information be transferred correctly in the presence of 
faults, between digital systems connected by a bus?"

Bus systems form a central method for information transfer in digital 

systems, transferring data and addresses between the different modules, and 

allowing the system to perform useful work. Busing techniques are not only 

important as an interconnection path between the modules of a computer, but 

they also play an important part in the communication tasks of the modules 

themselves. This includes data exchanges on the boards of a system, and also 
internal communication paths for integrated circuits which are growing ever 
larger. And as the feature size decreases in integrated circuits, the suscep

tibility to noise increases. This increase of awareness of electrical faults, 

and their impact on system behavior, is not limited to the small circuits; 

striving to increase system performance to the limits of technology increases 

the probability that faults will be a factor which needs to be handled.

In order to allow continued system operation in the presence of these 

faults, a set of techniques and policies is needed which will provide toler
ance to the effects. This collection of techniques and policies will form a 
protocol which can be used to prevent system failure and permit operation in
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the presence of the faults. This protocol needs to provide the ability to 

detect the presence of a fault, identify the fault for reporting and repair 

purposes, and still maintain correct operation, even if the operation is per

formed at a degraded speed.

±.2* Bus level Eratocola

The word 'protocol1 has appeared many times in the literature and has 

been used to represent many different types of interactions. Perhaps the most 
pervasive use of the word is to refer to the set of rules governing the 

interaction of a number of computer systems. Examples of this type of system 
include ARPANET, DECNET, SNA, ETHERNET, and other related host-to-host commu

nication methods. These protocols govern the action of the various computers 
which are connected together, and concern themselves with such issues as rout
ing algorithms, retransmission of data assumed to be lost, management of tem

porary storage in the various computers to permit message exchange, and other 

interactions which are needed to transfer information from one site to 

another.

The word 'protocol' has also been used to refer to the rules which have 

been set up to provide standardization of basic system functions from one sys

tem to another. Examples of this are a file transfer protocol [1], a virtual 

terminal protocol [2], and tape format protocols.

Still another sense of the word represents the specification of the phys

ical elements involved in the communication process [31 - This includes the 

mechanical and electrical elements of an interconnection scheme, such as iden
tifying the connectors involved in a specific product and specification of the 
voltage and current levels to be used.



3

In this thesis the word ’protocol’ is taken to mean the set of rules and 
procedures which specify the interaction of modules which are connected to a 
bus structure and whose source of system knowledge is limited to the signals 

which form the bus. Although we will be concerned with identification of the 

signals which make up the bus, or the portion of the bus required for a 

specific interaction, we will not identify the technology or the voltage (or 

current) levels. Rather, we will assume that a signal is ’asserted’, 

’unasserted’, or faulty, either from a ’stuck-at’ fault or a fault which is 

characterized by the logical bridging of two signals. We also do not consider 

those protocol rules mentioned above which are concerned with more global, 

multi-machine matters, such as the routing algorithms or storage allocation 

procedures. Thus, we limit ourselves to that set of rules which concerns the 

signal level of a bus system.

1-2. Bus Level  System .Representation

The bus level model of a system as viewed in this thesis is shown in Fig

ure 1.1. This figure shows several independent modules which are connected by 

a bus structure. The different modules are composed of a functional part and 

an interface part. The functional portion of a module implements some system 

specific function which is independent of the protocol which ties the modules 
together. Examples of functional modules are memories, interfaces to peri
pheral equipment, and processors.

The interface portion of a module is that hardware which connects the - 

functional part to the actual lines of the bus to communicate with other
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Module 1 Module 2  Module 3  Module N

Bus Structure

Figure 1.1. Functional Model of Protocol System.

members of the system. The interface portion contains the hardware to imple

ment the algorithms and control procedures which are required by a protocol.
i

Thus the interface portion receives direction from the functional portion as 
to what type of interaction is needed with the other modules which comprise 
the system, and the interface portion operates according to the protocol of 

the system to communicate with the other modules in the system.

The bus itself consists of a number of physical lines which join the dif

ferent interface modules together. Some lines provide a connection which is 

common to all of the modules, while others may provide a daisy-chain type of 

connection between modules. No properties are assumed for these connections; 

the actual drivers and receivers are part of the different interface modules. 

Thus, whether a line assumes the properties of a common collector, tri-state, 

or other interconnection method is determined by the electronics of the inter
face module.
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The principal function of the bus is to transfer information from one 

module to another. The signal lines which accomplish this are divided into' 

two groups: the lines which carry information, such as address and data lines 
(collectively called data lines in this thesis), and the lines which control 

the interaction, such as request and acknowledge lines (called control lines). 

Although serial data lines have been used to satisfy the needs of some sys

tems, most computers utilize parallel data lines for information transfer to 

achieve higher data rates. In this thesis we are concerned mainly with the 

parallel mode of data transfer, although the control methods presented here 

will also work with serial data lines.

1-2L- An QgacalaH nf Xhi3 Research

The division of the bus signals into two different groups gives rise to 

two different methods of modeling the lines and the algorithms which deal with 

them. The busing of synchronous information on parallel lines is treated by 

referring to the lines as a bus with no timing constraints. The information 

on these lines is assumed to be present when needed by the algorithms and no 
requirements are placed on the signal arrival time. Single error detection in 

this case is provided by a single parity bit which is added to the existing 
data lines by the sending interface to assure that all transfers on the bus 
have correct parity. Our goal is to provide not only detection, but also 

correction as well. This is accomplished by adding enough redundancy to 

assure that single bit errors can be corrected. This redundancy can be sup
plied by adding sufficient lines to encode this information into each transfer 

through codes like the Hamming code, or the redundancy could be obtained by
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retransferring the data for a time redundancy technique. In Chapter 2 we 

present two algorithms for the correct transfer of information using time 
redundancy. These algorithms extend the work previously done by Shedletsky 

for stuck-at errors [4], as well as that done by Agrawal and Agarwal [5], who 

extended the fault model to include bridging faults as well as stuck-at 
faults.

The control signals which govern transfers across the data lines are the 
links which join the modules of the bus together, and they provide the commu

nication between independent, asynchronous controllers. Systems composed of 

independent modules have been modeled and studied in order to gain insight 

into the action of the system as a whole. Protocol systems provide examples 

of a variety of modeling techniques. The UCLA graph was introduced to model 
parallel computational systems and applied to higher level protocols [6 ]. 

Petri-nets have been applied in diverse studies concerning protocols [7,8]. 

State machines have been incorporated in models representing the interaction 

of systems [9 ,10,11]. Other approaches to the study of protocol interactions 

include abstract data types [12] and programming languages [13]. In Chapter 3 

we examine in detail the various methods used to represent the action of 

independent modules and present the rationale for selecting state machines for 

the representation of the signal level bus protocols.

The representation of the action of the various modules which are 

attached to the bus is presented with the use of state machines which indicate 
the response of the module to the various signals on the bus. This response 

action includes the signals asserted by the interface which provide the only



7

information that the other modules of the system will have concerning the 

action of the first module. Chapter 3 details this modeling method and intro

duces steps which can be taken to detect and correct errors which occur on the 
control lines. These steps include methods which use time redundancy to 

detect errors which occur on the control lines when detection alone is suffi

cient and methods to guarantee correct operation in the presence of faults 

using dual-rail redundant signals when detection and correction are needed. 

These methods are applicable to any physical level protocol which can be 
modeled as explained in Chapter 3.

A tool which can be used to examine the properties of protocols is the 

general purpose computer. Previously computers have analyzed systems by per

forming reachability analyses on graph model representations [14], by system 

state examinations [15], and by the use of theorem proving when the protocol 

is appropriately represented [12]. In order to utilize the power of the gen

eral purpose computer to examine the effect of faults on bus level protocol 

systems, we have developed a language to describe the state machine protocol 

representation. This language is detailed in Chapter 4. The use of the com

puter to exercise the protocol from its state machine description is a valu

able tool which tests the effectiveness of error detection and fault tolerant 
techniques.

Various techniques have been employed to detect and correct errors in 
data transfers, such as Hamming codes and time redundancy techniques like 

those presented in Chapter 2 . However, little is known concerning the action 

of the signals which control the interactions on the data paths. One tech
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nique which has been used is Triple Modular Redundancy (TMR) where all of the 

lines are triplicated and voting is done on the resulting signals [16,171- 

Chapter 5 presents a new approach to the control signal problem which utilizes 

time redundancy and dual-rail signals. Knowing the expected behavior of the 

protocol system allows us to identify a faulty line and continue to operate. 

Chapter 6 extends the techniques of Chapter 5 to the arbitration problem. 
Chapter 7 examines an existing bus to determine the cost of implementing the 

fault tolerant techniques of this thesis. Chapter 8 provides a conclusion to 
this work and some suggestions for further research.
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CHAPTER 2

CORRECT TRANSMISSION OF SYNCHRONOUS DATA USING TIME REDUNDANCY

2.J.. Introduction

The major function of a bus in a computer system is to transfer data 
values from one module to another. Although serial buses are used when cir
cumstances permit, data transfers primarily use parallel lines to achieve high 

data rates. Detection of single errors on a set of parallel data lines can be 

accomplished with the addition of a parity bit. If correction is required as 

well as detection, then sufficient redundancy must be included to locate the 

error, and this can cost several lines in addition to the data lines. How
ever, another approach is to retry the exchange when an error is detected 

using redundancy in time instead of redundancy in space to provide correction.

Stuck-at errors can be corrected by using time redundancy with a very 

simple scheme called Alternate Data Retry, as suggested by Shedletsky [4]. 

When an error occurs, this method calls for the retransmission of -data 

inverted from the original sense so that the stuck-at fault will be masked by 

the inverted data value; hence, the retransmitted data are received without 

error.

Agrawal and Agarwal [5] have proposed a different algorithm which will 

correctly transfer the information not only in the presence of a stuck-at 

fault, but also in the case of logically adjacent bridging faults. Their 
algorithm uses a recursive method of finding and correcting the error caused 

by the fault. The fault could be permanent or transient, so long as it occurs 
for the duration of the operation.
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The model which is assumed for the algorithms presented in the following 

sections is shown in Figure 2.1. It is assumed that information is present in 

Module A for transmission to Module B. The interface between the two modules 

is a bus structure which has a data path sufficiently wide to transfer a corn- 

plete word in a single cycle with a parity bit added for single error detec

tion. Also, the interfaces to the bus structure have the capability of 

encoding/decoding the information as specified by the algorithms and handling 

any retransmissions which may be required.

The fault model used for these algorithms assumes a single line error, 

which may be caused by a single line stuck at some logical value, by a

E x ŷ D
X 1

Sending N
y 2

E Receiving_ x 2
Module c

o
C Module

0 o 0
D o D

E E

R v R
x n y n

CONTROL

Figure 2.1. Model for Time Redundancy Transfer Algorithms.



11

transient noise on the line, or by a bridge (electrical short) between two 

lines. Bridging faults can occur either in the interface between the modules 

and the bus, or on the bus structure itself. The most obvious situation is 

that lines which are physically adjacent have created a bridging fault by 

means of a solder bridge or some other physical or electrical fault. This 

fault may manifest itself as either the logical-OR of the two lines or the 

logical-AND of the lines. In those systems which use physically contiguous 

lines to create the bus system and in which the lines are not only physically 

but logically adjacent, the algorithm presented in Section 2.2 would be suffi
cient to produce correct transfers. However, in most systems as well as most 

chips which are constructed, the lines of a communication path which are phys

ically adjacent are not necessarily logically adjacent. Thus, malfunctions 

can occur which will cause bridging between two lines which are not logically 

adjacent. For this case the algorithm of Section 2.3 would be needed for 
proper information transfer. The faults which can occur include both per
manent and transient faults, and the correctness of the algorithms is demon

strated for both cases.

Z -2. Cq,reaction Errors, Due la Bridging o£L Logically Adjacent Lines

For those systems in which the bridging faults are confined to logically 
adjacent lines, correct transfer of information can be guaranteed with a sin

gle retry as demonstrated by the following algorithm. The notation "X -> Y" 

stands for "transmit X to Y" where X is the transmitted data and Y is the 

received data. The notation xi iS used to indicate the ith bit of X starting 
from the left. Thus, X . (x,, x2 , ..., x±..... xn).
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For those systems in which the bridging faults are confined to logically

adjacent lines, correct transfer of information can be guaranteed with a sin
gle retry as demonstrated by the following algorithm.

Algorithm Z - l

Step 1: X -> Y. If there is no parity error, then Y is the correct data.
Stop.

Step 2: X1 -> Y1, where X1 is formed by rotating X one bit to the left.

Step 3: Let Y2 be obtained by rotating Y1 one bit to the right.

Define S = Y ® Y2.

Step 4: For each bit position in Y, call it k, invert the bit Yk to form the

correct result if and only if sk = o and sk-1 = 1. (Subscript arith
metic is done modulo word size to make it circular.)

Theorem: Algorithm 2.1 will ensure that the correct result is obtained in one 

retry at most in the presence of one stuck-at fault, one transient 
fault, or one AND or OR bridge fault on logically adjacent lines in 

the data transfer path.

Proof: We will consider the different types of faults separately.

1) Stuck-at Fault. Let X = (x1f x2, . x^, ..., xn). Suppose that 

line i is stuck at aif in {0,1}, such that a.  ̂ i x^. Then ai = = y^ so
that
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Y - (x^f X2 , •••» 3^» Xi+i, • • •, xn).

On the retry, X1 = (x2> X3 , xn, x1). By assumption the only fault on the
data path is on line i, so Y1 will be

Y1 " (x2 » x3 , x±t aif xn, x-|) . (1)

Y2 is obtained by shifting Y1 to the right:

i i+1 ( <- positional indicators )
“ x̂*| > x2, • ••» x^, a^, xi+2» •••» Xp) • (2 )

S is formed by Y « Y2:

i i+1 i+2

s = (xl W l , x2ex2, *..» a± « Xif xi+1 9 a^, xi+2«xi+2, •••» xn®xn). (3)

So,

i i+1

S =  (1, 1, 1 , ..., 0 , x±+1 « a^, 1 ,...., 1) (4 )

since a^ = x^ and b • b = 0 .

The incorrect bit position in Y is marked by the 0 at position i in S. 

Position i+1 will either be a 1 or a 0 depending on the value of xi+1f an(j an  

other bit positions in S will be 1. Therefore, each bit position filled by a 
1 in S indicates that the corresponding bit position in Y is correct. It fol
lows that only bit positions indicated by a 0 in S could be incorrect and 

hence candidates for inversion to correct the error. Assuming position i+1 is 
a 0 , the choice is between position i and position i+1 since only one bit is 

in error. The bit position to be inverted is that bit position in which S has



a 0 in the position in question and a 1 in the left adjacent position. Thus 

step 4 of Algorithm 2.1 will correctly identify the faulty bit and produce the 

proper result.

A fault which has an effect for only one cycle can be considered to be a 

transient stuck-at fault, and the analysis for such a fault proceeds as 

described above with few changes. We assume that the fault is detected, ini

tiating a retransmission, but that the fault is not present during the second 

transfer. In this case, y^+-j in Equation 1 is not necessarily a^, but the 
value it would naturally assume. Thus, Equation 2 becomes

^  " X̂1» x2 1 xi» Xi+ 1, xi+2 * xn)•

With this change, Equations 3 and 4 assume the values

S = (xieXl, x2*x2, ..., a±*x±, xi+1®xi+1, xi+2«xi+2, ..., xn*xn).

S = (1, 1, 1, ..., 0, 1, 1, ---- 1).

The 0 in S again indicates the incorrect bit in Y, and Algorithm 2.1 functions 

properly in the presence of a transient fault.

2) AND Bridge Faults. Let X = (x^, x2, ...» xn) as above, and suppose 
that lines i and i+1 have an AND bridge fault between them. Clearly if

xi = xi+<|, then the output on lines i and i+1 would be xixi+-j = xi = xi+1, and 
in this situation no error would be produced by the fault. However, if

xi  ̂Xi+1 » then the faulty output would cause a change in the parity. More 
specifically, when x± i *1+1, then (xifxi+1) = (0 ,1) or (1,0 ), but

14
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i i+1

Y = <*v  x2, ...» X j X ^ ,  xi+2, ..., xn)

= ^x1» x2 » ***» °* °» xi+2 » •••» xn)D 

After detecting the parity error, X1 is sent and Y1 is received, where

i i+1

Y1 = (x2 » x3, ..., x±_ v  x±, xi+1xi+2, xi+1xi+2, xi+3, 

Thus, Y2 would be

i i+1 i+2
yrt /““ —— | ^ -

X1» X2, . . . »  X i, xi+1xi+2, xi+1xi+2, xi+3, • ••» xn).

S is formed from Y ® Y2, so

i i+1 i+2

s = x2»x2 .............. 0 • X i (  0 • (xl+17i+2), xi+ 2 • (xi+1xi+2),

V * n > '

Since a « a = 1 , a « 0 = a ,  and (b c) $ c = b + c, then

i i+1 i+2

S = (1’ 1..... Xi> xi+1xi+2 > xi+1 + xi+2 > 1> 1>-

The only values in S which are unknown are those in bit positions i, i+1, and

i+2 . Since x^ £ Xi+1 » there are only four possible cases, as shown by Table
2 .1. First we note that the positions of S indicated in Table 2.1 are the 

only ones which could contain 0 Ts. This table thus indicates that the bit 

position in error will always be marked by a 0 in S with a 1 in the left adja-
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Table> 2 .1. Cases for AND Bridge Fault Consideration in Algorithm

Case X.l xi+1 xi+2 si=xi si+1=xi+1xi+2 si+2=xi+1

Error in 
+ x^+ 2 position

1 0 1 0 1 0 0 i+1
2 0 1 1 1 0 1 i+1
3 1 0 0 0 1 1 i4 1 0 1 0 0 1 i

cent bit position. Therefore, step 4 of Algorithm 2.1 will always produce the 
correct result, and Algorithm 2.1 will recover the correct result in the pres
ence of a single AND bridge fault between logically adjacent lines.

3) OR Bridge Faults. Again, let X = (x.j, x2, ..., xn), and assume that 
lines i and i+1 are connected by an OR bridge fault. As with the AND bridge 

fault, if - xi+1, then no error would be produced by the fault. However,
x^ £ xi+-j, then faulty output would result in incorrect parity. That is, 

when xj[ £ xi+1, then (xi,xi+1) = (0 ,1) or (1,0 ), but

i i+1

^ X2 , . . . , X^ + X^+-J , X^ + , X^+2, ..., Xyj)

" ^X1 1 x2, ..., 1, 1, xi+2, • • ., Xn) .

Following the detection of the parity error, X1 is sent and Y1 is received, 
where

Y1 = (x2> x3
i i+1

xi-1» xi* xi+1 + xi+2 * xi+1 + xi+2 » xi+3
x„» Xi).
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Rotating to form Y2 would result in

1 i+1 i+2

- v*1 » x2 » xi* xi+1 + xi+2 » xi+1 + xi+2 » xi+3 »
S is formed from Y • Y2, so

).

i i+1 i+2

S = <xi#xlf x2®x2, ...» x^l, (xi+1+xi+2 )®1, (xi+1+xi+2 )®xi+2,

V xn>-
Since a « a = 1 , a ® 1  =a, and (b + c) ® c = b + c\

i i+1 i+2

S = (1, 1, .... x., xi+1xl+2, xl+1 + 1..... 1).

Again we examine positions i, i+1, and i+2. The four possible cases are shown 

in Table 2 .2 . The positions of S indicated in Table 2.2 are the only ones 
which could contain 0's for the OR case. The table indicates that the bit 

position in error will always be marked by a 0 in S with a 1 in the left adja

cent bit position. This being the case, step 4 of Algorithm 2.1 will produce 
the correct result for OR bridge faults between logically adjacent lines.

Table 2 .2 . Cases for OR Bridge Fault Consideration in Algorithm 2.1
Error in

Case x - ski+1 xi+2 3i=xi si+1=xi+1xi+2 si+2=xi+1 + xi+2 position
1 0 1 0 0 0 1 i
2 0 1 1 0 1 1 i
3 1 0 0 1 0 1 i+1
4 1 0 1 1 0 0 i+1
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Consideration of the different cases has shown that Algorithm 2.1 will 

produce correct results regardless of the type of fault. The correct result 
will be produced for stuck-at faults, as well as AND or OR bridge faults 

between logically adjacent lines. This will be true whether the fault is per

manent or transient. □

The maximum penalty for the use of this algorithm is one extra cycle per 

incorrect data transfer. Thus, if the fault remains for only a few cycles, 

then a momentary degradation in the transfer speed would be the only notice

able change, and the system would continue to function.

2.-3.. C.orre.Q.tiQn Birora P.US Jta Bridging &£ Any Two Lines

The algorithm presented in the preceding section will not function prop
erly for logically non-adjacent bridging faults. This can be illustrated by 

the following example. Assume that a data path consists of seven bits, and 
let there be an AND bridge fault between position i=2 and position i=5. 

Further, let X be defined as:

X = (1,0,0,0,1,1,0).

Then the above algorithm will produce the following series of results:

Y = (1,0,0,0,0,1,0) 

I  = (0 ,1 ,1,1 ,0 ,0 ,1) 

X1 = (1,1,1,0,0,1,0) 
Y1 = (1,0,1,0,0,1,0) 

Y2 = (0,1,0,1,0,0,15 
S = (1,1,0,1,0,1,1)

: received data 

: bit-wise complement of X 
: X rotated left by one bit 
: received data 

: Y1 rotated right by one bit
: Y 9 Y2
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, The incorrect bit in Y is located at position i=5, which is identified by

Algorithm 2.1 since = 10. But it also identifies, incorrectly, bit 3 in

Y as an erroneous bit since S2S3 = 10. However, it is possible to transfer
information on this bus system as shown by the following algorithm.

Algorithm Z*Z

Step 1: X -> Y. If there is no parity error, then Y is the correct data.

Stop.

Step 2: X1 -> Y1, where X1 = X. If there is no parity error, then Y1 is the
1

correct data. Stop.

Step 3: X2 -> Y2, where X2 is formed by rotating X one bit to the left.

Step 4: Let Y3 be obtained by rotating Y2 one bit to the right.

Define S = Y * Y1.

Step 5: For each bit position in word Y, call it k, correct the value for yk

if and only if ŝ. = 0 . If sk = 0, then make the correction according 
to the following procedure: if s ^  = 1, then yk = y3k, otherwise

yk = y^k-1# (Subscript arithmetic is done modulo word size to make 
it circular.)

/

Theorem: Algorithm 2.2 will ensure that the correct result is obtained in two 
retrys at most in the presence of one stuck-at fault, one transient 

fault, or one AND or OR bridge fault between any two data lines in 
the data transfer path.

'! i

I
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Proof: As with Algorithm 2.1 we will consider the different types

separately, the stuck-at, two types of bridging, and transient faults.

1) Stuck-at Fault. Let X = (x^t x^ t ... f Xi, ..., xn). Suppose that 

line i is stuck at a^f a^ in {0,1}, such that a^ £ x^. Then a^ = x^ = y^ so 
that

Y , X2 » •••» a^, x^+-j, • ••» Xjj) .

On the retry, X1 = (x^, x^ f ..., Xfl). By assumption the only fault on the 

data path is on line i, and since x^ - a^ this value is transferred correctly, 
and

Y1 - (x^f X2 » •••» x^, •••» x^).

With the recognition of correct parity, Algorithm 2 .2 halts at step 2 and 
presents the correct result:

Y1 = (xi» x2, xi? ...» xn).

Hence, the correct result is obtained in the presence of a stuck-at fault.

2) AND Bridge Faults. Let X = (x̂ ., x^ , ..., Xr) as above, and suppose 
that lines i and j have an AND bridge fault between them. Without loss of 

generality we assume that i < j. Clearly if x± = x then the output on lines 

i and j would be - Xi = Xy and no error would be produced by the fault. 

However, if xi £ Xj, then the faulty output would cause a change in the par
ity. More specifically, when x± £ Xj, then (..., x ^  ..., Xj, ...) =
(• • • i • • • i 1 j • • •) or* (• • • f > 0  ̂ • • •) | and

i J
Y " x̂<j» ^2 » • ••» x±Xj, ..., Xĵ Xj, Xj+*j, ..., xn)
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~ ^X 1» X2 » •••» 0 » •••» 0 > Xj+-j i •••» Xjj) .

After detecting the parity error, X1 s I is sent and Y1 is received, where

i j
Y1 = X2, . . . , X-jX , • • • , XiXj , Xj + , .... xn)

= (X1 > x2 , ..., 0 , ..., 0 , Xj+1, ..», xn)

This would result in another parity error,' and Algorithm 2 .2 then calls for 
the transmission of X2, which is formed by rotating X so that

i j
“ ^x2 » X3 , ••*, x^, xi+1, •••» x j, xj+1, ..., Xyj, x-j)

This value is then transmitted over the lines and Y2 will be

i j
Y2 - X3 , • • < i xi+1xj+1, ..«, xi+ixj+1, xn, x-j).

This value is rotated to the right to form Y3»

i i+1 j j+1

Y3 = (x1# X2 , • ••» xi( xi+1Xj+1, ...» Xj, xi+1Xj+1, ..., xn).

S is formed by the Exclusive-OR of Y and Y1,

S = Y ® Y1

i J
= ^X 1 * x-j, x2 ® x2» 0 « 0 , ..., 0 « 0 , ..., xn © xn)
— (1, 1, ...,0, ...,0, .«*, 1).

The 0 ’s in S appear in those locations identified by i and j, one of which is 

incorrect. Thus, all bit locations identified by a 1 in S will need no
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correction. Consider the bit locations identified by a 0 in S. If j > i+1, 

then the 0 fs will not be adjacent, and the correct values of x. and x. will be^ j
in positions i and j, respectively, of Y3. Therefore, the correct result will 

be obtained by making those substitutions in Y. If the 0 fs in S are adjacent,

then y3i will correctly replace y^, but y3i+<j will be a 0 , and this is not 
necessarily the correct value of x^+-|. However, since Xj = x^» then the 

correct value of y3i+.j will be obtained by substituting y3i for y3^+“j . With 
these substitutions,

Y = ^yi» Y2 » •••» y3i, • ••» y3j» • ••, yn) (j > i+D
“  ̂̂  "j > X2 1 •••» x^, x j, •••» x^)

or,

Y = (yi» y2 » •••> y3i( y3±, ...» yn) (J = i+D 
“ ^  » X2 » •••» xi» x j, ...» xn).

Therefore, under the assumption of an AND bridging fault, Algorithm 2.2 

transfers the correct result, regardless of the location of the bridge in the 
data lines.

35 OR Bridge Faults. The OR bridge fault case is identical to the AND 

bridge fault case except that the AND's between x^ and Xj are replaced by OR’s 
in the equations for Y and Y1. Thus, instead of 0 ’s there are 1*s in posi

tions i and j in these equations. However, since 1 « 1 : 0 • 0 : 0, the value 

of S is the same for the OR case .as it is for the AND case, and Algorithm 2.2 

produces the correct result for both.

4) Transient faults. Since Algorithm 2.2 is a multiple step process, a 

transient error could occur during different portions of the process. We

22
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assume that only one error will occur during the transmission process. If the 

error is not present during step 1 of the algorithm then the correct result 

occurs, so any transient error will first be detected by step 1. If the fault 

is no longer active during the second transfer, then no parity error occurs 

and the correct result is obtained by step 2 regardless of the type of fault, 

whether stuck-at or bridging. If the fault is active during the first two 

transfers and inactive during the third transfer, then the fault was a bridg

ing fault and step 3 would transfer correct information over line(s) not 

affected by the fault. Thus the steps 4 and 5 will function correctly regard

less of the presence or absence of a fault during the third transfer. Q

We have demonstrated that the algorithm correctly transfers information 

in the presence of stuck-at or bridging, permanent or transient faults.

Z. k. Logic for. Implementation

A small amount of logic is required for the implementation of Algorithm

2.1. A register is needed for the storage of the initial transferred value Y. 

Another register could be used to store Y1, although if sufficient time is 
allowed for stability of the retransmitted information, then the register for 
Y1 is not necessary. S is formed by an Exclusive-OR function between Y and Y1 

for each bit position. With Y, Y1, and S available as inputs, the logic for 
implementation of Algorithm 2.1 is shown in Figure 2.2. Each bit position 

then requires two registers (assuming a register for Y1), two Exclusive-OR 

gates, an inverter and an AND gate. Since only local information is needed 
for this function, no additional time is required for propagation from one

grouping to another.
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result k

Figure 2.2. Logic for Implementation of Algorithm 2.1.

The transmitting interface which is used for Algorithm 2.1 merely 

requires a multiplexer to select between the initial data or its shifted 

inverted representation. There are several ways in which this could be imple
mented, and the necessary logic is not shown. However, only one control line 

is needed to select between the normal data and that required for retry. 

Hence, one additional line from the receiving interface could be used, which 
when true, calls for a retransmission of data and at the same time selects the 
correct value for the transfer.

The logic for Algorithm 2.2 is somewhat more complicated since the algo
rithm itself is more involved. Again a register is required for storage of Y; 

an additional register is required for Y1. The same register/signal stability 
problem exists for Y2 in this algorithm as for Y1 in Algorithm 2.1, and each 

bit position requires an Exclusive-OR gate for the S function. The gating 

required for step 5 of the algorithm is derived directly from the wording of
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the algorithm, and it is shown in Figure 2.3a. Here each bit position 

requires three registers (assuming a register for storage of Y3), an 
Exclusive-OR gate, three AND gates, an OR gate, and two inverters. Again only- 

local information is used so there is no propagation time for information to 

travel from one side of the bus to the other.

The interface used for transmission of information in Algorithm 2.2 is 

also quite simple, and could be constructed with an Exclusive-OR and a multi

plexer per bit as shown in Figure 2.3b. Two lines are required to select the 

proper information for transfer, but the control function is still quite sim

ple. In Figure 2.3b, c -jCq = 01 corresponds to the first step of Algorithm

2.2, c ^ q =11 corresponds to the second step of retransmission with comple

mented data, and c^qq = Ox to the third step of retransmission with rotated 
data. This transfer could be controlled by using additional lines to specify 

retry values to transfer, or the control could come from sequential logic at 

both ends.

Z > 5 . ' Concluding -Ssmarka

We have presented two algorithms which will reliably transfer information 
from one module to another in the presence of a single permanent or transient 

fault on the bus. Algorithm 2.1 can be used to cover bridging faults when the 
logical and physical adjacency are the same for the bus, and Algorithm 2.2 can 

be used for the case when the physical adjacency may be different from the 
logical adjacency.

The logic for the implementation of the algorithms is relatively simple 
and could easily be incorporated into the circuitry used to interface to the

25
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Figure 2.3. Logic for Implementation of Algorithm 2.2.
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bus. Algorithm 2.1 needs an additional line which indicates to the source 
module that an error has been detected and that the retransmission is needed.

‘ Algorithm 2.2 can be implemented either with one or two additional lines, with

a smaller control complexity needed for the two line implementation. Each 

algorithm requires that additional logic be added to control the interaction 

and store intermediate values. Therefore, the cost of implementation is an 

additional bus line and several gates per bit position. The increased control

I complexity for Algorithm 2.1 is given for a simple read protocol in Chapter 4.

One additional benefit of this logic is the monitoring of errors which occur 

on the bus and are detected and corrected. This information could be used to 

report errors to higher levels in the system. By monitoring the transfer 
medium, the system itself can request repairs when needed.

For permanent faults, the worst-case impact of the proposed methods is to 

reduce the throughput to 50% for Algorithm 1 and to 33^ for Algorithm 2.
\

Faults which occur will sometimes be in agreement with the data transferred, 

and hence not cause an error. Therefore, under the assumption of random data 

transfers, the transfer rates should be better than those of the worst-case 

conditions.

i



28

CHAPTER 3

MODELING THE INTERACTION OF THE ASYNCHRONOUS CONTROL SIGNALS
OF BUS LEVEL PROTOCOLS

l.±. Introduction
Protocol models are methods of representing events which occur at asyn

chronous times triggered by independent units. In order to model the random 

nature of this type of interaction, different models of system behavior have 

been developed. Each of these modeling methods presents system features in a 

different manner, and each method was developed to study a different problem 

or aspect of a problem. Among these methods are Petri-nets, UCLA graphs, flow 

charts, programming languages, and state machines. The method which will best 

fit with the goals of this thesis is one which will accurately represent the 
signals and processes involved in bus level communications.

Petri-nets have been used extensively to study the concurrency or paral

lelism of the components of a system [18,83. This technique is applicable to 
many types of systems, and it is not limited to systems showing parallelism. 

The Petri-net method represents conditions in the system with special nodes 

called places, events which occur in the system with nodes called transitions, 

and the correlation between conditions and events are represented as arcs. 

Arcs from places to transitions identify the conditions which must be true 

before the event can occur, referred to as the firing of the transition. Arcs 

from transitions to places identify those conditions which become true when 

the transition fires, or the event occurs. A true condition is indicated by
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placing a marker called a token in the place representing that condition. An 

event is enabled when all of the arcs leading to the transition representing 

the event have tokens in their respective places. When an event takes place a 
token is removed from each place having an arc leading to the transition, and 

a token is added to each place which is on an arc leading from the transition. 

The random nature of the asynchronous events is represented by this model 

since no timing information is imposed on an enabled transition; thus enabled 
transitions can fire in any order.

Petri-nets have been used for many different purposes, including design 

verification and automation [19], systems of software [20,21], systems of con

current processes [22,23,24], performance analysis of computers [25], and even 

social systems [25]. Since Petri-nets provide a convenient method for model

ing asynchronous concurrent processes they have found application in modeling 
protocols of various systems [10,7,27]. Of particular interest to this study 
is the work of Merlin where the time-Petri-net is introduced [28]. In this 

model timing constraints are added to the firing of a transition, specifying a 

minimum and a maximum time for the action to occur. This model allows the 

study of lost messages in a protocol system, where the message is modeled as a 

token and the entire communication system is represented by a time-Petri-net. 

This work identifies the requirements that a system must have to be able to 
recover from the loss of a message in the system [29].

The use of the time-Petri-net has been used by Merlin to develop a metho

dology for the design of a protocol [14]. In this methodology a designer 

represents the protocol system under development as a time-Petri-net and then
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enters this information into a computer-based design tool. The design tool 
will then search the states which the system can attain to search for 

deadlocks and illegal looping conditions. Faulty conditions are made known to 

the operator who can then take steps to rectify the errors.

Another modeling technique which has been used to represent protocols is 
the UCLA graph [30,31]. This model is equivalent to the Petri-net representa

tion, yet it has many properties which make it attractive for representing 
host-to-host communication protocols. Postel [6] uses this method to explore 

host-to-host protocols, in general, and portions of the ARPANET protocol, in 

particular.

Protocols are also represented by various forms of finite state 

machines [32,33*10]. The state machine model can represent the system at dif

ferent levels, from the most abstract to the most detailed. Different 
representations are useful for different purposes, each representation provid

ing different insight into another aspect of the system being modeled. The 

use of the state machine models found in most of current literature represents 

the system at a higher level of abstraction than is useful for bus level com

munication, but the state machine model can achieve the degree of detail 

needed for this study.

The model used for investigating bus level protocols must be capable of 

representing the system at the lowest level, that level which deals with the 

signal levels on the lines of the bus and response to the information which is 
present on those lines. This model must represent the real-world and the 
hardware which is used to implement the protocol itself. The technique needs
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to reflect the modularity with which real world systems are built, and be able 
to include modules which are added to the bus to satisfy system requirements. 

This means that the model must be capable of expanding to accept more modules 

without changing the modeling technique. It must also be able to represent 

the errors which can occur and their effect upon the system.

The Petri-net model does not satisfy the requirements for this bus level 

analysis. Although Petri-nets themselves are not limited to two-party proto

cols, the information which appears in the open literature concerning the 
analysis of protocols concerns the exchange of information between two units, 

as exemplified by the work of Merlin [14]. Petri-net analysis requires a 

model which encompasses the entire system, so to include additional functional 

units the Petri-net model would have to be reconstructed adding the arcs, 

transitions, and places necessary to communicate with the new module. This 

violates the modularity requirement of this analysis.

Also, the Petri-net model is not an adequate physical level representa

tion since the basic method for representation .of an error is to assume that a 
token, becomes lost. The action required to correct the error would be to 

replace the token. In a distributed system where a byte passing between units 

on a noisy communications line is represented by a token this model is fairly 

accurate, but this does not correctly represent the system when the token is 
defined as the assertion of a signal line. With this model, replacing the 

token could be accomplished by asserting the line again, but since it is 
already asserted that would be difficult to do. Another possible sequence is 

to release the signal and then assert it again, but this also causes problems
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since the release of the signal may be interpreted by another module in the 

system as a different token, initiating an out of sequence action. Thus, the 

Petri-net is not an adequate model for representation of bus level protocols.

The UCLA graph model is also not an appropriate modeling technique for 
bus level protocols. Since the UCLA graph is equivalent to the Petri-net, it 

suffers from the same drawbacks as mentioned above. It does not expand in a 

modular fashion to accommodate additional functional units, and the error 

representation does not accurately model the errors which occur on a bus.

The state machine model for a protocol does adequately represent the 

modularity of a bus system, and it also provides an accurate model of the 
errors which occur. Adding functional units to the system can be accomplished 

by adding another state machine to an analysis which already consists of a 
number of state machines. The communication between these modules is accom

plished over the common system bus, and errors are represented by control 

lines being incorrectly asserted (or released). Thus, the state machine model 

is superior in both the modularity and the error representation from the 

models previously discussed.

Another advantage of the state machine model over Petri-nets is that the 

bus control logic can be directly designed from the state machine description 

and vice versa; this is not true of Petri-nets. There is an in-depth treat
ment of state machines in the literature. In particular, algorithms exist for 

reducing any state machine by removing equivalent states without changing the 

behavior of the machine. Also, there are algorithms for determining if two 

state machines are equivalent. There are no known algorithms for reducing a 

Petri-net, or for proving that two Petri-nets are equivalent.

l
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State machine models have been used for representing various levels of 
communication protocols [3*1,35]. In this thesis the level of representation 

is at the physical or hardware level. The state machines given in this and 

other chapters deal with the assertion of signals, and the interpretation of 

signals, which are lines of a bus. We assume that a state machine is level 

sensitive; that is, it monitors the level of a control signal and not the 

transition from 0 to 1 or 1 to 0. Thus the levels of control signals and the 

present state uniquely identify the next state. Each state in a state machine 

represents a different configuration of the module being modeled, and is not a 
representation of the state of the system as a whole. The state of the entire 

protocol system would consist of a collection of states of all of the modules 
as well as the signal levels on the common bus lines.

1 . 2 .  State Machine Representation M _ a  Generic Read Cycle

As shown in Figure 1.1 a bus oriented system consists of several modules 
communicating with one another over a common set of bus lines. Although some 

protocols exist where one module may send data to several other modules simul

taneously [363, most systems allow communication between only two modules at a 

time. The problem of arbitration for control of bus lines involves all of the 

modules, and this problem will be discussed later. Once control of the bus 
lines has been granted to one module, called the masterf that module will con

trol the data interchange. The master will assert the signals necessary to 

transfer data to or from another module, called the slave; the slave will 

assert the signals needed to respond to the master. This interaction between
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a master and a slave is important because of its extensive use in bus systems, 

and we will analyze this exchange in detail. The example used for this 

analysis will be the read cycle, where the master requests a data transfer 
from a slave.

The lines which are needed to control the action between a master and a 

slave are the request line ('req') asserted by the master and the acknowledge 

line ('ack') asserted by the slave. Some other information is also needed to 

determine whether the cycle will be a read, write, or some other type of 

cycle, but this information can be encoded as a part of the address and does 

not need control line interaction. Once the master has control of the bus, it 

asserts an address, waits for an appropriate delay to allow for propagation 

delay and signal skew times, and asserts 'req'. All of the slaves on the bus 
receive and decode the address, but under fault-free conditions only one will 

respond. This slave performs a read function and asserts the data onto the 
data portion of the bus. With the data, the slave also asserts 'ack' to ack

nowledge to the master that the data have been obtained and are now on the bus 

for the master to accept. When the master recognizes the assertion of ’ack', 

it waits for a short period to allow for signal skew and accepts the data. Of 

course, the slave could provide the delay by first asserting the data and, 

then, after waiting an appropriate amount for skew time, assert the ack

nowledge. However, in most systems the master provides this delay and, there

fore, we will assume that to be the case in our generic protocol. With the 
acceptance of the data, the master releases 'req', and this release indicates 

to the slave that the information has been transferred, so the slave releases

the data and 'ack1. After the master has released 'req' it delays long enough
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to prevent spurious responses and releases the address. With all of the sig
nals released, the cycle is over and another cycle can begin.

The above written description of the interaction which takes place in a 

simple read cycle can be more clearly represented by a set of state diagrams. 

The state diagrams for this interaction are given in Figure 3.1. A complete 

description of the states in Figure 3.1 is given below, with the states for 

the master presented first, followed by the information for the slave. In the 

figure the assertion of a signal ,namef is denoted A(name), and the release of 

a signal is likewise indicated by R(name).

Master state Machine

State 0: Idle state. The master remains in this state until a read cycle is

needed and the master has been granted control of the bus. This condi

tion is denoted by assertion of the signal ’read’.

State 1: Assertion of address. The synchronous information needed by the

slave is asserted by the master unit (indicated by 'adr1 in the diagram). 

This includes not only the address information, but also any additional 

lines needed to indicate what type of interaction it is (read, write, 
read-modify-write, etc). The master moves to the next state a fixed 

amount of time after entering this state; in this example, the time is 
150 nanoseconds (nsec). This time allows for the settling of address 

lines to a stable value and the propagation delays through th address 

decoders of slaves.
State 2: Assertion of request signal. The request signal ’ reqf is asserted

to indicate to the slave that the operation should be initiated. The
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MASTER SLAVE-

Figure 3-1. State Diagrams for Read Cycle.
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master remains in this state until the acknowledge signal from the slave 
fack* has been detected, or until an error time-out has been reached, 

indicated by the signal ’time-out*. The time-out would occur if no slave 

responded to the address asserted by the master. Normal operation occurs 

when ’ack' is received from a slave and the master moves to state 3.

State 3: Delay state. This state is a delay state to allow for skew on the
data lines of the bus. In this example, the skew period is assumed to be 

75 nsec, so 75 nsec after entry in state 3 the master moves to state 4.

State 4; Accept the data. The master accepts the data asserted by the slave. 

In addition, ’req’ is released to indicate to the slave that the opera

tion has been completed. The master remains in this state for 75 nsec to 

allow the release of ’req’ to propagate as needed before releasing ’adr’. 
It them moves on to state 5.

State 5: Release address. The synchronous information asserted in state 1 is

released. The master then returns to the idle state to await another read 
request.

State 6: Error state. This state is entered if for some reason the ’ack’

signal is not received before ’time-out’ occurs. This state detects the 

condition that an address for a non-existent slave has been asserted. 

This state prevents the bus from reaching a condition where the only 
method for continued function is to reset the interfaces.

Slave State Machine

State 0: Idle state. This represents the state of the slave until the time

when a response from it is required. A response will be required when
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the address matches the assigned address space of the slave ('adrok') and 

freq* has been detected. When this condition is true, then the slave 

enters state 1.

State 1: Prepare data. The slave waits for the functional unit to provide

the data to be placed on the data bus. For a memory unit, this may 

involve a memory cycle; for an interface, this information may be immedi

ately available in registers. When the data are ready for transmission 

on the data bus, the signal Tdata ready1 is asserted by the functional 

portion of the slave. This allows the interface to proceed to state 2. 
State 2: Assert data and acknowledge. The slave asserts the data lines and

the *ackr signal. The slave remains in this state until the release of 
the freq’ signal has been detected, indicating that the master has com
pleted the transfer and that the slaved signals should be released. At 

this time the slave enters state 3.
State 3: Release data and acknowledge. The slave enters this state when the 

transaction has been completed, and it releases both the data lines and 

the acknowledgment*line. Then it returns to the idle state to await the 
next time when an interaction would be necessary.

Normal operation occurs when the master enters state 1 and asserts the 

synchronous address lines. After the appropriate delay, state 2 is entered 

and the request line is asserted. The addressed slave will leave the idle 

state when it detects *req’. When the functional part of the slave unit pro

vides the requested information, the slave asserts the data bus and the ’ack’ 

signal (state 2 of slave). When the master detects the assertion of fack’, it 

moves to state 3 and then to state 4. In state 4, it accepts the data which
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have been placed on the bus by the slave and releases the request line. 

Regardless of what the slave does next, it waits another delay time, enters 

state 5, releases the address lines, and returns to the idle state. 

Meanwhile, when the slave detects the release of freqf, it moves to state 3, 

releases the data bus and the acknowledge line, and returns to the idle state. 

Protocols of this type are sometimes referred to as four-cycle protocols, 

after the sequence of four actions for each data transaction: A(req), A(ack), 
R(req), R(ack).

This simple read cycle provides the basis for studying techniques for 

detection of errors which occur on the control lines. In addition to detect

ing the errors, techniques are available to allow continued operation in the 

presence of the faults. These techniques will be discussed in detail in 

Chapter 5. First, we consider a more complicated read cycle utilizing addi
tional control lines to implement Algorithm 2.1.

1-3.- Read. Cycle Using Algorithm £.1 for Data Correction

Algorithm 2.1 was introduced in Chapter 2 as a means of using time redun

dancy to correct errors which occur while transferring synchronous informa
tion. For most bus systems the synchronous information consists of two 

transfers, one for the data and one for the address. The "address” may also 
contain information which indicates the type of transfer, but the timing 

requirements are the same as for the address itself, so these lines are 

grouped together. Thus Algorithm 2.1 needs to be applied to the address from 
the master to the slave as well as the data from the slave to the master.
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This appears to be a simple task; the master asserts the address with 

correct parity, and if the slave detects a parity error, it requests a retry. 

Likewise, if the master detects a parity error when the slave asserts the 
data, then the master requests a retry. This simple picture is no longer 

correct when the location of the fault is unknown. The problem is to make 

sure that all of the interfaces involved in the transfer will interpret both 

the original address and the retransmitted address in the same way, and not 

have a second slave responding to the retransmitted address as if it were a 

correct address. The answer is to have all of the slave interfaces not only 

monitor the data lines but also the line requesting a retry so that any retry 

is recognized as such.

The state diagrams for master and slave units which incorporate Algorithm 
2.1 are shown in Figure 3*2. Two more control lines are needed for this 

transfer than were needed for the read cycle of Figure 3.1. The condition 

that a parity error has been detected on the address lines is represented by 

’errinadr’, and a when a slave detects this condition it asserts the control 

signal 'adrpe’. More than one slave could assert the common ’adrpe* line, but 
this does not pose any problem. Likewise, the condition that a parity error 

has been detected on the data lines is represented by Terrindat’, and master 

lets the slave know this by asserting ’datape*. These lines allow the dif

ferent modules involved with the protocol respond in a predictable way.

Like the simple read cycle of Figure 3*1 this modified read cycle is also 
used as an example in this thesis. A complete description of the states 

involved in both master and slave state diagrams for this protocol system is
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MASTER SLAVE

Figure 3*2. Read Cycle Modified to Utilize Algorithm 2.1.



42

included in Appendix A. We now briefly describe the modifications to the ori
ginal state diagrams to accommodate Algorithm 2.1.

The effect of adding states to handle the error correction for the master 

state diagram can easily be seen by comparing Figure 3.1 with Figure 3.2. 
First we describe the state diagram of the master, on the left in Figure 3.2. 

States 7, 8, and 9 have been added to respond to a problem with a parity error 

on the address lines, and states 10, 11 and 12 inform the slave when a parity 

error has been detected on the data lines. State 7 is entered when a slave 

has recognized a parity error on the address lines and asserted ’adrpe’. The 

action of the master is specified by Algorithm 2.1: the old address is 

released as well as the *req’ signal, the new address is formed and asserted 

on the address lines (state 8), and after the appropriate delay the ’req’ sig

nal is again asserted to inform the slave that the retried address is ready to 
be accepted. When the slave responds with 'ack', then the master moves on to 
state 3 as before.

In like manner when the master detects a parity error on the data lines, 

it leaves state 3 by going to state 10. This captures the value to be 
corrected and causes the assertion of the ’datape* signal informing the slave 

that a retry is needed. When the slave releases ’ack’, the master moves to 

state 11 to await the new data. In state 11 it also releases ’datape* which 

provides a signal to the slave to assert the corrected data. When the new 

’ack’ is detected, the master waits for a skew time (state 12), accepts the 

data, and releases ’req’ (state 13). The corrected data are formed from the 

two values according to Algorithm 2.1. With the addition of these seven
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states, the master has been modified to correct the synchronous data passed on 
the bus.

The modification to the slave state diagram is more involved than the 

modification performed to the master. States 4, 5, 6, 9, 10, and 11 are used 

to guarantee the correct transfer of the address, and states 7 and 8 are for 

the data transfer. Each slave will be idle until a *req’ signal is detected, 

and then the conditions which are present will determine how it proceeds in 

the state diagram. One of the two conditions detected is the fact that the 

address is free of parity errors and matches the slave’s assigned address 

space, indicated by ’adrok’. The other condition is that a parity error has 

been detected by the slave, indicated by ’errinadr*. If ’adrok’ is true and 

no parity error has been detected then the slave will move on to state 9 when 

’req’ is detected. If ’errinadr’ is true, then upon detection of ’req’ the 

slave will move to state 4. However, if neither of these conditions is true, 

then the slave will move on to state 10 with the detection of ’req’. The 

result of these three states is that when a ’req’ is received each slave will 

enter either state 4, 9, or 10, and if a parity error is detected anywhere in

the address path, either on the bus itself or in the slaves, then a retry

address is called for. This is accomplished by state 4 when the error is on

an address line common to all units, and by state 11 when the error was
detected by another slave unit. The slave units then wait in state 5 and when 

the retry value becomes available the correct address either matches and the 

slave proceeds to state 1 or the address does not match and state 6 is

entered.
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The corrections needed for a fault on the data path are taken care of by 

entering state 7 when the slave detects the assertion of 'datape', where the 

slave releases the old data. When 'datape* is released, the slave asserts the 

value formed according to Algorithm 2.1 and releases the fackf signal (state 

8), and waits for the master to signal the end of the cycle. This is indi
cated by the release of the freq’ signal, at which point the slave proceeds to 

state 3 to release the data value and return to the idle state.

The state machine method of protocol modeling has allowed us to represent 

the interaction at the lowest level and accurately model the system. We now 

present a method which enables the use of a general purpose computer to help 
analyze and test these protocols.
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CHAPTER 4

COMPUTER-AIDED ANALYSIS OF PROTOCOL INTERACTION

4.J_- Introduotion and Pcgyioua Work

There are a variety of different approaches to protocol specification and 

implementation which have led to diversified applications of computers to aid 

in the evaluation of protocols. Computers have been used to aid in the 

exercising of protocol behavior according to its definition, and they have 

also been used to explore the set of assertions that can be proved or inferred 
from the specifications of the protocol. We have examined a number of pro

cedures and devised a technique consistent with our desires to test the proto
col to find latent errors.

One of the most obvious ways to use the computer is to explore the possi

ble states which the system could assume. This type of reachability analysis 

has been performed by those who use a global graph model for the protocol, 

such as a Petri-net or a UCLA graph C37»13»6]. Searching the system space in 

this manner provides insight into he interaction of the component modules. If 

the known information includes those system states which are improper or for 

some reason incorrect, then the reachability analysis will indicate the 
existence of these errors if that combination of conditions is reached when 

the protocol is exercised. By the introduction of the token machine concept 

this type of analysis can identify deadlock conditions [371. Also included in 
the errors detected are the presence of cycles in the specification and condi
tions which can lead to an infinite number of states for that 
representation [133*



46

Another type of computer interaction allows the exploration of protocols 
which are specified using limited state machines for each action [38]. The 

computer is used to find allowable sequences for the interaction of the state 

machines and create what is called a duologue matrix. This matrix identifies 
well-behaved and erroneous sequences. The duologue matrix method was ini

tially developed to aid in two-party protocols, but further work relaxed the 

requirements and allowed multiple units to be modeled and the method to be 

further automated [15,39]. The extension of this method developed by West is 

very interesting in that it reduces the number of states examined by perform

ing the system exploration with a perturbation technique. A complete search 

of successor states is made for each collection of states of the system. In 

this way the protocol system is tested for deadlocks and other errors, where 
these errors can be detected by incorrect combinations of states.

Still another approach to checking the validity of protocols comes from 

representing the protocols in a programming fashion instead of using graphical 

methods. Brand and Joyner [40] present a method which combines the perturba
tion technique of West with representation of the protocol in a programming 

language. Their technique explores the tree of execution paths possible from 

the initial invocation of the protocol in the language. A different approach 

is taken by Sunshine, et al. [12]. Here the protocol is expressed as a combi

nation of state transition models and abstract data types, and the AFFIRM sys

tem is invoked as a theorem prover to verify different properties of the pro
tocol.
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These previous efforts have shown that the computer is a valuable tool to 

use in investigating the interaction of protocols* We define a,proposed pro
tocol in terms of state machines, and use the computer to exercise the proto

col to find the errors which may occur. With this method we can also intro

duce faults on the signals involved so that the vulnerability of the protocol 

to errors can be investigated. In order to utilize a computer to aid in this 

process we must represent the protocol in such a way that a computer can 

understand and exercise it and at the same time have the representation accu

rately model the errors which can occur.

iL-2. SML - A .State Machine £ear,aaantation Language

One of the advantages of the state machine method of representation of a 

protocol is that it is very easy to understand and follow. The state of a 

unit involved in a transaction is totally determined by the state that it is 
in, and all possible successor states are quickly identified. The qualities 

which allow humans to understand the graphical representation quickly are not 

automatically communicated to a computer. In order to utilize the power of a 

general purpose computer in the protocol analysis the state machine must be 

presented in a regular fashion. We have developed a language for representing 

state machines which can completely specify the state machine as represented 
in graphical form and can be used to aid in protocol analysis.

A finite state machine is given by a 5-tuple:
State Machine = < I S 0 NS-map 0-map >

where
I is a set of inputs;
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S is a set of states;

0 is a set of outputs;

NS-map is a state transition mapping (I X S -> S) 
of current state and inputs to next state;

O-map is an output mapping (S -> 0)

of current state and inputs to the outputs.

The 0-map corresponds to a Moore machine or state assigned output representa

tion, since this is the representation which we use throughout the thesis. 

With some modifications to the language we can also allow Mealy machine or 
transition assigned output representation, which will require the 0-map from 

I X S to 0. This information will completely specify the action of a device 

whose behavior can be described with a state machine. However, the model we 

have used for a protocol system calls for a number of independent modules, the 

behavior of each to be specified by a state machine. In order to describe 
state machines which are part of a protocol system we have developed a 

language which uses two additional fields in representing a state machine:
State Machine = < N D I S 0 NS-map 0-map > 

where I, S, 0, NS-map, and 0-map are defined as above, and

N is a name identifying a particular state machine;

D is an optional set of declarations.

The name identifies the state machine within the system to permit signal iden

tification. The set of declarations is optional and allows the specification 

of limits or other constants to be used in making decisions in the choice of 

next state. For example, constants introduced in the set of declarations can 
define the address range to which a slave will respond.
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The language we developed to represent the state machines is called SML - 
State Machine Language. It is a context-free grammar which can be used to 

completely specify state machines, and SML descriptions of modules provide 

input to computer programs which will evaluate the correctness of the proto

col. A description of the basic elements of the language is given in Figure

4.1, and a complete description of the language as well as the assumptions 

made about the signal names and other tokens involved is included in Appendix

B. The 'smname1 declaration allows the state machine to be uniquely identi

fied. A ’define1 statement sets up a constant which will have significance 

only within that state machine. More than one define statement may be 

included. The inputs, as well as the outputs, are divided into global and

State Machine = N D I S 0 NS-map O-map ;
N = smname <identifier> ;
D s { define <identifier> = <value> ; }
I = <inp> { <signal_name> } ;

<inp> = ginputs ! 1inputs 
S = states <integer> ;
0 = <out> { <signal_name> } ;

<out> = goutputs J loutputs 
NS-map = <transition> { <transition> }

<transition> = tran <state_number> -> <state_number> : <condition> ; 
<condition> = <logic_on_inputs> ' <delay> i

<logic_on_inputs> <logical operator> <delay> 
<output_def> = <assert_def> I <release__def> ! <do_def>
<assert_def> = assert <signal_name> = <value> in <state_number> ; 

<release_def> = release <signal_name> in <state__number> ;
<do_def> = do <signal_name> = <value> in <state_number> ;

Figure 4.1. Description of SML Grammar for a State Machine.
Variables are inclosed in pointed brackets. Curly 
brackets (...) call for 0 or more repetitions of the 
contained item.
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local groups. The global signals are common to all modules attached to the 

bus and are accessible to each module. The local signals are used for commun

ication with the other sections of the module. That is, a local signal is 

used to allow the functional portion of a module to respond to the interface 

portion (see Figure 1.1). States of the module are identified by integers, so 

the ’state* statement establishes the set of states by giving the highest 

state number. The next state information is given by identifying transitions 

between states. A transition is identified by the state where it begins, the 

state where it ends, and the conditions under which the transition occurs. 

Conditions include logic on the inputs, delays, or a combination of both. The 

output information is given by identifying states where the signals are 

asserted and released. The ’do’ portion of this process allows specification 
of a signal which will be asserted while the state machine is in a state and 

released upon exit from that state.

Using this language each state machine in a protocol system can be com

pletely specified, and computer analysis can accept this description and exer

cise the system. The following section gives an example of the use of the 

grammar.

A. 2- Representation _q£ State Machines with SML

Figure 4.2 contains modified versions of the master and slave state 

machines for the read cycle of Section 3.2. The condition for the slave to 

leave the idle state has been modified to add an address specification and to 

check that the transaction is a read cycle. Figure 4.3 gives the SML descrip

tions for these two state machines.

I

I



51

MASTER SLAVE

figure 4.2. Master and Slave State Machines for a Read Cycle
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SML Description of Master:

smname master; 
ginputs data, ack; 
linputs read; 
states 6;
goutputs adr, req; 
loutputs readdone; 
tran 0 -> 1 : read == 1; 
tran 1 -> 2 : delay(150,

# master state machine
# global inputs (from the bus)
# local (internal) inputs
# highest number for states
# global outputs (to the bus)
# local (internal) outputs
# next state map 

150);
tran 2 -> 3 : ack == 1 ;
tran 2 -> 6 : acc__delay( 2000);
tran 3 -> 4 : delay(75,75);
tran 4 -> 5 : delay(75,75);
tran 5 -> 0 ;
tran 6 -> 0 ;

assert adr = mkadr(2000,4000) in 1 ; # output map
assert req = 1 in 2 ;
release req in 4;
release adr in 5;
release req in 6;
release adr in 6;

SML Description of Slave:
smname slave; 
define amax = 3000;
define amin = 2000;
ginputs req, adr; 
linputs data^ready, ldata; 
states 3;
goutputs data, ack; 
loutputs prepare_data; 
tran 0 -> 1 : (adr < amax)
tran 1 -> 2 : data_ready =
tran 2 -> 3 : req != 1 ;
tran 3 -> 0 ;

# slave state machine
# maximum address allowable
# minimum address
# global inputs (from the bus)
# local (internal) inputs
# highest number of a state
# global outputs (to the bus)
# local (internal) outputs 
&& (adr >= amin) && req ;
= 1; # next state map

do prepare__data = 1 in 1 ; # output map
assert data = ldata in 2 ;
assert ack =1 in 2 ;
release data in 3 ;
release ack in 3 ;

Figure 4.3. SML Descriptions of the Master and Slave State Machines.
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As can be seen from the two figures, names are assigned to the state 

machines. These names do not have any significance within the state machine 

itself, but they do allow the protocol system as a whole identify them for its 

own purposes. This permits these machines to be known by a unique name 

throughout the system, and local signals have this name prefixed to them in 
the actual simulation.

The names which are used in the example fall into three categories: con

stants, global signals, and local signals. The constants are identified in 

the slave description by the ’define* statements. In this case the two con

stants (’amax’ and ’amin’) identify the assigned address space of this slave. 

Declarations of this type are optional, as can be seen by their absence from 

the SML representation of the master. The global signals are the address bus 

(’adr'), the request signal of the master (*reqf), the data lines (’data’), 

and the acknowledge signal of the slave (’ack*). These are identified as 

inputs or outputs of the state machines as appropriate. If the state machines 

were expanded to include a write capability as well as a read capability, it 

would be appropriate for the data lines to be listed as both a global input 
and a global output. Local signals provide communication within functional 

units: ’read* initiates the read sequence when the functional unit requires a 

read cycle and bus ownership has been granted to the master; *prepare_data* 
instructs the slave functional unit to perform a read cycle; ’data^ready* 

indicates that ’ldata* contains the requested information; and ’readdone' lets 

the master functional unit know that the data has been acquired.
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The set of states for each state machine is identified by the ’state* 

statement: 6 for the master and 3 for the slave. • States are numbered consecu

tively from 0, and by convention the 0 state in each diagram is the idle 
state.

Each transition is listed by giving the states involved and the condition 
under which the transition can be made. If the transition is always made the 

condition portion of the statement can be omitted, as seen by the transitions 

to idle in both diagrams. The asserted value for signals is 1, and logic on 

the signal lines is tested against this value, such as ’read == 1’. The logic 

equations required are expressed in the syntax of the C language. These logic 

equations check conditions of signal lines, data values on groups of synchro

nous lines, or delays.

There are two types of delays which are used in the SML descriptions: 
delays which must occur before moving to another state and delays which pro

vide an alternative path after a specified time. A delay which forces action 

to remain in a state for a specified action until a certain period has elapsed 
is exemplified by the 150 nsec delay between state 1 and state 2 in the mas

ter. The statement which specifies this time uses the ’delay* function. How

ever, when a delay is specified which identifies an alternative to some other 

action the *acc_delay* function is used, as shown by the error exit from state 

2 in the master. The *acc_delay* function was named for an accumulated delay. 

This delay need not be completed before the state machine moves on to another 
state. The ’delay’ function allows specification of a random value, giving 

only the minimum and maximum values, while the ’acc_delay* function identifies

only one value.
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The action imposed on the signals is specified by the Assert*, 

* release*, or *do* statements. Signals can be asserted in one state and 
released in another, as shown by the *req* signal which is asserted in state 2 

and released in state 4 of the master. Note that the error exit must also 

provide a release of signals previously asserted. If a signal is to be 

asserted upon entering a state and released upon entering any succeeding 

state, then a ’do* specification can be used instead of separate * assert* and 

’release* statements. This is exemplified by the *prepare_data* signal in the 

slave diagram. The assumed asserted value for signals is 1, but the 'assert* 

statement allows the signal value to be set at 0 also. The names which 

represent collections of lines which pass data synchronously, such as *adr', 

can be asserted to any desired value. The 'mkadr* function which appears in 

the master SML description is one of several functions which return a random 

value. The arguments to the function establish the permissible range of the 

request, and the value returned will fall somewhere within that range. This 

example shows the master capable of generating addresses which cannot be 
responded to by the slave.

SML provides a convenient method of presenting with a regular grammar the 
information contained in a state machine. A complete SML description of a 
complex state machine is given in Appendix C. By representing the state 

machines with SML the computer can exercise the protocol system to check for 

error conditions. We now present an example of creating an exercise system 
using SML descriptions.
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1.1. Using. M L Descriptions with iha Protocol Exercise System

The previous section presented the method of representing state machines 

with SML. In this section we combine SML descriptions of the several state 

machines which comprise a protocol system into a protocol exerciser which will 

check the protocol for error conditions. We assume that each state machine 
which is used in the protocol description is contained in its own file, and 

our intent is to combine the information given in these files with some other 

information and emerge with a program which will exercise the system. Figure 
4.4 gives the set of commands necessary to make a protocol exercise system of 

the two SML descriptions presented in the previous section. The descriptions 

are contained in the files ’master' and 'slave'. It is convenient to give the 

files the same name as the state machine which they represent, but this is not 
necessary.

The protocol system is built around routines which have been developed 
using the C programming language, so the first step in this process is to con

vert the SML descriptions into routines in C. The 'mfsm* commands which are 

shown accept the SML descriptions from the files listed and create a number of

mfsm < master 
mfsm < slave 
makenames master slave 
makedoup master slave 
makeit master slave
cc -o r1 -g whole.c /mnt/dln/pub/sim.new.a

Figure 4.4. Example of Creating a Protocol Simulation System.
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other files: a file containing a complete C language routine which represents 

the state machine, files containing global and local variables and other names 

involved, and a file with information about the delay times involved. The 

’mfsm’ command is invoked once for each SML description, and this can be done 

as many times as needed to include all of the modules of the protocol system.

Once all of the SML descriptions have been worked on by ’mfsm’, it is 

necessary to gather all of the names together which will be incorporated in 

the total system. The command ’makenames’ constructs temporary files contain

ing these names, and it assumes that ’mfsm* has been applied to the files 

which are included as its calling parameters. These names include the local 
and global variables which make up the signal structure involved.

The protocol system is capable of revealing information about state 

machines and signals involved in the interaction, but it needs to know the 

information which is of interest. Therefore, a routine is called at every 

tick of the system clock to see if an output of information is needed, and if 

so to print out the information. The ’makedoup’ command, named for ’make 

do_arL_update routine’, creates a routine which will be combined with the other 

C routines created by ’msfm’ to accomplish this. The command creates a rou

tine to print out variables identified in its calling parameters. Names which 
are files containing SML descriptions will result in printing out the state of 
that state machine; names which do not match files of SML descriptions are 
assumed to be signal names, and these signals are printed out. Run time 

options indicate if this information is to be given at every tick of the sys

tem clock, at each change of the printed variables, or not at all. The rou
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tine which results from execution of 'makedoup* is stored in a file to be com

bined with the others for the final system.

The 'makeit* command assembles all of the information gathered by the 

previous commands into a complete C program which will represent the protocol 

system. The local and global variable names are included, cross-reference 

tables are set up, process names are added where necessary, the C language 

routines are included, and other utilities are added to complete the program. 

In addition to the normal system libraries a simulation system created by Nor

ton C41 ] is used extensively. If the SML descriptions are complete, then this 

system will exercise the protocol to check for errors. The errors which are 

detected include deadlock, where no action is possible, assertion of variables 
which have already been asserted (two units driving the bus at the same time 
or incorrect specification of a state machine), and release of a signal which 

is not asserted (signal had previously been released or never asserted).

When all of the commands have been completed and the C language file is 

prepared, then the C compiler is invoked to create the protocol system itself. 
A complete description of these commands and the protocol system they result 

in is given in Appendix D. The run time options of the protocol system allow 

specification of the output mode, the number of cycles of what signal to 

check, specifying signals as stuck-at signals, probability of stuck-at sig

nals, and signals to be printed out in addition to those included in the 'mak- 

edoup* command.

As shown above, the preparation of a computer program to exercise the 
protocol system requires several steps. SML is used to describe the state
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machines which make up the system, and then C language routines representing 

the action of these modules are prepared. Additional routines are created, 

and then all of these routines are combined into a simulation system. The pro

tocol can then be exercised to check for the existence of errors. Errors 

result in a print-out of information identifying the states of the modules of 

the system when the error occurred. This tool allows us to monitor the action 
of protocols and verify correct behavior.
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CHAPTER 5
ALGORITHMS FOR DEALING WITH ERRORS IN CONTROL SIGNALS

Introduction

In Chapter 2 we presented algorithms for dealing with errors which had 

been detected by testing parity across synchronous data lines. The algorithms 

required to control the transfers were mentioned with little comment in 

Chapter 3» but a question which needs to be dealt with is how to detect errors 

which occur on the control lines. The technology used for both control lines 

and data lines is the same in most bus systems, and so the same types of 
errors can occur on both. We now examine the error-detecting capabilities of 

the protocols themselves and give algorithms for detecting errors and continu

ing operation when errors have been detected.

For all of these algorithms we represent the action of different modules 
with state machines, as presented earlier. State machines have been used for 

various levels of protocol representation, from showing a few states with lit
tle detail to a very detailed representation of the interaction involved. 
Once the state machine representation has been obtained, the correctness of 

the protocol can be checked in one of several ways. The method of the previ

ous chapter is to create an SML description of the state machines involved and 

exercise the system until satisfied that the interaction is correct. The per

turbation technique presented by West [15] operates on directed graphs and is 

similar to the exercise technique presented above. The principal difference 

is that West's method calls for global system knowledge of correct and
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incorrect state combinations, while the exercise system described here uses 
only the bus signals to detect erroneous behavior.

In this chapter we present guidelines and algorithms that deal with 

detecting faults which occur on the control lines and, if possible, continuing 

operation in the presence of the faults. Unless otherwise stated, we assume 

that there is at most one fault at any one time. The fault model is the 

stuck-at fault, where the line is stuck-at-1 or stuck-at-0. We assume that 

the stuck-at-X fault occurs at some point in time when the line was legally at 

the faulty value, then the fault occurred and the line remained at that value. 

That is, the line became "stuck" at a value in the normal course of operation, 

and it was not the result of an out-of-sequence transition to the faulty 
value.

The signals, which are used to allow the master and slave modules to move 

from one state to another, include signals which are local to the modules and 

signals which are common between them. It is assumed that the signals which 

are local are not susceptible to faults and will remain fault free during 

these operations. This means that the delays, ’read*, and ’data-ready* will 

not be candidates for faults in the analysis which follows. The bus lines, 

however, are susceptible to faults, and therefore faults on the freqf and 

fack' lines will be considered. If further protection of local signals is 
desired then techniques such as TMR can be used to guarantee correctness. 

This increases the logic required to implement the module but does not impact
on the bus protocol.
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We also assume that the algorithms, which are presented in this chapter, 

described by state machines, will operate correctly at all times- That is, we 

are limiting the faults to the bus itself and prescribing action which will 

identify the faults, and, if sufficient redundancy is provided, continue to 

operate. The task of dealing with faults within a state machine has been 
treated elsewhere [42,43,44], and will not be discussed here. We simply men

tion that techniques exist for dealing with faults within the state machines 
themselves.

Although we will not present the SML descriptions of the interactions 

involved, the state machines presented in this chapter have been exercised 

with the system described in Chapter 4. We will first treat the detection of 

errors in control signals with time redundancy and methods of preventing 
improper operation. Then we examine the use of dual-rail signals and methods 

to guarantee correct operation in the presence of a single fault.

5.-2- Control Signal Enron Detection with Time Redundancy

Normal operation for the four cycle read protocol was described in Sec
tion 3.2. The master and slave state machines for this protocol are repro

duced in Figure 5.1. We now examine the effect of stuck-at errors on the con

trol lines. Under normal operation (control lines are not faulty) the error 

escape from state 2 is provided for the case of the master requesting a non

existent slave. The error exit from state 2 results in state 6 of the master. 

This state will also detect two faults on the control lines which have the 

same symptom as a non-existent slave. These faults are ’req* stuck-at-0 and 

' ack* stuck-at-0. If the request line is stuck-at-0 then as far as the slave
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is concerned, no request is ever issued. Therefore, no read cycle is per

formed and the slave doesn't respond. The action of the master is then to 
just go through the error states as though the slave didn't exist. A similar 

action occurs if the acknowledge is stuck-at-0. The master issues the address 

and then the request. The slave detects the address and the request, obtains 

the data, and then asserts the data lines and the acknowledge signal. Since 
the acknowledge signal is stuck-at-0 the master does not detect it and state 6 

is again the outlet. Assuming that the error state causes the release of 

asserted signals, the 'req' signal is released and the slave continues its 

operation, returns to the idle state, releasing the data and 'ack' signal. 

Thus, state 6 in the master will detect two of the errors of the control 
interaction.

If request stuck-at-1 occurs, then the following sequence is initiated: 
The master interface asserts 'adr' (state 1) and waits the appropriate amount 
of time before asserting 'req' (state 2). However, since the request line is 

stuck-at-1, as soon as the slave detects that the address has been asserted, 

it initiates the read cycle of its functional portion (state 1). The data is 

made available and asserted along with the acknowledge line (state 2). This 

may all be accomplished before the master actually asserts the 'req' line. 

When the master goes to state 2 and detects assertion of the 'ack' line, it 
proceeds on to state 3 and completes the cycle, releasing 'req' in state 4. 

However, since 'req' is stuck-at-1, the slave remains in state 2 and has no 

way to return to the idle state. Thus, the system cannot recover from the 

error, and the bus remains inoperative (since 'req' appears to be asserted and 

'ack' is asserted).
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The acknowledge stuck-at-1 results in a different type of faulty opera

tion. The master goes through the normal cycle to the point of waiting for 

the ’ack’ signal. At this point it assumes that the data is available because 
it detects a valid ’ack* signal even though the slave has not asserted it. So 

the master continues according to its state diagram and accepts whatever data 

is on the bus when it reaches state 4. However, unless the slave is very 

fast, nothing will have been asserted on the data lines by the slave unit, and 

the data will be incorrect. Thus, both the master and the slave will go 

through their cycles, neither detecting that anything is wrong, but invalid 
data will have been passed.

As can be seen from the above discussion, the error state in the four 
cycle read operation will detect only two of the four possible stuck-at errors 

on the control lines. However, the protocol can be modified by the addition 

of more states to detect the existence of the other error conditions. These 

modifications are shown in the master and slave state diagrams in Figure 5.2. 

The master state machine has been modified by the addition of state 7, which 

has been added to allow the detection of the condition acknowledge stuck-at-1. 

It is entered from state 1 when a time-out period has passed since the address 

has been asserted and the 'ack’ signal has not been released. In this case 

'ack1 is in error and assumed to be stuck-at-1; the master unit detects this 
condition and returns to the idle state through state 7. The modification to 

the slave state diagram is the addition of state 4. This state is added for 

the detection of the condition freq* stuck-at-1. It is entered from state 2 

when a time-out period has passed and the freq' signal has not been released. 

When this condition exists the signal is assumed to be in error and the slave 
returns to the idle state through state 4 to indicate the error.
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The addition of these two states, one to each unit, allows the detection 
of the two errors missed by the original arrangement. With this modification 

all four possible errors will be detected. However, the slave unit will still 

respond when the request line is stuck-at-1. For a read cycle this may result 

in obtaining the wrong data item, but no data modification occurs so no per

manent damage is done. This is not the case with for a write cycle, as shown 

by the write protocol in Figure 5.3.

The simple write protocol of Figure 5.3 is patterned after the read cycle 

which has been used for an example. The master differs from a master in a 

read cycle since the ’data’ lines are asserted by the master, and this is done 
at the same time as the 'adr' lines, in state 1. The master then waits an 

appropriate amount of time and asserts the ' req1 line (in state 2). When the 

slave detects the ’req* signal and an address within its assigned address 
space it responds by moving to state 1. This state differs from its counter

part in the read cycle since it is waiting for the slave to accept the data 

before moving to the next state, instead of waiting for data to become avail

able. When the functional portion of the slave has performed whatever func

tions are necessary to accept the data, the signal ’data^accepted* is asserted 

and the slave moves to state 2 to assert the fack’ signal. When the master 

detects the assertion of *ack*, it moves to state 3 and releases freqf. No 
skew time is needed since the data transfer has already been completed. The 

delay from state 3 to state 4 prevents spurious actions on a noisy bus, and 
the master releases the fadr* and ’data' lines in state 4 before returning to
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the idle state. The slave responds by moving to state 3 and releasing fackf 
before returning to the idle state.

The master state 5 provides the same type of error handling as previously 

mentioned for the generic read protocol. The 'req1 stuck-at-1 fault will 

cause problems as shown by the following scenario. The master assumes control 

of the bus and moves to state 1, asserting the ?adr* lines and the *data* 

lines. Since the freq* signal is stuck-at-1 the slave will respond as soon as 

an address is detected which is within its assigned address space. This 

leaves no settling time for noisy signals, so the address which is accepted 

could well be incorrect; in fact, in this situation more than one slave could 
respond to the address. The slave then moves to state 1 to accept the data 
and write it into the address which was detected. If the address which is 

used is the incorrect address then the data will be written into a wrong loca
tion, effectively destroying whatever was contained in that location previ
ously. This improper operation of the slave can be prevented by requiring the 

request signal to be unasserted at the beginning of the cycle, which will be 

discussed in further detail in the context of a read protocol.

The assertion of the fdataf lines by the master at the beginning of the 
cycle is the only basic difference in the read and write protocols. Both 

cycles require the transfer of synchronous data across the 'data1 lines and 

the fadr’ lines. Both cycles utilize interaction between the modules con
trolled by the Treqf and 'ack' control lines. Therefore, the techniques 
presented here for read cycles will apply equally well to write cycles, as do 

the techniques which are described in the next section. For that reason the
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examples which are used in the remainder of this thesis will consist of read 

cycles.

Figure 5.4 gives a further modification to the read protocol of Figure

5.2, which prevents the slave from responding in the case of request stuck- 

at-1. This can be accomplished by recognizing the fact that the request line 

must go through a complete cycle for each transfer, starting at an unasserted 

level and becoming asserted to initiate the cycle, and then being released 
again to complete the cycle. Therefore, the request signal must start the 

cycle in an unasserted state. Detection of this condition is accomplished by 

the addition of states 5, 6, and 7 in the slave state diagram. The slave will 

enter state 5 from the idle state when conditions are present for initiation 
of action on the slave’s part, in this case when the address is meant for the 

slave. This condition must be maintained for a minimum period (called *t[a]* 

in the state diagram); this prevents noisy address lines from incorrectly 

causing the slave to begin action. Then, if the request signal is unasserted, 

the slave will enter state 6. However, if a time-out occurs before the 

request signal is unasserted then error state 7 is entered and the unit 

returns to the idle state.

The slave will enter state 6 when the address is correct and the request 

is unasserted, proper conditions for the initiation of a transaction. For a 

normal transaction the request line will be asserted and the slave will detect 

this condition and enter state 1, operating as previously described. If the 
address or the read command is changed then the unit returns to the idle 

state. If a time-out occurs before anything happens, then the request signal
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is assumed to be stuck-at-0, and the unit returns to the idle state through 

error state 7. State 7 will be entered by the slave if there is a stuck-at 

fault on the ’req* line. If the fault is freqf stuck-at-1, then the entry 
will be from state 5. If the fault is freq' stuck-at-0, then the entry will 

be from state 6. In either case the slave will be prevented from requesting 
any action by its functional unit.

The system, as described by the state diagrams of Figure 5.4, has two 
features which enhance system operation over the previously described proto

cols. First, neither the master nor the slave completes transactions when 

there is a faulty line. Second, the master detects the occurrence of all four 

stuck-at errors. The systems of Figures 5.1 and 5.2 do not have either of 
these features.

That the master unit detects all four errors of the control lines is evi
dent from the following statements. The time-out transition from master state 

1 to state 7 will occur when the 'ack' signal is stuck-at-1. The time-out 

transition from master state 2 to state 6 will occur when the 1 ack' signal is 

stuck-at-0, or the 'req* signal is either stuck-at-1 or stuck-at-0, as well as 

the improper address as in the original specification.

The protocols represented by the state machines of Figures 5.1 to 5.4 

show that there is a correlation between the composition of the state machine 
and the error detection capability of the protocol. In order to detect 

stuck-at errors on control lines the following conditions should be incor
porated in the state machine:

1. Where a state change requires the assertion or release of a bus con-
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trol signal provide time-out escapes to an error state* A bus control 

signal is one which comes from the bus; other control signals 
represent the status of local variables. The signals 1 req* and fackf 

are bus control signals, while 'read* and fdata_readyf are local sig
nals.

2. Require full transitions of signals before returning to the idle 

state. Except when leaving the idle state, require a false signal 

value one state before the true signal is needed, with appropriate 
time-out escape sequences.

3* Where a bus control signal is needed to initiate action (i.e., get a 

slave out of idle) and there is a precondition (i.e., the address must 

match), create a new state where the precondition can be tested first, 

and then a second state for checking for the unasserted bus control 

signal. Add time-out escapes to these new states to check for stuck- 
at faults.

Theorem 5..JL: A protocol represented by state machines satisfying conditions 1 
and 2 above will detect any stuck-at fault on the bus control lines.

Proof: We assume that the error detection mechanism consists of one of 
the state machines traversing through an error state. Step 2 assures that bus 

control signals must make a complete transition from unasserted to asserted to 
unasserted before the state machine can return to the idle state. If a signal 

is stuck-at-X, where X is 0 or 1, then the signal will not make a full transi

tion. When the signal does not make the required transition, then step 1 will 

guarantee that there is a time-out sequence through an error state. Thus, any
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stuck-at fault will result in a state machine returning to the idle state 

through an error state, detecting the fault. Q

Theorem A protocol represented by state machines satisfying conditions 1, 

2, and 3 above will detect any stuck-at fault on the bus control lines and 
prevent improper operation of the bus. Improper operation of the bus is 

defined as performing an incorrect cycle.

Proof: Theorem 5.1 has shown that stuck-at faults will be detected by 
state machines satisfying steps 1 and 2. What remains to be shown is that 

when a stuck-at fault exists, then improper operation does not occur. An 

improper operation will be avoided when the state machine cannot complete an 
incorrect cycle. An incorrect cycle is prevented by not proceeding in the 

state machine unless conditions are correct for the cycle. The conditions 
will be correct if and only if the sequencing required by step 3 is in effect: 

the precondition must be satisfied, and then the required control signal 

assertion can occur. If the order is reversed and the signal assertion is 

true before the precondition, then the order is incorrect and the action 

prescribed by step 3 guarantees that the state machine will not complete the 

read (or write) cycle. Q

Theorems 5.1 and 5.2 indicate that time-out sequences can be utilized 

effectively in detecting the presence of a fault on the control lines, but 

these procedures fall short of the goal of continued correct operation in the 
presence of a single fault. In order to continue operation when a control 

signal is stuck-at-X, redundancy of that signal is required. In the following 

section we show that dual-rail redundancy of the control signals can be used 

to guarantee correct operation when one of the signals is stuck-at-X.
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5 ..1 . Continuous Qp.eration With Mai lail Redundant Signals

If a bus control signal is stuck-at a value, then the use of time-out 

escapes can detect the presence of that fault, but in order to continue opera

tion some other techniques are required. By using dual-rail control, that is, 

duplicating the control lines, the correct information is available on one of 

the duplicated bus control lines, assuming a single line failure. The problem 

is to decide which of the duplicated lines is in error and then utilize the 

other line to control the protocol functions. The assumptions about the type 

of fault remain the same: a single stuck-at-X fault on one of the control 
lines.

We assume that the duplicated control lines carry the same logical value. 

Some dual-rail systems implement the signals such that one is the complement 

of the other; this detects the presence of a bridging fault between the two 

lines, since the signals would be correct only if the two lines are at oppo

site logic values. However, when such a bridge exists, the effective logic 

value of both lines remains the same and no transitions occur. In this situa

tion no information is available as to the intended operation of the signal. 
If the two lines are asserted to the same value, then bridging faults are not 

detected, but correct operation will continue.

Duplicating the bus control signals changes the protocol and the state 

machines which define it. We now present three algorithms for deriving a new 

state machine utilizing dual-rail signals from the original state machine. 

The algorithms generate a new state machine based on the characteristics of



76

the original state machine and the signals which control it. The signals fall 

into two categories: bus control signals and local signals. Bus control sig

nals are those which communicate information between modules over the bus 

lines; local signals deal only with the module itself and are not affected by 

the bus. We are assuming that the faults are contained in the bus control 

signals. In addition to the control signals, state machines often use condi

tions to control transitions from one state to another. Conditions reflect 

the status of bus lines, and one obvious example is the condition of a parity 

error on a set of synchronous bus lines.

The algorithms specify the number of states needed in the new state 

machine to represent a state in the original state machine, based on sets of 

bus control signals. For the following definitions of these sets, refer to 
the example of Figure 5.5, which shows the state machine for the master 

involved in a read cycle using Algorithm 2.1.

The set K is the set of bus control signals needed to make the next
O

state decision for state s in the original state machine. For the state 

machine of Figure 5.5, the set is empty since f75' is a local timing signal 
and ’errindat1 is a condition; the set K2 contains ’ack* and 'adrpe* since 
both of these bus control signals are used to determine the next state.

The set Lg is the set of bus control signals which are required to change 
their logic values in order to cause a transition from a state immediately 

preceding state s to state s. In Figure 5.5, the set L2 ±3 empty since only 
the local timing signal M 5 0 1 is used on the input arc; the set consists 

only of * ackf since a change is not required in the value of fadrpef.
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The set Mg is the union of sets Lr> where r in an immediate predecessor 
of state s. M2 and Mg are both empty since no bus control signals are 
required to arrive in state 1 (predecessor to state 2) or states 2 and 9 
(predecessors to state 3). Examples of states with non-empty M sets are state 

8 and state 13- Mg contains ’adrpe,’ and contains fack'.

To accommodate the dual-rail signals the new state machine must contain

sufficient states to resolve ambiguities caused by a fault on any bus control

line. Thus, each state in the original state machine must expand into enough

states to identify faulty conditions on the signals it deals with. Resolution

must be provided for the signals in the set K to detect faults in which thes

signals in, the set are stuck-at the value needed to advance to the next state. 

Resolution must be provided for the signals in the set L to detect faults in
3

which the signals in the set are stuck-at the value opposite that required to 

arrive in state s. By including the signals in the set M allows the resolu-
3

tion of signal skew between the dual-rail lines. The number of states 

involved in resolving these ambiguities is n, where
n = 1 + 2  j K U L U M i .

!Q i = cardinality of the set Q 

Q U R = union of sets Q and R

These set definitions allow succinct expression of the algorithms for generat

ing new state machines.

Algorithm 5.*±

Step 1: Except for the idle state, replace each state in the original state 
machine with n states in the new state machine, where
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n =  1 + 2  j K U L U M l .  The idle state is a special case treated in 

the next step.

Step 2: The idle state is acted upon in one of three methods, depending upon

the signals needed to exit the idle state:
a) Local signals: If the original state machine exits idle under con

trol of local signals, then no additional states are required; 

represent the idle condition in the new state machine with a single 
idle state.

b) Bus control signals ANDed with conditions: If the original state

machine exits the idle state by the transition of bus control signals 

which have been ANDed with conditions, then represent idle as a sin

gle state. Create m new states as successors to the idle state for 

each arc leaving the idle state; m = 1 + 2 'set of bus control sig

nals on that arc!. For each state in these groups of m states, place 
an arc from idle to the state and a return arc back to idle. The 

arcs from idle will be labeled with the condition ANDed with the 

unasserted control signals, one arc labeled with the fault free con

trol lines and the other m-1 arcs labeled such that one control line 

is stuck-at an incorrect value. The arcs returning to the idle state 
will be labeled with the complement of the condition, so if the con
dition ceases to be valid, then the state machine returns to the idle 
state.

c) Bus control signals only: If the exit from the idle state is deter
mined only by bus control signals, and no condition is ANDed with 

these bus control signals, then the idle state must be replaced by m
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separate states, where m = 1 + 2 jset of bus control signals which 

control the exit from idle!. Of the m states, one is for error-free 
conditions, and the other m-1 states each represent the condition 

that one of the signals is stuck-at an incorrect value.

Step 3: Let I represent the set of states in the new state diagram,
corresponding to state i in the original state diagram Cor the set of 

states representing an arc from idle created by step b above). Let J 

represent the set of states in the new state diagram, corresponding 

to state j in the original state diagram. If there is an arc from i 

to j in the original state machine, then place an arc from each state 

in I to each state in J where

a) control signal requirements can be met for leaving I and
b) control signal levels will be appropriately matched in J.

Application of Algorithm 5.1 to a state machine will result in a new 

state machine which will detect stuck-at faults on control lines which it uses 

as inputs, and continue to function in the presence of those faults. Examples 
of the application of this algorithm are shown in Figure 5.6 and Figure 5.7.

Figure 5.6 shows the correlation between the master state machine for a 

simple read cycle and the state machine which has been expanded to utilize 

dual-rail signals. States 0, 1, 5, and 6 all map to single states in the new 

state machine. The condition for leaving the idle state is a local signal so 

step 2a applies, and this requires no expansion of the idle state. However,

since contains 1ack1, making n = 3, state 2 in the original state machine
expands to s ta te s  2 , 7 , and 8 in  the new v e rs io n . In  a f a u lt - f re e  s im p le  s y s -
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tem ’aok' will be unasserted when the master moves into state 2, and assertion 

of *ack’ will cause the system to move to state 3. The single-rail signal 
'ask* in the original system has been replaced by two signals (*a1a2!) in the 

dual-rail system. In the new system the addition of states 7 and 8 allows one 

of the signals to be stuck-at-1; when the fault-free line is asserted then the 

action continues in spite of the fact that the line was faulty. However, 

since the execution of the state machine visited state 7 (or state 8), the 

existence of the faulty line is revealed. State 3 of the original state 

machine expands to include states 9 and 10 in the new version. If one of the 

dual-rail lines is stuck-at-0, then either state 9 or state 10 will be 

visited, but the same action will result if there is skew on the ’a1a2f lines. 
Therefore, these states will not guarantee the existence of a stuck-at-0 
fault. However, states 11 and 12, obtained by expanding state 4 in the origi

nal diagram, will indicate the existence of a stuck-at-0 fault on one of these 

lines.

Figure 5.7 shows the expansion of the slave state machine for a simple 
read to accept dual-rail signals. The bus control signal in the single-rail 

version is 1req,* and this has been duplicated to fr1r2’ in the new version. 

Since leaving the idle state of the original state machine is governed by a 

bus control signal ANDed with a condition, this is a good example of the addi
tion of states, according to step 2b of Algorithm 5.1. Since one bus control 

signal is needed to force the state machine to leave the idle state, three 
states are needed in the new state machine to represent that arc in the origi

nal system. The *adrokf condition is ANDed with the appropriate request sig

nal levels to have the slave go to state 4, 5, or 6, state 5 being the error-
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free condition and states 4 and 6 indicating a stuck-at-1 fault on a request 

line. The state machine returns to state 0 if the 'adrokT condition ever 

becomes false; this prevents spurious addresses on the address bus from caus

ing a slave to respond incorrectly. State 7 or 8 will be the result of either 

a stuck-at-0 fault or signal skew, so they will not reliably indicate a fault. 
States 9 and 10 will indicate the presence of a stuck-at-0 fault. States 11 

and 12 result from the expansion of state 3; however, like states 7 and 8, 

they will be used for both faulty conditions and when there is skew between 

the request lines. Thus, they cannot be used to reliably indicate the pres

ence of an error.

Algorithm 5.1 will result in state machines which detect the presence of 

single faults on their inputs, but this can result in quite large state 

machines. This algorithm has been applied to the master and slave state 
machines for the read cycle incorporating Algorithm 2.1, and these diagrams 

are given in Appendix E. To reduce the size of n, the number of states 

required for resolving ambiguities, and to deal with signal skew on dual-rail 
lines, we now introduce Algorithm 5.2, The number of states involved is 

reduced by removing the set M from the calculation of the number of states 

needed in a new state machine to represent states in the original state 

machine:
n = 1 + 2 |K U L '.

Although the numbers are different, the basic technique is much the same. The 
principal difference is the introduction of states to resolve signal skew 
between the two rows of a dual-rail signal, before entering the correct state

in the new version.
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Algorithm 1*2

Step 1s Except for the idle state, represent each state in the original state 
machine with n states in the new state machine, where

n = 1 + 2 |K U L i. The idle state is a special case treated in the

next step.

Step 2: The idle state is acted upon in one of three different ways, depend

ing upon the signals needed to exit the idle state:
a) Local signals: If the original state machine exits idle under con

trol of local signals, then no additional states are required; 
represent the idle condition in the new state machine with a single 

idle state.

b) Bus control signals ANDed with conditions: If the original state

machine exits the idle state by the transition of bus control signals 

which have been ANDed with conditions, then represent idle as a sin

gle state. Create m new states for each arc leaving the idle state, 

where m = 1 + 2 I bus control signals on arc!. For each state in

these groups of m states, place an arc from idle to the state and a

return arc back to idle. The arcs from idle will be labeled with a 

condition ANDed with the unasserted control signals, one arc labeled 
with the fault free control lines and the other m-1 arcs labeled such 
that one control line is stuck-at an incorrect value. The arcs 

returning to the idle state will be labeled with the complement of 
the condition, so if the condition ceases to be valid then the state
machine returns to the idle state.
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c) Bus control signals only: If the exit from the idle state is deter

mined only by bus control signals, and no condition is ANDed with 

these bus control signals, then the idle state must be represented by 

m separate states, where m = 1 + 2 I set of bus control signals which 

control exit from idle!. One of the m states is for error-free con

trol lines, and the other m-1 states each represent the condition 
that one of the bus control signals is stuck-at an incorrect value.

Step 3: Let I be the set of states in the new state diagram corresponding to
state i in the original state diagram (or a set of states represent

ing an arc from idle created by step b above). Let J be the set of 

states in the new state diagram corresponding to state j in the ori

ginal state diagram. If there is an arc from i to j in the original 
state machine-then place an arc from each state in I to each state in 

J where
a) control signal requirements can be met for leaving I and

b) control signal levels will be appropriately matched in J.

Step 4: To allow for the signal skew between dual-rail signals, place addi

tional states in the new state machine where an arc entering a state 

could be traversed during fault-free operation if the two values have 

a race condition between them. Place an additional arc from this new 

state to the state which would have been entered had no race condi

tion been present.

Like Algorithm 5.1 this algorithm will detect single stuck-at faults 
which occur on the dual-rail inputs. However, unlike Algorithm 5.1, Algorithm
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5.2 will guarantee that if the state machine visits one of the n-1 states of 
the new state machine, which represent error conditions, then the signal 

involved is stuck-at the indicated value. The contrast between the two tech
niques can be seen by comparing Figure 5.6 with Figure 5.8, and Figure 5.7 

with Figure 5.9. Figure 5.8 shows the application of Algorithm 5.2 to the 

master of the simple read cycle, and Figure 5.9 demonstrates its application 

to the slave.

Figure 5.8 shows that state 4 for the master of the simple read cycle 

does not expand to three states, since the set M of bus control signals is not 

considered in determining the number of states needed for the new representa

tion. However, two states are required to resolve skew ambiguities between 

state 2 and states 9 and 10. States 11 and 12 are added according to step 4 

of Algorithm 5.2 to resolve these ambiguities. With these additions a stuck- 

at-1 fault in one of the acknowledge lines will result in state 7 or 8, and a 
stuck-at-0 fault in one of the lines will result in state 9 or 10.

Figure 5.9 shows a similar result for the slave of the simple read cycle. 

States 13 and 14 have been added according to Step 4 of Algorithm 5.2 to 

resolve signal skew on assertion of the request lines, and states 15 and 16 

will resolve skew problems on the release of the request lines. This guaran
tees that states 7, 8, 11, and 12 will detect stuck-at faults on the request 
lines.

Algorithm 5.2 can also be applied to more complex state machines with 

similar results. The master and slave state machines for the read cycle 
incorporating Algorithm 2.1 are given in Appendix E.
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The number of states which is required in the new state machine to 
represent a state of the old state machine will be fewer for Algorithm 5.2 

than for Algorithm 5.1, but the states saved in this manner will generally be 
added back in to account for the signal skew problems in the state diagram. 

However, using Algorithm 5.2 will result in a system where the detection of 

faults at each step of the way is guaranteed.

If detection of a fault is the prime motivation for the application of 

the algorithms, and specification of the exact line which is at fault is not 

necessary, then the number of states involved can be reduced by considering 
the Exclusive-OR of the control signals instead of providing a separate state 

for each possible error. In this case only one state is provided to indicate

an error in a pair of dual-rail lines, instead of providing separate states to
uniquely identify the error. Therefore the number of states needed to replace 

a state in the original state machine changes somewhat, with n being calcu

lated as
n =  1 + IK .U L|.

The application of this technique is presented as a modification of Algorithm
5.2, but it could also be applied to Algorithm 5.1.

Algorithm 5. .3.

Step 1: Except for the idle state, replace each state in the original state

machine with n states in the new state machine, where

n = 1 + !K U Li. The idle state is a special case treated in the

next step.
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Step 2: The idle state is acted upon in one of three different ways, depend
ing upon the signals needed to exit the idle state:

a) Local signals: If the original state machine exits idle under con

trol of local signals, then no additional states are required; 

represent the idle condition in the new state machine with a single 
idle state.

b) Bus control signals ANDed with conditions: If the original state

machine exits the idle state by the transition of bus control signals 

which have been ANDed with conditions, then represent idle as a sin

gle state. Create m new states as successors to the idle state for 

each arc leaving idle, where m = 1 + I set of control signals on the

arc*. For each state in these groups of m states, place an arc from

idle to the state and a return arc back to idle. The arcs from idle 

will be labeled with the condition ANDed with the unasserted control 
signals, one arc labeled with the fault-free control lines and the 

other m-1 arcs labeled such that one of a pair of bus control lines 

is stuck-at an incorrect value. This is detected by the Exclusive-OR 

of the two lines. The arcs returning to the idle state will be 

labeled with the complement of the condition, so that if the condi

tion ceases to be valid, then the state machine returns to the idle
state.

c) Bus control signals only: If the exit from the idle state is deter

mined only by bus control signals, and no condition is ANDed with 
these bus control signals, then the idle state must be replaced by m 

separate states, where m = 1 + iset of bus control signals
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determining the exit from idle!. One of the states is for the

fault-free conditions, and the other m-1 states, each represent the

condition that one of the lines of a dual-rail bus control signal is 

stuck-at an incorrect value. Unlike Algorithms 5.1 and 5.2, this 

algorithm uses only one state to indicate that one member of a dual

rail signal pair is incorrect. This is detected by the Exclusive-OR 

of the two signals.

Step 3: Let I be the set of states in the new state diagram corresponding to

state i in the original state diagram (or a set of states represent

ing an arc from idle created by step b above). Let J be the set of

states in the new state diagram corresponding to state j in the ori

ginal state diagram. If there is an arc from i to j in the original 
state machine, then place an arc from each state in I to each state 

in J where
a) control signal requirements can be met for leaving I and

b) control signal levels will be appropriately matched in J.

Step 4: To allow for the signal skew between dual-rail signals, place addi

tional states in the new state machine where an arc entering a state 

could be traversed during fault-free operation, if the two values had 

a race condition between them. Place an additional arc from this new 

state to the state, which would have been entered, had no race condi

tion been present.

Algorithm 5.3 results in a smaller number of states than either Algorithm

5.1 or 5.2, yet the fact that a fault has occurred is detected and the infor
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mation exchange continues as before. The fault is identified to a pair of 

lines, but which line of the pair is not known. The master and slave state 
machines for the simple read cycle and the application of Algorithm 5.3 to 
them are shown in Figures 5.10 and 5.11.

The change in the state machines becomes evident when Figure 5.10 is com

pared with Figure 5.8. States 0 and 1 remain the same, but states 2 and 3 

expand to only two states instead of three. In the modified state diagram 

there are only two exit paths from state 1. The first is the normal fault- 

free exit, with both *a1* and ’a2’ unasserted. The second path is followed 

when either *a1* or fa2f is stuck-at-1, which is detected by a1 « a2. When 
this is true then state 7 is entered instead of state 2, signaling the 

existence of the fault. Similarly, there are two possible exits from state 2 

which are due to assertion of the *a1a2* group; state 3 is the normal exit and 

state 8 is the result if a1 « a2 is true. This will be true if there is a 
fault or if there is signal skew. The signal skew problem is resolved by 

waiting for one more state transition; if at that time both lines are not 

asserted, then one of them is stuck-at-0, and state 9 is entered. Thus, state 

7 will indicate a stuck-at-1 problem and state 9 will indicate a stuck-at-0 

problem on one of the fa1a2f lines, although the resolution is not sufficient 

to indicate which one. In either case the control algorithm continues in the 
presence of the fault.

The slave state machine of Figure 5.11 can also be compared to its coun
terpart, Figure 5.9. Two states are used to represent the normal and error 

conditions, in contrast to the three states used in Figure 5.9. States 4 and
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10 indicate the presence of a stuck-at-1 fault on one of the *r1r2T lines, and 
state 7 indicates the presence of a stuck-at-0 fault. These states do not 

indicate which of the pair of lines is at fault. States 6 and 9 are included 

to resolve any timing differences caused by signal skew on the two lines. 

States 3, 9, and 10 could be merged without changing the operation of the 

slave, since a stuck-at-1 fault on a request line will be reported by state 4 

of the next cycle.

The simple examples given in these two figures demonstrate a technique 
whereby the Exclusive-OR of the two signal lines can be used to determine the 

presence of a stuck-at-fault. This reduces the number of states required to 

represent a protocol, thus making implementation more efficient. The loss of 

this method over the previous method is that the identification as to which of 

the dual-rail lines is faulty is no longer possible. Nevertheless, the 

correct operation of the data transfer continues in the presence of the fault.

5..A. Summary & L Detection and Correction Techniques

The techniques presented in this chapter have demonstrated that faults 

which occur on the control lines can be detected, and when enough redundancy 

is provided operation can be continued in the presence of the faults. If only 

single-rail control signals are provided, then the presence of the faults will 

be indicated by the fact that an expected signal does not arrive within a 
prescribed maximum time interval. This is indicated by a time-out signal. In 

order to make use of the time-out error indications, guidelines have been pro
vided which identify the characteristics that the state machine representation
of a protocol must have.
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Another technique which allows the detection of the presence of faults is 

the use of dual-rail signals, introducing space redundancy in the realm of 
control signals without imposing the penalties of the three lines needed for 

TMR. The use of time properties were again utilized in order to allow signal 

skew to exist between the lines of a dual-rail pair. Allowing the signals to 

settle by introducing additional states makes the protocol slightly more com
plicated, but it does allow the system to correctly identify faulty lines at 

each step of the process.

Three algorithms have been presented which will allow continued operation 
of transfer algorithms in the presence of faults. The presence of faults is 

indicated by entering states during the operation of the protocol which iden

tify the problem. Depending on the number of states involved in setting up 

the system, this will locate the problem either to the specific line which is 

faulty or to a pair of lines, one of which is faulty. In either case the 
operation of the system continues.

The master and slave algorithms which have been presented are ideal exam

ples of the application of the algorithms. In both cases the signal sequences 

are very well defined by the total protocol system: the master proceeds from 

the idle state knowing that the acknowledge lines must be false, so faults on 
those lines can be quickly identified. Likewise, the slave will be assured 

from the protocol definition that the request lines cannot be asserted until a 
certain time after the address has become stable. This permits the slave to 
examine the request lines when an address is stable and locate a stuck-at 

fault if one of the lines is at an unexpected value. These synchronizing
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qualities of the protocol sequences are not always true, as shown by the arbi

tration system problems discussed in the next chapter. However, the expected 

signal behavior and the use of dual-rail signals will enable us to operate in 
the presence of faults.

The fault model which has been assumed for these algorithms is rather 
restrictive since it requires that under fault a line become stuck-at-1(0) 

when the line is legally at logic 1(0). This precludes any out-of-sequence 

transitions. If an out-of-sequence transition occurs during the action 
prescribed by the protocol, then the current operation may not be executed 

correctly. However, the next cycle will be correctly executed and the error

will be identified.



99

CHAPTER 6

ARBITRATION FOR CONTROL OF BUS LINES

&.J_. Introduction

The algorithms presented in the previous chapter deal with the interac
tion between a module controlling the bus lines and a second module responding 
to the commands of the first. This interaction is very important in bus com

munications because of the prevalence of the master-slave type of transfer. 

However, these interactions can only take place when all of the modules are in 
agreement as to which module is controlling the bus lines. This decision mak

ing process is called bus arbitration and is very important, since only one 

module can control the bus lines at any time. It is also important because 

all bus systems are faced with the arbitration problem. Some rather complete 

discussions of the arbitration problems faced in bus-oriented systems are 
available [45,46,47]. In this chapter we do not deal with the complexities 

which arise in the logic for implementation of the various arbitration mechan

isms, but rather we are concerned with methods of making fairly standard arbi

tration schemes tolerant to stuck-at faults on bus control lines.

The consequence of an error which allows two masters to assert bus con
trol lines at the same time can cause incorrect data transfers and possibly 

damage the circuits which are involved. If the technology utilized on the bus 

is essentially a open-collector type of implementation, then the assertion of 
a signal by more than one source will not cause any damage to the circuits, 

but the resulting data will be a logical combination of more than one source.
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For example, two masters attempting to complete a read cycle simultaneously 

will both assert the address lines, and the result will be a logical combina

tion of the addresses asserted by both units. However, if the technology 
involved is exemplified by tri-state circuitry, physical damage will result 

when one unit drives a line to a high level while the other unit is driving 

the same line to a low level. Thus, an arbitration error allowing two master 

units to assume control of bus lines concurrently can result in destruction of 

data and physical damage to the circuitry involved.

Another problem becomes obvious when considering the algorithms for 

dual-rail signals presented in Chapter 5. These algorithms utilize known 

information about the master/slave interaction in making assumptions about the 

expected level of the control signals. For example, when the master unit dep
icted in Figure 5.8 moves from state 1 to assert the request lines in one of 

the succeeding states, it is assuming that the acknowledge lines will not be 

asserted. Therefore, if one of the acknowledge lines is asserted, then that 

line is in error and a state is entered to recognize that fact and essentially 
ignore the faulty line. Similarly, the slave depicted in Figure 5.9 chooses 

one of states 4, 5, or 6 assuming that the request lines are not asserted. If 
one of the request lines is at an asserted level when the *adrok’ condition 

becomes true then it is assumed to be faulty and ignored. Both of these 

assumptions are based on a foreknowledge of the behavior of the signals 

involved: a slave cannot assert an acknowledge line before the master asserts 

the request lines, and the master cannot assert the request lines until an 

address has had time to settle on the address lines. These assumptions cannot 

be made if the arbitration unit will allow more than one master to assume
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control of the bus lines at one time.. Thus, the arbitration function is 
vitally important to the system.

Although the arbitration of bus ownership can be accomplished in many 
ways two basic methods are used: parallel arbitration and serial or daisy- 

chain arbitration. These two methods are shown in block diagram form in Fig

ure 6.1. In systems where expansion is limited and speed is of major impor

tance parallel arbitration is used. * This method calls for each master module 

to assert a hna request signal which is not available to other modules on the 

bus; the system arbiter accepts all bus request signals and asserts a bus 

grant signal to only one of the modules. This guarantees that only one module 

at a time assumes control of the bus lines. An example of this type of arbi
tration system is the Synchronous Backplane Interconnect (SBI) of the 

VAX11/780 computer system by Digital Equipment Corporation. The MULTIBUS by 

Intel also has this type of an arbitration system as an option.

The second method of bus arbitration depicted in Figure 6.1 is the 

daisy-chain or serial type of decision making. In this type of a system a 

priority signal is passed serially from one module to the -next. Whereas the 

priority system of a parallel system can be dictated by whatever algorithm the 

central arbiter chooses to implement, the priority of a serial system is 

determined by the physical position of the different modules on the priority 
line. In a serial type of system the arbitration decisions are made by a dis

tributed arbitration network; each module contains that portion of the arbi

tration system needed for making the bus ownership decision for that module. 
Examples of systems with serial arbitration include the IBM channel and the
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Motorola VME bus. The MULTIBUS by Intel can operate under either serial or 
parallel schemes, depending on how the system is constructed. Another option 

is to combine the two methods, using a parallel scheme between different lev
els of modules, and within each level use a serial scheme. The UNIBUS by 

Digital Equipment Corporation is of this type.

The arbitration of the bus ownership is important not only because of the 

consequences of incorrect data and damaged signal circuits, but because of the 

universality of the problem. All bus systems which have more than one module 

capable of controlling the interaction must have some type of an arbitration 

system. Independent of the method of implementation, whether parallel or 
serial, the goal is the same for both: permit only one master to control the 

bus control lines and data lines at one time.

Parallel Arbitration System

At least two signals in addition to those which have already been dis
cussed are needed to allow a master to obtain control of the bus lines to 

carry out an information transfer. One signal is used by the master to inform 

the arbitration system that it needs the bus; this line is called the bus 

request line, and it is labeled ’br' for short in the diagrams. The other 

line is a signal from the arbitration system to let the master know that his 
request is being honored and that he can assume control of the bus; this line 

is called the bus grant line, and it is labeled »bg' in the diagrams.

In a fault-free system the action assumed for these lines is that when 
the master needs the bus, it asserts the bus request line. When the bus is 

available, following whatever priority algorithm the arbitration system
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chooses to implement, the arbitration system asserts the bus grant line allow

ing the master to assume control of the bus lines. This interaction sequence 

is added to the simple read sequence of Figure 3.1 and is shown in Figure 6.2, 

which also shows its expansion into dual-rail signals using Algorithm 5.1. 

The bus request line 1 brf becomes fb1b2’ in the dual-rail version, and the bus 
grant line fbg’ becomes ’g1g2f.

The *readf signal for the master of Figure 6.2 differs from the 'read1 
signal of Figure 3.1 in that no assumption is made concerning the ownership of 
the bus. In Figure 6.2 the signal merely indicates that the functional por

tion of the module needs a read cycle. This signal causes the master to enter 

state 1 and assert the *br* line; this in turn indicates to the arbitration 
system that a cycle is needed. When the arbitration system resolves whatever 

requests have been made for control of the bus, it allows one master module to 

assume control of the bus lines, and it signals this condition by asserting 
the *bg', line of that master which will control the bus. When the master 

detects the assertion of 'bg' the action as defined by the state machine will 

continue, the master controlling the lines to complete the needed cycle. When 

the cycle is complete, the master relinquishes control by releasing the fbr' 

signal. When the arbitration system detects the release of 'br', it will then 
grant control to another module as needed.

As can be seen from the state machines of Figure 6.2 the same techniques, 

which were used to make the master-slave interaction tolerant to single faults 
on the dual-rail signal lines are used to make the interaction of the arbitra

tion system tolerant to single faults. This system assumes that the parallel
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arbiter is free of faults, and that bus lines which interface between the 

arbitration system and the master modules have at most one stuck-at fault. 

When these assumptions are correct, then the system will tolerate any single 

stuck-at fault on data or control lines, as well as bridging faults on data 

lines.

4-3.* Serial Arbitration System

As seen by the previous section, a parallel arbitration scheme is easily 
incorporated into the bus system which has been discussed in previous 

chapters. However, there are some drawbacks to parallel arbitration which 

prevent its use in a variety of systems. In order to perform the central 

arbitration function of the parallel system, a fairly complex arbiter must be 

implemented, which becomes entirely responsible for the ownership decisions of 

the system. In addition to being complex, this system is also limited in its 
expansion to a fixed number of modules unless the arbitration module is 

expanded. Thus, many systems use a serial system to accomplish the arbitra

tion function.

A serial arbitration system also has drawbacks, one of which is the time 

needed to identify a new master module. The time required for arbitration is 

proportional to the number of master modules on the bus; each module requires 

some time to respond to arbitration signals.

One simple form of serial arbitration involves three bus control signals: 
priority-in (’prin*), priority-out ('prout'), and bus-busy C,bbsyf). The bus 
request and bus grant signal between a module and its serial arbiter are local 

signals and do not form part of the bus; therefore, we will not consider them
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in the bus protection schemes. The fprinf signal for a module is obtained 

from the fproutf signal of the next higher priority module, and the *prout* 

for a module becomes the *prinf of the next lower priority module. The signal 

1bbsyf is bidirectional, and it is asserted by the current bus master. The 

arbitration algorithm grants the bus to the highest priority module seeking 

ownership when the ^bsy* signal is released by the current owner. A module 

desiring to gain mastership of the bus makes a request to its local arbiter. 

Upon receiving this request, the local arbiter releases its *proutf signal, 

effectively preventing lower priority modules from obtaining mastership of the 

bus. The arbiter then checks its 1prin’ signal to see if it can gain master

ship of the bus. The arbiter can grant mastership of the bus if its *prin* 

signal is asserted and no other module is using the bus, which will be indi

cated by an unasserted 'bbsy* signal. If the 'prin' signal is unasserted, 

then the arbiter waits until it becomes asserted. When the »prin* signal is 
asserted then the arbiter checks the fbbsyr signal, and if the bus is not 

busy, the arbiter asserts the fbbsy’ signal and grants mastership to the 

module. If 'bbsy’ is asserted when the arbiter needs the bus, then the 

arbiter must wait until ,bbsy' is released by the current bus master before it 

can assume control of the bus. These three lines allow the arbitration system 

to be distributed between the modules which require mastership of the bus.

Error detection and fault-tolerance of the control signals involved in 

the serial arbitration process introduce another problem. Unlike the 

request-acknowledge protocol between a master and a slave, or the request- 

grant protocol between a master and a parallel arbiter, there is no handshake 
or four cycle protocol between the local arbiters of a serial scheme.
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Specific values of the bus signals are not expected and, therefore, correct 

logic values of the signals cannot be distinguished from the incorrect values. 
Thus, although the presence of a single error can be detected with dual-rail 

signals, tolerance of a fault cannot be achieved without additional redun

dancy. Therefore, we propose the use of triplication for the priority and bus 

busy signal lines. This provides the ability to not only detect faults which 

occur at any time on the lines but also to identify the faulty line and ignore 
it.
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CHAPTER T
• A CASE STUDY - THE UNIBUS

2.1. IntrQduc-tifln

The UNIBUS was introduced by the Digital Equipment Corporation in 1970 as 
an integral part of the PDP/11 family of computers [48]. This family of com

puters was designed to overcome some of the inadequacies of the computers 

available up to that point. Among the reasons given for the new computer line 

was a desire for increased structural flexibility or modularity. With the 

modularity provided by a bus structure users would be able to configure a sys

tem optimized for their application, based on cost, performance, and reliabil

ity. The majority of this system would be made up of standard modules which 

would fit into the bus structure, and whatever customized hardware was needed 

by the user would be added to this same structure. A block diagram of a 1 typ

icalT system is shown in Figure 7.1. Another advantage of a system of this 

type is that as the needs of the user community grow then additional modules, 

such as memory or peripherals, can be added to meet increased system demands. 
The UNIBUS became the backbone of the PDP/11 family, and although different 

timing constraints were associated with the different models the protocol of 
bus interaction remained the same for all units [49].

Since the introduction of the PDP/11, the number of modules available for 

use on the UNIBUS has grown to include a multitude of interface and special 
purpose devices. Users have developed customized interfaces knowing that, if 
necessary, their system can be upgraded to a higher performance computer
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Figure 7.1. Block Diagram of a UNIBUS System.

merely by placing their interface in a more capable machine. These concepts 
of machine independence and modular construction based on a bus system have 

been incorporated in other designs since that time. The Lockheed SUE is an 
example of a system similar to the PDP/11 which has been built using modular 

construction and a bus protocol for communication. Others include the MUL

TIBUS by Intel and the VERSABUS by Motorola. We now examine the UNIBUS to 

ascertain the changes needed to add fault tolerance to the protocol

l.£. Additional Bus Lines for. Tolerating Faults

Communication over the lines of the UNIBUS begins when a master signals 

the arbitration system that it needs to transfer data to/from another module. 

When the master receives control of the bus, it asserts the address lines to 
identify the desired partner in the transaction as well as the type of tran

saction to be performed. The two modules then use the handshake lines to
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exchange the data over the data lines. Finally, the bus is released for use 

by other modules. The lines of the bus which are used to implement this 

transfer mechanism can be divided into four groups totaling fifty-six lines: 
the synchronous lines, the handshake lines, the arbitration lines, and the 

miscellaneous lines.

Information transfer from one module to another occurs in parallel across 

forty synchronous lines. These include the data lines (18), the address lines 

(18), and the read/write lines (2). The read/write lines have the same timing 
specifications as the address lines and identify the transaction as one of 

four possibilities: read, read-pause, write, or write-byte. The data lines 

are the only lines on the bus which include any type of error detection; a 

single parity bit is added to sixteen data bits to assure constant parity on 

the data path. Thus, only seventeen lines, or only 30$ of the bus, are 

currently covered for error detection and none are covered for error correc
tion. A second parity line has been defined as a member of the 56 bus lines, 

but it is reserved for future use. Fault coverage can be provided for all the 

synchronous lines by an additional parity bit to be used for the address and 

read/write lines. However, in addition to the parity bit, we have also 

included the two lines needed to implement Algorithm 2.1, so three additional 

lines are required to detect single bit errors on the parallel data paths and 
apply the algorithms of Chapter 2 to correct the errors. These additional 

lines increase the total bus signals to 59, but the fault coverage rises to 

69$ of the bus, adding correction as well as detection. This information is 
shown in Table 7.1 along with other configurations of the bus.



112

Table 7.1- Error Coverage of Different UNIBUS Configurations.

Synchronous Lines Control Lines

/ \ / \
Address

and Error
Read/Write Data Handshake Arbitration Misc Total Coverage

Standard
UNIBUS 20 16(2) 2 12 4 56 30*

Protect Address 20(3) 16(2) 2 12 4 59 69*

Protect
Handshake Lines 20(3) 16(2) 2(2) 12 4 61 m

Detection on
Arbitration
Lines

20(3) 16(2) 2(2) 12(12) 4 73 95*

Detection on 
Misc Lines 20(3) 16(2) 2(2) 12(12) 4(4) 77 100$

With Serial 
Arbitration Only 20(3) 16(2) 2(2) 3(6) 4(8) 66 100$

The signals in the handshake group are the request line (called MSYNC)

and the acknowledge line (called SSYNC). Using dual-rail signals for the 

handshake lines doubles the number needed for that function, but it allows the 

implementation of the protocols introduced in Chapter 5. The two additional 

lines bring the total to 61 lines, and the error coverage rises to 7^$- The 

use of dual-rail signals for the handshake functions allows both detection and

correction of stuck-at faults.
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The arbitration function of the UNIBOS utilizes both parallel and serial 

functions. The parallel decision is between one of five different levels* 

each level representing a different priority to the system. In this way the 

system is capable of ignoring requests for bus interaction from lower level 

devices until all of the higher level functions have been satisfied. Within 

each level the priority is a daisy chain arrangement, with each device respon

sible for passing on any priority signals when not actually requesting bus 

service. The protection schemes presented in Chapter 6 can be implemented by 

supplying dual-rail signals for each line in the parallel arbitration group 

and triplicating the serial priority lines. Fault detection can be achieved 

by doubling the number of lines involved in the arbitration function. The 

total number of lines is increased to 73» and the error coverage to 94$. The 

triplication of the serial priority lines would increase the number of lines 

further but give assurance of tolerating the faults.

The miscellaneous lines of the UNIBUS include: the interrupt line which 

is asserted when a master requests interaction with the processor, the ini

tialization signal, and two power supply warning lines. Error detection can 
be achieved by making these lines dual-rail signals also, bringing the total 

number of lines to 77 with total fault coverage. Again, in order to tolerate 

faults on these lines, triplication would be needed.

The number of lines on the bus has increased by 37$ in order to provide 

fault detection on all lines. Triplication of the lines involved in arbitra
tion and the miscellaneous lines in order to tolerate all single faults would 

increase the number by 66$. However, this is not the only cost to the system
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of the additional capability. Not only does the number of lines increase, but 

also the complexity of the protocol governing those lines. We now examine 

this increased protocol complexity.

1.3* Additional Pr,0,t0.Qfll Complexity

The action of the UNIBUS protocol is fairly complex and requires many 
pages of explanations, tables, and graphs to describe [49]. This information 

can be condensed into state machine representations of the modules involved. 

The interaction of these state machines describes the control interaction 

needed to transfer information across the synchronous lines of the bus, etc. 

Figure 7.2 gives a state machine representation of the master unit and its 

interaction with the slave. Figure 7.3 is a similar representation of the 

slave unit. The signals ’msync’ and ’ssync’ correspond to the request and 

acknowledge signals of the read protocols discussed in previous chapters. The 
signal ’sack' is used in the arbitration system. The type of cycle (read, 
write, etc.) is identified by 'dcO1. The other signals have names which have 

been introduced earlier. The number of states in these diagrams gives an 

indication of the complexity of the protocol, the master requiring 19 states 

and the slave only 13 states. In order to implement the control required for 

Algorithm 2.1 and dual-rail signals such as needed for Algorithm 5.2, the 

number of states in the master increases to 72 and the number of states of the 

slave increases to 65. However, the amount of logic required to implement 

these protocols does not increase at the same rate. For example, less than 
30$ more bits are required to represent the number of states in the new master 

as opposed to the old one.



MASTER

Figure 7.2. State Machine Representation of UNIBUS Master



SLAVE

idle idle idle idle

Figure 7.3. State Machine Representation of UNIBUS Slave.
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The other functions of the bus, such as the arbitration function, will 

have the same type of a complexity increase as the functions are implemented 

with dual-rail signals. The actual cost impact will depend on the actual type 

of arbitration system used, whether it is a parallel/serial combination or 

simply one of the methods. The cost of the hardware necessary to implement 

the protocol has been decreasing steadily as more logic can be included on an 
integrated circuit chip.

1-1. Total -S.yatam Cost
By adding lines required to detect faults and continue operation in the 

presence of those faults, the number of lines needed for the full UNIBUS pro

tocol increased by 23, but the fault coverage (for detection) went from 30$ to 
100$. In addition to the increased number of lines for the full protocol, the 

amount of hardware needed for the interface function approximately doubles. 

Thus, the full UNIBUS protocol can be implemented in a fairly reasonable 

manner. Typical boards for the UNIBUS devote only about 20$ of their logic to 

the interface function; so the hardware increase for the system would only be 
on the order of 20$.

A heavy price was paid for the complexity of the protocol, and if a 

simpler arbitration scheme is acceptable, then the number of lines required 
for the bus could be reduced. Using only the serial scheme introduced in 

Chapter 6 would reduce the number of lines involved in arbitration from 24 to 

9, and at the same time maintain triplication of arbitration lines for total 
fault tolerance. Using triplication on the miscellaneous lines as well brings 

the total number of lines to 69. Therefore a protocol can be established
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which has only three more lines than the UNIBUS which will detect the presence 

of single faults *and continue to function. The hardware reduction of this 

scheme would be principally in the arbitration system, since the parallel 

arbitration unit is not needed.

The cost of this type of an implementation can be contrasted for com

parison with a TMR type of implementation. A TMR implementation of the entire 

bus would require 168 bus lines, as opposed to the 77 lines of the dual-rail 

system. If, instead of using TMR for the synchronous data paths, the algo

rithms of Chapter two are implemented, then only the control lines need be 

triplicated. However, this still brings the number of bus lines to 95. The 
TMR implementation also requires voters for each input, so the hardware 

required is not less than that of the dual-rail system. Therefore, the dual

rail implementation is preferable to the TMR.

As can be seen from the above discussion, there is an entire spectrum of 

possibilities available to the designer of a protocol. The decisions regard

ing the 'best* implementation remain a system issue, and so a single best pro
tocol is not possible. But the algorithms and methods are available to use 

parity, time redundancy, and dual-rail control signals for most of the bus 

functions to implement a protocol which will tolerate single faults.
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CHAPTER 8 

CONCLUSION

1*1. ,Contributions n Z  .This Thesis

This thesis deals with the addition of fault tolerance to protocols of 
bus level communications. We have presented methods and techniques for deal

ing with faults which occur, not only faults on the data lines but also faults 

which occur on the control lines. Utilizing these techniques, a protocol 

designer can incorporate into a bus communication system a high level of fault 

tolerance.

For the transfer of synchronous information, two algorithms have been 

presented which will guarantee correct address and data exchange in the pres

ence of single faults. These algorithms operate correctly not only for 
stuck-at faults but also for faults characterized by a logical bridge between 
two data lines. Algorithm 2.1 accepts bridging faults between logically adja

cent lines, and Algorithm 2.2 extends the model to include a bridging fault 

between any two lines. The information necessary to locate and correct a 

fault comes from the use of time redundancy. Additional cycles are supplied 

when an error is detected; thus, the penalty is incurred only when faults are 
detected.

To accurately represent the protocols studied in this thesis, a state 
machine representation of the module interaction was utilized. This also 

allowed the introduction of errors into the system. In order to use general 

purpose computers to aid in the analysis of these protocol machines, a State
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Machine Language was developed. This language allows complete specification 

of the protocol modules. Files consisting of SML descriptions of these 
modules can be utilized in a system simulator which will exercise the action 
of the entire protocol system, including the introduction of errors to check 

out the fault tolerant functions.

The use of state machine models, with the protocol simulation system, 

permits an accurate study of the control interaction used in bus systems. We 
have shown that the steps taken to detect out-of-bound addresses for bus sys
tems will also detect some of the signal faults which occur. By the addition 

of states judiciously placed in the state machines of the protocols, the use 

of timeouts can also detect faults which occur on control signal lines and 

prevent incorrect operation. But the use of time checking alone cannot permit 

continued operation in the presence of a fault.

We have Shown that by the introduction of dual-rail signals for most of 

the control lines single stuck-at faults can not only be detected and located, 

but that the correct operation of the system can continue. Knowledge of 
correct operation of the protocol allows the module to anticipate the correct 

level of a control signal. If one of the two lines representing that signal 

is not at the correct level, then it is in error, and the module is then able 
to recognize the error and continue to function. We have presented three 

algorithms which allow conversion from a system using single-rail control sig

nals to a dual-rail system.

Implementation of the techniques presented in this thesis is not without 
cost. The algorithms presented in Chapter 2 require additional time when an
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error is detected: Algorithm 2.1 uses one additional transfer and Algorithm 

2.2 uses either one or two additional transfers, depending on the type of 

fault detected. However, in both cases the additional cycles occur only when 

faults have been detected, so there is no constant system overhead. The algo

rithms for dual-rail control signal lines presented in Chapter 5 require dou

bling the number of control lines and increased complexity in the protocol 

definition. The increased complexity of the protocol will increase the total 

system hardware only about 20$.

1-2. Sugges-Eions Lor. Further Work

The use of SML to describe the modules of the protocols enabled us to 

solicit the aid of the computer in analyzing the interaction. The simulator 

used in this analysis is capable of providing a great deal of variety in the 

exercise of the protocols. However, when a range of values will satisfy a 
particular system call, the actual value returned is produced with the use of 

a random number generator, so the action of the system is random. In order to 

traverse the entire decision tree associated with the protocol, all condi

tions, from using the minimum for each decision to using the maximum, must be 

exercised. In order to accomplish this the simulator would have to be 

expanded to traverse that tree and try all combinations.

The State Machine Language is not limited to use with protocol analysis, 

but it can be used to represent state machine models of systems of independent 

modules. The simulator presented in this thesis can then be used to model the 
interactions of other types of systems as well. However, extensions would 
have to be made to allow the system to detect other types of faults than the 

ones needed for the protocol analysis.
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This work did not address the issue of making a finite state machine 

tolerant to faults. The fault-tolerance achieved in this work is that of the 

signals between independent finite state machine. Very little work has been 

done on a fault-tolerant, finite state machine C43 *50]. Similarly, very lit

tle work exists in the design of fault-tolerant arbiters. These two aspects 

must be further investigated in order to achieve an overall fault-tolerant
system.
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APPENDIX A
READ CYCLE INCORPORATING ALGORITHM 2.1

A simple read cycle is introduced in Section 3.2, and Section 3.3 deals 

with the additions needed to implement the controls required for Algorithm

2.1. The state machines representing these protocols are given in Figure 3.1 

and Figure 3*2, and an explanation of the simple read protocol is contained in 

Section 3.2. The state machine for implementation of Algorithm 2.1 is dupli

cated here for reference in Figure A.1. This appendix contains a detailed 

description of the states involved in this protocol.

Algorithm 2.1 uses time redundancy to correct errors which occur while 

transferring synchronous information. For most bus systems this synchronous 

information consists of two transfers: data and address. The address may also 
contain information which indicates the type of transfer, but the timing 

requirements are the same as for the address itself, so these lines are 

grouped together. Thus the read cycle needs to apply Algorithm 2.1 to the 
address from the master to the slave as well as the data from the slave to the 

master.

Two more control lines are needed for this transfer over the read cycle 
of Figure 3.1. The condition that a parity error has been detected on the 

address lines is represented by ’errinadr’, and upon detection of this condi

tion a slave asserts the control signal ’adrpe’. Likewise, the condition that 

a parity error has been detected on the data lines is represented by ’errin- 

dat’, and master lets the slave know this by asserting ’datape1. These lines
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MASTER SLAVE

Figure A.1. Read Cycle Modified to Utilize Algorithm 2.1.
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allow the different modules involved with the protocol to carry out Algorithm
2.1. In the following description, where the states are essentially identical 

to their counterparts in the simpler read cycle contained in Section 3«2, the 
comments are minimal.

Master. State Machine - Modified Read Cycle

State 0: Idle state. Master exits when 'read* becomes true.

State 1: Assert address. Synchronous information is asserted. Move on to
state 2 after delay.

State 2: Assert request. This state differs from state 2 of the original

read cycle only in its exit criteria. When the master detects the asser

tion of the address parity error signal 1adrpe’, it waits long enough to 

be sure that all the slaves have also detected the assertion of the sig

nal and proceeds to state 7. If no 1adrpe' signal is detected, then nor

mal operation will proceed to state 3 upon detection of 'ack', as before. 
If too much time passes, then state 6 is the error exit.

State 3: Delay state. Again, this state differs from state 3 of the original

read cycle only in its mode of exit. If there is a parity error on the 

data which was received, then after the 75 nsec delay the master moves to 

state 10. Otherwise, normal operation will take the master to state 4.
State 4: Accept data. The data is accepted from the bus lines and the freq'

•* *>
signal is released.

State 5: Release address. The synchronous lines are released and the master

returns to the idle state.

State 6: Error state. If no 'ask' signal is received before the time-out
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period passes, the slave is delinquent and this state permits continued 

operation of the bus.
State 7: Release address, request. If a slave requests a retransmission of

address, this state is entered. The synchronous information asserted in 

state 1 is released, and the ’req’ signal is released also. The master 

then moves on to state 8.

State 8: Assert address for retransmission. The modification to the address

specified by Algorithm 2.1 is performed, and the modified address value 

is asserted. After the appropriate time to allow for skew and propaga

tion delay, the master moves to state 9.

State 9: Assert request. Like state 2, this state is used to assert the 

’req’ signal and wait for a response from the slave. When the Tackf 

response arrives, then the master moves on to state 3. If the address 

was for a non-existent slave unit, then no ’ack’ signal will arrive and 
the master will move to state 6 after * time-out’.

State 10: Assert data parity error. When the master unit has detected a par

ity error on the data lines, this state is entered from state 3, and the 
master asserts the signal ’datape’ to ask the slave for a retransmission 

of the value. At the same time it stores the erroneous data so that

Algorithm 2.1 can make use of it later. When the slave has detected the

presense of ’datape’, it responds by releasing the data and ’ack’. When 
the master detects this, it will proceed to state 11.

State 11: Release data parity error. When the master unit has arrived in
this state, it releases ’datape’ and waits for a new ’ack’ signal to

indicate that the retransmitted data is available. When this condition
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is detected, it moves on to state 12.

State 12: Delay state. This state forces the delay needed to account for sig

nal skew on the data lines. When the skew time has passed, control moves 

on to state 13.

State 13: Accept corrected data, release request. The correct data value 

will be available by combining the valued stored in state 10 and the 
value currently on the data lines as indicated by Algorithm 2.1. The 

resulting data are accepted by the master. The ’req’ signal is released 

to let the slave know of the acceptance of the data, and the master moves 

on to state 5.

3lave state. Diagram - Modified Read Algorithm

State 0: Idle state. Each slave will be idle until a ’req’ signal is

detected, and then the conditions it detects will determine how it 

proceeds in the state diagram. One of the two conditions detected is the 

fact that the address is free of parity errors and matches the slave’s 

assigned address space, indicated by ’adrok’. The other condition is 

that a parity error has been detected by the slave, indicated by ’erri- 

nadr’. If ’adrok' is true and no parity error has been detected, then 

the slave will move to state 9 when ’req’ is detected. If ’errinadr’ is 
true, then upon detection of ’req' the slave will move to state 4. How

ever, if neither of these conditions is true, then the slave will move on 
to state 10 with the detection of ’req'.

State 1: Prepare data. When the slave reaches state 1, it waits for the

functional part of the unit to prepare the data, then it moves on to
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state 2.

State 2: Assert the data and 'ack'. The data is asserted onto the bus lines

and the 'ack' control signal is asserted. There are two possible succes

sor states; in normal operation the 'req' signal will be released and the

slave will move on to state 3. However, if the master has detected a 

parity error, then 'datape’ will be asserted, and when the slave detects 

this signal it will move on to state 7.

State 3: Release data and 'ack'. The slave will release the data lines and
the 'ack' control signal before returning to the idle state.

State 4: Address parity error detected. When the address lines contain a

parity error when ’req' is detected, then this state is entered. The
effect is to save the value on the address lines for use in Algorithm 2.1

and to assert 'adrpe'. The assertion of this control signal lets the 

master and all other slaves know that the error has been detected. When 
'req' is released, then the slave moves on to state 5.

State 5: Release 'adrpe1. This state is entered when the 'req' signal has

been released. This lets the slave know that the 'adrpe' signal has been 

detected and can be released. When the 'req' signal is asserted again, 

the slave will proceed to one of two states, depending on the value of 

the address constructed according to Algorithm 2.1. If the address 

agrees with the slaves assigned address space, then state 1 is entered; 

otherwise state 6 is entered.

State 6; Wait state. This state is entered when a transaction occurs which 
does not involve this slave, but two transfers of the address were 

required to establish this fact. When the 'req' signal is released, then



129

the slave proceeds to the idle state.

State 7; Release the data and *ack*. The slave enters this state when it 

detects the * datape* signal, which indicates that the master needs a 

retransmission of the data to correct an error which has been detected. 

The slave releases the data lines and the 'ack* control line and moves to 

state 8 when the * datape’ line has been released. The release of that 

line synchronizes the actions of the slave and the master.

State 8: Assert data, re-assert *ack*. Now that the data lines have been

released, the slave can assert the data value modified according to Algo

rithm 2.1 for transmission on the data lines. It also asserts the ’ack* 

line to indicate to the master that new value is on the data lines. When 

the release of the *req* signal is detected, then the slave moves on to 
state 3-

State 9: Correct address detected. When the *req* signal has been received
by the slave while in the idle state, the address on the address lines 

falls within the assigned address space of the slave, and no parity error 

has been detected, this state is entered. No action is taken, and the 

choice of successor states is made on the.basis of the ’adrpe* line. If 

the *adrpe’ line has not been asserted within 50 nsec, then the slave 

moves on to state 1 and normal operation. If, however, the 'adrpe* line 
is asserted, then some other slave unit detected a parity error and the 

slave moves to state 12 to save the address and wait for the redundant 
address value.

State 10: Address not in address space. If the address on the bus does not 

have a parity error and is not in the assigned address space of the
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slave, then when the 'req* signal is detected the slave moves to this 

state. If the 'adrpe* signal is asserted then another slave has detected 

a parity error and the slave moves to state 12. If no »adrpef signal is 
received, then the slave returns to the idle state when the 'req* signal 

is released. This decision synchronizes the action of all of the slave 

modules so that each slave knows if the value on the address lines is a

valid address or an address formed by application of Algorithm 2.1 and

transmitted a second time.

State 11: Save address, assert ’adrpe*. When this state is entered, another
slave has detected a parity error on the address lines. This slave also

asserts the ’adrpe’ line and saves the address so that Algorithm 2.1 can

be applied to correct the fault. When the slave detects the release of 
*req', it moves on to state 5 to decide if the address matches its

assigned address space.
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APPENDIX B
BNF DESCRIPTION OF STATE MACHINE LANGUAGE

Chapter 4 introduces the State Machine Language SML and its application 
to represent state machines involved in a protocol system. We now give a com

plete Backus Naur Form (BNF) representation of the grammar. In the production 

rules which follow, the * ’ symbol calls for the replacement of the non

terminal on the left by the terminals and non-terminals on the right. Non
terminals appear below marked with ’<...>» characters, while these symbols are 

absent from terminals. The 1!’ symbol represents that the ’OR’ function, 

indicating that one of the entries may be selected. A symbol included in dou

ble quotes must be accepted literally as it appears. All other symbols

appearing in the production rules are terminals and must remain in the substi

tution. Also included in this appendix are descriptions of the operators of 
the language and the naming conventions used.

BNF ̂ Description jCl£ SML

<machine> ::= <name> <arg> <I> <S> <0> <transitions> <outputs>;

<name> <idname> <identifier>;

<idname> ::= surname ! hostname ! arbname

<identifier> : := <letter><char><char><char><char><char><charXchar><char> 

<letter> ::= <ucletter> j <lcletter>

<ucletter> ::: A i B | C | ... j Z
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<lcletter> ::: a j b S c ! ... I z

<mimber> : : s O l 1 | 2 ! 3 ! 4 l 5 ( 6 l 7 l ' 8 i 9

<char> <ucletter> I <lcletter> S <number> I <empty>

<empty> ::=

<arg> ::= <empty> I <arg> define <identifier> = <integer>

<value> <integer> ! mkadr(<min_adr>, <max_adr>) ! mkdata(<max_value>) 

<integer> <number> j <number> <integer>

<mirL_adr> ::= <integer>

<max_adr> ::= <integer>

<max_value> ::= <integer>

<I> ::= <inp> <signal_name_Xist> ;

<inp> ginputs ! linputs i inputs

<signal_name_list> ::= <signal_jiame> ! <signal_name> <, signal_name__list> 

<signal_jname> ::= <identifier>
i

<S> ::= states <integer> ;

<0> <out> <signal_name_Xist> ;

<out> ::= goutputs ! loutputs i outputs 

<transitions> ::= transition spec> ;

<transition spec> ::= <transition> ! <transition> <transition spec>
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<transition> ::= tran <state_number> -> <state_number> : <condition> ; j 

tran <state_number> -> <sfcate__number> ;

<state__number> <integer>

<condition> ::= <logic_on_inputs> \ <DLY>

! <logic_orL_input3> <logical operator> <DLY>

<logic_on_inputs> <value> I <expression> I ( <expression> )

<expression> ::= <signal__name> = <value> I <signal_name> I
<expression> <logical operator> <expression>

<logical operator> ::= == ! != ! <= ! >= ! " ! ! " ! & & ! >  j <

<DLY> ::= delay (<rainimum_wait__time>, <maximuin_wait_time>) !

acc_del ay (<maximunL_accumul a t ecL_time__.bef or e_f or ci ng_s tate_tr ansi tion>)

<minimum_wait_time> ::= <integer>

<maximunL.wait_tirae> ::= <integer>

<maximu33L_accumulated_time_before__forcing_state__transition> : := <integer> 

<outputs> ::= <output spec> ;

<output speo> ::= <output_def> ! <output_def> <output spec>

<output_def> ::= <assert__def > ! <release__def > I <do__def>

<assert_def> ::= assert <signal_name> in <state_number> ; !

assert <signal_name> = <value> in <state__number> ; ! 
assert_oc <signal__name> in <state__number> ; I 
assertion <signal_name> = <value> in <state_number> ;
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<release_def> :: = release <signal__name> in <state__number> ; } 

release_oc <signal_name> in <state_jiumber> ;

<do_def> ::= do <signal_name> in <state_number> ; j

do <signal_name> = <value> in <state_number> ; ! 
do_oc <signal__name> in <state_number> ; ! 
do_oc <signal__name> = <value> in <state_jiumber> ;

State Machine Names: Three types of state machines are identified by 

names: smname, hostname, and arbname. The ’smname* designation is for the

state machine representing the protocol machine itself. This is different 

from the functional unit portion of the system, which is represented by a 

state machine designated by ’hostname’, and if an arbitration module is asso

ciated with the module that is represented by a state machine identified by 
’arbname’. As for the names themselves there are no restrictions except as 
imposed by the operating system. The reason for this restriction is that the 

name called out in the ’<name>’ portion of the grammar is used as a root name 

for files created by the protocol exercise system. Therefore, the names 

should not be too long, and no two state machines should have the same name.

The define statement: The identifier of a ’define’ statement will iden

tify a constant which should be set to a value. The restrictions on the iden

tifier are those associated with naming of variables in the C language. The 

value should be an integer.

Values: Values in the protocol system are integers. Where an integer is 

known then the integer itself can be used. Where an integer can assume a 

value between two different addresses, then the ’mkadr’ function can be used.
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The name ’mkadr* represents ♦make an address*. There are two calling parame

ters to the function: <mirL_adr> which represents the minimum legal address, 

and <max__adr> which identifies the upper limit of address range. The number 
generated by this function is an integer somewhere between the two limits. 

The function *mkdata* also allows the specification of a value which is a ran

dom number. The calling parameter to *mkdata* is a single integer which is 

the maximum allowable value that the function can assume. The value which is 

returned will be a positive integer less than the calling parameter.

Inputs: There are two types of inputs: global inputs and local inputs. 

Global inputs are signals which originate from the bus, and as such extend 
between protocol modules. Local inputs are signals which are used between the 
units which comprise a module, the protocol machine, the arbitration machine, 

and the functional unit. For the arbitration and protocol modules the ’gin- 

puts’ designation is required to identify the global inputs, and the ’linputs’ 

name identifies the signals which are local. Since the functional unit por

tion deals only with local signals it can use the ’inputs’ designation, which 

defaults to local inputs. The names used for inputs and outputs can carry 

information concerning their expected values, as explained below.

Signal Names: A convention which has been adopted concerning the names of 
the signals concerns the terminal character of the signal. It is not impera
tive that names conform to this convention; the system can operate with sig

nals which do not ascribe to the rules presented here. A name should end in 
one of the letters ’h’,’l’,’b’, or ’p’. A signal whose name ends with ’h’ is 

a single line considered to be active in the high state, and a name which ends
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with *1* is a single line considered to be active in the low state. A name 

which ends in a * b' is considered to be a bus value, such as a data bus or an 
address bus, which does not have parity error detection associated with it. A 

name which ends in a ’p' is considered to be a bus which does have protection 

of a parity bit. When space is allocated on the output lines for data values 

more room is left for the bus values than for the signal values, so following 
the convention aids the format of the output data.

States: States in the state machine system are identified by integers, 

and so the set of states comprising the state machine can be identified by 

giving the highest number of a state. By convention, states are numbered con

secutively from 0, so a state machine contains n+1 states, where n is called 

out in the Tstates’ statement. When a state is identified in a transition 

statement or an output statement, it is in the set of states of the machine 
when the state in question has a number less than or equal to the number 
called out by the ’state statement’.

Outputs: Like the inputs, the outputs are grouped into global and local 
signals. The global signals are used to communicate between modules on the 

bus, and local names are used within functional units. For the arbitration 

and protocol machines the ’goutputs’ statement is require to identify the out
puts which are global, and ’loutputs' identifies the signals which are used 

within the module. For the state machine of the functional unit the ’outputs’ 

designation is allowed, since all outputs of the functional portion are local
to the module.
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Transitions: Transitions are identified by giving the initial state of 
the transition, the final state, and the conditions under which the transition 

will be made. The condition portion of the statement is optional; if it is 

not present then the transition to the next state is made one state time later 

than entry into the state. The conditions involved in the transition state

ments can consist of logic on the input values, delays, or a combination of 

logic and delays. The logic involved is comparing the signals to known values 

or to values established by the define statements. For example, the logical 

statement *testh != 1f will be true when the signal ftesth’ is not asserted. 

The logical operators available are those involved in the C language. The 

delays involved are represented by two functions: 'delay* and *acc_delay'. 

The 'delay' function accepts two parameters, both of which are integers. The 

first establishes a minimum time, and the second identifies a maximum time. 

The actual delay time, which will be a random number between the two values, 

must transpire before control can pass to another state. That is, this time 

must occur before the logical expression containing the delay can be true. 

The *acc_delay' statement has one parameter which establishes the time after 

which the function becomes true. There is no random nature involved with 
’acc__delay'.

Controlling the outputs: There are three types of statements which deal with 
controlling the output signals. The *assert_def' statements are used to 

specify the states in which a signal is asserted. Signals asserted in this 

way will need to be released in a later state with a *release_def' type of 

statement. The assertion statement must identify the signal to be asserted, 
the value which it will be given, and the state number in which this action
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occurs. If the naming conventions outlined above have been followed and sin

gle signal line names end in either an *h* or an »1’, then the value portion 

of the statement is optional. If it is not present, then the value indicated 
by the name is assumed for the assertion value. Signals which are open col

lector signals are asserted by ’assert_oc* statements; ’assert* statements are 

used for all other signals. A signal which has been asserted in one state 
must be released in a later state, and this is done by the appropriate 

’release_def* statement. Open collector signals are released by using the 
’release_oc* statement. All other signals are released with the ’release’ 

statement. When a signal is to be asserted in one state and released when 

that state is exited, regardless of the next state, then it is possible to use 
the ’do_def’ type of statement. The same conventions about values and open 

collector restrictions apply to the ’do’ statements as for the ’assert’ state

ments. Signals identified by the ’do_def’ statements are true only for the 
duration of the state identified by the statement.
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APPENDIX C
SML DESCRIPTION OF UNIBUS MASTER

SML can be used to describe arbitrarily complex state machines to enable 

the simulation system introduced in Chapter 4 to exercise a system composed of 
multiple state machines. The UNIBUS Master from Chapter 7 is shown in Figure

C.1, with the signal names given below:

abusb - the address bus; no parity protection

addressb - the address from the functional section of the module 

indicating the target address of the transaction 

bbsy - bus busy - asserted by master while using bus lines 

bg - bus grant - asserted by arbiter when control of- bus can 

be obtained

br - bus request - asserted by a master when it needs control of bus 
c1,c0 - the control lines - same timing as the address lines 

and used to indicate the type of transfer 

dbusp - the data lines, including parity

msyn - master sync - asserted by master to communicate with slave 

readh, read_pauseh, writeh, write__byteh - local signals from the 
functional portion of the module to start a transaction 

reacl_datab - path to functional portion of module for passing 
data from a slave

sack - selection acknowledge - asserted by master to acknowledge 
that it will assume control of bus when bbsy goes false 

ssyn - slave sync - asserted by slave to communicate with master



MASTER

Figure C.1. State Machine of the UNIBUS Master.
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write_datab - path from functional portion of module carrying 
data to be sent to slave

write__doneh, read_doneh - local signals to the functional portion 

of the module to indicate completion of a transaction

Note that the states 12 and 13 now contain the signals needed to be released 

to accomodate the error conditions of the states.

The text of the file describing the state machine is as follows:

smname master; # master of DNIBUS
ginputs dbusp, ssyn, bg, bbsy;
linputs writeh, readh, read_pauseh, write__byteh, addressb, write_datab; 
states 17;
goutputs dbusp, msyn, cO, d ,  abusb, br; 
loutputs write_doneh, reaci_doneh, read_datab;

# beginning of next state section
read>_pauseh == 1 I writeh == 1 ! write_byteh == 1

= = 1;

tran 0 -> 1 : readh =s 1 I
tran 1 -> 2 : bg == 1•1
tran 2 -> 3 • bbsy != 1 &&
tran 2 -> 4 ♦• bbsy != 1 &&
tran 2 -> 5 • bbsy != 1 &&
tran 2 -> 6 ; bbsy != 1 &&
tran 3 -> 7 ;
tran 4 -> 8 ;

tran 5 -> 10 : delay(150,150) ;

tran 6 -> 10 : delay(150,150) ;
tran 7 -> 9 : delay(150,150) ;

tran 8 -> 9 : delay(150,150) ;

tran 9 -> 11 : ssyn == 1 ;
tran 9 -> 12 : acc_delay(20000);
tran 10 -> 13 : acc_delay(20000) ;
tran 10 -> 14 : ssyn == 1 ;



tran 11 -> 15 : delay(75,75) •
f

tran 12 -> o ;
tran 13 -> o ;
tran 14 -> 16 ; delay(75,75) •*
tran 15 -> 0 ;
tran 16 -> 17 : delay(75,75) && readLpause == 1 ;
tran 16 -> 18 : delay(75,75) && readh == 1 ;
tran 17 -> 8 ;
tran 18 -> 0 ;

> # beginning of output section
assert br = 1 in 1 »
assert sack = 1 in 2 ;
assert bbsy = 1 in 3;
release sack :in 3;
assert bbsy = 1 in
release sack :in 4;
assert abusb = addressb in 5;
assert c1h = 0 in 5;
assert cOh = 0 in 5;
assert bbsy = 1 in 5;
release sack in 5;
assert abusb = addressb in 6;
assert d h  = 0 in 6;
assert cOh = 1 in 6;
assert bbsy = 1 in 6;
release sack in 6;
assert abusb = addressb in 7;
assert d h  = 1 in 7;
assert cOh = 1 in 7;
assert datab = write_datab in 7;
assert abusb = addressb in 8;
assert c1h = 1  in 8;
assert cOh = 0 in 8;
assert datab = write_datab in 8;
assert msyn in 9;
assert msyn in 10;
release msyn in 11;
do write_doneh = 1 in 11;
release msyn in 12;
release cO in 12;



release d  in 12; 
release abusb in 12; 
release bbsy in 12; 
release sack in 12; 
release datap in 12; 
release br in 12; 
release msyn in 13; 
release cO in 13; 
release c1 in 13; 
release abusb in 13; 
release bbsy in 13; 
release sack in 13; 
release br in 13; 
release abusb in 15; 
release cO in 15; 
release c1 in 15; 
release bbsy in 15; 
release br in 15; 
do rea<i_datab = datap in 16; 
do read_doneh = 1 in 16; 
release msyn in 16; 
release cO in 17; 
release c1 in 17; 
release abusp in 18; 
release cO in 18; 
release d  in 18; 
release bbsy in 18; 
release bg in 18;
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. APPENDIX D

OSE OF PROTOCOL EXERCISE SYSTEM

The protocol exercise system explained in Chapter 4 allows a computer to 

simulate the action of a system described as a number of state machines. 

There are several steps involved in the process of building a computer program 

to simulate the system, and an overview of this process is provided by Figure
D.1. As shown in the figure, the state machine describing each module is 

represented in SML, and these descriptions form the input to a lexical 

analyzer called fmfsmf. This analyzer converts file containing the SML 

descriptions into several files, one of which is a C language routine describ

ing the action of the module. When this conversion has been performed on each 
module, three other programs are invoked to create the system. The first pro

gram is called ’makedoup', and it is used to create a C language routine which 
monitors the states and variables of interest and outputs the information when 

called for by the execution of the system. The second program is called 'mak- 

enames’, and it is used to create lists of global and local names for the sys

tem being simulated. The third program is called 'makeit', and it is respon

sible for taking the information created by the other programs and generating 
a file containing a valid C program which can be compiled with the standard C 
compiler. In addition to these routines there is another utility called ,ch* 

which can be used to check the syntax of the SML file. These routines, their 
calling parameters, and the inputs and outputs expected by each are explained
below.



Generation of Simulator for Protocol Analysis

simulation 
of interacting 
system s

--------- >

Figure D.1. Overview of Protocol Exercise System.
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mfsm; The program 'mfsm' converts SML descriptions of state machines into 
a number of output files. The input is provided via the standard input facil

ity of UNIX. The output appears in several files, the names of which are 

derived from the name of the state machine specified in the opening statement 

of the SML description. This name is used as the Kstate machine name>’ in 

the following description of files generated by ^fsm’.

<state machine name>.b : This file contains the largest delay called for in
the state machine. It allows the system to set a limit when checking for
deadlock conditions.

<state machine name>.c : This, file contains a C language routine which

represents the state machine defined by the SML description.

<state machine name>.d : This file contains the name of the C routine which
is created to represent the module. This name is needed by the simula

tion system in order to initiate the action of the module.
<state machine name>.gi : This file contains the names of the global inputs

called out in the fginputsf statement of the SML description. It is com

bined with the other global symbol names of other modules to create a 
list of the global signals. This list defines the lines on the bus in 

question.

<state machine name>.go : This file contains the names of the global outputs

specified by the 'goutputs’ statement of an SML description. It is com

bined with other global symbol lists to define the names of the lines of 
the bus being simulated.

<state machine name>.li : This file contains the names of the local inputs

called for by the SML description. The signals specified here are not
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available to other state machines in the system, but they can be identi- 

fied for output or error specification if needed.

<state machine name>.lo : This file contains the names of the local outputs

identified in the SML description. The signals specified here are not 

available to other state machines in the system, but they can be identi

fied for output or error specification if needed.

<state machine name>.n : This file contains the names containing the state

variables of the state machine. That is, the variables named in this 

file are the present state register and the next state register in the 

representation of the action of the module. The integer in the present 

state register identifies the current status of the state machine.
<state machine name>.p : This file identifies the name by which the process

can be referred to for output statements.

makedoup: The routine ’makedoup’ is used to create a C language routine 
which updates temporary variables to keep track of the action of the system. 

The variables which are of interest to the system are identified in the cal

ling parameters. Those names which identify state machine names which have 

been processed by the ’mfsm’ routine result in the output of the state of that 

module on an output line. Names which do not coincide with names of state 
machines are assumed to be names of auxiliary variables identified by the 
operator as of interest, and the signals so named also appear in the output. 

In addition to this information specified by the calling parameters, the time 

of the simulation system clock and the global variables are also printed out. 

The C routine which results from the execution of ’makedoup’ is sent to the 

standard output facility of UNIX and redirected to the file ’do_an_upda.c’.
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makenames: The routine 'makenames' is used to create a list of the global 

and local names used by the system. The calling parameters to 'makenames' 
identify the state machines which will jointly make up the system, and the 

routine collects the signal names from the files created by 'mfsm1. These 

names are placed into the appropriate files and the duplicate entries removed. 

The files are then ready for 'makeit' to create the system as a whole.

makeit: The simulation system as a whole is created by the routine *mak- 

eit'. The calling parameters to 'makeit* identify the names of the state 

machines which will make up the system. The files created by 'mfsm*, 'mak- 

edoup', and 'makenames* are all combined into one file which represents the 

entire system. This file is then input to the C compiler to create an execut
able version of the system. Other versions of the system using fewer or more 

modules can be created by adjusting the names used as calling parameters to 
the above routines.

Invoking the action is accomplished in the same manner as starting any 

other executable program on the system. However, the action of the simulation 
system can be modified by the calling parameters with which it is started. 

These parameters are as follows:

-d name n The -d option is used to identify a drive signal. The signal 

identified by 'name' is monitored, and after 'n' cycles of the signal the 
action of the system is terminated.

-f name or -F name The -f option is identifies the signal 'name' as a signal 

which will be susceptible to stuck-at faults. The inclusion of a second 

signal for stuck-at faults is allowed by the -F option. This allows
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specification of a fault on the data path and a fault on the control 

lines.

-% n The probability of a signal sticking at an asserted value is fn* per
cent.

-# n The probability of a signal which has been stuck-at a value being 

released is fn* percent.
-p This flag inhibits the output information from being provided at state 

changes. In this way only error messages will be output.

-r Action of the system is often controlled by the action of a pseudo-random 

number generator. The seed of that number generator is initially the 

same from one run to the next, allowing duplication of a run. The f-r*

flag causes the seed of the number generator to be based on the time,

resulting in a random start for the random number generator.

-w name The signal ’name* is added to the information printed at every out
put time.

.Oh: The routine 1 ch* provides a syntax checker for the SML files. The

checker can be fooled into thinking that a description is valid when in real

ity it is not, but it does provide a vehicle for checking for naming errors 

and operator malfunction. The input to ,ch* is an SML description and the 

output is the same file with whatever error messages are identified by the 
syntax checker. The absence of error messages indicates that there is a 

fairly good probability that the syntax is correct.

Once a set of files has been established with the SML descriptions of the 

state machines of the protocol to be exercised, then a simulation system can
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be created by using the commands listed above* The commands needed to build a 

system from four SML files named ’master’, ’slave1, ’master_Jiost’, and 

’slave_host’ are as follows:

mfsm < master 
mfsm < master__host 
mfsm < slave 
mfsm < slave_Jiost
makenames master masterji slave slave_h 
makedoup master master_h slave slave_Ji > do_ao_upda.c 
makeit master master_h slave slave_h > whole.c 
cc -o r1 -g whole.c /mnt/dln/pub/sim.new.a

Once the executable file has been created by the C compiler, then it can 

be invoked with the the appropriate options as shown below. This example uses 

the executable fr1’, created by the operations shown above, and the calling 
parameters specify only two cycles of the protocol. The output which appears 
after the command line is supplied by the protocol system, and identifies the 

drive signal, the number of cycles, and the type of printout. The numbers on 
each line are the time, the states of the four state machines (master, 

master_Jiost, slave, and slave_Jiost), and the global variables (*ack’, *adr', 
’data’, and ’req’).

% r1 -d req 2
Drive signal - req
Number of cycles - 2
Print out state changes and globals

1 - 0 1 0 0 -1 -1 -1 -1
101 - 0 2 0 0 -1 -1 -1 -1
102 — 0 3 0 0 -1 -1 -1 -1
103 - 1 3 0 0 -1 1474 -1 -1
253 - 2 3 0 0 -1 1474 -1 1
255 - 2 3 1 0 -1 1474 -1 1
257 - 2 3 1 1 -1 1474 -1 1
657 - 2 3 1 2 -1 1474 -1 1
658 - 2 3 2 2 1 1474 1599 1

i
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660 - 3 3 2 0 1 1474 1599 1
735 - 4 3 2 0 1 1474 1599 -1
737 - 4 3 3 0 -1 1474 -1 -1738 - 4 3 0 0 -1 1474 -1 -1
810 - 5 3 0 0 -1 -1 -1 -1
811 - 0 3 0 0 -1 -1 -1 -1812 - 1 3 0 0 -1 1329 -1 -1962 - 2 3 0 0 -1 1329 -1 1964 - 2 3 1 0 -1 1329 -1 1966 - 2 3 1 1 -1 1329 -1 1
1366 - 2 3 1 2 -1 1329 -1 1
1367 - 2 3 2 2 1 1329 4833 1
1369 - 3 3 2 0 1 1329 4833 1
1444 - 4 3 2 0 1 1329 4833 -1
1446 - 4 3 3 0 -1 1329 -1 -1
1447 - 4 3 0 0 * -1 1329 -1 -1

Total time 1519
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APPENDIX E

STATE MACHINES FOR PROTOCOLS UTILIZING ALGORITHM 2*1 
AND DUAL-RAIL SIGNALS

The state machines presented in Chapter 5 use the generic read protocol 

to introduce the algroritms for conversion from single-rail control signals to 

dual-rail control signals. These algorithms can be applied to more complex 

protocols as well with similar results. This appendix contains the state 

machines derived from application of the algorithms of Chapter 5 to the read 

protocol which has been modified to utilize Algorithm 2.1. The state machines 

for this protocol appear as Figure 3.2.

In these figures the states which will be reached in the presence of sin
gle stuck-at faults are labeled with the appropriate fault. The format of the 
label is xx/f, where the signal name is xx and the value at which the signal 

is stuck is f. In addition, the correlation between the initial state machine 

and the new state machine is indicated by the state numbers of the original 

state machine which appear near the appropriate group of states in the new 
state machine.

Figure E.1 presents the application of Algorithm 5.1 to the master of the 

read protocol, and Figure E.2 presents the slave. The application of Algo

rithm 5.2 to the master and slave is shown in Figure E.3 and Figure E.4. The 

application of Algorithm 5.3 is shown in Figure E.5 and Figure E.6.
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F ig u re  E .1 .  A p p lic a tio n  o f A lg o rith m  5.1 to Read P ro to c o l M aster.
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F ig u re  E . 2 .  A p p lic a tio n  o f A lg o rith m  5.1 to Read P ro to c o l S la v e .
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F ig u re  E . 3 »  A p p lic a tio n  of* A lg o rith m  5*2 to  Read Pro to c o l M aster.
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F ig u re  E . 4 .  A p p lic a tio n  o f A lg o rithm  5 .2  to Read P ro to c o l S la v e .
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F ig u re  E . 5 .  A p p lic a tio n  o f A lg o rith m  5-3 to Read P ro to c o l M aster.
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F ig u re  E . 6 .  A p p lic a tio n  o f A lg o rithm  5 .3  to Read P ro to c o l S la v e .
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