

UNCT.ASSTFTF.n
S E C U R I T Y C L A S S I F I C A T I O N o f T H I S P A G E (When Data Entered)

REPORT DOCUMENTATION PAGE R E A D IN S T R U C T IO N S
B E F O R E C O M P L E T IN G FO RM

t. R E P O R T N U M B E R 2. G O V T A C C E S S I O N NO. 3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (and Subtitle)

fault tolerant bus communication
PROTOCOLS FOR COMPUTER SYSTEMS

5. T Y P E O F R E P O R T 4 P E R I O D C O V E R E D

i Technical Report

6. P E R F O R M I N G O R G . R E P O R T N U M B E R

CSG-18
7. a u t h o r ^ ;

LEONARD HOWARD POLLARD
8. C O N T R A C T O R G R A N T N U M S E R f a J

N00039-80-C-0556

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A O D R E S SCoordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. P R O G R A M E L E M E N T , P R O J E C T , T A S K
A R E A 4 W O R K U N I T N U M B E R S

11. C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Naval Electronics Systems Command,
VHSIC Program

12. R E P O R T D A T E

August 1983
13. N U M B E R O F P A G E S

163
14. M O N I T O R I N G A G E N C Y N A M E 4 A O D R E S S f / / different from C ontro lling O ffice) 15. S E C U R I T Y C L A S S , (o f this report)

UNCLASSIFIED
ISa . D E C L A S S I FI C A T IO N / 'D O W N G R A D I N G

S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (of th is Report)

Approved for public release; distribution unlimited

17. D I S T R I B U T I O N S T A T E M E N T (o f the abstract entered In B lo c k 20, it different from Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y W O R O S (C ontin ue on reverse s ide if n e ce ssa ry and identify by b lock num ber)

bus communication, communication protocols, error detection,
fault-tolerance, data transmission, time-shared bus

20. A B S T R A C T (C o n t in u e on raverae side if n e ce ssa ry and identify by b lo ck num ber)

Bus systems form the communication medium for computers, and a great deal
of effort has been devoted to detecting errors which occur as information is
transferred from one module to another. In this thesis we look at the problem
of not only detecting faults which occur, but continuing to function in the
presence of those faults. The lines of a bus are grouped together into two
classes: synchronous address and data lines, and the control lines which
govern the action of the synchronous lines.

DD F O R M
1 J A N 73 1473 UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Date Entered)

UNCLASSIFIED_____________________
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G ErW»*n Data Enterad)

The fault model which is assumed for the synchronous lines includes not
only the classical stuck-at fault, but also bridging faults and transient
faults. Two algorithms are presented which use time redundancy to guarantee
correct transfer of information in the presence of a single fault. One
requires a single retry and is applicable for stuck-at faults and adjacent
bridging faults. The other algorithm removes the adjacency requirement, but
requires either one or two retrys, depending on the type of fault.

The modules comprising the protocol system are represented using state
machines, and the action of the system is monitored by observing the states of
the modules and the levels of the bus lines. A State Machine Language (SML)
is developed to represent a protocol system. SML representations of the
modules form the input to a protocol exercise system which simulates the action
of the system and identifies errors which occur.

Knowledge of the prescribed behavior of the control lines allows the
presence of stuck-at faults to be detected by the use of time-out escape
sequences. The knowledge of the behavior of the control lines also permits
dual-rail control signals to be used to guarantee continued operation in the
presence of single faults. The expected levels of the signals as the protocol
sequences through its actions allow identification of lines which are stuck at
an incorrect value; the incorrect line can then be ignored as the module
continues to function. Three algorithms are presented which will convent state
machines for single-rail control signals to state machines which accommodate
dual-rail signals. The system cost associated with this technique consists
of the additional lines needed for dual-rail control signals and for
implementing the time redundant transfer algorithms, and the additional hardware
needed to implement the algorithms. For a standard bus this means about a 40%
increase in the number of lines and approximately doubling the hardware dedicated
to the bus control function.

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E f lW i« n D a ta Entmrad)

FAULT TOLERANT BUS COMMUNICATION PROTOCOLS
FOR COMPUTER SYSTEMS

BY

LEONARD HOWARD POLLARD

B.S., Utah State University, 1971
M.S., Utah State University, 1977

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1983

Urbana, Illinois

iii

ABSTRACT

Bus systems form the communication medium for computers, and a great deal

of effort has been devoted to detecting errors which occur as information is

transferred from one module to another. In this thesis we look at the problem

of not only detecting faults which occur, but continuing to function in the

presense of those faults. The lines of a bus are grouped together into two

classes: synchronous address and data lines, and the control lines which

govern the action of the synchronous lines.

The fault model which is assumed for the synchronous lines includes not

only the classical stuck-at fault, but also bridging faults and transient
faults. Two algorithms are presented which use time redundancy to guarantee
correct transfer of information in the presense of a single fault. One

requires a single retry and is applicable for stuck-at faults and adjacent

bridging faults. The other algorithm removes the adjacency requirement, but
requires either one or two retrys, depending on the type of fault.

The modules comprising the protocol system are represented using state

machines, and the action of the system is monitored by observing the states of

the modules and the levels of the bus lines. A State Machine Language (SML)

is developed to represent a protocol system. SML representations of the

modules form the input to a protocol exercise system which simulates the
actions of the system and identifies errors which occur.

Knowledge of the prescribed behavior of the control lines allows the

presense of stuck-at faults to be detected by the use of time-out escape
sequences. The knowledge of the behavior of the control lines also permits

dual-rail control signals to be used to guarantee continued operation in the
presense of single faults. The expected levels of the signals as the protocol

iv

sequences through its actions allow identification of lines which are stuck at

an incorrect value; the incorrect line can then be ignored as the module

continues to function. Three algorithms are presented which will convert

state machines for single-rail control signals to state machines which

accommodate dual-rail signals. The system cost associated with this technique

consists of the additional lines needed for dual-rail control signals and for

implementing the time redundant transfer algorithms, and the additional

hardware needed to implement the algorithms. For a standard bus this means

about a 40$ increase in the number of lines and approximately doubling the

hardware dedicated to the bus control function.

V

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION ... 1

1.1. Introduction............ 1
1.2. Bus Level Protocols 2
1.3. Bus Level System Representation 3
1.4. An Overview of This Research • 5

2. CORRECT TRANSMISSION OF SYNCHRONOUS DATA USING TIME REDUNDANCY 9
2.1. Introduction ... 9
2 .2 . Correction of Errors Due to Bridging of Logically

Adjacent Lines ... 11
2.3* Correction of Errors Due to Bridging of Any Two Lines 18
2.4. Logic for Implementation..................................... 23
2.5. Concluding Remarks ... 25

3. MODELING THE INTERACTION OF THE ASYNCHRONOUS CONTROL SIGNALS
OF BUS LEVEL PROTOCOLS 28

3.1. Introduction... 28
3.2. State Machine Representation of a Generic Read Cycle 33
3.3. Read Cycle Using Algorithm 2.1 for Data Correction.......... 39

4. COMPUTER-AIDED ANALYSIS OF PROTOCOL INTERACTION 45
4.1. Introduction and Previous Work 45
4.2. SML - A State Machine Representation Language 47
4.3. Representation of State Machines with SML 50
4.4. Using SML Descriptions with the Protocol Exercise System 56

5. ALGORITHMS FOR DEALING WITH ERRORS IN CONTROL SIGNALS 60
5.1. Introduction....... 60
5.2. Control Signal Error Detection with Time Redundancy 62
5.3. Continuous Operation with Dual Rail Redundant Signals 75
5.4. Summary of Detection and Correction Techniques..... 96

6 . ARBITRATION FOR CONTROL OF BUS LINES 99
6.1. Introduction........ 99
6.2. Parallel Arbitration System 1°3
6.3. Serial Arbitration System 106

7. A CASE STUDY - THE UNIBUS............ 109
7.1. Introduction... 109
7.2. Additional Bus Lines for Tolerating Faults 110
7.3. Additional Protocol Complexity 114
7.4. Total System Cost 117

8 . CONCLUSION 119
8.1. Contributions of This Thesis 119
8.2. Suggestions for Further W o r k 121

vi

TABLE OF CONTENTS (Cont.)

Chapter Page
APPENDICES
A. READ CYCLE INCORPORATING ALGORITHM 2.1 123
B. BNF DESCRIPTION OF STATE MACHINE LANGUAGE..................... 131
C. SML DESCRIPTION OF UNIBUS MASTER......______ 139
D. USE OF PROTOCOL EXERCISE SYSTEM...................... 144
E. STATE MACHINES FOR PROTOCOLS UTILIZING ALGORITHM 2.1

AND DUAL-RAIL SIGNALS ... 152
REFERENCES .. 159

VITA .. -163

vii

LIST OF FIGURES

Figure
1.1. Functional Model of Protocol System. •..... •
2.1. Model for Time Redundancy Transfer Algorithms....................
2.2. Logic for Implementation of Algorithm 2.1..................... .
2.3. Logic for Implementation of Algorithm 2.2........................

3.1. State Diagrams for Read Cycle.....................................
3 .2 . Read Cycle Modified to Utilize Algorithm 2.1.....................

4.1. Description of SML Grammar for a State Machine...................
4.2. Master and Slave State Machines for a Read Cycle.................
4.3. SML Descriptions of the Master and Slave State Machines..........
4.4. Example of Creating a Protocol Simulation System.................
5.1. Master and Slave State Machines for a Read Cycle.................
5.2. Master and Slave State Machines for Error Detection..............
5.3. Master and Slave State Diagrams for a Simple Write Protocol......
5.4. Read State Diagrams for Error Detection and No Improper Operation.
5.5. Identification of Signal Sets for Dual Rail Algorithms...........
5 .6 . Application of Algorithm 5.1 to Simple Read Master...............
5.7. Application of Algorithm 5.1 to Simple Read Slave................
5.8. Algorithm 5.2 Applied to the Master of the Simple Read Cycle.....
5.9. Algorithm 5.2 Applied to the Slave of the Simple Read Cycle......
5.10. Application of Algorithm 5.3 to Master of Simple Read Cycle.....
5.11. Application of Algorithm 5.3 to Slave of Simple Read Cycle......

6.1. Arbitration Mechanisms in Bus Systems............................
6.2. Master of Simple Read Cycle*with Arbitration Lines Added.........

7.1. Block Diagram of a UNIBUS System.-
7.2. State Machine Representation of UNIBUS Master....................
7.3. State Machine Representation of UNIBUS Slave......................
A.1. Read Cycle Modified to Utilize Algorithm 2.1.....................

C.1. State Machine of the UNIBUS Master...............................

D.1. Overview of Protocol Exercise System.

E.1. Application of
E.2. Application of
E.3. Application of
E.4. Application of
E.5. Application of
E.6 . Application of

Algorithm 5.1 to
Algorithm 5.1 to
Algorithm 5 .2 to
Algorithm 5 .2 to
Algorithm 5.3 to
Algorithm 5.3 to

Read Protocol Master.
Read Protocol Slave.
Read Protocol Master.
Read Protocol Slave.
Read Protocol Master.
Read Protocol Slave.

Page
4

10
24
26

36
41

49
51
52
56

63
66
68
71
77
81
83
88
89
94
95

102
105
110
115
116

124

140

145

153
154
155
156
157
158

-1

CHAPTER 1

INTRODUCTION

±._L. Introduction

In this thesis we treat the following question:

"How can information be transferred correctly in the presence of
faults, between digital systems connected by a bus?"

Bus systems form a central method for information transfer in digital

systems, transferring data and addresses between the different modules, and

allowing the system to perform useful work. Busing techniques are not only

important as an interconnection path between the modules of a computer, but

they also play an important part in the communication tasks of the modules

themselves. This includes data exchanges on the boards of a system, and also
internal communication paths for integrated circuits which are growing ever
larger. And as the feature size decreases in integrated circuits, the suscep­

tibility to noise increases. This increase of awareness of electrical faults,

and their impact on system behavior, is not limited to the small circuits;

striving to increase system performance to the limits of technology increases

the probability that faults will be a factor which needs to be handled.

In order to allow continued system operation in the presence of these

faults, a set of techniques and policies is needed which will provide toler­
ance to the effects. This collection of techniques and policies will form a
protocol which can be used to prevent system failure and permit operation in

2

the presence of the faults. This protocol needs to provide the ability to

detect the presence of a fault, identify the fault for reporting and repair

purposes, and still maintain correct operation, even if the operation is per­

formed at a degraded speed.

±.2* Bus level Eratocola

The word 'protocol1 has appeared many times in the literature and has

been used to represent many different types of interactions. Perhaps the most
pervasive use of the word is to refer to the set of rules governing the

interaction of a number of computer systems. Examples of this type of system
include ARPANET, DECNET, SNA, ETHERNET, and other related host-to-host commu­

nication methods. These protocols govern the action of the various computers
which are connected together, and concern themselves with such issues as rout­
ing algorithms, retransmission of data assumed to be lost, management of tem­

porary storage in the various computers to permit message exchange, and other

interactions which are needed to transfer information from one site to

another.

The word 'protocol' has also been used to refer to the rules which have

been set up to provide standardization of basic system functions from one sys­

tem to another. Examples of this are a file transfer protocol [1], a virtual

terminal protocol [2], and tape format protocols.

Still another sense of the word represents the specification of the phys­

ical elements involved in the communication process [31 - This includes the

mechanical and electrical elements of an interconnection scheme, such as iden­
tifying the connectors involved in a specific product and specification of the
voltage and current levels to be used.

3

In this thesis the word ’protocol’ is taken to mean the set of rules and
procedures which specify the interaction of modules which are connected to a
bus structure and whose source of system knowledge is limited to the signals

which form the bus. Although we will be concerned with identification of the

signals which make up the bus, or the portion of the bus required for a

specific interaction, we will not identify the technology or the voltage (or

current) levels. Rather, we will assume that a signal is ’asserted’,

’unasserted’, or faulty, either from a ’stuck-at’ fault or a fault which is

characterized by the logical bridging of two signals. We also do not consider

those protocol rules mentioned above which are concerned with more global,

multi-machine matters, such as the routing algorithms or storage allocation

procedures. Thus, we limit ourselves to that set of rules which concerns the

signal level of a bus system.

1-2. Bus Level System .Representation

The bus level model of a system as viewed in this thesis is shown in Fig­

ure 1.1. This figure shows several independent modules which are connected by

a bus structure. The different modules are composed of a functional part and

an interface part. The functional portion of a module implements some system

specific function which is independent of the protocol which ties the modules
together. Examples of functional modules are memories, interfaces to peri­
pheral equipment, and processors.

The interface portion of a module is that hardware which connects the -

functional part to the actual lines of the bus to communicate with other

4

Module 1 Module 2 Module 3 Module N

Bus Structure

Figure 1.1. Functional Model of Protocol System.

members of the system. The interface portion contains the hardware to imple­

ment the algorithms and control procedures which are required by a protocol.
i

Thus the interface portion receives direction from the functional portion as
to what type of interaction is needed with the other modules which comprise
the system, and the interface portion operates according to the protocol of

the system to communicate with the other modules in the system.

The bus itself consists of a number of physical lines which join the dif­

ferent interface modules together. Some lines provide a connection which is

common to all of the modules, while others may provide a daisy-chain type of

connection between modules. No properties are assumed for these connections;

the actual drivers and receivers are part of the different interface modules.

Thus, whether a line assumes the properties of a common collector, tri-state,

or other interconnection method is determined by the electronics of the inter­
face module.

5

The principal function of the bus is to transfer information from one

module to another. The signal lines which accomplish this are divided into'

two groups: the lines which carry information, such as address and data lines
(collectively called data lines in this thesis), and the lines which control

the interaction, such as request and acknowledge lines (called control lines).

Although serial data lines have been used to satisfy the needs of some sys­

tems, most computers utilize parallel data lines for information transfer to

achieve higher data rates. In this thesis we are concerned mainly with the

parallel mode of data transfer, although the control methods presented here

will also work with serial data lines.

1-2L- An QgacalaH nf Xhi3 Research

The division of the bus signals into two different groups gives rise to

two different methods of modeling the lines and the algorithms which deal with

them. The busing of synchronous information on parallel lines is treated by

referring to the lines as a bus with no timing constraints. The information

on these lines is assumed to be present when needed by the algorithms and no
requirements are placed on the signal arrival time. Single error detection in

this case is provided by a single parity bit which is added to the existing
data lines by the sending interface to assure that all transfers on the bus
have correct parity. Our goal is to provide not only detection, but also

correction as well. This is accomplished by adding enough redundancy to

assure that single bit errors can be corrected. This redundancy can be sup­
plied by adding sufficient lines to encode this information into each transfer

through codes like the Hamming code, or the redundancy could be obtained by

6

retransferring the data for a time redundancy technique. In Chapter 2 we

present two algorithms for the correct transfer of information using time
redundancy. These algorithms extend the work previously done by Shedletsky

for stuck-at errors [4], as well as that done by Agrawal and Agarwal [5], who

extended the fault model to include bridging faults as well as stuck-at
faults.

The control signals which govern transfers across the data lines are the
links which join the modules of the bus together, and they provide the commu­

nication between independent, asynchronous controllers. Systems composed of

independent modules have been modeled and studied in order to gain insight

into the action of the system as a whole. Protocol systems provide examples

of a variety of modeling techniques. The UCLA graph was introduced to model
parallel computational systems and applied to higher level protocols [6].

Petri-nets have been applied in diverse studies concerning protocols [7,8].

State machines have been incorporated in models representing the interaction

of systems [9 ,10,11]. Other approaches to the study of protocol interactions

include abstract data types [12] and programming languages [13]. In Chapter 3

we examine in detail the various methods used to represent the action of

independent modules and present the rationale for selecting state machines for

the representation of the signal level bus protocols.

The representation of the action of the various modules which are

attached to the bus is presented with the use of state machines which indicate
the response of the module to the various signals on the bus. This response

action includes the signals asserted by the interface which provide the only

7

information that the other modules of the system will have concerning the

action of the first module. Chapter 3 details this modeling method and intro­

duces steps which can be taken to detect and correct errors which occur on the
control lines. These steps include methods which use time redundancy to

detect errors which occur on the control lines when detection alone is suffi­

cient and methods to guarantee correct operation in the presence of faults

using dual-rail redundant signals when detection and correction are needed.

These methods are applicable to any physical level protocol which can be
modeled as explained in Chapter 3.

A tool which can be used to examine the properties of protocols is the

general purpose computer. Previously computers have analyzed systems by per­

forming reachability analyses on graph model representations [14], by system

state examinations [15], and by the use of theorem proving when the protocol

is appropriately represented [12]. In order to utilize the power of the gen­

eral purpose computer to examine the effect of faults on bus level protocol

systems, we have developed a language to describe the state machine protocol

representation. This language is detailed in Chapter 4. The use of the com­

puter to exercise the protocol from its state machine description is a valu­

able tool which tests the effectiveness of error detection and fault tolerant
techniques.

Various techniques have been employed to detect and correct errors in
data transfers, such as Hamming codes and time redundancy techniques like

those presented in Chapter 2 . However, little is known concerning the action

of the signals which control the interactions on the data paths. One tech­

8

nique which has been used is Triple Modular Redundancy (TMR) where all of the

lines are triplicated and voting is done on the resulting signals [16,171-

Chapter 5 presents a new approach to the control signal problem which utilizes

time redundancy and dual-rail signals. Knowing the expected behavior of the

protocol system allows us to identify a faulty line and continue to operate.

Chapter 6 extends the techniques of Chapter 5 to the arbitration problem.
Chapter 7 examines an existing bus to determine the cost of implementing the

fault tolerant techniques of this thesis. Chapter 8 provides a conclusion to
this work and some suggestions for further research.

9

CHAPTER 2

CORRECT TRANSMISSION OF SYNCHRONOUS DATA USING TIME REDUNDANCY

2.J.. Introduction

The major function of a bus in a computer system is to transfer data
values from one module to another. Although serial buses are used when cir­
cumstances permit, data transfers primarily use parallel lines to achieve high

data rates. Detection of single errors on a set of parallel data lines can be

accomplished with the addition of a parity bit. If correction is required as

well as detection, then sufficient redundancy must be included to locate the

error, and this can cost several lines in addition to the data lines. How­
ever, another approach is to retry the exchange when an error is detected

using redundancy in time instead of redundancy in space to provide correction.

Stuck-at errors can be corrected by using time redundancy with a very

simple scheme called Alternate Data Retry, as suggested by Shedletsky [4].

When an error occurs, this method calls for the retransmission of -data

inverted from the original sense so that the stuck-at fault will be masked by

the inverted data value; hence, the retransmitted data are received without

error.

Agrawal and Agarwal [5] have proposed a different algorithm which will

correctly transfer the information not only in the presence of a stuck-at

fault, but also in the case of logically adjacent bridging faults. Their
algorithm uses a recursive method of finding and correcting the error caused

by the fault. The fault could be permanent or transient, so long as it occurs
for the duration of the operation.

10

The model which is assumed for the algorithms presented in the following

sections is shown in Figure 2.1. It is assumed that information is present in

Module A for transmission to Module B. The interface between the two modules

is a bus structure which has a data path sufficiently wide to transfer a corn-

plete word in a single cycle with a parity bit added for single error detec­

tion. Also, the interfaces to the bus structure have the capability of

encoding/decoding the information as specified by the algorithms and handling

any retransmissions which may be required.

The fault model used for these algorithms assumes a single line error,

which may be caused by a single line stuck at some logical value, by a

E x ŷ D
X 1

Sending N
y 2

E Receiving_ x 2
Module c

o
C Module

0 o 0
D o D

E E

R v R
x n y n

CONTROL

Figure 2.1. Model for Time Redundancy Transfer Algorithms.

11

transient noise on the line, or by a bridge (electrical short) between two

lines. Bridging faults can occur either in the interface between the modules

and the bus, or on the bus structure itself. The most obvious situation is

that lines which are physically adjacent have created a bridging fault by

means of a solder bridge or some other physical or electrical fault. This

fault may manifest itself as either the logical-OR of the two lines or the

logical-AND of the lines. In those systems which use physically contiguous

lines to create the bus system and in which the lines are not only physically

but logically adjacent, the algorithm presented in Section 2.2 would be suffi­
cient to produce correct transfers. However, in most systems as well as most

chips which are constructed, the lines of a communication path which are phys­

ically adjacent are not necessarily logically adjacent. Thus, malfunctions

can occur which will cause bridging between two lines which are not logically

adjacent. For this case the algorithm of Section 2.3 would be needed for
proper information transfer. The faults which can occur include both per­
manent and transient faults, and the correctness of the algorithms is demon­

strated for both cases.

Z -2. Cq,reaction Errors, Due la Bridging o£L Logically Adjacent Lines

For those systems in which the bridging faults are confined to logically
adjacent lines, correct transfer of information can be guaranteed with a sin­

gle retry as demonstrated by the following algorithm. The notation "X -> Y"

stands for "transmit X to Y" where X is the transmitted data and Y is the

received data. The notation xi iS used to indicate the ith bit of X starting
from the left. Thus, X . (x,, x2 , ..., x±..... xn).

12

For those systems in which the bridging faults are confined to logically

adjacent lines, correct transfer of information can be guaranteed with a sin­
gle retry as demonstrated by the following algorithm.

Algorithm Z - l

Step 1: X -> Y. If there is no parity error, then Y is the correct data.
Stop.

Step 2: X1 -> Y1, where X1 is formed by rotating X one bit to the left.

Step 3: Let Y2 be obtained by rotating Y1 one bit to the right.

Define S = Y ® Y2.

Step 4: For each bit position in Y, call it k, invert the bit Yk to form the

correct result if and only if sk = o and sk-1 = 1. (Subscript arith­
metic is done modulo word size to make it circular.)

Theorem: Algorithm 2.1 will ensure that the correct result is obtained in one

retry at most in the presence of one stuck-at fault, one transient
fault, or one AND or OR bridge fault on logically adjacent lines in

the data transfer path.

Proof: We will consider the different types of faults separately.

1) Stuck-at Fault. Let X = (x1f x2, . x^, ..., xn). Suppose that

line i is stuck at aif in {0,1}, such that a. ̂ i x^. Then ai = = y^ so
that

13

Y - (x^f X2 , •••» 3^» Xi+i, • • •, xn).

On the retry, X1 = (x2> X3 , xn, x1). By assumption the only fault on the
data path is on line i, so Y1 will be

Y1 " (x2 » x3 , x±t aif xn, x-|) . (1)

Y2 is obtained by shifting Y1 to the right:

i i+1 (<- positional indicators)
“ x̂*| > x2, • ••» x^, a^, xi+2» •••» Xp) • (2)

S is formed by Y « Y2:

i i+1 i+2

s = (xl W l , x2ex2, *..» a± « Xif xi+1 9 a^, xi+2«xi+2, •••» xn®xn). (3)

So,

i i+1

S = (1, 1, 1 , ..., 0 , x±+1 « a^, 1 ,...., 1) (4)

since a^ = x^ and b • b = 0 .

The incorrect bit position in Y is marked by the 0 at position i in S.

Position i+1 will either be a 1 or a 0 depending on the value of xi+1f an(j an

other bit positions in S will be 1. Therefore, each bit position filled by a
1 in S indicates that the corresponding bit position in Y is correct. It fol­
lows that only bit positions indicated by a 0 in S could be incorrect and

hence candidates for inversion to correct the error. Assuming position i+1 is
a 0 , the choice is between position i and position i+1 since only one bit is

in error. The bit position to be inverted is that bit position in which S has

a 0 in the position in question and a 1 in the left adjacent position. Thus

step 4 of Algorithm 2.1 will correctly identify the faulty bit and produce the

proper result.

A fault which has an effect for only one cycle can be considered to be a

transient stuck-at fault, and the analysis for such a fault proceeds as

described above with few changes. We assume that the fault is detected, ini­

tiating a retransmission, but that the fault is not present during the second

transfer. In this case, y^+-j in Equation 1 is not necessarily a^, but the
value it would naturally assume. Thus, Equation 2 becomes

^ " X̂1» x2 1 xi» Xi+ 1, xi+2 * xn)•

With this change, Equations 3 and 4 assume the values

S = (xieXl, x2*x2, ..., a±*x±, xi+1®xi+1, xi+2«xi+2, ..., xn*xn).

S = (1, 1, 1, ..., 0, 1, 1, ---- 1).

The 0 in S again indicates the incorrect bit in Y, and Algorithm 2.1 functions

properly in the presence of a transient fault.

2) AND Bridge Faults. Let X = (x^, x2, ...» xn) as above, and suppose
that lines i and i+1 have an AND bridge fault between them. Clearly if

xi = xi+<|, then the output on lines i and i+1 would be xixi+-j = xi = xi+1, and
in this situation no error would be produced by the fault. However, if

xi ̂Xi+1 » then the faulty output would cause a change in the parity. More
specifically, when x± i *1+1, then (xifxi+1) = (0 ,1) or (1,0), but

14

15

i i+1

Y = <*v x2, ...» X j X ^ , xi+2, ..., xn)

= ^x1» x2 » ***» °* °» xi+2 » •••» xn)D

After detecting the parity error, X1 is sent and Y1 is received, where

i i+1

Y1 = (x2 » x3, ..., x±_ v x±, xi+1xi+2, xi+1xi+2, xi+3,

Thus, Y2 would be

i i+1 i+2
yrt /““ —— | ^ -

X1» X2, . . . » X i, xi+1xi+2, xi+1xi+2, xi+3, • ••» xn).

S is formed from Y ® Y2, so

i i+1 i+2

s = x2»x2 0 • X i (0 • (xl+17i+2), xi+ 2 • (xi+1xi+2),

V * n > '

Since a « a = 1 , a « 0 = a , and (b c) $ c = b + c, then

i i+1 i+2

S = (1’ 1..... Xi> xi+1xi+2 > xi+1 + xi+2 > 1> 1>-

The only values in S which are unknown are those in bit positions i, i+1, and

i+2 . Since x^ £ Xi+1 » there are only four possible cases, as shown by Table
2 .1. First we note that the positions of S indicated in Table 2.1 are the

only ones which could contain 0 Ts. This table thus indicates that the bit

position in error will always be marked by a 0 in S with a 1 in the left adja-

16

Table> 2 .1. Cases for AND Bridge Fault Consideration in Algorithm

Case X.l xi+1 xi+2 si=xi si+1=xi+1xi+2 si+2=xi+1

Error in
+ x^+ 2 position

1 0 1 0 1 0 0 i+1
2 0 1 1 1 0 1 i+1
3 1 0 0 0 1 1 i4 1 0 1 0 0 1 i

cent bit position. Therefore, step 4 of Algorithm 2.1 will always produce the
correct result, and Algorithm 2.1 will recover the correct result in the pres­
ence of a single AND bridge fault between logically adjacent lines.

3) OR Bridge Faults. Again, let X = (x.j, x2, ..., xn), and assume that
lines i and i+1 are connected by an OR bridge fault. As with the AND bridge

fault, if - xi+1, then no error would be produced by the fault. However,
x^ £ xi+-j, then faulty output would result in incorrect parity. That is,

when xj[£ xi+1, then (xi,xi+1) = (0 ,1) or (1,0), but

i i+1

^ X2 , . . . , X^ + X^+-J , X^ + , X^+2, ..., Xyj)

" ^X1 1 x2, ..., 1, 1, xi+2, • • ., Xn) .

Following the detection of the parity error, X1 is sent and Y1 is received,
where

Y1 = (x2> x3
i i+1

xi-1» xi* xi+1 + xi+2 * xi+1 + xi+2 » xi+3
x„» Xi).

17

Rotating to form Y2 would result in

1 i+1 i+2

- v*1 » x2 » xi* xi+1 + xi+2 » xi+1 + xi+2 » xi+3 »
S is formed from Y • Y2, so

).

i i+1 i+2

S = <xi#xlf x2®x2, ...» x^l, (xi+1+xi+2)®1, (xi+1+xi+2)®xi+2,

V xn>-
Since a « a = 1 , a ® 1 =a, and (b + c) ® c = b + c\

i i+1 i+2

S = (1, 1, x., xi+1xl+2, xl+1 + 1..... 1).

Again we examine positions i, i+1, and i+2. The four possible cases are shown

in Table 2 .2 . The positions of S indicated in Table 2.2 are the only ones
which could contain 0's for the OR case. The table indicates that the bit

position in error will always be marked by a 0 in S with a 1 in the left adja­

cent bit position. This being the case, step 4 of Algorithm 2.1 will produce
the correct result for OR bridge faults between logically adjacent lines.

Table 2 .2 . Cases for OR Bridge Fault Consideration in Algorithm 2.1
Error in

Case x - ski+1 xi+2 3i=xi si+1=xi+1xi+2 si+2=xi+1 + xi+2 position
1 0 1 0 0 0 1 i
2 0 1 1 0 1 1 i
3 1 0 0 1 0 1 i+1
4 1 0 1 1 0 0 i+1

18

Consideration of the different cases has shown that Algorithm 2.1 will

produce correct results regardless of the type of fault. The correct result
will be produced for stuck-at faults, as well as AND or OR bridge faults

between logically adjacent lines. This will be true whether the fault is per­

manent or transient. □

The maximum penalty for the use of this algorithm is one extra cycle per

incorrect data transfer. Thus, if the fault remains for only a few cycles,

then a momentary degradation in the transfer speed would be the only notice­

able change, and the system would continue to function.

2.-3.. C.orre.Q.tiQn Birora P.US Jta Bridging &£ Any Two Lines

The algorithm presented in the preceding section will not function prop­
erly for logically non-adjacent bridging faults. This can be illustrated by

the following example. Assume that a data path consists of seven bits, and
let there be an AND bridge fault between position i=2 and position i=5.

Further, let X be defined as:

X = (1,0,0,0,1,1,0).

Then the above algorithm will produce the following series of results:

Y = (1,0,0,0,0,1,0)

I = (0 ,1 ,1,1 ,0 ,0 ,1)

X1 = (1,1,1,0,0,1,0)
Y1 = (1,0,1,0,0,1,0)

Y2 = (0,1,0,1,0,0,15
S = (1,1,0,1,0,1,1)

: received data

: bit-wise complement of X
: X rotated left by one bit
: received data

: Y1 rotated right by one bit
: Y 9 Y2

19

, The incorrect bit in Y is located at position i=5, which is identified by

Algorithm 2.1 since = 10. But it also identifies, incorrectly, bit 3 in

Y as an erroneous bit since S2S3 = 10. However, it is possible to transfer
information on this bus system as shown by the following algorithm.

Algorithm Z*Z

Step 1: X -> Y. If there is no parity error, then Y is the correct data.

Stop.

Step 2: X1 -> Y1, where X1 = X. If there is no parity error, then Y1 is the
1

correct data. Stop.

Step 3: X2 -> Y2, where X2 is formed by rotating X one bit to the left.

Step 4: Let Y3 be obtained by rotating Y2 one bit to the right.

Define S = Y * Y1.

Step 5: For each bit position in word Y, call it k, correct the value for yk

if and only if ŝ. = 0 . If sk = 0, then make the correction according
to the following procedure: if s ^ = 1, then yk = y3k, otherwise

yk = y^k-1# (Subscript arithmetic is done modulo word size to make
it circular.)

/

Theorem: Algorithm 2.2 will ensure that the correct result is obtained in two
retrys at most in the presence of one stuck-at fault, one transient

fault, or one AND or OR bridge fault between any two data lines in
the data transfer path.

'! i

I

20

Proof: As with Algorithm 2.1 we will consider the different types

separately, the stuck-at, two types of bridging, and transient faults.

1) Stuck-at Fault. Let X = (x^t x^ t ... f Xi, ..., xn). Suppose that

line i is stuck at a^f a^ in {0,1}, such that a^ £ x^. Then a^ = x^ = y^ so
that

Y , X2 » •••» a^, x^+-j, • ••» Xjj) .

On the retry, X1 = (x^, x^ f ..., Xfl). By assumption the only fault on the

data path is on line i, and since x^ - a^ this value is transferred correctly,
and

Y1 - (x^f X2 » •••» x^, •••» x^).

With the recognition of correct parity, Algorithm 2 .2 halts at step 2 and
presents the correct result:

Y1 = (xi» x2, xi? ...» xn).

Hence, the correct result is obtained in the presence of a stuck-at fault.

2) AND Bridge Faults. Let X = (x̂ ., x^ , ..., Xr) as above, and suppose
that lines i and j have an AND bridge fault between them. Without loss of

generality we assume that i < j. Clearly if x± = x then the output on lines

i and j would be - Xi = Xy and no error would be produced by the fault.

However, if xi £ Xj, then the faulty output would cause a change in the par­
ity. More specifically, when x± £ Xj, then (..., x ^ ..., Xj, ...) =
(• • • i • • • i 1 j • • •) or* (• • • f > 0 ̂ • • •) | and

i J
Y " x̂<j» ^2 » • ••» x±Xj, ..., Xĵ Xj, Xj+*j, ..., xn)

21

~ ^X 1» X2 » •••» 0 » •••» 0 > Xj+-j i •••» Xjj) .

After detecting the parity error, X1 s I is sent and Y1 is received, where

i j
Y1 = X2, . . . , X-jX , • • • , XiXj , Xj + , xn)

= (X1 > x2 , ..., 0 , ..., 0 , Xj+1, ..», xn)

This would result in another parity error,' and Algorithm 2 .2 then calls for
the transmission of X2, which is formed by rotating X so that

i j
“ ^x2 » X3 , ••*, x^, xi+1, •••» x j, xj+1, ..., Xyj, x-j)

This value is then transmitted over the lines and Y2 will be

i j
Y2 - X3 , • • < i xi+1xj+1, ..«, xi+ixj+1, xn, x-j).

This value is rotated to the right to form Y3»

i i+1 j j+1

Y3 = (x1# X2 , • ••» xi(xi+1Xj+1, ...» Xj, xi+1Xj+1, ..., xn).

S is formed by the Exclusive-OR of Y and Y1,

S = Y ® Y1

i J
= ^X 1 * x-j, x2 ® x2» 0 « 0 , ..., 0 « 0 , ..., xn © xn)
— (1, 1, ...,0, ...,0, .«*, 1).

The 0 ’s in S appear in those locations identified by i and j, one of which is

incorrect. Thus, all bit locations identified by a 1 in S will need no

I

correction. Consider the bit locations identified by a 0 in S. If j > i+1,

then the 0 fs will not be adjacent, and the correct values of x. and x. will be^ j
in positions i and j, respectively, of Y3. Therefore, the correct result will

be obtained by making those substitutions in Y. If the 0 fs in S are adjacent,

then y3i will correctly replace y^, but y3i+<j will be a 0 , and this is not
necessarily the correct value of x^+-|. However, since Xj = x^» then the

correct value of y3i+.j will be obtained by substituting y3i for y3^+“j . With
these substitutions,

Y = ^yi» Y2 » •••» y3i, • ••» y3j» • ••, yn) (j > i+D
“ ̂̂ "j > X2 1 •••» x^, x j, •••» x^)

or,

Y = (yi» y2 » •••> y3i(y3±, ...» yn) (J = i+D
“ ^ » X2 » •••» xi» x j, ...» xn).

Therefore, under the assumption of an AND bridging fault, Algorithm 2.2

transfers the correct result, regardless of the location of the bridge in the
data lines.

35 OR Bridge Faults. The OR bridge fault case is identical to the AND

bridge fault case except that the AND's between x^ and Xj are replaced by OR’s
in the equations for Y and Y1. Thus, instead of 0 ’s there are 1*s in posi­

tions i and j in these equations. However, since 1 « 1 : 0 • 0 : 0, the value

of S is the same for the OR case .as it is for the AND case, and Algorithm 2.2

produces the correct result for both.

4) Transient faults. Since Algorithm 2.2 is a multiple step process, a

transient error could occur during different portions of the process. We

22

23

assume that only one error will occur during the transmission process. If the

error is not present during step 1 of the algorithm then the correct result

occurs, so any transient error will first be detected by step 1. If the fault

is no longer active during the second transfer, then no parity error occurs

and the correct result is obtained by step 2 regardless of the type of fault,

whether stuck-at or bridging. If the fault is active during the first two

transfers and inactive during the third transfer, then the fault was a bridg­

ing fault and step 3 would transfer correct information over line(s) not

affected by the fault. Thus the steps 4 and 5 will function correctly regard­

less of the presence or absence of a fault during the third transfer. Q

We have demonstrated that the algorithm correctly transfers information

in the presence of stuck-at or bridging, permanent or transient faults.

Z. k. Logic for. Implementation

A small amount of logic is required for the implementation of Algorithm

2.1. A register is needed for the storage of the initial transferred value Y.

Another register could be used to store Y1, although if sufficient time is
allowed for stability of the retransmitted information, then the register for
Y1 is not necessary. S is formed by an Exclusive-OR function between Y and Y1

for each bit position. With Y, Y1, and S available as inputs, the logic for
implementation of Algorithm 2.1 is shown in Figure 2.2. Each bit position

then requires two registers (assuming a register for Y1), two Exclusive-OR

gates, an inverter and an AND gate. Since only local information is needed
for this function, no additional time is required for propagation from one

grouping to another.

24

result k

Figure 2.2. Logic for Implementation of Algorithm 2.1.

The transmitting interface which is used for Algorithm 2.1 merely

requires a multiplexer to select between the initial data or its shifted

inverted representation. There are several ways in which this could be imple­
mented, and the necessary logic is not shown. However, only one control line

is needed to select between the normal data and that required for retry.

Hence, one additional line from the receiving interface could be used, which
when true, calls for a retransmission of data and at the same time selects the
correct value for the transfer.

The logic for Algorithm 2.2 is somewhat more complicated since the algo­
rithm itself is more involved. Again a register is required for storage of Y;

an additional register is required for Y1. The same register/signal stability
problem exists for Y2 in this algorithm as for Y1 in Algorithm 2.1, and each

bit position requires an Exclusive-OR gate for the S function. The gating

required for step 5 of the algorithm is derived directly from the wording of

/

the algorithm, and it is shown in Figure 2.3a. Here each bit position

requires three registers (assuming a register for storage of Y3), an
Exclusive-OR gate, three AND gates, an OR gate, and two inverters. Again only-

local information is used so there is no propagation time for information to

travel from one side of the bus to the other.

The interface used for transmission of information in Algorithm 2.2 is

also quite simple, and could be constructed with an Exclusive-OR and a multi­

plexer per bit as shown in Figure 2.3b. Two lines are required to select the

proper information for transfer, but the control function is still quite sim­

ple. In Figure 2.3b, c -jCq = 01 corresponds to the first step of Algorithm

2.2, c ^ q =11 corresponds to the second step of retransmission with comple­

mented data, and c^qq = Ox to the third step of retransmission with rotated
data. This transfer could be controlled by using additional lines to specify

retry values to transfer, or the control could come from sequential logic at

both ends.

Z > 5 . ' Concluding -Ssmarka

We have presented two algorithms which will reliably transfer information
from one module to another in the presence of a single permanent or transient

fault on the bus. Algorithm 2.1 can be used to cover bridging faults when the
logical and physical adjacency are the same for the bus, and Algorithm 2.2 can

be used for the case when the physical adjacency may be different from the
logical adjacency.

The logic for the implementation of the algorithms is relatively simple
and could easily be incorporated into the circuitry used to interface to the

25

i

yk

y2k
>

y3 k - i
/ _____

.....T “

s k-1

y 3 k O- >

(a) Logic for Receiver

(b) Logic for Transmitter

result

Figure 2.3. Logic for Implementation of Algorithm 2.2.

27

bus. Algorithm 2.1 needs an additional line which indicates to the source
module that an error has been detected and that the retransmission is needed.

‘ Algorithm 2.2 can be implemented either with one or two additional lines, with

a smaller control complexity needed for the two line implementation. Each

algorithm requires that additional logic be added to control the interaction

and store intermediate values. Therefore, the cost of implementation is an

additional bus line and several gates per bit position. The increased control

I complexity for Algorithm 2.1 is given for a simple read protocol in Chapter 4.

One additional benefit of this logic is the monitoring of errors which occur

on the bus and are detected and corrected. This information could be used to

report errors to higher levels in the system. By monitoring the transfer
medium, the system itself can request repairs when needed.

For permanent faults, the worst-case impact of the proposed methods is to

reduce the throughput to 50% for Algorithm 1 and to 33^ for Algorithm 2.
\

Faults which occur will sometimes be in agreement with the data transferred,

and hence not cause an error. Therefore, under the assumption of random data

transfers, the transfer rates should be better than those of the worst-case

conditions.

i

28

CHAPTER 3

MODELING THE INTERACTION OF THE ASYNCHRONOUS CONTROL SIGNALS
OF BUS LEVEL PROTOCOLS

l.±. Introduction
Protocol models are methods of representing events which occur at asyn­

chronous times triggered by independent units. In order to model the random

nature of this type of interaction, different models of system behavior have

been developed. Each of these modeling methods presents system features in a

different manner, and each method was developed to study a different problem

or aspect of a problem. Among these methods are Petri-nets, UCLA graphs, flow

charts, programming languages, and state machines. The method which will best

fit with the goals of this thesis is one which will accurately represent the
signals and processes involved in bus level communications.

Petri-nets have been used extensively to study the concurrency or paral­

lelism of the components of a system [18,83. This technique is applicable to
many types of systems, and it is not limited to systems showing parallelism.

The Petri-net method represents conditions in the system with special nodes

called places, events which occur in the system with nodes called transitions,

and the correlation between conditions and events are represented as arcs.

Arcs from places to transitions identify the conditions which must be true

before the event can occur, referred to as the firing of the transition. Arcs

from transitions to places identify those conditions which become true when

the transition fires, or the event occurs. A true condition is indicated by

29

placing a marker called a token in the place representing that condition. An

event is enabled when all of the arcs leading to the transition representing

the event have tokens in their respective places. When an event takes place a
token is removed from each place having an arc leading to the transition, and

a token is added to each place which is on an arc leading from the transition.

The random nature of the asynchronous events is represented by this model

since no timing information is imposed on an enabled transition; thus enabled
transitions can fire in any order.

Petri-nets have been used for many different purposes, including design

verification and automation [19], systems of software [20,21], systems of con­

current processes [22,23,24], performance analysis of computers [25], and even

social systems [25]. Since Petri-nets provide a convenient method for model­

ing asynchronous concurrent processes they have found application in modeling
protocols of various systems [10,7,27]. Of particular interest to this study
is the work of Merlin where the time-Petri-net is introduced [28]. In this

model timing constraints are added to the firing of a transition, specifying a

minimum and a maximum time for the action to occur. This model allows the

study of lost messages in a protocol system, where the message is modeled as a

token and the entire communication system is represented by a time-Petri-net.

This work identifies the requirements that a system must have to be able to
recover from the loss of a message in the system [29].

The use of the time-Petri-net has been used by Merlin to develop a metho­

dology for the design of a protocol [14]. In this methodology a designer

represents the protocol system under development as a time-Petri-net and then

30

enters this information into a computer-based design tool. The design tool
will then search the states which the system can attain to search for

deadlocks and illegal looping conditions. Faulty conditions are made known to

the operator who can then take steps to rectify the errors.

Another modeling technique which has been used to represent protocols is
the UCLA graph [30,31]. This model is equivalent to the Petri-net representa­

tion, yet it has many properties which make it attractive for representing
host-to-host communication protocols. Postel [6] uses this method to explore

host-to-host protocols, in general, and portions of the ARPANET protocol, in

particular.

Protocols are also represented by various forms of finite state

machines [32,33*10]. The state machine model can represent the system at dif­

ferent levels, from the most abstract to the most detailed. Different
representations are useful for different purposes, each representation provid­

ing different insight into another aspect of the system being modeled. The

use of the state machine models found in most of current literature represents

the system at a higher level of abstraction than is useful for bus level com­

munication, but the state machine model can achieve the degree of detail

needed for this study.

The model used for investigating bus level protocols must be capable of

representing the system at the lowest level, that level which deals with the

signal levels on the lines of the bus and response to the information which is
present on those lines. This model must represent the real-world and the
hardware which is used to implement the protocol itself. The technique needs

31

to reflect the modularity with which real world systems are built, and be able
to include modules which are added to the bus to satisfy system requirements.

This means that the model must be capable of expanding to accept more modules

without changing the modeling technique. It must also be able to represent

the errors which can occur and their effect upon the system.

The Petri-net model does not satisfy the requirements for this bus level

analysis. Although Petri-nets themselves are not limited to two-party proto­

cols, the information which appears in the open literature concerning the
analysis of protocols concerns the exchange of information between two units,

as exemplified by the work of Merlin [14]. Petri-net analysis requires a

model which encompasses the entire system, so to include additional functional

units the Petri-net model would have to be reconstructed adding the arcs,

transitions, and places necessary to communicate with the new module. This

violates the modularity requirement of this analysis.

Also, the Petri-net model is not an adequate physical level representa­

tion since the basic method for representation .of an error is to assume that a
token, becomes lost. The action required to correct the error would be to

replace the token. In a distributed system where a byte passing between units

on a noisy communications line is represented by a token this model is fairly

accurate, but this does not correctly represent the system when the token is
defined as the assertion of a signal line. With this model, replacing the

token could be accomplished by asserting the line again, but since it is
already asserted that would be difficult to do. Another possible sequence is

to release the signal and then assert it again, but this also causes problems

32

since the release of the signal may be interpreted by another module in the

system as a different token, initiating an out of sequence action. Thus, the

Petri-net is not an adequate model for representation of bus level protocols.

The UCLA graph model is also not an appropriate modeling technique for
bus level protocols. Since the UCLA graph is equivalent to the Petri-net, it

suffers from the same drawbacks as mentioned above. It does not expand in a

modular fashion to accommodate additional functional units, and the error

representation does not accurately model the errors which occur on a bus.

The state machine model for a protocol does adequately represent the

modularity of a bus system, and it also provides an accurate model of the
errors which occur. Adding functional units to the system can be accomplished

by adding another state machine to an analysis which already consists of a
number of state machines. The communication between these modules is accom­

plished over the common system bus, and errors are represented by control

lines being incorrectly asserted (or released). Thus, the state machine model

is superior in both the modularity and the error representation from the

models previously discussed.

Another advantage of the state machine model over Petri-nets is that the

bus control logic can be directly designed from the state machine description

and vice versa; this is not true of Petri-nets. There is an in-depth treat­
ment of state machines in the literature. In particular, algorithms exist for

reducing any state machine by removing equivalent states without changing the

behavior of the machine. Also, there are algorithms for determining if two

state machines are equivalent. There are no known algorithms for reducing a

Petri-net, or for proving that two Petri-nets are equivalent.

l

33

State machine models have been used for representing various levels of
communication protocols [3*1,35]. In this thesis the level of representation

is at the physical or hardware level. The state machines given in this and

other chapters deal with the assertion of signals, and the interpretation of

signals, which are lines of a bus. We assume that a state machine is level

sensitive; that is, it monitors the level of a control signal and not the

transition from 0 to 1 or 1 to 0. Thus the levels of control signals and the

present state uniquely identify the next state. Each state in a state machine

represents a different configuration of the module being modeled, and is not a
representation of the state of the system as a whole. The state of the entire

protocol system would consist of a collection of states of all of the modules
as well as the signal levels on the common bus lines.

1 . 2 . State Machine Representation M _ a Generic Read Cycle

As shown in Figure 1.1 a bus oriented system consists of several modules
communicating with one another over a common set of bus lines. Although some

protocols exist where one module may send data to several other modules simul­

taneously [363, most systems allow communication between only two modules at a

time. The problem of arbitration for control of bus lines involves all of the

modules, and this problem will be discussed later. Once control of the bus
lines has been granted to one module, called the masterf that module will con­

trol the data interchange. The master will assert the signals necessary to

transfer data to or from another module, called the slave; the slave will

assert the signals needed to respond to the master. This interaction between

34

a master and a slave is important because of its extensive use in bus systems,

and we will analyze this exchange in detail. The example used for this

analysis will be the read cycle, where the master requests a data transfer
from a slave.

The lines which are needed to control the action between a master and a

slave are the request line ('req') asserted by the master and the acknowledge

line ('ack') asserted by the slave. Some other information is also needed to

determine whether the cycle will be a read, write, or some other type of

cycle, but this information can be encoded as a part of the address and does

not need control line interaction. Once the master has control of the bus, it

asserts an address, waits for an appropriate delay to allow for propagation

delay and signal skew times, and asserts 'req'. All of the slaves on the bus
receive and decode the address, but under fault-free conditions only one will

respond. This slave performs a read function and asserts the data onto the
data portion of the bus. With the data, the slave also asserts 'ack' to ack­

nowledge to the master that the data have been obtained and are now on the bus

for the master to accept. When the master recognizes the assertion of ’ack',

it waits for a short period to allow for signal skew and accepts the data. Of

course, the slave could provide the delay by first asserting the data and,

then, after waiting an appropriate amount for skew time, assert the ack­

nowledge. However, in most systems the master provides this delay and, there­

fore, we will assume that to be the case in our generic protocol. With the
acceptance of the data, the master releases 'req', and this release indicates

to the slave that the information has been transferred, so the slave releases

the data and 'ack1. After the master has released 'req' it delays long enough

35

to prevent spurious responses and releases the address. With all of the sig­
nals released, the cycle is over and another cycle can begin.

The above written description of the interaction which takes place in a

simple read cycle can be more clearly represented by a set of state diagrams.

The state diagrams for this interaction are given in Figure 3.1. A complete

description of the states in Figure 3.1 is given below, with the states for

the master presented first, followed by the information for the slave. In the

figure the assertion of a signal ,namef is denoted A(name), and the release of

a signal is likewise indicated by R(name).

Master state Machine

State 0: Idle state. The master remains in this state until a read cycle is

needed and the master has been granted control of the bus. This condi­

tion is denoted by assertion of the signal ’read’.

State 1: Assertion of address. The synchronous information needed by the

slave is asserted by the master unit (indicated by 'adr1 in the diagram).

This includes not only the address information, but also any additional

lines needed to indicate what type of interaction it is (read, write,
read-modify-write, etc). The master moves to the next state a fixed

amount of time after entering this state; in this example, the time is
150 nanoseconds (nsec). This time allows for the settling of address

lines to a stable value and the propagation delays through th address

decoders of slaves.
State 2: Assertion of request signal. The request signal ’ reqf is asserted

to indicate to the slave that the operation should be initiated. The

36

MASTER SLAVE-

Figure 3-1. State Diagrams for Read Cycle.

37

master remains in this state until the acknowledge signal from the slave
fack* has been detected, or until an error time-out has been reached,

indicated by the signal ’time-out*. The time-out would occur if no slave

responded to the address asserted by the master. Normal operation occurs

when ’ack' is received from a slave and the master moves to state 3.

State 3: Delay state. This state is a delay state to allow for skew on the
data lines of the bus. In this example, the skew period is assumed to be

75 nsec, so 75 nsec after entry in state 3 the master moves to state 4.

State 4; Accept the data. The master accepts the data asserted by the slave.

In addition, ’req’ is released to indicate to the slave that the opera­

tion has been completed. The master remains in this state for 75 nsec to

allow the release of ’req’ to propagate as needed before releasing ’adr’.
It them moves on to state 5.

State 5: Release address. The synchronous information asserted in state 1 is

released. The master then returns to the idle state to await another read
request.

State 6: Error state. This state is entered if for some reason the ’ack’

signal is not received before ’time-out’ occurs. This state detects the

condition that an address for a non-existent slave has been asserted.

This state prevents the bus from reaching a condition where the only
method for continued function is to reset the interfaces.

Slave State Machine

State 0: Idle state. This represents the state of the slave until the time

when a response from it is required. A response will be required when

38

the address matches the assigned address space of the slave ('adrok') and

freq* has been detected. When this condition is true, then the slave

enters state 1.

State 1: Prepare data. The slave waits for the functional unit to provide

the data to be placed on the data bus. For a memory unit, this may

involve a memory cycle; for an interface, this information may be immedi­

ately available in registers. When the data are ready for transmission

on the data bus, the signal Tdata ready1 is asserted by the functional

portion of the slave. This allows the interface to proceed to state 2.
State 2: Assert data and acknowledge. The slave asserts the data lines and

the *ackr signal. The slave remains in this state until the release of
the freq’ signal has been detected, indicating that the master has com­
pleted the transfer and that the slaved signals should be released. At

this time the slave enters state 3.
State 3: Release data and acknowledge. The slave enters this state when the

transaction has been completed, and it releases both the data lines and

the acknowledgment*line. Then it returns to the idle state to await the
next time when an interaction would be necessary.

Normal operation occurs when the master enters state 1 and asserts the

synchronous address lines. After the appropriate delay, state 2 is entered

and the request line is asserted. The addressed slave will leave the idle

state when it detects *req’. When the functional part of the slave unit pro­

vides the requested information, the slave asserts the data bus and the ’ack’

signal (state 2 of slave). When the master detects the assertion of fack’, it

moves to state 3 and then to state 4. In state 4, it accepts the data which

39

have been placed on the bus by the slave and releases the request line.

Regardless of what the slave does next, it waits another delay time, enters

state 5, releases the address lines, and returns to the idle state.

Meanwhile, when the slave detects the release of freqf, it moves to state 3,

releases the data bus and the acknowledge line, and returns to the idle state.

Protocols of this type are sometimes referred to as four-cycle protocols,

after the sequence of four actions for each data transaction: A(req), A(ack),
R(req), R(ack).

This simple read cycle provides the basis for studying techniques for

detection of errors which occur on the control lines. In addition to detect­

ing the errors, techniques are available to allow continued operation in the

presence of the faults. These techniques will be discussed in detail in

Chapter 5. First, we consider a more complicated read cycle utilizing addi­
tional control lines to implement Algorithm 2.1.

1-3.- Read. Cycle Using Algorithm £.1 for Data Correction

Algorithm 2.1 was introduced in Chapter 2 as a means of using time redun­

dancy to correct errors which occur while transferring synchronous informa­
tion. For most bus systems the synchronous information consists of two

transfers, one for the data and one for the address. The "address” may also
contain information which indicates the type of transfer, but the timing

requirements are the same as for the address itself, so these lines are

grouped together. Thus Algorithm 2.1 needs to be applied to the address from
the master to the slave as well as the data from the slave to the master.

40

This appears to be a simple task; the master asserts the address with

correct parity, and if the slave detects a parity error, it requests a retry.

Likewise, if the master detects a parity error when the slave asserts the
data, then the master requests a retry. This simple picture is no longer

correct when the location of the fault is unknown. The problem is to make

sure that all of the interfaces involved in the transfer will interpret both

the original address and the retransmitted address in the same way, and not

have a second slave responding to the retransmitted address as if it were a

correct address. The answer is to have all of the slave interfaces not only

monitor the data lines but also the line requesting a retry so that any retry

is recognized as such.

The state diagrams for master and slave units which incorporate Algorithm
2.1 are shown in Figure 3*2. Two more control lines are needed for this

transfer than were needed for the read cycle of Figure 3.1. The condition

that a parity error has been detected on the address lines is represented by

’errinadr’, and a when a slave detects this condition it asserts the control

signal 'adrpe’. More than one slave could assert the common ’adrpe* line, but
this does not pose any problem. Likewise, the condition that a parity error

has been detected on the data lines is represented by Terrindat’, and master

lets the slave know this by asserting ’datape*. These lines allow the dif­

ferent modules involved with the protocol respond in a predictable way.

Like the simple read cycle of Figure 3*1 this modified read cycle is also
used as an example in this thesis. A complete description of the states

involved in both master and slave state diagrams for this protocol system is

41

MASTER SLAVE

Figure 3*2. Read Cycle Modified to Utilize Algorithm 2.1.

42

included in Appendix A. We now briefly describe the modifications to the ori­
ginal state diagrams to accommodate Algorithm 2.1.

The effect of adding states to handle the error correction for the master

state diagram can easily be seen by comparing Figure 3.1 with Figure 3.2.
First we describe the state diagram of the master, on the left in Figure 3.2.

States 7, 8, and 9 have been added to respond to a problem with a parity error

on the address lines, and states 10, 11 and 12 inform the slave when a parity

error has been detected on the data lines. State 7 is entered when a slave

has recognized a parity error on the address lines and asserted ’adrpe’. The

action of the master is specified by Algorithm 2.1: the old address is

released as well as the *req’ signal, the new address is formed and asserted

on the address lines (state 8), and after the appropriate delay the ’req’ sig­

nal is again asserted to inform the slave that the retried address is ready to
be accepted. When the slave responds with 'ack', then the master moves on to
state 3 as before.

In like manner when the master detects a parity error on the data lines,

it leaves state 3 by going to state 10. This captures the value to be
corrected and causes the assertion of the ’datape* signal informing the slave

that a retry is needed. When the slave releases ’ack’, the master moves to

state 11 to await the new data. In state 11 it also releases ’datape* which

provides a signal to the slave to assert the corrected data. When the new

’ack’ is detected, the master waits for a skew time (state 12), accepts the

data, and releases ’req’ (state 13). The corrected data are formed from the

two values according to Algorithm 2.1. With the addition of these seven

43

states, the master has been modified to correct the synchronous data passed on
the bus.

The modification to the slave state diagram is more involved than the

modification performed to the master. States 4, 5, 6, 9, 10, and 11 are used

to guarantee the correct transfer of the address, and states 7 and 8 are for

the data transfer. Each slave will be idle until a *req’ signal is detected,

and then the conditions which are present will determine how it proceeds in

the state diagram. One of the two conditions detected is the fact that the

address is free of parity errors and matches the slave’s assigned address

space, indicated by ’adrok’. The other condition is that a parity error has

been detected by the slave, indicated by ’errinadr*. If ’adrok’ is true and

no parity error has been detected then the slave will move on to state 9 when

’req’ is detected. If ’errinadr’ is true, then upon detection of ’req’ the

slave will move to state 4. However, if neither of these conditions is true,

then the slave will move on to state 10 with the detection of ’req’. The

result of these three states is that when a ’req’ is received each slave will

enter either state 4, 9, or 10, and if a parity error is detected anywhere in

the address path, either on the bus itself or in the slaves, then a retry

address is called for. This is accomplished by state 4 when the error is on

an address line common to all units, and by state 11 when the error was
detected by another slave unit. The slave units then wait in state 5 and when

the retry value becomes available the correct address either matches and the

slave proceeds to state 1 or the address does not match and state 6 is

entered.

44

The corrections needed for a fault on the data path are taken care of by

entering state 7 when the slave detects the assertion of 'datape', where the

slave releases the old data. When 'datape* is released, the slave asserts the

value formed according to Algorithm 2.1 and releases the fackf signal (state

8), and waits for the master to signal the end of the cycle. This is indi­
cated by the release of the freq’ signal, at which point the slave proceeds to

state 3 to release the data value and return to the idle state.

The state machine method of protocol modeling has allowed us to represent

the interaction at the lowest level and accurately model the system. We now

present a method which enables the use of a general purpose computer to help
analyze and test these protocols.

45

CHAPTER 4

COMPUTER-AIDED ANALYSIS OF PROTOCOL INTERACTION

4.J_- Introduotion and Pcgyioua Work

There are a variety of different approaches to protocol specification and

implementation which have led to diversified applications of computers to aid

in the evaluation of protocols. Computers have been used to aid in the

exercising of protocol behavior according to its definition, and they have

also been used to explore the set of assertions that can be proved or inferred
from the specifications of the protocol. We have examined a number of pro­

cedures and devised a technique consistent with our desires to test the proto­
col to find latent errors.

One of the most obvious ways to use the computer is to explore the possi­

ble states which the system could assume. This type of reachability analysis

has been performed by those who use a global graph model for the protocol,

such as a Petri-net or a UCLA graph C37»13»6]. Searching the system space in

this manner provides insight into he interaction of the component modules. If

the known information includes those system states which are improper or for

some reason incorrect, then the reachability analysis will indicate the
existence of these errors if that combination of conditions is reached when

the protocol is exercised. By the introduction of the token machine concept

this type of analysis can identify deadlock conditions [371. Also included in
the errors detected are the presence of cycles in the specification and condi­
tions which can lead to an infinite number of states for that
representation [133*

46

Another type of computer interaction allows the exploration of protocols
which are specified using limited state machines for each action [38]. The

computer is used to find allowable sequences for the interaction of the state

machines and create what is called a duologue matrix. This matrix identifies
well-behaved and erroneous sequences. The duologue matrix method was ini­

tially developed to aid in two-party protocols, but further work relaxed the

requirements and allowed multiple units to be modeled and the method to be

further automated [15,39]. The extension of this method developed by West is

very interesting in that it reduces the number of states examined by perform­

ing the system exploration with a perturbation technique. A complete search

of successor states is made for each collection of states of the system. In

this way the protocol system is tested for deadlocks and other errors, where
these errors can be detected by incorrect combinations of states.

Still another approach to checking the validity of protocols comes from

representing the protocols in a programming fashion instead of using graphical

methods. Brand and Joyner [40] present a method which combines the perturba­
tion technique of West with representation of the protocol in a programming

language. Their technique explores the tree of execution paths possible from

the initial invocation of the protocol in the language. A different approach

is taken by Sunshine, et al. [12]. Here the protocol is expressed as a combi­

nation of state transition models and abstract data types, and the AFFIRM sys­

tem is invoked as a theorem prover to verify different properties of the pro­
tocol.

47

These previous efforts have shown that the computer is a valuable tool to

use in investigating the interaction of protocols* We define a,proposed pro­
tocol in terms of state machines, and use the computer to exercise the proto­

col to find the errors which may occur. With this method we can also intro­

duce faults on the signals involved so that the vulnerability of the protocol

to errors can be investigated. In order to utilize a computer to aid in this

process we must represent the protocol in such a way that a computer can

understand and exercise it and at the same time have the representation accu­

rately model the errors which can occur.

iL-2. SML - A .State Machine £ear,aaantation Language

One of the advantages of the state machine method of representation of a

protocol is that it is very easy to understand and follow. The state of a

unit involved in a transaction is totally determined by the state that it is
in, and all possible successor states are quickly identified. The qualities

which allow humans to understand the graphical representation quickly are not

automatically communicated to a computer. In order to utilize the power of a

general purpose computer in the protocol analysis the state machine must be

presented in a regular fashion. We have developed a language for representing

state machines which can completely specify the state machine as represented
in graphical form and can be used to aid in protocol analysis.

A finite state machine is given by a 5-tuple:
State Machine = < I S 0 NS-map 0-map >

where
I is a set of inputs;

48

S is a set of states;

0 is a set of outputs;

NS-map is a state transition mapping (I X S -> S)
of current state and inputs to next state;

O-map is an output mapping (S -> 0)

of current state and inputs to the outputs.

The 0-map corresponds to a Moore machine or state assigned output representa­

tion, since this is the representation which we use throughout the thesis.

With some modifications to the language we can also allow Mealy machine or
transition assigned output representation, which will require the 0-map from

I X S to 0. This information will completely specify the action of a device

whose behavior can be described with a state machine. However, the model we

have used for a protocol system calls for a number of independent modules, the

behavior of each to be specified by a state machine. In order to describe
state machines which are part of a protocol system we have developed a

language which uses two additional fields in representing a state machine:
State Machine = < N D I S 0 NS-map 0-map >

where I, S, 0, NS-map, and 0-map are defined as above, and

N is a name identifying a particular state machine;

D is an optional set of declarations.

The name identifies the state machine within the system to permit signal iden­

tification. The set of declarations is optional and allows the specification

of limits or other constants to be used in making decisions in the choice of

next state. For example, constants introduced in the set of declarations can
define the address range to which a slave will respond.

49

The language we developed to represent the state machines is called SML -
State Machine Language. It is a context-free grammar which can be used to

completely specify state machines, and SML descriptions of modules provide

input to computer programs which will evaluate the correctness of the proto­

col. A description of the basic elements of the language is given in Figure

4.1, and a complete description of the language as well as the assumptions

made about the signal names and other tokens involved is included in Appendix

B. The 'smname1 declaration allows the state machine to be uniquely identi­

fied. A ’define1 statement sets up a constant which will have significance

only within that state machine. More than one define statement may be

included. The inputs, as well as the outputs, are divided into global and

State Machine = N D I S 0 NS-map O-map ;
N = smname <identifier> ;
D s { define <identifier> = <value> ; }
I = <inp> { <signal_name> } ;

<inp> = ginputs ! 1inputs
S = states <integer> ;
0 = <out> { <signal_name> } ;

<out> = goutputs J loutputs
NS-map = <transition> { <transition> }

<transition> = tran <state_number> -> <state_number> : <condition> ;
<condition> = <logic_on_inputs> ' <delay> i

<logic_on_inputs> <logical operator> <delay>
<output_def> = <assert_def> I <release__def> ! <do_def>
<assert_def> = assert <signal_name> = <value> in <state_number> ;

<release_def> = release <signal_name> in <state__number> ;
<do_def> = do <signal_name> = <value> in <state_number> ;

Figure 4.1. Description of SML Grammar for a State Machine.
Variables are inclosed in pointed brackets. Curly
brackets (...) call for 0 or more repetitions of the
contained item.

50

local groups. The global signals are common to all modules attached to the

bus and are accessible to each module. The local signals are used for commun­

ication with the other sections of the module. That is, a local signal is

used to allow the functional portion of a module to respond to the interface

portion (see Figure 1.1). States of the module are identified by integers, so

the ’state* statement establishes the set of states by giving the highest

state number. The next state information is given by identifying transitions

between states. A transition is identified by the state where it begins, the

state where it ends, and the conditions under which the transition occurs.

Conditions include logic on the inputs, delays, or a combination of both. The

output information is given by identifying states where the signals are

asserted and released. The ’do’ portion of this process allows specification
of a signal which will be asserted while the state machine is in a state and

released upon exit from that state.

Using this language each state machine in a protocol system can be com­

pletely specified, and computer analysis can accept this description and exer­

cise the system. The following section gives an example of the use of the

grammar.

A. 2- Representation _q£ State Machines with SML

Figure 4.2 contains modified versions of the master and slave state

machines for the read cycle of Section 3.2. The condition for the slave to

leave the idle state has been modified to add an address specification and to

check that the transaction is a read cycle. Figure 4.3 gives the SML descrip­

tions for these two state machines.

I

I

51

MASTER SLAVE

figure 4.2. Master and Slave State Machines for a Read Cycle

52

SML Description of Master:

smname master;
ginputs data, ack;
linputs read;
states 6;
goutputs adr, req;
loutputs readdone;
tran 0 -> 1 : read == 1;
tran 1 -> 2 : delay(150,

master state machine
global inputs (from the bus)
local (internal) inputs
highest number for states
global outputs (to the bus)
local (internal) outputs
next state map

150);
tran 2 -> 3 : ack == 1 ;
tran 2 -> 6 : acc__delay(2000);
tran 3 -> 4 : delay(75,75);
tran 4 -> 5 : delay(75,75);
tran 5 -> 0 ;
tran 6 -> 0 ;

assert adr = mkadr(2000,4000) in 1 ; # output map
assert req = 1 in 2 ;
release req in 4;
release adr in 5;
release req in 6;
release adr in 6;

SML Description of Slave:
smname slave;
define amax = 3000;
define amin = 2000;
ginputs req, adr;
linputs data^ready, ldata;
states 3;
goutputs data, ack;
loutputs prepare_data;
tran 0 -> 1 : (adr < amax)
tran 1 -> 2 : data_ready =
tran 2 -> 3 : req != 1 ;
tran 3 -> 0 ;

slave state machine
maximum address allowable
minimum address
global inputs (from the bus)
local (internal) inputs
highest number of a state
global outputs (to the bus)
local (internal) outputs
&& (adr >= amin) && req ;
= 1; # next state map

do prepare__data = 1 in 1 ; # output map
assert data = ldata in 2 ;
assert ack =1 in 2 ;
release data in 3 ;
release ack in 3 ;

Figure 4.3. SML Descriptions of the Master and Slave State Machines.

53

As can be seen from the two figures, names are assigned to the state

machines. These names do not have any significance within the state machine

itself, but they do allow the protocol system as a whole identify them for its

own purposes. This permits these machines to be known by a unique name

throughout the system, and local signals have this name prefixed to them in
the actual simulation.

The names which are used in the example fall into three categories: con­

stants, global signals, and local signals. The constants are identified in

the slave description by the ’define* statements. In this case the two con­

stants (’amax’ and ’amin’) identify the assigned address space of this slave.

Declarations of this type are optional, as can be seen by their absence from

the SML representation of the master. The global signals are the address bus

(’adr'), the request signal of the master (*reqf), the data lines (’data’),

and the acknowledge signal of the slave (’ack*). These are identified as

inputs or outputs of the state machines as appropriate. If the state machines

were expanded to include a write capability as well as a read capability, it

would be appropriate for the data lines to be listed as both a global input
and a global output. Local signals provide communication within functional

units: ’read* initiates the read sequence when the functional unit requires a

read cycle and bus ownership has been granted to the master; *prepare_data*
instructs the slave functional unit to perform a read cycle; ’data^ready*

indicates that ’ldata* contains the requested information; and ’readdone' lets

the master functional unit know that the data has been acquired.

54

The set of states for each state machine is identified by the ’state*

statement: 6 for the master and 3 for the slave. • States are numbered consecu­

tively from 0, and by convention the 0 state in each diagram is the idle
state.

Each transition is listed by giving the states involved and the condition
under which the transition can be made. If the transition is always made the

condition portion of the statement can be omitted, as seen by the transitions

to idle in both diagrams. The asserted value for signals is 1, and logic on

the signal lines is tested against this value, such as ’read == 1’. The logic

equations required are expressed in the syntax of the C language. These logic

equations check conditions of signal lines, data values on groups of synchro­

nous lines, or delays.

There are two types of delays which are used in the SML descriptions:
delays which must occur before moving to another state and delays which pro­

vide an alternative path after a specified time. A delay which forces action

to remain in a state for a specified action until a certain period has elapsed
is exemplified by the 150 nsec delay between state 1 and state 2 in the mas­

ter. The statement which specifies this time uses the ’delay* function. How­

ever, when a delay is specified which identifies an alternative to some other

action the *acc_delay* function is used, as shown by the error exit from state

2 in the master. The *acc_delay* function was named for an accumulated delay.

This delay need not be completed before the state machine moves on to another
state. The ’delay’ function allows specification of a random value, giving

only the minimum and maximum values, while the ’acc_delay* function identifies

only one value.

55

The action imposed on the signals is specified by the Assert*,

* release*, or *do* statements. Signals can be asserted in one state and
released in another, as shown by the *req* signal which is asserted in state 2

and released in state 4 of the master. Note that the error exit must also

provide a release of signals previously asserted. If a signal is to be

asserted upon entering a state and released upon entering any succeeding

state, then a ’do* specification can be used instead of separate * assert* and

’release* statements. This is exemplified by the *prepare_data* signal in the

slave diagram. The assumed asserted value for signals is 1, but the 'assert*

statement allows the signal value to be set at 0 also. The names which

represent collections of lines which pass data synchronously, such as *adr',

can be asserted to any desired value. The 'mkadr* function which appears in

the master SML description is one of several functions which return a random

value. The arguments to the function establish the permissible range of the

request, and the value returned will fall somewhere within that range. This

example shows the master capable of generating addresses which cannot be
responded to by the slave.

SML provides a convenient method of presenting with a regular grammar the
information contained in a state machine. A complete SML description of a
complex state machine is given in Appendix C. By representing the state

machines with SML the computer can exercise the protocol system to check for

error conditions. We now present an example of creating an exercise system
using SML descriptions.

56

1.1. Using. M L Descriptions with iha Protocol Exercise System

The previous section presented the method of representing state machines

with SML. In this section we combine SML descriptions of the several state

machines which comprise a protocol system into a protocol exerciser which will

check the protocol for error conditions. We assume that each state machine
which is used in the protocol description is contained in its own file, and

our intent is to combine the information given in these files with some other

information and emerge with a program which will exercise the system. Figure
4.4 gives the set of commands necessary to make a protocol exercise system of

the two SML descriptions presented in the previous section. The descriptions

are contained in the files ’master' and 'slave'. It is convenient to give the

files the same name as the state machine which they represent, but this is not
necessary.

The protocol system is built around routines which have been developed
using the C programming language, so the first step in this process is to con­

vert the SML descriptions into routines in C. The 'mfsm* commands which are

shown accept the SML descriptions from the files listed and create a number of

mfsm < master
mfsm < slave
makenames master slave
makedoup master slave
makeit master slave
cc -o r1 -g whole.c /mnt/dln/pub/sim.new.a

Figure 4.4. Example of Creating a Protocol Simulation System.

57

other files: a file containing a complete C language routine which represents

the state machine, files containing global and local variables and other names

involved, and a file with information about the delay times involved. The

’mfsm’ command is invoked once for each SML description, and this can be done

as many times as needed to include all of the modules of the protocol system.

Once all of the SML descriptions have been worked on by ’mfsm’, it is

necessary to gather all of the names together which will be incorporated in

the total system. The command ’makenames’ constructs temporary files contain­

ing these names, and it assumes that ’mfsm* has been applied to the files

which are included as its calling parameters. These names include the local
and global variables which make up the signal structure involved.

The protocol system is capable of revealing information about state

machines and signals involved in the interaction, but it needs to know the

information which is of interest. Therefore, a routine is called at every

tick of the system clock to see if an output of information is needed, and if

so to print out the information. The ’makedoup’ command, named for ’make

do_arL_update routine’, creates a routine which will be combined with the other

C routines created by ’msfm’ to accomplish this. The command creates a rou­

tine to print out variables identified in its calling parameters. Names which
are files containing SML descriptions will result in printing out the state of
that state machine; names which do not match files of SML descriptions are
assumed to be signal names, and these signals are printed out. Run time

options indicate if this information is to be given at every tick of the sys­

tem clock, at each change of the printed variables, or not at all. The rou­

58

tine which results from execution of 'makedoup* is stored in a file to be com­

bined with the others for the final system.

The 'makeit* command assembles all of the information gathered by the

previous commands into a complete C program which will represent the protocol

system. The local and global variable names are included, cross-reference

tables are set up, process names are added where necessary, the C language

routines are included, and other utilities are added to complete the program.

In addition to the normal system libraries a simulation system created by Nor­

ton C41] is used extensively. If the SML descriptions are complete, then this

system will exercise the protocol to check for errors. The errors which are

detected include deadlock, where no action is possible, assertion of variables
which have already been asserted (two units driving the bus at the same time
or incorrect specification of a state machine), and release of a signal which

is not asserted (signal had previously been released or never asserted).

When all of the commands have been completed and the C language file is

prepared, then the C compiler is invoked to create the protocol system itself.
A complete description of these commands and the protocol system they result

in is given in Appendix D. The run time options of the protocol system allow

specification of the output mode, the number of cycles of what signal to

check, specifying signals as stuck-at signals, probability of stuck-at sig­

nals, and signals to be printed out in addition to those included in the 'mak-

edoup* command.

As shown above, the preparation of a computer program to exercise the
protocol system requires several steps. SML is used to describe the state

59

machines which make up the system, and then C language routines representing

the action of these modules are prepared. Additional routines are created,

and then all of these routines are combined into a simulation system. The pro­

tocol can then be exercised to check for the existence of errors. Errors

result in a print-out of information identifying the states of the modules of

the system when the error occurred. This tool allows us to monitor the action
of protocols and verify correct behavior.

60

CHAPTER 5
ALGORITHMS FOR DEALING WITH ERRORS IN CONTROL SIGNALS

Introduction

In Chapter 2 we presented algorithms for dealing with errors which had

been detected by testing parity across synchronous data lines. The algorithms

required to control the transfers were mentioned with little comment in

Chapter 3» but a question which needs to be dealt with is how to detect errors

which occur on the control lines. The technology used for both control lines

and data lines is the same in most bus systems, and so the same types of
errors can occur on both. We now examine the error-detecting capabilities of

the protocols themselves and give algorithms for detecting errors and continu­

ing operation when errors have been detected.

For all of these algorithms we represent the action of different modules
with state machines, as presented earlier. State machines have been used for

various levels of protocol representation, from showing a few states with lit­
tle detail to a very detailed representation of the interaction involved.
Once the state machine representation has been obtained, the correctness of

the protocol can be checked in one of several ways. The method of the previ­

ous chapter is to create an SML description of the state machines involved and

exercise the system until satisfied that the interaction is correct. The per­

turbation technique presented by West [15] operates on directed graphs and is

similar to the exercise technique presented above. The principal difference

is that West's method calls for global system knowledge of correct and

61

incorrect state combinations, while the exercise system described here uses
only the bus signals to detect erroneous behavior.

In this chapter we present guidelines and algorithms that deal with

detecting faults which occur on the control lines and, if possible, continuing

operation in the presence of the faults. Unless otherwise stated, we assume

that there is at most one fault at any one time. The fault model is the

stuck-at fault, where the line is stuck-at-1 or stuck-at-0. We assume that

the stuck-at-X fault occurs at some point in time when the line was legally at

the faulty value, then the fault occurred and the line remained at that value.

That is, the line became "stuck" at a value in the normal course of operation,

and it was not the result of an out-of-sequence transition to the faulty
value.

The signals, which are used to allow the master and slave modules to move

from one state to another, include signals which are local to the modules and

signals which are common between them. It is assumed that the signals which

are local are not susceptible to faults and will remain fault free during

these operations. This means that the delays, ’read*, and ’data-ready* will

not be candidates for faults in the analysis which follows. The bus lines,

however, are susceptible to faults, and therefore faults on the freqf and

fack' lines will be considered. If further protection of local signals is
desired then techniques such as TMR can be used to guarantee correctness.

This increases the logic required to implement the module but does not impact
on the bus protocol.

62

We also assume that the algorithms, which are presented in this chapter,

described by state machines, will operate correctly at all times- That is, we

are limiting the faults to the bus itself and prescribing action which will

identify the faults, and, if sufficient redundancy is provided, continue to

operate. The task of dealing with faults within a state machine has been
treated elsewhere [42,43,44], and will not be discussed here. We simply men­

tion that techniques exist for dealing with faults within the state machines
themselves.

Although we will not present the SML descriptions of the interactions

involved, the state machines presented in this chapter have been exercised

with the system described in Chapter 4. We will first treat the detection of

errors in control signals with time redundancy and methods of preventing
improper operation. Then we examine the use of dual-rail signals and methods

to guarantee correct operation in the presence of a single fault.

5.-2- Control Signal Enron Detection with Time Redundancy

Normal operation for the four cycle read protocol was described in Sec­
tion 3.2. The master and slave state machines for this protocol are repro­

duced in Figure 5.1. We now examine the effect of stuck-at errors on the con­

trol lines. Under normal operation (control lines are not faulty) the error

escape from state 2 is provided for the case of the master requesting a non­

existent slave. The error exit from state 2 results in state 6 of the master.

This state will also detect two faults on the control lines which have the

same symptom as a non-existent slave. These faults are ’req* stuck-at-0 and

' ack* stuck-at-0. If the request line is stuck-at-0 then as far as the slave

63

M A S T E R S L A V E

F ig u re 5 .1 . M aster and S lave S ta te Machines fo r a Read Cycle.

64

is concerned, no request is ever issued. Therefore, no read cycle is per­

formed and the slave doesn't respond. The action of the master is then to
just go through the error states as though the slave didn't exist. A similar

action occurs if the acknowledge is stuck-at-0. The master issues the address

and then the request. The slave detects the address and the request, obtains

the data, and then asserts the data lines and the acknowledge signal. Since
the acknowledge signal is stuck-at-0 the master does not detect it and state 6

is again the outlet. Assuming that the error state causes the release of

asserted signals, the 'req' signal is released and the slave continues its

operation, returns to the idle state, releasing the data and 'ack' signal.

Thus, state 6 in the master will detect two of the errors of the control
interaction.

If request stuck-at-1 occurs, then the following sequence is initiated:
The master interface asserts 'adr' (state 1) and waits the appropriate amount
of time before asserting 'req' (state 2). However, since the request line is

stuck-at-1, as soon as the slave detects that the address has been asserted,

it initiates the read cycle of its functional portion (state 1). The data is

made available and asserted along with the acknowledge line (state 2). This

may all be accomplished before the master actually asserts the 'req' line.

When the master goes to state 2 and detects assertion of the 'ack' line, it
proceeds on to state 3 and completes the cycle, releasing 'req' in state 4.

However, since 'req' is stuck-at-1, the slave remains in state 2 and has no

way to return to the idle state. Thus, the system cannot recover from the

error, and the bus remains inoperative (since 'req' appears to be asserted and

'ack' is asserted).

65

The acknowledge stuck-at-1 results in a different type of faulty opera­

tion. The master goes through the normal cycle to the point of waiting for

the ’ack’ signal. At this point it assumes that the data is available because
it detects a valid ’ack* signal even though the slave has not asserted it. So

the master continues according to its state diagram and accepts whatever data

is on the bus when it reaches state 4. However, unless the slave is very

fast, nothing will have been asserted on the data lines by the slave unit, and

the data will be incorrect. Thus, both the master and the slave will go

through their cycles, neither detecting that anything is wrong, but invalid
data will have been passed.

As can be seen from the above discussion, the error state in the four
cycle read operation will detect only two of the four possible stuck-at errors

on the control lines. However, the protocol can be modified by the addition

of more states to detect the existence of the other error conditions. These

modifications are shown in the master and slave state diagrams in Figure 5.2.

The master state machine has been modified by the addition of state 7, which

has been added to allow the detection of the condition acknowledge stuck-at-1.

It is entered from state 1 when a time-out period has passed since the address

has been asserted and the 'ack’ signal has not been released. In this case

'ack1 is in error and assumed to be stuck-at-1; the master unit detects this
condition and returns to the idle state through state 7. The modification to

the slave state diagram is the addition of state 4. This state is added for

the detection of the condition freq* stuck-at-1. It is entered from state 2

when a time-out period has passed and the freq' signal has not been released.

When this condition exists the signal is assumed to be in error and the slave
returns to the idle state through state 4 to indicate the error.

MASTER SLAVE

F ig u re 5 . 2 . M aster and S la ve S ta te Machines fo r E r r o r D e te c tio n .

67

The addition of these two states, one to each unit, allows the detection
of the two errors missed by the original arrangement. With this modification

all four possible errors will be detected. However, the slave unit will still

respond when the request line is stuck-at-1. For a read cycle this may result

in obtaining the wrong data item, but no data modification occurs so no per­

manent damage is done. This is not the case with for a write cycle, as shown

by the write protocol in Figure 5.3.

The simple write protocol of Figure 5.3 is patterned after the read cycle

which has been used for an example. The master differs from a master in a

read cycle since the ’data’ lines are asserted by the master, and this is done
at the same time as the 'adr' lines, in state 1. The master then waits an

appropriate amount of time and asserts the ' req1 line (in state 2). When the

slave detects the ’req* signal and an address within its assigned address
space it responds by moving to state 1. This state differs from its counter­

part in the read cycle since it is waiting for the slave to accept the data

before moving to the next state, instead of waiting for data to become avail­

able. When the functional portion of the slave has performed whatever func­

tions are necessary to accept the data, the signal ’data^accepted* is asserted

and the slave moves to state 2 to assert the fack’ signal. When the master

detects the assertion of *ack*, it moves to state 3 and releases freqf. No
skew time is needed since the data transfer has already been completed. The

delay from state 3 to state 4 prevents spurious actions on a noisy bus, and
the master releases the fadr* and ’data' lines in state 4 before returning to

68

MASTER SLAVE

idle

F ig u re 5 . 3 . M aster and S lave S ta te Diagrams fo r a Sim ple W rite P ro to c o l.

69

the idle state. The slave responds by moving to state 3 and releasing fackf
before returning to the idle state.

The master state 5 provides the same type of error handling as previously

mentioned for the generic read protocol. The 'req1 stuck-at-1 fault will

cause problems as shown by the following scenario. The master assumes control

of the bus and moves to state 1, asserting the ?adr* lines and the *data*

lines. Since the freq* signal is stuck-at-1 the slave will respond as soon as

an address is detected which is within its assigned address space. This

leaves no settling time for noisy signals, so the address which is accepted

could well be incorrect; in fact, in this situation more than one slave could
respond to the address. The slave then moves to state 1 to accept the data
and write it into the address which was detected. If the address which is

used is the incorrect address then the data will be written into a wrong loca­
tion, effectively destroying whatever was contained in that location previ­
ously. This improper operation of the slave can be prevented by requiring the

request signal to be unasserted at the beginning of the cycle, which will be

discussed in further detail in the context of a read protocol.

The assertion of the fdataf lines by the master at the beginning of the
cycle is the only basic difference in the read and write protocols. Both

cycles require the transfer of synchronous data across the 'data1 lines and

the fadr’ lines. Both cycles utilize interaction between the modules con­
trolled by the Treqf and 'ack' control lines. Therefore, the techniques
presented here for read cycles will apply equally well to write cycles, as do

the techniques which are described in the next section. For that reason the

TO

examples which are used in the remainder of this thesis will consist of read

cycles.

Figure 5.4 gives a further modification to the read protocol of Figure

5.2, which prevents the slave from responding in the case of request stuck-

at-1. This can be accomplished by recognizing the fact that the request line

must go through a complete cycle for each transfer, starting at an unasserted

level and becoming asserted to initiate the cycle, and then being released
again to complete the cycle. Therefore, the request signal must start the

cycle in an unasserted state. Detection of this condition is accomplished by

the addition of states 5, 6, and 7 in the slave state diagram. The slave will

enter state 5 from the idle state when conditions are present for initiation
of action on the slave’s part, in this case when the address is meant for the

slave. This condition must be maintained for a minimum period (called *t[a]*

in the state diagram); this prevents noisy address lines from incorrectly

causing the slave to begin action. Then, if the request signal is unasserted,

the slave will enter state 6. However, if a time-out occurs before the

request signal is unasserted then error state 7 is entered and the unit

returns to the idle state.

The slave will enter state 6 when the address is correct and the request

is unasserted, proper conditions for the initiation of a transaction. For a

normal transaction the request line will be asserted and the slave will detect

this condition and enter state 1, operating as previously described. If the
address or the read command is changed then the unit returns to the idle

state. If a time-out occurs before anything happens, then the request signal

71

M A S T E R S L A V E

F ig u re 5 . 4 . Read S ta te Diagrams fo r E r ro r D etection and No Improper Operation.

72

is assumed to be stuck-at-0, and the unit returns to the idle state through

error state 7. State 7 will be entered by the slave if there is a stuck-at

fault on the ’req* line. If the fault is freqf stuck-at-1, then the entry
will be from state 5. If the fault is freq' stuck-at-0, then the entry will

be from state 6. In either case the slave will be prevented from requesting
any action by its functional unit.

The system, as described by the state diagrams of Figure 5.4, has two
features which enhance system operation over the previously described proto­

cols. First, neither the master nor the slave completes transactions when

there is a faulty line. Second, the master detects the occurrence of all four

stuck-at errors. The systems of Figures 5.1 and 5.2 do not have either of
these features.

That the master unit detects all four errors of the control lines is evi­
dent from the following statements. The time-out transition from master state

1 to state 7 will occur when the 'ack' signal is stuck-at-1. The time-out

transition from master state 2 to state 6 will occur when the 1 ack' signal is

stuck-at-0, or the 'req* signal is either stuck-at-1 or stuck-at-0, as well as

the improper address as in the original specification.

The protocols represented by the state machines of Figures 5.1 to 5.4

show that there is a correlation between the composition of the state machine
and the error detection capability of the protocol. In order to detect

stuck-at errors on control lines the following conditions should be incor­
porated in the state machine:

1. Where a state change requires the assertion or release of a bus con-

73

trol signal provide time-out escapes to an error state* A bus control

signal is one which comes from the bus; other control signals
represent the status of local variables. The signals 1 req* and fackf

are bus control signals, while 'read* and fdata_readyf are local sig­
nals.

2. Require full transitions of signals before returning to the idle

state. Except when leaving the idle state, require a false signal

value one state before the true signal is needed, with appropriate
time-out escape sequences.

3* Where a bus control signal is needed to initiate action (i.e., get a

slave out of idle) and there is a precondition (i.e., the address must

match), create a new state where the precondition can be tested first,

and then a second state for checking for the unasserted bus control

signal. Add time-out escapes to these new states to check for stuck-
at faults.

Theorem 5..JL: A protocol represented by state machines satisfying conditions 1
and 2 above will detect any stuck-at fault on the bus control lines.

Proof: We assume that the error detection mechanism consists of one of
the state machines traversing through an error state. Step 2 assures that bus

control signals must make a complete transition from unasserted to asserted to
unasserted before the state machine can return to the idle state. If a signal

is stuck-at-X, where X is 0 or 1, then the signal will not make a full transi­

tion. When the signal does not make the required transition, then step 1 will

guarantee that there is a time-out sequence through an error state. Thus, any

7^

stuck-at fault will result in a state machine returning to the idle state

through an error state, detecting the fault. Q

Theorem A protocol represented by state machines satisfying conditions 1,

2, and 3 above will detect any stuck-at fault on the bus control lines and
prevent improper operation of the bus. Improper operation of the bus is

defined as performing an incorrect cycle.

Proof: Theorem 5.1 has shown that stuck-at faults will be detected by
state machines satisfying steps 1 and 2. What remains to be shown is that

when a stuck-at fault exists, then improper operation does not occur. An

improper operation will be avoided when the state machine cannot complete an
incorrect cycle. An incorrect cycle is prevented by not proceeding in the

state machine unless conditions are correct for the cycle. The conditions
will be correct if and only if the sequencing required by step 3 is in effect:

the precondition must be satisfied, and then the required control signal

assertion can occur. If the order is reversed and the signal assertion is

true before the precondition, then the order is incorrect and the action

prescribed by step 3 guarantees that the state machine will not complete the

read (or write) cycle. Q

Theorems 5.1 and 5.2 indicate that time-out sequences can be utilized

effectively in detecting the presence of a fault on the control lines, but

these procedures fall short of the goal of continued correct operation in the
presence of a single fault. In order to continue operation when a control

signal is stuck-at-X, redundancy of that signal is required. In the following

section we show that dual-rail redundancy of the control signals can be used

to guarantee correct operation when one of the signals is stuck-at-X.

75

5 ..1 . Continuous Qp.eration With Mai lail Redundant Signals

If a bus control signal is stuck-at a value, then the use of time-out

escapes can detect the presence of that fault, but in order to continue opera­

tion some other techniques are required. By using dual-rail control, that is,

duplicating the control lines, the correct information is available on one of

the duplicated bus control lines, assuming a single line failure. The problem

is to decide which of the duplicated lines is in error and then utilize the

other line to control the protocol functions. The assumptions about the type

of fault remain the same: a single stuck-at-X fault on one of the control
lines.

We assume that the duplicated control lines carry the same logical value.

Some dual-rail systems implement the signals such that one is the complement

of the other; this detects the presence of a bridging fault between the two

lines, since the signals would be correct only if the two lines are at oppo­

site logic values. However, when such a bridge exists, the effective logic

value of both lines remains the same and no transitions occur. In this situa­

tion no information is available as to the intended operation of the signal.
If the two lines are asserted to the same value, then bridging faults are not

detected, but correct operation will continue.

Duplicating the bus control signals changes the protocol and the state

machines which define it. We now present three algorithms for deriving a new

state machine utilizing dual-rail signals from the original state machine.

The algorithms generate a new state machine based on the characteristics of

76

the original state machine and the signals which control it. The signals fall

into two categories: bus control signals and local signals. Bus control sig­

nals are those which communicate information between modules over the bus

lines; local signals deal only with the module itself and are not affected by

the bus. We are assuming that the faults are contained in the bus control

signals. In addition to the control signals, state machines often use condi­

tions to control transitions from one state to another. Conditions reflect

the status of bus lines, and one obvious example is the condition of a parity

error on a set of synchronous bus lines.

The algorithms specify the number of states needed in the new state

machine to represent a state in the original state machine, based on sets of

bus control signals. For the following definitions of these sets, refer to
the example of Figure 5.5, which shows the state machine for the master

involved in a read cycle using Algorithm 2.1.

The set K is the set of bus control signals needed to make the next
O

state decision for state s in the original state machine. For the state

machine of Figure 5.5, the set is empty since f75' is a local timing signal
and ’errindat1 is a condition; the set K2 contains ’ack* and 'adrpe* since
both of these bus control signals are used to determine the next state.

The set Lg is the set of bus control signals which are required to change
their logic values in order to cause a transition from a state immediately

preceding state s to state s. In Figure 5.5, the set L2 ±3 empty since only
the local timing signal M 5 0 1 is used on the input arc; the set consists

only of * ackf since a change is not required in the value of fadrpef.

77

M A S T E R

= ack, adrpe

Lg = <empty>

= <empty>

Kg = <empty>

Lq = ack

Mq = <empty>

F ig u re 5 . 5 . Id e n t if ic a t io n o f S ig n a l S e ts fo r Dual R a il A lg o rith m s.

78

The set Mg is the union of sets Lr> where r in an immediate predecessor
of state s. M2 and Mg are both empty since no bus control signals are
required to arrive in state 1 (predecessor to state 2) or states 2 and 9
(predecessors to state 3). Examples of states with non-empty M sets are state

8 and state 13- Mg contains ’adrpe,’ and contains fack'.

To accommodate the dual-rail signals the new state machine must contain

sufficient states to resolve ambiguities caused by a fault on any bus control

line. Thus, each state in the original state machine must expand into enough

states to identify faulty conditions on the signals it deals with. Resolution

must be provided for the signals in the set K to detect faults in which thes

signals in, the set are stuck-at the value needed to advance to the next state.

Resolution must be provided for the signals in the set L to detect faults in
3

which the signals in the set are stuck-at the value opposite that required to

arrive in state s. By including the signals in the set M allows the resolu-
3

tion of signal skew between the dual-rail lines. The number of states

involved in resolving these ambiguities is n, where
n = 1 + 2 j K U L U M i .

!Q i = cardinality of the set Q

Q U R = union of sets Q and R

These set definitions allow succinct expression of the algorithms for generat­

ing new state machines.

Algorithm 5.*±

Step 1: Except for the idle state, replace each state in the original state
machine with n states in the new state machine, where

79

n = 1 + 2 j K U L U M l . The idle state is a special case treated in

the next step.

Step 2: The idle state is acted upon in one of three methods, depending upon

the signals needed to exit the idle state:
a) Local signals: If the original state machine exits idle under con­

trol of local signals, then no additional states are required;

represent the idle condition in the new state machine with a single
idle state.

b) Bus control signals ANDed with conditions: If the original state

machine exits the idle state by the transition of bus control signals

which have been ANDed with conditions, then represent idle as a sin­

gle state. Create m new states as successors to the idle state for

each arc leaving the idle state; m = 1 + 2 'set of bus control sig­

nals on that arc!. For each state in these groups of m states, place
an arc from idle to the state and a return arc back to idle. The

arcs from idle will be labeled with the condition ANDed with the

unasserted control signals, one arc labeled with the fault free con­

trol lines and the other m-1 arcs labeled such that one control line

is stuck-at an incorrect value. The arcs returning to the idle state
will be labeled with the complement of the condition, so if the con­
dition ceases to be valid, then the state machine returns to the idle
state.

c) Bus control signals only: If the exit from the idle state is deter­
mined only by bus control signals, and no condition is ANDed with

these bus control signals, then the idle state must be replaced by m

80

separate states, where m = 1 + 2 jset of bus control signals which

control the exit from idle!. Of the m states, one is for error-free
conditions, and the other m-1 states each represent the condition

that one of the signals is stuck-at an incorrect value.

Step 3: Let I represent the set of states in the new state diagram,
corresponding to state i in the original state diagram Cor the set of

states representing an arc from idle created by step b above). Let J

represent the set of states in the new state diagram, corresponding

to state j in the original state diagram. If there is an arc from i

to j in the original state machine, then place an arc from each state

in I to each state in J where

a) control signal requirements can be met for leaving I and
b) control signal levels will be appropriately matched in J.

Application of Algorithm 5.1 to a state machine will result in a new

state machine which will detect stuck-at faults on control lines which it uses

as inputs, and continue to function in the presence of those faults. Examples
of the application of this algorithm are shown in Figure 5.6 and Figure 5.7.

Figure 5.6 shows the correlation between the master state machine for a

simple read cycle and the state machine which has been expanded to utilize

dual-rail signals. States 0, 1, 5, and 6 all map to single states in the new

state machine. The condition for leaving the idle state is a local signal so

step 2a applies, and this requires no expansion of the idle state. However,

since contains 1ack1, making n = 3, state 2 in the original state machine
expands to s ta te s 2 , 7 , and 8 in the new v e rs io n . In a f a u lt - f re e s im p le s y s -

MASTER MASTER

F ig u re 5 . 6 . A p p lic a tio n o f A lg o rith m 5.1 to S im p le Read M aster.

82

tem ’aok' will be unasserted when the master moves into state 2, and assertion

of *ack’ will cause the system to move to state 3. The single-rail signal
'ask* in the original system has been replaced by two signals (*a1a2!) in the

dual-rail system. In the new system the addition of states 7 and 8 allows one

of the signals to be stuck-at-1; when the fault-free line is asserted then the

action continues in spite of the fact that the line was faulty. However,

since the execution of the state machine visited state 7 (or state 8), the

existence of the faulty line is revealed. State 3 of the original state

machine expands to include states 9 and 10 in the new version. If one of the

dual-rail lines is stuck-at-0, then either state 9 or state 10 will be

visited, but the same action will result if there is skew on the ’a1a2f lines.
Therefore, these states will not guarantee the existence of a stuck-at-0
fault. However, states 11 and 12, obtained by expanding state 4 in the origi­

nal diagram, will indicate the existence of a stuck-at-0 fault on one of these

lines.

Figure 5.7 shows the expansion of the slave state machine for a simple
read to accept dual-rail signals. The bus control signal in the single-rail

version is 1req,* and this has been duplicated to fr1r2’ in the new version.

Since leaving the idle state of the original state machine is governed by a

bus control signal ANDed with a condition, this is a good example of the addi­
tion of states, according to step 2b of Algorithm 5.1. Since one bus control

signal is needed to force the state machine to leave the idle state, three
states are needed in the new state machine to represent that arc in the origi­

nal system. The *adrokf condition is ANDed with the appropriate request sig­

nal levels to have the slave go to state 4, 5, or 6, state 5 being the error-

SLAVE S L A V E

idle idle idle idle

F ig u re 5 . 7 . A p p lic a tio n o f A lg o rith m 5 .1 to S im p le Read S la ve .

84

free condition and states 4 and 6 indicating a stuck-at-1 fault on a request

line. The state machine returns to state 0 if the 'adrokT condition ever

becomes false; this prevents spurious addresses on the address bus from caus­

ing a slave to respond incorrectly. State 7 or 8 will be the result of either

a stuck-at-0 fault or signal skew, so they will not reliably indicate a fault.
States 9 and 10 will indicate the presence of a stuck-at-0 fault. States 11

and 12 result from the expansion of state 3; however, like states 7 and 8,

they will be used for both faulty conditions and when there is skew between

the request lines. Thus, they cannot be used to reliably indicate the pres­

ence of an error.

Algorithm 5.1 will result in state machines which detect the presence of

single faults on their inputs, but this can result in quite large state

machines. This algorithm has been applied to the master and slave state
machines for the read cycle incorporating Algorithm 2.1, and these diagrams

are given in Appendix E. To reduce the size of n, the number of states

required for resolving ambiguities, and to deal with signal skew on dual-rail
lines, we now introduce Algorithm 5.2, The number of states involved is

reduced by removing the set M from the calculation of the number of states

needed in a new state machine to represent states in the original state

machine:
n = 1 + 2 |K U L '.

Although the numbers are different, the basic technique is much the same. The
principal difference is the introduction of states to resolve signal skew
between the two rows of a dual-rail signal, before entering the correct state

in the new version.

85

Algorithm 1*2

Step 1s Except for the idle state, represent each state in the original state
machine with n states in the new state machine, where

n = 1 + 2 |K U L i. The idle state is a special case treated in the

next step.

Step 2: The idle state is acted upon in one of three different ways, depend­

ing upon the signals needed to exit the idle state:
a) Local signals: If the original state machine exits idle under con­

trol of local signals, then no additional states are required;
represent the idle condition in the new state machine with a single

idle state.

b) Bus control signals ANDed with conditions: If the original state

machine exits the idle state by the transition of bus control signals

which have been ANDed with conditions, then represent idle as a sin­

gle state. Create m new states for each arc leaving the idle state,

where m = 1 + 2 I bus control signals on arc!. For each state in

these groups of m states, place an arc from idle to the state and a

return arc back to idle. The arcs from idle will be labeled with a

condition ANDed with the unasserted control signals, one arc labeled
with the fault free control lines and the other m-1 arcs labeled such
that one control line is stuck-at an incorrect value. The arcs

returning to the idle state will be labeled with the complement of
the condition, so if the condition ceases to be valid then the state
machine returns to the idle state.

86

c) Bus control signals only: If the exit from the idle state is deter­

mined only by bus control signals, and no condition is ANDed with

these bus control signals, then the idle state must be represented by

m separate states, where m = 1 + 2 I set of bus control signals which

control exit from idle!. One of the m states is for error-free con­

trol lines, and the other m-1 states each represent the condition
that one of the bus control signals is stuck-at an incorrect value.

Step 3: Let I be the set of states in the new state diagram corresponding to
state i in the original state diagram (or a set of states represent­

ing an arc from idle created by step b above). Let J be the set of

states in the new state diagram corresponding to state j in the ori­

ginal state diagram. If there is an arc from i to j in the original
state machine-then place an arc from each state in I to each state in

J where
a) control signal requirements can be met for leaving I and

b) control signal levels will be appropriately matched in J.

Step 4: To allow for the signal skew between dual-rail signals, place addi­

tional states in the new state machine where an arc entering a state

could be traversed during fault-free operation if the two values have

a race condition between them. Place an additional arc from this new

state to the state which would have been entered had no race condi­

tion been present.

Like Algorithm 5.1 this algorithm will detect single stuck-at faults
which occur on the dual-rail inputs. However, unlike Algorithm 5.1, Algorithm

87

5.2 will guarantee that if the state machine visits one of the n-1 states of
the new state machine, which represent error conditions, then the signal

involved is stuck-at the indicated value. The contrast between the two tech­
niques can be seen by comparing Figure 5.6 with Figure 5.8, and Figure 5.7

with Figure 5.9. Figure 5.8 shows the application of Algorithm 5.2 to the

master of the simple read cycle, and Figure 5.9 demonstrates its application

to the slave.

Figure 5.8 shows that state 4 for the master of the simple read cycle

does not expand to three states, since the set M of bus control signals is not

considered in determining the number of states needed for the new representa­

tion. However, two states are required to resolve skew ambiguities between

state 2 and states 9 and 10. States 11 and 12 are added according to step 4

of Algorithm 5.2 to resolve these ambiguities. With these additions a stuck-

at-1 fault in one of the acknowledge lines will result in state 7 or 8, and a
stuck-at-0 fault in one of the lines will result in state 9 or 10.

Figure 5.9 shows a similar result for the slave of the simple read cycle.

States 13 and 14 have been added according to Step 4 of Algorithm 5.2 to

resolve signal skew on assertion of the request lines, and states 15 and 16

will resolve skew problems on the release of the request lines. This guaran­
tees that states 7, 8, 11, and 12 will detect stuck-at faults on the request
lines.

Algorithm 5.2 can also be applied to more complex state machines with

similar results. The master and slave state machines for the read cycle
incorporating Algorithm 2.1 are given in Appendix E.

88

MASTER MASTER

idle idle

F ig u re 5 . 8 . A lg o rith m 5 .2 Applied to the M aster o f the Sim ple Read Cycle.

89

SLAVE

idle

SLAVE

F ig u re 5 . 9 . A lg o rith m 5 .2 Applied to the S lave o f the Sim ple Read Cycle.

90

The number of states which is required in the new state machine to
represent a state of the old state machine will be fewer for Algorithm 5.2

than for Algorithm 5.1, but the states saved in this manner will generally be
added back in to account for the signal skew problems in the state diagram.

However, using Algorithm 5.2 will result in a system where the detection of

faults at each step of the way is guaranteed.

If detection of a fault is the prime motivation for the application of

the algorithms, and specification of the exact line which is at fault is not

necessary, then the number of states involved can be reduced by considering
the Exclusive-OR of the control signals instead of providing a separate state

for each possible error. In this case only one state is provided to indicate

an error in a pair of dual-rail lines, instead of providing separate states to
uniquely identify the error. Therefore the number of states needed to replace

a state in the original state machine changes somewhat, with n being calcu­

lated as
n = 1 + IK .U L|.

The application of this technique is presented as a modification of Algorithm
5.2, but it could also be applied to Algorithm 5.1.

Algorithm 5. .3.

Step 1: Except for the idle state, replace each state in the original state

machine with n states in the new state machine, where

n = 1 + !K U Li. The idle state is a special case treated in the

next step.

91

Step 2: The idle state is acted upon in one of three different ways, depend­
ing upon the signals needed to exit the idle state:

a) Local signals: If the original state machine exits idle under con­

trol of local signals, then no additional states are required;

represent the idle condition in the new state machine with a single
idle state.

b) Bus control signals ANDed with conditions: If the original state

machine exits the idle state by the transition of bus control signals

which have been ANDed with conditions, then represent idle as a sin­

gle state. Create m new states as successors to the idle state for

each arc leaving idle, where m = 1 + I set of control signals on the

arc*. For each state in these groups of m states, place an arc from

idle to the state and a return arc back to idle. The arcs from idle

will be labeled with the condition ANDed with the unasserted control
signals, one arc labeled with the fault-free control lines and the

other m-1 arcs labeled such that one of a pair of bus control lines

is stuck-at an incorrect value. This is detected by the Exclusive-OR

of the two lines. The arcs returning to the idle state will be

labeled with the complement of the condition, so that if the condi­

tion ceases to be valid, then the state machine returns to the idle
state.

c) Bus control signals only: If the exit from the idle state is deter­

mined only by bus control signals, and no condition is ANDed with
these bus control signals, then the idle state must be replaced by m

separate states, where m = 1 + iset of bus control signals

92

determining the exit from idle!. One of the states is for the

fault-free conditions, and the other m-1 states, each represent the

condition that one of the lines of a dual-rail bus control signal is

stuck-at an incorrect value. Unlike Algorithms 5.1 and 5.2, this

algorithm uses only one state to indicate that one member of a dual­

rail signal pair is incorrect. This is detected by the Exclusive-OR

of the two signals.

Step 3: Let I be the set of states in the new state diagram corresponding to

state i in the original state diagram (or a set of states represent­

ing an arc from idle created by step b above). Let J be the set of

states in the new state diagram corresponding to state j in the ori­

ginal state diagram. If there is an arc from i to j in the original
state machine, then place an arc from each state in I to each state

in J where
a) control signal requirements can be met for leaving I and

b) control signal levels will be appropriately matched in J.

Step 4: To allow for the signal skew between dual-rail signals, place addi­

tional states in the new state machine where an arc entering a state

could be traversed during fault-free operation, if the two values had

a race condition between them. Place an additional arc from this new

state to the state, which would have been entered, had no race condi­

tion been present.

Algorithm 5.3 results in a smaller number of states than either Algorithm

5.1 or 5.2, yet the fact that a fault has occurred is detected and the infor­

93

mation exchange continues as before. The fault is identified to a pair of

lines, but which line of the pair is not known. The master and slave state
machines for the simple read cycle and the application of Algorithm 5.3 to
them are shown in Figures 5.10 and 5.11.

The change in the state machines becomes evident when Figure 5.10 is com­

pared with Figure 5.8. States 0 and 1 remain the same, but states 2 and 3

expand to only two states instead of three. In the modified state diagram

there are only two exit paths from state 1. The first is the normal fault-

free exit, with both *a1* and ’a2’ unasserted. The second path is followed

when either *a1* or fa2f is stuck-at-1, which is detected by a1 « a2. When
this is true then state 7 is entered instead of state 2, signaling the

existence of the fault. Similarly, there are two possible exits from state 2

which are due to assertion of the *a1a2* group; state 3 is the normal exit and

state 8 is the result if a1 « a2 is true. This will be true if there is a
fault or if there is signal skew. The signal skew problem is resolved by

waiting for one more state transition; if at that time both lines are not

asserted, then one of them is stuck-at-0, and state 9 is entered. Thus, state

7 will indicate a stuck-at-1 problem and state 9 will indicate a stuck-at-0

problem on one of the fa1a2f lines, although the resolution is not sufficient

to indicate which one. In either case the control algorithm continues in the
presence of the fault.

The slave state machine of Figure 5.11 can also be compared to its coun­
terpart, Figure 5.9. Two states are used to represent the normal and error

conditions, in contrast to the three states used in Figure 5.9. States 4 and

94

MASTER

idle

i

\

F ig u re 5 . 1 0 . A p p lic a tio n o f A lg o rith m 5 .3 to M aster o f S im ple Read Cycle.

al *s2

95

SLAVE s l a v e

F ig u re 5 . 1 1 . A p p lic a tio n of* A lg o rith m 5»3 to S lave o f S im ple Read Cycle.

3J*
 TJ

96

10 indicate the presence of a stuck-at-1 fault on one of the *r1r2T lines, and
state 7 indicates the presence of a stuck-at-0 fault. These states do not

indicate which of the pair of lines is at fault. States 6 and 9 are included

to resolve any timing differences caused by signal skew on the two lines.

States 3, 9, and 10 could be merged without changing the operation of the

slave, since a stuck-at-1 fault on a request line will be reported by state 4

of the next cycle.

The simple examples given in these two figures demonstrate a technique
whereby the Exclusive-OR of the two signal lines can be used to determine the

presence of a stuck-at-fault. This reduces the number of states required to

represent a protocol, thus making implementation more efficient. The loss of

this method over the previous method is that the identification as to which of

the dual-rail lines is faulty is no longer possible. Nevertheless, the

correct operation of the data transfer continues in the presence of the fault.

5..A. Summary & L Detection and Correction Techniques

The techniques presented in this chapter have demonstrated that faults

which occur on the control lines can be detected, and when enough redundancy

is provided operation can be continued in the presence of the faults. If only

single-rail control signals are provided, then the presence of the faults will

be indicated by the fact that an expected signal does not arrive within a
prescribed maximum time interval. This is indicated by a time-out signal. In

order to make use of the time-out error indications, guidelines have been pro­
vided which identify the characteristics that the state machine representation
of a protocol must have.

97

Another technique which allows the detection of the presence of faults is

the use of dual-rail signals, introducing space redundancy in the realm of
control signals without imposing the penalties of the three lines needed for

TMR. The use of time properties were again utilized in order to allow signal

skew to exist between the lines of a dual-rail pair. Allowing the signals to

settle by introducing additional states makes the protocol slightly more com­
plicated, but it does allow the system to correctly identify faulty lines at

each step of the process.

Three algorithms have been presented which will allow continued operation
of transfer algorithms in the presence of faults. The presence of faults is

indicated by entering states during the operation of the protocol which iden­

tify the problem. Depending on the number of states involved in setting up

the system, this will locate the problem either to the specific line which is

faulty or to a pair of lines, one of which is faulty. In either case the
operation of the system continues.

The master and slave algorithms which have been presented are ideal exam­

ples of the application of the algorithms. In both cases the signal sequences

are very well defined by the total protocol system: the master proceeds from

the idle state knowing that the acknowledge lines must be false, so faults on
those lines can be quickly identified. Likewise, the slave will be assured

from the protocol definition that the request lines cannot be asserted until a
certain time after the address has become stable. This permits the slave to
examine the request lines when an address is stable and locate a stuck-at

fault if one of the lines is at an unexpected value. These synchronizing

98

qualities of the protocol sequences are not always true, as shown by the arbi­

tration system problems discussed in the next chapter. However, the expected

signal behavior and the use of dual-rail signals will enable us to operate in
the presence of faults.

The fault model which has been assumed for these algorithms is rather
restrictive since it requires that under fault a line become stuck-at-1(0)

when the line is legally at logic 1(0). This precludes any out-of-sequence

transitions. If an out-of-sequence transition occurs during the action
prescribed by the protocol, then the current operation may not be executed

correctly. However, the next cycle will be correctly executed and the error

will be identified.

99

CHAPTER 6

ARBITRATION FOR CONTROL OF BUS LINES

&.J_. Introduction

The algorithms presented in the previous chapter deal with the interac­
tion between a module controlling the bus lines and a second module responding
to the commands of the first. This interaction is very important in bus com­

munications because of the prevalence of the master-slave type of transfer.

However, these interactions can only take place when all of the modules are in
agreement as to which module is controlling the bus lines. This decision mak­

ing process is called bus arbitration and is very important, since only one

module can control the bus lines at any time. It is also important because

all bus systems are faced with the arbitration problem. Some rather complete

discussions of the arbitration problems faced in bus-oriented systems are
available [45,46,47]. In this chapter we do not deal with the complexities

which arise in the logic for implementation of the various arbitration mechan­

isms, but rather we are concerned with methods of making fairly standard arbi­

tration schemes tolerant to stuck-at faults on bus control lines.

The consequence of an error which allows two masters to assert bus con­
trol lines at the same time can cause incorrect data transfers and possibly

damage the circuits which are involved. If the technology utilized on the bus

is essentially a open-collector type of implementation, then the assertion of
a signal by more than one source will not cause any damage to the circuits,

but the resulting data will be a logical combination of more than one source.

100

For example, two masters attempting to complete a read cycle simultaneously

will both assert the address lines, and the result will be a logical combina­

tion of the addresses asserted by both units. However, if the technology
involved is exemplified by tri-state circuitry, physical damage will result

when one unit drives a line to a high level while the other unit is driving

the same line to a low level. Thus, an arbitration error allowing two master

units to assume control of bus lines concurrently can result in destruction of

data and physical damage to the circuitry involved.

Another problem becomes obvious when considering the algorithms for

dual-rail signals presented in Chapter 5. These algorithms utilize known

information about the master/slave interaction in making assumptions about the

expected level of the control signals. For example, when the master unit dep­
icted in Figure 5.8 moves from state 1 to assert the request lines in one of

the succeeding states, it is assuming that the acknowledge lines will not be

asserted. Therefore, if one of the acknowledge lines is asserted, then that

line is in error and a state is entered to recognize that fact and essentially
ignore the faulty line. Similarly, the slave depicted in Figure 5.9 chooses

one of states 4, 5, or 6 assuming that the request lines are not asserted. If
one of the request lines is at an asserted level when the *adrok’ condition

becomes true then it is assumed to be faulty and ignored. Both of these

assumptions are based on a foreknowledge of the behavior of the signals

involved: a slave cannot assert an acknowledge line before the master asserts

the request lines, and the master cannot assert the request lines until an

address has had time to settle on the address lines. These assumptions cannot

be made if the arbitration unit will allow more than one master to assume

101

control of the bus lines at one time.. Thus, the arbitration function is
vitally important to the system.

Although the arbitration of bus ownership can be accomplished in many
ways two basic methods are used: parallel arbitration and serial or daisy-

chain arbitration. These two methods are shown in block diagram form in Fig­

ure 6.1. In systems where expansion is limited and speed is of major impor­

tance parallel arbitration is used. * This method calls for each master module

to assert a hna request signal which is not available to other modules on the

bus; the system arbiter accepts all bus request signals and asserts a bus

grant signal to only one of the modules. This guarantees that only one module

at a time assumes control of the bus lines. An example of this type of arbi­
tration system is the Synchronous Backplane Interconnect (SBI) of the

VAX11/780 computer system by Digital Equipment Corporation. The MULTIBUS by

Intel also has this type of an arbitration system as an option.

The second method of bus arbitration depicted in Figure 6.1 is the

daisy-chain or serial type of decision making. In this type of a system a

priority signal is passed serially from one module to the -next. Whereas the

priority system of a parallel system can be dictated by whatever algorithm the

central arbiter chooses to implement, the priority of a serial system is

determined by the physical position of the different modules on the priority
line. In a serial type of system the arbitration decisions are made by a dis­

tributed arbitration network; each module contains that portion of the arbi­

tration system needed for making the bus ownership decision for that module.
Examples of systems with serial arbitration include the IBM channel and the

102

Para lle l A rb itra tion

Se ria l A rb itra tion

Bus Lines

Arbitration Lines

Figure 6.1. Arbitration Mechanisms in Bus Systems.

103

Motorola VME bus. The MULTIBUS by Intel can operate under either serial or
parallel schemes, depending on how the system is constructed. Another option

is to combine the two methods, using a parallel scheme between different lev­
els of modules, and within each level use a serial scheme. The UNIBUS by

Digital Equipment Corporation is of this type.

The arbitration of the bus ownership is important not only because of the

consequences of incorrect data and damaged signal circuits, but because of the

universality of the problem. All bus systems which have more than one module

capable of controlling the interaction must have some type of an arbitration

system. Independent of the method of implementation, whether parallel or
serial, the goal is the same for both: permit only one master to control the

bus control lines and data lines at one time.

Parallel Arbitration System

At least two signals in addition to those which have already been dis­
cussed are needed to allow a master to obtain control of the bus lines to

carry out an information transfer. One signal is used by the master to inform

the arbitration system that it needs the bus; this line is called the bus

request line, and it is labeled ’br' for short in the diagrams. The other

line is a signal from the arbitration system to let the master know that his
request is being honored and that he can assume control of the bus; this line

is called the bus grant line, and it is labeled »bg' in the diagrams.

In a fault-free system the action assumed for these lines is that when
the master needs the bus, it asserts the bus request line. When the bus is

available, following whatever priority algorithm the arbitration system

104

chooses to implement, the arbitration system asserts the bus grant line allow­

ing the master to assume control of the bus lines. This interaction sequence

is added to the simple read sequence of Figure 3.1 and is shown in Figure 6.2,

which also shows its expansion into dual-rail signals using Algorithm 5.1.

The bus request line 1 brf becomes fb1b2’ in the dual-rail version, and the bus
grant line fbg’ becomes ’g1g2f.

The *readf signal for the master of Figure 6.2 differs from the 'read1
signal of Figure 3.1 in that no assumption is made concerning the ownership of
the bus. In Figure 6.2 the signal merely indicates that the functional por­

tion of the module needs a read cycle. This signal causes the master to enter

state 1 and assert the *br* line; this in turn indicates to the arbitration
system that a cycle is needed. When the arbitration system resolves whatever

requests have been made for control of the bus, it allows one master module to

assume control of the bus lines, and it signals this condition by asserting
the *bg', line of that master which will control the bus. When the master

detects the assertion of 'bg' the action as defined by the state machine will

continue, the master controlling the lines to complete the needed cycle. When

the cycle is complete, the master relinquishes control by releasing the fbr'

signal. When the arbitration system detects the release of 'br', it will then
grant control to another module as needed.

As can be seen from the state machines of Figure 6.2 the same techniques,

which were used to make the master-slave interaction tolerant to single faults
on the dual-rail signal lines are used to make the interaction of the arbitra­

tion system tolerant to single faults. This system assumes that the parallel

M A S T E R • M A S T E R

idle 0

read

og

150

A (reel 3

ack

75

idle

Figure 6.2. Master of Simple Read Cycle with Arbitration Lines Added

106

arbiter is free of faults, and that bus lines which interface between the

arbitration system and the master modules have at most one stuck-at fault.

When these assumptions are correct, then the system will tolerate any single

stuck-at fault on data or control lines, as well as bridging faults on data

lines.

4-3.* Serial Arbitration System

As seen by the previous section, a parallel arbitration scheme is easily
incorporated into the bus system which has been discussed in previous

chapters. However, there are some drawbacks to parallel arbitration which

prevent its use in a variety of systems. In order to perform the central

arbitration function of the parallel system, a fairly complex arbiter must be

implemented, which becomes entirely responsible for the ownership decisions of

the system. In addition to being complex, this system is also limited in its
expansion to a fixed number of modules unless the arbitration module is

expanded. Thus, many systems use a serial system to accomplish the arbitra­

tion function.

A serial arbitration system also has drawbacks, one of which is the time

needed to identify a new master module. The time required for arbitration is

proportional to the number of master modules on the bus; each module requires

some time to respond to arbitration signals.

One simple form of serial arbitration involves three bus control signals:
priority-in (’prin*), priority-out ('prout'), and bus-busy C,bbsyf). The bus
request and bus grant signal between a module and its serial arbiter are local

signals and do not form part of the bus; therefore, we will not consider them

107

in the bus protection schemes. The fprinf signal for a module is obtained

from the fproutf signal of the next higher priority module, and the *prout*

for a module becomes the *prinf of the next lower priority module. The signal

1bbsyf is bidirectional, and it is asserted by the current bus master. The

arbitration algorithm grants the bus to the highest priority module seeking

ownership when the ^bsy* signal is released by the current owner. A module

desiring to gain mastership of the bus makes a request to its local arbiter.

Upon receiving this request, the local arbiter releases its *proutf signal,

effectively preventing lower priority modules from obtaining mastership of the

bus. The arbiter then checks its 1prin’ signal to see if it can gain master­

ship of the bus. The arbiter can grant mastership of the bus if its *prin*

signal is asserted and no other module is using the bus, which will be indi­

cated by an unasserted 'bbsy* signal. If the 'prin' signal is unasserted,

then the arbiter waits until it becomes asserted. When the »prin* signal is
asserted then the arbiter checks the fbbsyr signal, and if the bus is not

busy, the arbiter asserts the fbbsy’ signal and grants mastership to the

module. If 'bbsy’ is asserted when the arbiter needs the bus, then the

arbiter must wait until ,bbsy' is released by the current bus master before it

can assume control of the bus. These three lines allow the arbitration system

to be distributed between the modules which require mastership of the bus.

Error detection and fault-tolerance of the control signals involved in

the serial arbitration process introduce another problem. Unlike the

request-acknowledge protocol between a master and a slave, or the request-

grant protocol between a master and a parallel arbiter, there is no handshake
or four cycle protocol between the local arbiters of a serial scheme.

108

Specific values of the bus signals are not expected and, therefore, correct

logic values of the signals cannot be distinguished from the incorrect values.
Thus, although the presence of a single error can be detected with dual-rail

signals, tolerance of a fault cannot be achieved without additional redun­

dancy. Therefore, we propose the use of triplication for the priority and bus

busy signal lines. This provides the ability to not only detect faults which

occur at any time on the lines but also to identify the faulty line and ignore
it.

109

CHAPTER T
• A CASE STUDY - THE UNIBUS

2.1. IntrQduc-tifln

The UNIBUS was introduced by the Digital Equipment Corporation in 1970 as
an integral part of the PDP/11 family of computers [48]. This family of com­

puters was designed to overcome some of the inadequacies of the computers

available up to that point. Among the reasons given for the new computer line

was a desire for increased structural flexibility or modularity. With the

modularity provided by a bus structure users would be able to configure a sys­

tem optimized for their application, based on cost, performance, and reliabil­

ity. The majority of this system would be made up of standard modules which

would fit into the bus structure, and whatever customized hardware was needed

by the user would be added to this same structure. A block diagram of a 1 typ­

icalT system is shown in Figure 7.1. Another advantage of a system of this

type is that as the needs of the user community grow then additional modules,

such as memory or peripherals, can be added to meet increased system demands.
The UNIBUS became the backbone of the PDP/11 family, and although different

timing constraints were associated with the different models the protocol of
bus interaction remained the same for all units [49].

Since the introduction of the PDP/11, the number of modules available for

use on the UNIBUS has grown to include a multitude of interface and special
purpose devices. Users have developed customized interfaces knowing that, if
necessary, their system can be upgraded to a higher performance computer

110

Figure 7.1. Block Diagram of a UNIBUS System.

merely by placing their interface in a more capable machine. These concepts
of machine independence and modular construction based on a bus system have

been incorporated in other designs since that time. The Lockheed SUE is an
example of a system similar to the PDP/11 which has been built using modular

construction and a bus protocol for communication. Others include the MUL­

TIBUS by Intel and the VERSABUS by Motorola. We now examine the UNIBUS to

ascertain the changes needed to add fault tolerance to the protocol

l.£. Additional Bus Lines for. Tolerating Faults

Communication over the lines of the UNIBUS begins when a master signals

the arbitration system that it needs to transfer data to/from another module.

When the master receives control of the bus, it asserts the address lines to
identify the desired partner in the transaction as well as the type of tran­

saction to be performed. The two modules then use the handshake lines to

111

exchange the data over the data lines. Finally, the bus is released for use

by other modules. The lines of the bus which are used to implement this

transfer mechanism can be divided into four groups totaling fifty-six lines:
the synchronous lines, the handshake lines, the arbitration lines, and the

miscellaneous lines.

Information transfer from one module to another occurs in parallel across

forty synchronous lines. These include the data lines (18), the address lines

(18), and the read/write lines (2). The read/write lines have the same timing
specifications as the address lines and identify the transaction as one of

four possibilities: read, read-pause, write, or write-byte. The data lines

are the only lines on the bus which include any type of error detection; a

single parity bit is added to sixteen data bits to assure constant parity on

the data path. Thus, only seventeen lines, or only 30$ of the bus, are

currently covered for error detection and none are covered for error correc­
tion. A second parity line has been defined as a member of the 56 bus lines,

but it is reserved for future use. Fault coverage can be provided for all the

synchronous lines by an additional parity bit to be used for the address and

read/write lines. However, in addition to the parity bit, we have also

included the two lines needed to implement Algorithm 2.1, so three additional

lines are required to detect single bit errors on the parallel data paths and
apply the algorithms of Chapter 2 to correct the errors. These additional

lines increase the total bus signals to 59, but the fault coverage rises to

69$ of the bus, adding correction as well as detection. This information is
shown in Table 7.1 along with other configurations of the bus.

112

Table 7.1- Error Coverage of Different UNIBUS Configurations.

Synchronous Lines Control Lines

/ \ / \
Address

and Error
Read/Write Data Handshake Arbitration Misc Total Coverage

Standard
UNIBUS 20 16(2) 2 12 4 56 30*

Protect Address 20(3) 16(2) 2 12 4 59 69*

Protect
Handshake Lines 20(3) 16(2) 2(2) 12 4 61 m

Detection on
Arbitration
Lines

20(3) 16(2) 2(2) 12(12) 4 73 95*

Detection on
Misc Lines 20(3) 16(2) 2(2) 12(12) 4(4) 77 100$

With Serial
Arbitration Only 20(3) 16(2) 2(2) 3(6) 4(8) 66 100$

The signals in the handshake group are the request line (called MSYNC)

and the acknowledge line (called SSYNC). Using dual-rail signals for the

handshake lines doubles the number needed for that function, but it allows the

implementation of the protocols introduced in Chapter 5. The two additional

lines bring the total to 61 lines, and the error coverage rises to 7^$- The

use of dual-rail signals for the handshake functions allows both detection and

correction of stuck-at faults.

113

The arbitration function of the UNIBOS utilizes both parallel and serial

functions. The parallel decision is between one of five different levels*

each level representing a different priority to the system. In this way the

system is capable of ignoring requests for bus interaction from lower level

devices until all of the higher level functions have been satisfied. Within

each level the priority is a daisy chain arrangement, with each device respon­

sible for passing on any priority signals when not actually requesting bus

service. The protection schemes presented in Chapter 6 can be implemented by

supplying dual-rail signals for each line in the parallel arbitration group

and triplicating the serial priority lines. Fault detection can be achieved

by doubling the number of lines involved in the arbitration function. The

total number of lines is increased to 73» and the error coverage to 94$. The

triplication of the serial priority lines would increase the number of lines

further but give assurance of tolerating the faults.

The miscellaneous lines of the UNIBUS include: the interrupt line which

is asserted when a master requests interaction with the processor, the ini­

tialization signal, and two power supply warning lines. Error detection can
be achieved by making these lines dual-rail signals also, bringing the total

number of lines to 77 with total fault coverage. Again, in order to tolerate

faults on these lines, triplication would be needed.

The number of lines on the bus has increased by 37$ in order to provide

fault detection on all lines. Triplication of the lines involved in arbitra­
tion and the miscellaneous lines in order to tolerate all single faults would

increase the number by 66$. However, this is not the only cost to the system

114

of the additional capability. Not only does the number of lines increase, but

also the complexity of the protocol governing those lines. We now examine

this increased protocol complexity.

1.3* Additional Pr,0,t0.Qfll Complexity

The action of the UNIBUS protocol is fairly complex and requires many
pages of explanations, tables, and graphs to describe [49]. This information

can be condensed into state machine representations of the modules involved.

The interaction of these state machines describes the control interaction

needed to transfer information across the synchronous lines of the bus, etc.

Figure 7.2 gives a state machine representation of the master unit and its

interaction with the slave. Figure 7.3 is a similar representation of the

slave unit. The signals ’msync’ and ’ssync’ correspond to the request and

acknowledge signals of the read protocols discussed in previous chapters. The
signal ’sack' is used in the arbitration system. The type of cycle (read,
write, etc.) is identified by 'dcO1. The other signals have names which have

been introduced earlier. The number of states in these diagrams gives an

indication of the complexity of the protocol, the master requiring 19 states

and the slave only 13 states. In order to implement the control required for

Algorithm 2.1 and dual-rail signals such as needed for Algorithm 5.2, the

number of states in the master increases to 72 and the number of states of the

slave increases to 65. However, the amount of logic required to implement

these protocols does not increase at the same rate. For example, less than
30$ more bits are required to represent the number of states in the new master

as opposed to the old one.

MASTER

Figure 7.2. State Machine Representation of UNIBUS Master

SLAVE

idle idle idle idle

Figure 7.3. State Machine Representation of UNIBUS Slave.

117

The other functions of the bus, such as the arbitration function, will

have the same type of a complexity increase as the functions are implemented

with dual-rail signals. The actual cost impact will depend on the actual type

of arbitration system used, whether it is a parallel/serial combination or

simply one of the methods. The cost of the hardware necessary to implement

the protocol has been decreasing steadily as more logic can be included on an
integrated circuit chip.

1-1. Total -S.yatam Cost
By adding lines required to detect faults and continue operation in the

presence of those faults, the number of lines needed for the full UNIBUS pro­

tocol increased by 23, but the fault coverage (for detection) went from 30$ to
100$. In addition to the increased number of lines for the full protocol, the

amount of hardware needed for the interface function approximately doubles.

Thus, the full UNIBUS protocol can be implemented in a fairly reasonable

manner. Typical boards for the UNIBUS devote only about 20$ of their logic to

the interface function; so the hardware increase for the system would only be
on the order of 20$.

A heavy price was paid for the complexity of the protocol, and if a

simpler arbitration scheme is acceptable, then the number of lines required
for the bus could be reduced. Using only the serial scheme introduced in

Chapter 6 would reduce the number of lines involved in arbitration from 24 to

9, and at the same time maintain triplication of arbitration lines for total
fault tolerance. Using triplication on the miscellaneous lines as well brings

the total number of lines to 69. Therefore a protocol can be established

118

which has only three more lines than the UNIBUS which will detect the presence

of single faults *and continue to function. The hardware reduction of this

scheme would be principally in the arbitration system, since the parallel

arbitration unit is not needed.

The cost of this type of an implementation can be contrasted for com­

parison with a TMR type of implementation. A TMR implementation of the entire

bus would require 168 bus lines, as opposed to the 77 lines of the dual-rail

system. If, instead of using TMR for the synchronous data paths, the algo­

rithms of Chapter two are implemented, then only the control lines need be

triplicated. However, this still brings the number of bus lines to 95. The
TMR implementation also requires voters for each input, so the hardware

required is not less than that of the dual-rail system. Therefore, the dual­

rail implementation is preferable to the TMR.

As can be seen from the above discussion, there is an entire spectrum of

possibilities available to the designer of a protocol. The decisions regard­

ing the 'best* implementation remain a system issue, and so a single best pro­
tocol is not possible. But the algorithms and methods are available to use

parity, time redundancy, and dual-rail control signals for most of the bus

functions to implement a protocol which will tolerate single faults.

119

CHAPTER 8

CONCLUSION

1*1. ,Contributions n Z .This Thesis

This thesis deals with the addition of fault tolerance to protocols of
bus level communications. We have presented methods and techniques for deal­

ing with faults which occur, not only faults on the data lines but also faults

which occur on the control lines. Utilizing these techniques, a protocol

designer can incorporate into a bus communication system a high level of fault

tolerance.

For the transfer of synchronous information, two algorithms have been

presented which will guarantee correct address and data exchange in the pres­

ence of single faults. These algorithms operate correctly not only for
stuck-at faults but also for faults characterized by a logical bridge between
two data lines. Algorithm 2.1 accepts bridging faults between logically adja­

cent lines, and Algorithm 2.2 extends the model to include a bridging fault

between any two lines. The information necessary to locate and correct a

fault comes from the use of time redundancy. Additional cycles are supplied

when an error is detected; thus, the penalty is incurred only when faults are
detected.

To accurately represent the protocols studied in this thesis, a state
machine representation of the module interaction was utilized. This also

allowed the introduction of errors into the system. In order to use general

purpose computers to aid in the analysis of these protocol machines, a State

120

Machine Language was developed. This language allows complete specification

of the protocol modules. Files consisting of SML descriptions of these
modules can be utilized in a system simulator which will exercise the action
of the entire protocol system, including the introduction of errors to check

out the fault tolerant functions.

The use of state machine models, with the protocol simulation system,

permits an accurate study of the control interaction used in bus systems. We
have shown that the steps taken to detect out-of-bound addresses for bus sys­
tems will also detect some of the signal faults which occur. By the addition

of states judiciously placed in the state machines of the protocols, the use

of timeouts can also detect faults which occur on control signal lines and

prevent incorrect operation. But the use of time checking alone cannot permit

continued operation in the presence of a fault.

We have Shown that by the introduction of dual-rail signals for most of

the control lines single stuck-at faults can not only be detected and located,

but that the correct operation of the system can continue. Knowledge of
correct operation of the protocol allows the module to anticipate the correct

level of a control signal. If one of the two lines representing that signal

is not at the correct level, then it is in error, and the module is then able
to recognize the error and continue to function. We have presented three

algorithms which allow conversion from a system using single-rail control sig­

nals to a dual-rail system.

Implementation of the techniques presented in this thesis is not without
cost. The algorithms presented in Chapter 2 require additional time when an

121

error is detected: Algorithm 2.1 uses one additional transfer and Algorithm

2.2 uses either one or two additional transfers, depending on the type of

fault detected. However, in both cases the additional cycles occur only when

faults have been detected, so there is no constant system overhead. The algo­

rithms for dual-rail control signal lines presented in Chapter 5 require dou­

bling the number of control lines and increased complexity in the protocol

definition. The increased complexity of the protocol will increase the total

system hardware only about 20$.

1-2. Sugges-Eions Lor. Further Work

The use of SML to describe the modules of the protocols enabled us to

solicit the aid of the computer in analyzing the interaction. The simulator

used in this analysis is capable of providing a great deal of variety in the

exercise of the protocols. However, when a range of values will satisfy a
particular system call, the actual value returned is produced with the use of

a random number generator, so the action of the system is random. In order to

traverse the entire decision tree associated with the protocol, all condi­

tions, from using the minimum for each decision to using the maximum, must be

exercised. In order to accomplish this the simulator would have to be

expanded to traverse that tree and try all combinations.

The State Machine Language is not limited to use with protocol analysis,

but it can be used to represent state machine models of systems of independent

modules. The simulator presented in this thesis can then be used to model the
interactions of other types of systems as well. However, extensions would
have to be made to allow the system to detect other types of faults than the

ones needed for the protocol analysis.

122

This work did not address the issue of making a finite state machine

tolerant to faults. The fault-tolerance achieved in this work is that of the

signals between independent finite state machine. Very little work has been

done on a fault-tolerant, finite state machine C43 *50]. Similarly, very lit­

tle work exists in the design of fault-tolerant arbiters. These two aspects

must be further investigated in order to achieve an overall fault-tolerant
system.

123

APPENDIX A
READ CYCLE INCORPORATING ALGORITHM 2.1

A simple read cycle is introduced in Section 3.2, and Section 3.3 deals

with the additions needed to implement the controls required for Algorithm

2.1. The state machines representing these protocols are given in Figure 3.1

and Figure 3*2, and an explanation of the simple read protocol is contained in

Section 3.2. The state machine for implementation of Algorithm 2.1 is dupli­

cated here for reference in Figure A.1. This appendix contains a detailed

description of the states involved in this protocol.

Algorithm 2.1 uses time redundancy to correct errors which occur while

transferring synchronous information. For most bus systems this synchronous

information consists of two transfers: data and address. The address may also
contain information which indicates the type of transfer, but the timing

requirements are the same as for the address itself, so these lines are

grouped together. Thus the read cycle needs to apply Algorithm 2.1 to the
address from the master to the slave as well as the data from the slave to the

master.

Two more control lines are needed for this transfer over the read cycle
of Figure 3.1. The condition that a parity error has been detected on the

address lines is represented by ’errinadr’, and upon detection of this condi­

tion a slave asserts the control signal ’adrpe’. Likewise, the condition that

a parity error has been detected on the data lines is represented by ’errin-

dat’, and master lets the slave know this by asserting ’datape1. These lines

124

MASTER SLAVE

Figure A.1. Read Cycle Modified to Utilize Algorithm 2.1.

125

allow the different modules involved with the protocol to carry out Algorithm
2.1. In the following description, where the states are essentially identical

to their counterparts in the simpler read cycle contained in Section 3«2, the
comments are minimal.

Master. State Machine - Modified Read Cycle

State 0: Idle state. Master exits when 'read* becomes true.

State 1: Assert address. Synchronous information is asserted. Move on to
state 2 after delay.

State 2: Assert request. This state differs from state 2 of the original

read cycle only in its exit criteria. When the master detects the asser­

tion of the address parity error signal 1adrpe’, it waits long enough to

be sure that all the slaves have also detected the assertion of the sig­

nal and proceeds to state 7. If no 1adrpe' signal is detected, then nor­

mal operation will proceed to state 3 upon detection of 'ack', as before.
If too much time passes, then state 6 is the error exit.

State 3: Delay state. Again, this state differs from state 3 of the original

read cycle only in its mode of exit. If there is a parity error on the

data which was received, then after the 75 nsec delay the master moves to

state 10. Otherwise, normal operation will take the master to state 4.
State 4: Accept data. The data is accepted from the bus lines and the freq'

•* *>
signal is released.

State 5: Release address. The synchronous lines are released and the master

returns to the idle state.

State 6: Error state. If no 'ask' signal is received before the time-out

126

period passes, the slave is delinquent and this state permits continued

operation of the bus.
State 7: Release address, request. If a slave requests a retransmission of

address, this state is entered. The synchronous information asserted in

state 1 is released, and the ’req’ signal is released also. The master

then moves on to state 8.

State 8: Assert address for retransmission. The modification to the address

specified by Algorithm 2.1 is performed, and the modified address value

is asserted. After the appropriate time to allow for skew and propaga­

tion delay, the master moves to state 9.

State 9: Assert request. Like state 2, this state is used to assert the

’req’ signal and wait for a response from the slave. When the Tackf

response arrives, then the master moves on to state 3. If the address

was for a non-existent slave unit, then no ’ack’ signal will arrive and
the master will move to state 6 after * time-out’.

State 10: Assert data parity error. When the master unit has detected a par­

ity error on the data lines, this state is entered from state 3, and the
master asserts the signal ’datape’ to ask the slave for a retransmission

of the value. At the same time it stores the erroneous data so that

Algorithm 2.1 can make use of it later. When the slave has detected the

presense of ’datape’, it responds by releasing the data and ’ack’. When
the master detects this, it will proceed to state 11.

State 11: Release data parity error. When the master unit has arrived in
this state, it releases ’datape’ and waits for a new ’ack’ signal to

indicate that the retransmitted data is available. When this condition

127

is detected, it moves on to state 12.

State 12: Delay state. This state forces the delay needed to account for sig­

nal skew on the data lines. When the skew time has passed, control moves

on to state 13.

State 13: Accept corrected data, release request. The correct data value

will be available by combining the valued stored in state 10 and the
value currently on the data lines as indicated by Algorithm 2.1. The

resulting data are accepted by the master. The ’req’ signal is released

to let the slave know of the acceptance of the data, and the master moves

on to state 5.

3lave state. Diagram - Modified Read Algorithm

State 0: Idle state. Each slave will be idle until a ’req’ signal is

detected, and then the conditions it detects will determine how it

proceeds in the state diagram. One of the two conditions detected is the

fact that the address is free of parity errors and matches the slave’s

assigned address space, indicated by ’adrok’. The other condition is

that a parity error has been detected by the slave, indicated by ’erri-

nadr’. If ’adrok' is true and no parity error has been detected, then

the slave will move to state 9 when ’req’ is detected. If ’errinadr’ is
true, then upon detection of ’req' the slave will move to state 4. How­

ever, if neither of these conditions is true, then the slave will move on
to state 10 with the detection of ’req'.

State 1: Prepare data. When the slave reaches state 1, it waits for the

functional part of the unit to prepare the data, then it moves on to

128

state 2.

State 2: Assert the data and 'ack'. The data is asserted onto the bus lines

and the 'ack' control signal is asserted. There are two possible succes­

sor states; in normal operation the 'req' signal will be released and the

slave will move on to state 3. However, if the master has detected a

parity error, then 'datape’ will be asserted, and when the slave detects

this signal it will move on to state 7.

State 3: Release data and 'ack'. The slave will release the data lines and
the 'ack' control signal before returning to the idle state.

State 4: Address parity error detected. When the address lines contain a

parity error when ’req' is detected, then this state is entered. The
effect is to save the value on the address lines for use in Algorithm 2.1

and to assert 'adrpe'. The assertion of this control signal lets the

master and all other slaves know that the error has been detected. When
'req' is released, then the slave moves on to state 5.

State 5: Release 'adrpe1. This state is entered when the 'req' signal has

been released. This lets the slave know that the 'adrpe' signal has been

detected and can be released. When the 'req' signal is asserted again,

the slave will proceed to one of two states, depending on the value of

the address constructed according to Algorithm 2.1. If the address

agrees with the slaves assigned address space, then state 1 is entered;

otherwise state 6 is entered.

State 6; Wait state. This state is entered when a transaction occurs which
does not involve this slave, but two transfers of the address were

required to establish this fact. When the 'req' signal is released, then

129

the slave proceeds to the idle state.

State 7; Release the data and *ack*. The slave enters this state when it

detects the * datape* signal, which indicates that the master needs a

retransmission of the data to correct an error which has been detected.

The slave releases the data lines and the 'ack* control line and moves to

state 8 when the * datape’ line has been released. The release of that

line synchronizes the actions of the slave and the master.

State 8: Assert data, re-assert *ack*. Now that the data lines have been

released, the slave can assert the data value modified according to Algo­

rithm 2.1 for transmission on the data lines. It also asserts the ’ack*

line to indicate to the master that new value is on the data lines. When

the release of the *req* signal is detected, then the slave moves on to
state 3-

State 9: Correct address detected. When the *req* signal has been received
by the slave while in the idle state, the address on the address lines

falls within the assigned address space of the slave, and no parity error

has been detected, this state is entered. No action is taken, and the

choice of successor states is made on the.basis of the ’adrpe* line. If

the *adrpe’ line has not been asserted within 50 nsec, then the slave

moves on to state 1 and normal operation. If, however, the 'adrpe* line
is asserted, then some other slave unit detected a parity error and the

slave moves to state 12 to save the address and wait for the redundant
address value.

State 10: Address not in address space. If the address on the bus does not

have a parity error and is not in the assigned address space of the

130

slave, then when the 'req* signal is detected the slave moves to this

state. If the 'adrpe* signal is asserted then another slave has detected

a parity error and the slave moves to state 12. If no »adrpef signal is
received, then the slave returns to the idle state when the 'req* signal

is released. This decision synchronizes the action of all of the slave

modules so that each slave knows if the value on the address lines is a

valid address or an address formed by application of Algorithm 2.1 and

transmitted a second time.

State 11: Save address, assert ’adrpe*. When this state is entered, another
slave has detected a parity error on the address lines. This slave also

asserts the ’adrpe’ line and saves the address so that Algorithm 2.1 can

be applied to correct the fault. When the slave detects the release of
*req', it moves on to state 5 to decide if the address matches its

assigned address space.

131

APPENDIX B
BNF DESCRIPTION OF STATE MACHINE LANGUAGE

Chapter 4 introduces the State Machine Language SML and its application
to represent state machines involved in a protocol system. We now give a com­

plete Backus Naur Form (BNF) representation of the grammar. In the production

rules which follow, the * ’ symbol calls for the replacement of the non­

terminal on the left by the terminals and non-terminals on the right. Non­
terminals appear below marked with ’<...>» characters, while these symbols are

absent from terminals. The 1!’ symbol represents that the ’OR’ function,

indicating that one of the entries may be selected. A symbol included in dou­

ble quotes must be accepted literally as it appears. All other symbols

appearing in the production rules are terminals and must remain in the substi­

tution. Also included in this appendix are descriptions of the operators of
the language and the naming conventions used.

BNF ̂ Description jCl£ SML

<machine> ::= <name> <arg> <I> <S> <0> <transitions> <outputs>;

<name> <idname> <identifier>;

<idname> ::= surname ! hostname ! arbname

<identifier> : := <letter><char><char><char><char><char><charXchar><char>

<letter> ::= <ucletter> j <lcletter>

<ucletter> ::: A i B | C | ... j Z

132

<lcletter> ::: a j b S c ! ... I z

<mimber> : : s O l 1 | 2 ! 3 ! 4 l 5 (6 l 7 l ' 8 i 9

<char> <ucletter> I <lcletter> S <number> I <empty>

<empty> ::=

<arg> ::= <empty> I <arg> define <identifier> = <integer>

<value> <integer> ! mkadr(<min_adr>, <max_adr>) ! mkdata(<max_value>)

<integer> <number> j <number> <integer>

<mirL_adr> ::= <integer>

<max_adr> ::= <integer>

<max_value> ::= <integer>

<I> ::= <inp> <signal_name_Xist> ;

<inp> ginputs ! linputs i inputs

<signal_name_list> ::= <signal_jiame> ! <signal_name> <, signal_name__list>

<signal_jname> ::= <identifier>
i

<S> ::= states <integer> ;

<0> <out> <signal_name_Xist> ;

<out> ::= goutputs ! loutputs i outputs

<transitions> ::= transition spec> ;

<transition spec> ::= <transition> ! <transition> <transition spec>

133

<transition> ::= tran <state_number> -> <state_number> : <condition> ; j

tran <state_number> -> <sfcate__number> ;

<state__number> <integer>

<condition> ::= <logic_on_inputs> \ <DLY>

! <logic_orL_input3> <logical operator> <DLY>

<logic_on_inputs> <value> I <expression> I (<expression>)

<expression> ::= <signal__name> = <value> I <signal_name> I
<expression> <logical operator> <expression>

<logical operator> ::= == ! != ! <= ! >= ! " ! ! " ! & & ! > j <

<DLY> ::= delay (<rainimum_wait__time>, <maximuin_wait_time>) !

acc_del ay (<maximunL_accumul a t ecL_time__.bef or e_f or ci ng_s tate_tr ansi tion>)

<minimum_wait_time> ::= <integer>

<maximunL.wait_tirae> ::= <integer>

<maximu33L_accumulated_time_before__forcing_state__transition> : := <integer>

<outputs> ::= <output spec> ;

<output speo> ::= <output_def> ! <output_def> <output spec>

<output_def> ::= <assert__def > ! <release__def > I <do__def>

<assert_def> ::= assert <signal_name> in <state_number> ; !

assert <signal_name> = <value> in <state__number> ; !
assert_oc <signal__name> in <state__number> ; I
assertion <signal_name> = <value> in <state_number> ;

134

<release_def> :: = release <signal__name> in <state__number> ; }

release_oc <signal_name> in <state_jiumber> ;

<do_def> ::= do <signal_name> in <state_number> ; j

do <signal_name> = <value> in <state_number> ; !
do_oc <signal__name> in <state_number> ; !
do_oc <signal__name> = <value> in <state_jiumber> ;

State Machine Names: Three types of state machines are identified by

names: smname, hostname, and arbname. The ’smname* designation is for the

state machine representing the protocol machine itself. This is different

from the functional unit portion of the system, which is represented by a

state machine designated by ’hostname’, and if an arbitration module is asso­

ciated with the module that is represented by a state machine identified by
’arbname’. As for the names themselves there are no restrictions except as
imposed by the operating system. The reason for this restriction is that the

name called out in the ’<name>’ portion of the grammar is used as a root name

for files created by the protocol exercise system. Therefore, the names

should not be too long, and no two state machines should have the same name.

The define statement: The identifier of a ’define’ statement will iden­

tify a constant which should be set to a value. The restrictions on the iden­

tifier are those associated with naming of variables in the C language. The

value should be an integer.

Values: Values in the protocol system are integers. Where an integer is

known then the integer itself can be used. Where an integer can assume a

value between two different addresses, then the ’mkadr’ function can be used.

135

The name ’mkadr* represents ♦make an address*. There are two calling parame­

ters to the function: <mirL_adr> which represents the minimum legal address,

and <max__adr> which identifies the upper limit of address range. The number
generated by this function is an integer somewhere between the two limits.

The function *mkdata* also allows the specification of a value which is a ran­

dom number. The calling parameter to *mkdata* is a single integer which is

the maximum allowable value that the function can assume. The value which is

returned will be a positive integer less than the calling parameter.

Inputs: There are two types of inputs: global inputs and local inputs.

Global inputs are signals which originate from the bus, and as such extend
between protocol modules. Local inputs are signals which are used between the
units which comprise a module, the protocol machine, the arbitration machine,

and the functional unit. For the arbitration and protocol modules the ’gin-

puts’ designation is required to identify the global inputs, and the ’linputs’

name identifies the signals which are local. Since the functional unit por­

tion deals only with local signals it can use the ’inputs’ designation, which

defaults to local inputs. The names used for inputs and outputs can carry

information concerning their expected values, as explained below.

Signal Names: A convention which has been adopted concerning the names of
the signals concerns the terminal character of the signal. It is not impera­
tive that names conform to this convention; the system can operate with sig­

nals which do not ascribe to the rules presented here. A name should end in
one of the letters ’h’,’l’,’b’, or ’p’. A signal whose name ends with ’h’ is

a single line considered to be active in the high state, and a name which ends

136

with *1* is a single line considered to be active in the low state. A name

which ends in a * b' is considered to be a bus value, such as a data bus or an
address bus, which does not have parity error detection associated with it. A

name which ends in a ’p' is considered to be a bus which does have protection

of a parity bit. When space is allocated on the output lines for data values

more room is left for the bus values than for the signal values, so following
the convention aids the format of the output data.

States: States in the state machine system are identified by integers,

and so the set of states comprising the state machine can be identified by

giving the highest number of a state. By convention, states are numbered con­

secutively from 0, so a state machine contains n+1 states, where n is called

out in the Tstates’ statement. When a state is identified in a transition

statement or an output statement, it is in the set of states of the machine
when the state in question has a number less than or equal to the number
called out by the ’state statement’.

Outputs: Like the inputs, the outputs are grouped into global and local
signals. The global signals are used to communicate between modules on the

bus, and local names are used within functional units. For the arbitration

and protocol machines the ’goutputs’ statement is require to identify the out­
puts which are global, and ’loutputs' identifies the signals which are used

within the module. For the state machine of the functional unit the ’outputs’

designation is allowed, since all outputs of the functional portion are local
to the module.

137

Transitions: Transitions are identified by giving the initial state of
the transition, the final state, and the conditions under which the transition

will be made. The condition portion of the statement is optional; if it is

not present then the transition to the next state is made one state time later

than entry into the state. The conditions involved in the transition state­

ments can consist of logic on the input values, delays, or a combination of

logic and delays. The logic involved is comparing the signals to known values

or to values established by the define statements. For example, the logical

statement *testh != 1f will be true when the signal ftesth’ is not asserted.

The logical operators available are those involved in the C language. The

delays involved are represented by two functions: 'delay* and *acc_delay'.

The 'delay' function accepts two parameters, both of which are integers. The

first establishes a minimum time, and the second identifies a maximum time.

The actual delay time, which will be a random number between the two values,

must transpire before control can pass to another state. That is, this time

must occur before the logical expression containing the delay can be true.

The *acc_delay' statement has one parameter which establishes the time after

which the function becomes true. There is no random nature involved with
’acc__delay'.

Controlling the outputs: There are three types of statements which deal with
controlling the output signals. The *assert_def' statements are used to

specify the states in which a signal is asserted. Signals asserted in this

way will need to be released in a later state with a *release_def' type of

statement. The assertion statement must identify the signal to be asserted,
the value which it will be given, and the state number in which this action

138

occurs. If the naming conventions outlined above have been followed and sin­

gle signal line names end in either an *h* or an »1’, then the value portion

of the statement is optional. If it is not present, then the value indicated
by the name is assumed for the assertion value. Signals which are open col­

lector signals are asserted by ’assert_oc* statements; ’assert* statements are

used for all other signals. A signal which has been asserted in one state
must be released in a later state, and this is done by the appropriate

’release_def* statement. Open collector signals are released by using the
’release_oc* statement. All other signals are released with the ’release’

statement. When a signal is to be asserted in one state and released when

that state is exited, regardless of the next state, then it is possible to use
the ’do_def’ type of statement. The same conventions about values and open

collector restrictions apply to the ’do’ statements as for the ’assert’ state­

ments. Signals identified by the ’do_def’ statements are true only for the
duration of the state identified by the statement.

139

APPENDIX C
SML DESCRIPTION OF UNIBUS MASTER

SML can be used to describe arbitrarily complex state machines to enable

the simulation system introduced in Chapter 4 to exercise a system composed of
multiple state machines. The UNIBUS Master from Chapter 7 is shown in Figure

C.1, with the signal names given below:

abusb - the address bus; no parity protection

addressb - the address from the functional section of the module

indicating the target address of the transaction

bbsy - bus busy - asserted by master while using bus lines

bg - bus grant - asserted by arbiter when control of- bus can

be obtained

br - bus request - asserted by a master when it needs control of bus
c1,c0 - the control lines - same timing as the address lines

and used to indicate the type of transfer

dbusp - the data lines, including parity

msyn - master sync - asserted by master to communicate with slave

readh, read_pauseh, writeh, write__byteh - local signals from the
functional portion of the module to start a transaction

reacl_datab - path to functional portion of module for passing
data from a slave

sack - selection acknowledge - asserted by master to acknowledge
that it will assume control of bus when bbsy goes false

ssyn - slave sync - asserted by slave to communicate with master

MASTER

Figure C.1. State Machine of the UNIBUS Master.

141

write_datab - path from functional portion of module carrying
data to be sent to slave

write__doneh, read_doneh - local signals to the functional portion

of the module to indicate completion of a transaction

Note that the states 12 and 13 now contain the signals needed to be released

to accomodate the error conditions of the states.

The text of the file describing the state machine is as follows:

smname master; # master of DNIBUS
ginputs dbusp, ssyn, bg, bbsy;
linputs writeh, readh, read_pauseh, write__byteh, addressb, write_datab;
states 17;
goutputs dbusp, msyn, cO, d , abusb, br;
loutputs write_doneh, reaci_doneh, read_datab;

beginning of next state section
read>_pauseh == 1 I writeh == 1 ! write_byteh == 1

= = 1;

tran 0 -> 1 : readh =s 1 I
tran 1 -> 2 : bg == 1•1
tran 2 -> 3 • bbsy != 1 &&
tran 2 -> 4 ♦• bbsy != 1 &&
tran 2 -> 5 • bbsy != 1 &&
tran 2 -> 6 ; bbsy != 1 &&
tran 3 -> 7 ;
tran 4 -> 8 ;

tran 5 -> 10 : delay(150,150) ;

tran 6 -> 10 : delay(150,150) ;
tran 7 -> 9 : delay(150,150) ;

tran 8 -> 9 : delay(150,150) ;

tran 9 -> 11 : ssyn == 1 ;
tran 9 -> 12 : acc_delay(20000);
tran 10 -> 13 : acc_delay(20000) ;
tran 10 -> 14 : ssyn == 1 ;

tran 11 -> 15 : delay(75,75) •
f

tran 12 -> o ;
tran 13 -> o ;
tran 14 -> 16 ; delay(75,75) •*
tran 15 -> 0 ;
tran 16 -> 17 : delay(75,75) && readLpause == 1 ;
tran 16 -> 18 : delay(75,75) && readh == 1 ;
tran 17 -> 8 ;
tran 18 -> 0 ;

> # beginning of output section
assert br = 1 in 1 »
assert sack = 1 in 2 ;
assert bbsy = 1 in 3;
release sack :in 3;
assert bbsy = 1 in
release sack :in 4;
assert abusb = addressb in 5;
assert c1h = 0 in 5;
assert cOh = 0 in 5;
assert bbsy = 1 in 5;
release sack in 5;
assert abusb = addressb in 6;
assert d h = 0 in 6;
assert cOh = 1 in 6;
assert bbsy = 1 in 6;
release sack in 6;
assert abusb = addressb in 7;
assert d h = 1 in 7;
assert cOh = 1 in 7;
assert datab = write_datab in 7;
assert abusb = addressb in 8;
assert c1h = 1 in 8;
assert cOh = 0 in 8;
assert datab = write_datab in 8;
assert msyn in 9;
assert msyn in 10;
release msyn in 11;
do write_doneh = 1 in 11;
release msyn in 12;
release cO in 12;

release d in 12;
release abusb in 12;
release bbsy in 12;
release sack in 12;
release datap in 12;
release br in 12;
release msyn in 13;
release cO in 13;
release c1 in 13;
release abusb in 13;
release bbsy in 13;
release sack in 13;
release br in 13;
release abusb in 15;
release cO in 15;
release c1 in 15;
release bbsy in 15;
release br in 15;
do rea<i_datab = datap in 16;
do read_doneh = 1 in 16;
release msyn in 16;
release cO in 17;
release c1 in 17;
release abusp in 18;
release cO in 18;
release d in 18;
release bbsy in 18;
release bg in 18;

144

. APPENDIX D

OSE OF PROTOCOL EXERCISE SYSTEM

The protocol exercise system explained in Chapter 4 allows a computer to

simulate the action of a system described as a number of state machines.

There are several steps involved in the process of building a computer program

to simulate the system, and an overview of this process is provided by Figure
D.1. As shown in the figure, the state machine describing each module is

represented in SML, and these descriptions form the input to a lexical

analyzer called fmfsmf. This analyzer converts file containing the SML

descriptions into several files, one of which is a C language routine describ­

ing the action of the module. When this conversion has been performed on each
module, three other programs are invoked to create the system. The first pro­

gram is called ’makedoup', and it is used to create a C language routine which
monitors the states and variables of interest and outputs the information when

called for by the execution of the system. The second program is called 'mak-

enames’, and it is used to create lists of global and local names for the sys­

tem being simulated. The third program is called 'makeit', and it is respon­

sible for taking the information created by the other programs and generating
a file containing a valid C program which can be compiled with the standard C
compiler. In addition to these routines there is another utility called ,ch*

which can be used to check the syntax of the SML file. These routines, their
calling parameters, and the inputs and outputs expected by each are explained
below.

Generation of Simulator for Protocol Analysis

simulation
of interacting
system s

--------- >

Figure D.1. Overview of Protocol Exercise System.

146

mfsm; The program 'mfsm' converts SML descriptions of state machines into
a number of output files. The input is provided via the standard input facil­

ity of UNIX. The output appears in several files, the names of which are

derived from the name of the state machine specified in the opening statement

of the SML description. This name is used as the Kstate machine name>’ in

the following description of files generated by ^fsm’.

<state machine name>.b : This file contains the largest delay called for in
the state machine. It allows the system to set a limit when checking for
deadlock conditions.

<state machine name>.c : This, file contains a C language routine which

represents the state machine defined by the SML description.

<state machine name>.d : This file contains the name of the C routine which
is created to represent the module. This name is needed by the simula­

tion system in order to initiate the action of the module.
<state machine name>.gi : This file contains the names of the global inputs

called out in the fginputsf statement of the SML description. It is com­

bined with the other global symbol names of other modules to create a
list of the global signals. This list defines the lines on the bus in

question.

<state machine name>.go : This file contains the names of the global outputs

specified by the 'goutputs’ statement of an SML description. It is com­

bined with other global symbol lists to define the names of the lines of
the bus being simulated.

<state machine name>.li : This file contains the names of the local inputs

called for by the SML description. The signals specified here are not

147

available to other state machines in the system, but they can be identi-

fied for output or error specification if needed.

<state machine name>.lo : This file contains the names of the local outputs

identified in the SML description. The signals specified here are not

available to other state machines in the system, but they can be identi­

fied for output or error specification if needed.

<state machine name>.n : This file contains the names containing the state

variables of the state machine. That is, the variables named in this

file are the present state register and the next state register in the

representation of the action of the module. The integer in the present

state register identifies the current status of the state machine.
<state machine name>.p : This file identifies the name by which the process

can be referred to for output statements.

makedoup: The routine ’makedoup’ is used to create a C language routine
which updates temporary variables to keep track of the action of the system.

The variables which are of interest to the system are identified in the cal­

ling parameters. Those names which identify state machine names which have

been processed by the ’mfsm’ routine result in the output of the state of that

module on an output line. Names which do not coincide with names of state
machines are assumed to be names of auxiliary variables identified by the
operator as of interest, and the signals so named also appear in the output.

In addition to this information specified by the calling parameters, the time

of the simulation system clock and the global variables are also printed out.

The C routine which results from the execution of ’makedoup’ is sent to the

standard output facility of UNIX and redirected to the file ’do_an_upda.c’.

‘ 148

makenames: The routine 'makenames' is used to create a list of the global

and local names used by the system. The calling parameters to 'makenames'
identify the state machines which will jointly make up the system, and the

routine collects the signal names from the files created by 'mfsm1. These

names are placed into the appropriate files and the duplicate entries removed.

The files are then ready for 'makeit' to create the system as a whole.

makeit: The simulation system as a whole is created by the routine *mak-

eit'. The calling parameters to 'makeit* identify the names of the state

machines which will make up the system. The files created by 'mfsm*, 'mak-

edoup', and 'makenames* are all combined into one file which represents the

entire system. This file is then input to the C compiler to create an execut­
able version of the system. Other versions of the system using fewer or more

modules can be created by adjusting the names used as calling parameters to
the above routines.

Invoking the action is accomplished in the same manner as starting any

other executable program on the system. However, the action of the simulation
system can be modified by the calling parameters with which it is started.

These parameters are as follows:

-d name n The -d option is used to identify a drive signal. The signal

identified by 'name' is monitored, and after 'n' cycles of the signal the
action of the system is terminated.

-f name or -F name The -f option is identifies the signal 'name' as a signal

which will be susceptible to stuck-at faults. The inclusion of a second

signal for stuck-at faults is allowed by the -F option. This allows

149

specification of a fault on the data path and a fault on the control

lines.

-% n The probability of a signal sticking at an asserted value is fn* per­
cent.

-# n The probability of a signal which has been stuck-at a value being

released is fn* percent.
-p This flag inhibits the output information from being provided at state

changes. In this way only error messages will be output.

-r Action of the system is often controlled by the action of a pseudo-random

number generator. The seed of that number generator is initially the

same from one run to the next, allowing duplication of a run. The f-r*

flag causes the seed of the number generator to be based on the time,

resulting in a random start for the random number generator.

-w name The signal ’name* is added to the information printed at every out­
put time.

.Oh: The routine 1 ch* provides a syntax checker for the SML files. The

checker can be fooled into thinking that a description is valid when in real­

ity it is not, but it does provide a vehicle for checking for naming errors

and operator malfunction. The input to ,ch* is an SML description and the

output is the same file with whatever error messages are identified by the
syntax checker. The absence of error messages indicates that there is a

fairly good probability that the syntax is correct.

Once a set of files has been established with the SML descriptions of the

state machines of the protocol to be exercised, then a simulation system can

150

be created by using the commands listed above* The commands needed to build a

system from four SML files named ’master’, ’slave1, ’master_Jiost’, and

’slave_host’ are as follows:

mfsm < master
mfsm < master__host
mfsm < slave
mfsm < slave_Jiost
makenames master masterji slave slave_h
makedoup master master_h slave slave_Ji > do_ao_upda.c
makeit master master_h slave slave_h > whole.c
cc -o r1 -g whole.c /mnt/dln/pub/sim.new.a

Once the executable file has been created by the C compiler, then it can

be invoked with the the appropriate options as shown below. This example uses

the executable fr1’, created by the operations shown above, and the calling
parameters specify only two cycles of the protocol. The output which appears
after the command line is supplied by the protocol system, and identifies the

drive signal, the number of cycles, and the type of printout. The numbers on
each line are the time, the states of the four state machines (master,

master_Jiost, slave, and slave_Jiost), and the global variables (*ack’, *adr',
’data’, and ’req’).

% r1 -d req 2
Drive signal - req
Number of cycles - 2
Print out state changes and globals

1 - 0 1 0 0 -1 -1 -1 -1
101 - 0 2 0 0 -1 -1 -1 -1
102 — 0 3 0 0 -1 -1 -1 -1
103 - 1 3 0 0 -1 1474 -1 -1
253 - 2 3 0 0 -1 1474 -1 1
255 - 2 3 1 0 -1 1474 -1 1
257 - 2 3 1 1 -1 1474 -1 1
657 - 2 3 1 2 -1 1474 -1 1
658 - 2 3 2 2 1 1474 1599 1

i

151

660 - 3 3 2 0 1 1474 1599 1
735 - 4 3 2 0 1 1474 1599 -1
737 - 4 3 3 0 -1 1474 -1 -1738 - 4 3 0 0 -1 1474 -1 -1
810 - 5 3 0 0 -1 -1 -1 -1
811 - 0 3 0 0 -1 -1 -1 -1812 - 1 3 0 0 -1 1329 -1 -1962 - 2 3 0 0 -1 1329 -1 1964 - 2 3 1 0 -1 1329 -1 1966 - 2 3 1 1 -1 1329 -1 1
1366 - 2 3 1 2 -1 1329 -1 1
1367 - 2 3 2 2 1 1329 4833 1
1369 - 3 3 2 0 1 1329 4833 1
1444 - 4 3 2 0 1 1329 4833 -1
1446 - 4 3 3 0 -1 1329 -1 -1
1447 - 4 3 0 0 * -1 1329 -1 -1

Total time 1519

152

APPENDIX E

STATE MACHINES FOR PROTOCOLS UTILIZING ALGORITHM 2*1
AND DUAL-RAIL SIGNALS

The state machines presented in Chapter 5 use the generic read protocol

to introduce the algroritms for conversion from single-rail control signals to

dual-rail control signals. These algorithms can be applied to more complex

protocols as well with similar results. This appendix contains the state

machines derived from application of the algorithms of Chapter 5 to the read

protocol which has been modified to utilize Algorithm 2.1. The state machines

for this protocol appear as Figure 3.2.

In these figures the states which will be reached in the presence of sin­
gle stuck-at faults are labeled with the appropriate fault. The format of the
label is xx/f, where the signal name is xx and the value at which the signal

is stuck is f. In addition, the correlation between the initial state machine

and the new state machine is indicated by the state numbers of the original

state machine which appear near the appropriate group of states in the new
state machine.

Figure E.1 presents the application of Algorithm 5.1 to the master of the

read protocol, and Figure E.2 presents the slave. The application of Algo­

rithm 5.2 to the master and slave is shown in Figure E.3 and Figure E.4. The

application of Algorithm 5.3 is shown in Figure E.5 and Figure E.6.

153

F ig u re E .1 . A p p lic a tio n o f A lg o rith m 5.1 to Read P ro to c o l M aster.

154

F ig u re E . 2 . A p p lic a tio n o f A lg o rith m 5.1 to Read P ro to c o l S la v e .

155

F ig u re E . 3 » A p p lic a tio n of* A lg o rith m 5*2 to Read Pro to c o l M aster.

156

F ig u re E . 4 . A p p lic a tio n o f A lg o rithm 5 .2 to Read P ro to c o l S la v e .

157

F ig u re E . 5 . A p p lic a tio n o f A lg o rith m 5-3 to Read P ro to c o l M aster.

158

F ig u re E . 6 . A p p lic a tio n o f A lg o rithm 5 .3 to Read P ro to c o l S la v e .

159

REFERENCES

1• M. Gien, "A file transfer protocol,n Computer Networks, Vol. 2, pp°
312-319, Sept./Oct. 1978.

2. G Schulze and J. Borger, ffA virtual terminal protocol based upon the
’communication variable' concept,11 Computer Networks, Vol. 2, pp. 291 —
296, Sept./Oct. 1978.

3. H. V. Bertine, "Physical level protocols," IEEE Transactions on ..Qoammilr.
cations. Vol. COM-28, pp. 433-444, Apr. 1980.

4. J. J. Shedletsky, "Error correction by alternate data retry," IEEE Tran­
sactions on Computers, Vol. C-27, pp. 106-112, Feb. 1978.

5. D. P. Agrawal and V. K. Agarwal, "On-line bus fault diagnosis in
microprocessor systems," £. Digital Svst.. Vol. 4, pp. 337-391, Winter
1980.

6. J. B. Postel, "A graph-model analysis of computer communications proto­
cols," Ph.D. dissertation, Comput. Sci. Dep., University of California,
Los Angeles, CA, UCLA ENG-7410, 1974.

7. P. M. Merlin, "Specification and validation of protocols," IEEE Transac.T.
tinns on Communications. Vol. COM-27, pp. 1671-1680, Nov. 1979.

8. J. L. Peterson, Pair! rat theory and Jfchs. modeling systems, Prentice-
Hall, Inc., Englewood Cliffs, NJ 1981.

9. G. V. Bochmann and J. Gecsei, "A unified model for the specification and
verification of protocols," Proceedings. IF.Ifi Congre.aa, PP* 229-234,
1977.

10. A. S. Danthine, "Protocol representation with finite-state models," IEEE
Transactions on Communications. Vol. C0M-28, pp. 632-643, Apr. 1980.

11. H. K. Knudsen,, "Linked state machines," Log. Alamos. National Laboratory
Report LA-9770-MS, June 1983.

12. C. A. Sunshine, D. H. Thompson, R. W. Erickson, S. L. Gerhart, and D.
Schwabe, "Specification and verification of communication protocols in
AFFIRM using state transition models," IEEE Transactions, on So ft,warn
Engineering. Vol. SE-8, pp. 460-489, Sept. 1982.

13. R. R. Razouk and G. Estrin, "Modeling and evaluation of communication
protocols," in Computer Networks and Simulation 21. ed. S. Schoemaker,
North-Holland, pp. 167-190, 1982.

14. P. M. Merlin, "A methodology for the design and implementation of commun­
ication protocols," IEEE Transactions on Communications, Vol. COM-24,
pp. 614-621, 1976.

15. C. H. West, "General technique for communications protocol validation,"
IBM J. Res. Develop.. Vol. 22, pp. 393-404, July 1978.

160

16. D. Siewiorek, M. Canepa, and S. Clark, "C.vmp: the architecture and
implementation of a fault tolerant multiprocessor,” in 7th Annual Inter­
national Conference an Fault-Tolerant Computing, Las Angal&a., Calif.,
28-30 June 1977, IEEEpp.•37-43, , New York 1977.

17. Wo W. Knight, "Fault-tolerance with standard computer modules," Proceed­
ings of the Distributed Data Acquisition, .Computing, nni Control Symp.Q=.
slum - 1980, pp. 99-106, 1980.

18. T. Agerwala, "Some applications of Petri nets," Proceedings a£ the 19.7.8
National Electronics. Conference. Vol. 23, pp. 149-154, Oct. 1978.

19. P. Azema, R. Valette, and M. Diaz, "Petri nets as a common tool for
design verification and hardware simulation," Proceedings .13th Design
Automation Conference, pp. 109-116, June 1976.

20. J. Baer and C. Ellis, "Model, design and evaluation of a compiler for a
parallel processing environment," IEEE Transactions an Software
Engineering. Vol. SE-3, pp. 394-405, Nov. 1977.

21. R. Shapiro and H. Saint, "A new approach to optimization of sequencing
rlgM.qinns," Annual Review in Automatic Programming. Vol. 6, pp. 257-288,
1970.

22. K. Lautenbach and H. Schmid, "Use of Petri nets for proving correctness
of concurrent process systems," Information Processing 74. Proceedings of
the 1974 IFIP Congress. North-Holland, pp. 187-191, Aug. 1974.

23. F. Ramming, "Petri-net based description, analysis and simulation of con­
current processes." Proceedings 14th Design Automation Conference. IEEE,
June 1977.

24. P. Thomas, "The Petri net: a modeling tool for the coordination of asyn­
chronous processes," M.S. thesis, University of Tennesee, Knoxville,
TN, June 1976.

25. L. Cox, Jr., "Predicting concurrent computer system performance using
Petri net models," Proceedings. a£ ihe. 191&. ACM National Conference, ACM,
pp. 901-913, Dec. 1978.

26. J. Meldman, "A Petri-net representation of civil procedure," IDEA - The
Journal of Law and Technology. Vol. 19, PP- 123-148, 1978.

27. C. A. Sunshine, "Formal modeling of communication protocols," in Computer
Networks and Simulation II. ed. S. Schoemaker, North-Holland, pp. 53-75,
1982.

28. P. M. Merlin, "A Study of the recoverability of computing systems," Ph.D.
dissertation, University of California, Irvine, CA, 1974.

29. P. M. Merlin and D. J. Farber, "Recoverability of communication
protocols— implications of a theoretical study." IEEE Transactions on
Communications. Vol. C0M-24, pp. 1036-1043, Sept. 1976.

30. V. Cerf, "Multiprocessors, semaphores, and a graph model of computation,"
Ph.D. dissertation, Computer Science Dept., University of California,

161

Los Angeles, CA, Apr. 1972.
31. K. Gostelow, "Flow of control, resource allocation and the proper termi­

nation of programs," Ph.D. dissertation, Computer Science Dept., Univer­
sity of California, Los Angeles, CA, Dec. 1971.

32. G. V. Bochmann, "Finite state description of communication protocols,"
Computer Networks. Vol. 2, pp. 361-372, Sept./Oct. 1973.

33. D. Bjorner, "Finite state automation - definition of data communication
line control procedures," Fall Joint Computer Conference. AFIPS Confer­
ence Proceedings. Vol. 37, pp. 477-490, 1970.

34. G. V. Bochmann and C. A. Sunshine, "Formal methods in communication pro­
tocol design," IEEE Transactions na Communications, Vol. COM-28, pp.
624-631, Apr. 1980.

35. A. S. Danthine and J. Bremer, "Modeling and verification of end-to-end
transport protocols." Computer Networks. Vol. 2, pp. 381-395, Oct. 1978.

36. "IEEE standard digital interface for programmable instrumentation," IEEE
Std 488-1975, The Institute of Electrical and Electronics Engineers,
Inc., Oct. 1975.

37. P. M. Merlin, "A methodology for the design and implementation of commun­
ication protocols," Report RC-5541, IBM T. J. Watson Res. Center, York-
town Heights, NY, June 1975.

38. H. Rudin, C. H. West, and P. Zafiropulo, "Automated Protocol Validation:
One Chain of Development," Computer Networks. Vol. 2, pp. 373-380,
Sept./Oct. 1978.

39. C. H. West, "An automated technique of communications protocol valida­
tion," IEEE Transactions on Communications. Vol. COM-26, pp. 1271-1275,
Aug. 1978.

40. D. Brand and W. H. Joyner, Jr., "Verification of protocols using symbolic
execution," Computer Networks. Vol. 2, pp. 351-360, Oct. 1978.

41. D. Norton, "A process based general purpose system simulator," Internal
Report, Coordinated Science Laboratory, University of Illinois, Urbana,
Illinois, 1983.

42. G. K. Maki and D. H. Sawin, "Fault tolerant asynchronous sequential
machines," IEEE Transactions on Computers. Vol. C-23, PP* 651-657, July
1974.

43. D. H. Sawin, III and G. K. Maki, "Fail-safe asynchronous sequential
machines," IEEE Transactions on Computers. Vol. C-24, pp. 675-677, June
1975.

44. J. A. Teeter and G. K. Maki, "Multiple fault tolerant design of asynchro­
nous sequential machines," in 1975 International Symposium £n Fault-
Tolerant Computing. Digest Papers. Paris> Franca* 1-20. June. 1915.>
IEEEpp. 257, , New York 1975.

162

45. R. C. H. Chen, "Bus communications systems," Ph.D. dissertation, Depart­
ment of Computer Science, Carnegie-Mellon University, Pittsburg, PA,
1974.

46. K. J. Thurber, E. D. Jensen, L. A. Jack, L. L. Kinney, P. C. Patton, and
L. C. Anderson, "A systematic approach to the design of digital bussing
atriip.hnpfts. n AFIPS Conference Proceedings - Fall Joint Computer Confer­
ence 1972. pp. 719-740, 1972.

47. K. J. Thurber and G. M. Masson, "Bus structures," in Djstribut.ed.-
Processor Communication Architecture. Lexington Books, pp. 131-174, Lex­
ington, Massachusetts 1979.

48. C. G. Bell, R. Cady, H. McFarland, B. Delagi, J. O'Laughlin, R. Noonan,
and W. Wulf, "A new architecture for mini-computers - the DEC PDP-11,"
Proceedings, SJC£, pp. 657-675, 1970.

49. "The PDP/11 peripherals handbook," Chapter 5, Digital Equipment Corpora­
tion, 1973.

50. D. K. Pradhan and S. M. Reddy, "Fault-tolerant asynchronous networks,"
IEEE Transactions on Computers. Vol. C-22, pp. 662-669, July 1973.

163

VITA

Leonard Howard Pollard was born July 21, 1947 in Logan, Utah. He graduated

Cum Laude from Utah State University in 1971 with a B.S. in Electrical

Engineering. He received his M.S. in Electrical Engineering in 1977, also

from Utah State University.

While at Utah State University he won the statewide IEEE Student Paper Contest
(1971) and was named Most Valuable Graduating Electrical Engineer (1971). He

was also inducted into the Phi Kappa Phi and Sigma Tau honorary societies.

He was employed as a Research Engineer with Electro-Dynamics Laboratories at

Utah State University until 1973 > when he became an engineer of the systems

group of Reticon, Inc. (Sunnyvale, CA). In 1975 he joined the Signal Process­

ing Systems group of Lockheed Missiles and Space Company (Sunnyvale, CA),

where he was a research engineer until 1980. At that time he began a Ph.D.

program at the University of Illinois, where he has been a member of the Com­

puter Systems Group of the Coordinated Science Laboratory.

Publications:

L. H. Pollard, "Multiprocessing with the TI 9900," Proc. Eleventh Annual ,Asi-.
lomar Conference on Circuits, Systems and Computers, Nov 1977.
L. H. Pollard, "A Multiprocessing Approach to Data Processing," XX-MIXSB
(Texas Instruments, Inc.) Vol 4, No 5, Nov 1977.
L. H. Pollard and J. H. Patel, "Correction of Errors in Data Transmissions
Using Time Redundancy," Proc. Fault Tolerant Computing SvmP.OSi.uni, Jun. 1983.

