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reduced the number of memory references to between 1/5 and 2/5 of those
required by a conventional VAX.

An estimate is also made of an SMA machines performance relative to
that of a VAX. A machine®s performance 1is parameterized by the memory
bandwidth and the computational overhead. It was found that performance is
very sensitive to these parameters; however, an SMA machine performs
significantly better than a conventional machine with the same parameters.

The SMA architecture reduces addressing overhead and provides improved
system performance by (1) efficiently generating operand requests, (2) making
fewer memory references, and (3; maximizing computation and address generation
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A Structured Memory Access Architecture

Andrew Bichard Pleszkun, Ph.D,
Department o' Electrical Engineering
University of Illinois at Urhana-Champaign, 1982

When conventional von Neumann architectures reference the memory,
addressing information must first be obtained, usually by transfer from
the memory to the CPU. The work performed by the CPU can be partitioned
into a computation process and an access process. Outside of adding
addressing modes to instructions, little has been done to reduce the
work performed by the access process or to reduce the demands placed on
the memory for access-related activities. This work investigates one
method of reducing the von Neumann bottleneck and improving the degree

of overlap between the computation and access processes.

Program referencing behavior is first studied by analysing program
address traces. With the 1information gained from the address trace
analysis, a Structured Memory Access (SMA) architecture is developed
which makes fewer references to memory and permits the access process to
be, by and large, decoupled from the computation process, thus providing

a maximum degree of overlapped execution and access prediction.

To evaluate the effectiveness of the SMA architecture 1iIn reducing
addressing overhead, a comparison i3 made between a hypothetical SMA
machine and a YAX-like machine with respect to the number of memory
references generated by a set of programs. Depending on the program,
the SMA machine reduced the number of memory references to between 1/5

and 2/5 of those required by a conventional YAX.



An estimate is also made of an SMA machines performance relative to
that of a VAX, A machine’s performance is parameterized by the memory
bandwidth and the computational overhead. It was found that performance
is very sensitive to these parameters; however, an SMA machine performs
significantly better than a conventional machine with the same

parameters.

The SMA architecture reduces addressing overhead and provides
improved system performance by (1) efficiently generating operand
requests, (2) making Tfewer memory references, and (3) maximising

computation and address generation overlap.
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CHAPTER 1

INTRODUCTION

The von Neumann Bottleneck

In 1946, Burks, Goldstine, and von Neumann authored a paper
[3urk46] which established the basic design of general purpose
computers. To this day, many general purpose computers found on the
market can be classified as von Neumann machines since their
organization is basically she same as that proposed in she 1946 paper.
These von Neumann machines have common characteristic®s which affect the

referencing of instructions and data.

Since we are interested in the interactions between the central
processing unit (CPU) and the memory, we may divide von Neumann machines
into a CPU and a memory, ignoring the issue of input-output. The memory
is treated as one uniform structure containing both the instructions and
the data of a program. In order to reference the memory, addressing
information must first be obtained, usually by transfer from the memory
to the CPU. Once this information arrives, the CPU performs some
operations to generate an operand or instruction address. The number of
operations or calculations which the CPU performs to generate addresses
depends cn the program which is being executed and the basic operations

the CPU nas in its repertoire.

The interactions between the CPU and the memory can be modeled with

respect [0 address generation, as shown in Figure 1-1 ;Hamm77J.



Data and Instructions

Figure 1-1. CPU-Memory Model.



The work performed by the GPU is partitioned into an access process and
a computation process. The access process generates a stream of read
and write requests to be serviced by the memory. The memory services
write requests by taking data from either the computation or the access
process and placing the data in a memory location specified by the
access process. The memory responds to read requests by generating a
stream of data and instructions which return to the CPU. Soma portion
of these data and instructions are returned to the accessing process to
generate more references, while the remaining portion is received by Z[€
computation process. In our view, she computation process performs the
useful work of she system, while the work being done by the access

orc-cess is overhead which should be reduced.

Conventional von Neumann architectures are organized so that the
CPU expects to interact with only 1 memory, making a memory request over
1 narrow bus ana receiving only 1 word per memory access. Effectively,
access to the memory is limited, Furthermore, the data associated with
a program is treated as a set of independent items. With such a model
of the memory and the data stored in it, the computation and access
processes are forced to compete for access to the memory. Access to the
memory, therefore, becomes a critical resource and a potential
bottleneck of the entire system. This bottleneck 1is ca lad the von

_Neumann bottleneck because it results from a V0l Neumann machine’s view

of the memory.

The potential for a bottleneck to occur can be reduced 1if she

act /Zities of che access process can be modified to reduce the number of



times the memory is accessed. The overhead due to the access process
may also be reduced by overlapping the activities of the access process
with those of the computation process. By predicting and prefetching
read accesses before the data 1is actually needed, burst bandwidth
requirements are reduced, and memory wait time is reduced. To maximize
this overlap, these two processes must be as independent as possible.
In a von Neumann machine, while the computation process can be
conceptually separated from the access process, in reality is is
impossible to distinguish between access-related and computation-related
instructions and data. This property of von Neumann machines imposes

limitations on the degree of overlap which can be achieved between the

computation process and the access process.

A great deal of work has been done to improve the speed with which
the CFU can perform its operations and, therefore, the speed with which
the computation and access processes perform their tasks. Much has also
been done to improve the speed with which memory responds to requests.
However, outside of adding addressing modes to instructions, little has
been done to reduce the work performed by the access process or to

reduce the demands placed on the memory for access-related activities.

This work presents an investigation of one method of reducing the
von Neumann bottleneck and improving the degree of overlap between the
computation and access processes. Program referencing behavior is first
studied by analyzing program address traces. This analysis indicates
the types of mechanisms which would aid in reducing addressing overhead.

These mechanisms take explicit advantage of a program®s structure and of



the regular patterns in which data structures are referenced. Based on
these mechanisms, a Structured Memory Access (SMA) machine is proposed
and evaluated. The SMA machine has an organization which is somewhat

different from conventional von Neumann machines.

1
| Z' Conventional Answers to the von Neumann Bottleneck

As stated.earlier, access to the memory is a very critical resource
of a computer system. Most programs place high demands on this
resource, so accesses to the memory significantly affect the performance
of a system. Computer designers have improved system performance by
(M increasing the speed of the CPU, (2) increasing the speed with which
memory responds to requests, and (3) decreasing the number of memory
accesses made per program. OF these three approaches, the Tfirst two

have received the most attention.

The speed with which the CPU performs its operations has seen
steadily increasing, in part due to the availability of faster hardware.
Increases in speed are al30 due to organizational changes within the CPU
such as pipelining [Rama7T] [Ande67J and instruction prefetch [Smit75]
which overlap the execution of instructions. As noted above,
instruction prefetch will reduce the bottleneck somewhat. However, a
faster CPU actually aggravates the memory bottleneck since the CPU can
make memory requests at a higher rate; yet overall system performance

will, nonetheless, iImprove somewhat.

Concurrent with increases in CPU speed, the speed with which the

memory can respond to a request has also been iIncreasing. As with the



CPU, part of this speed-up is due simply to faster hardware; however,
speed increases are also achieved by augmenting the memory with a cache

and by interleaving memory modules [Kapl73] and [Kuck78].

While concentrating on increasing the speed of the CPU and the
memory to improve system performance, computer designers have done very
little to decrease the number of memory accesses made by a program. The
addition of new addressing modes, combined with the already existing
feature of iIndex registers, decreases the number of instructions
required to (generate a data address [?D?75j, [7,1X80], [StonSO], and
[Amdl64], The use of an instruction buffer within the CPU can also
decrease the number of memory requests for programs with short,
frequently executed loops of instructions [Ande67]. By holding the
instructions of a loop in such a buffer, the memory is not burdened by
retransmitting the loop instructions for each iteration of the loop. We
have investigated further ways of reducing the number of memory accesses

made per program.

The class of machines known as ‘'super'™ computers combine the
previously mentioned approaches to form machines which are well suited
for performing array computations. Super computers achieve their high
performance through the use of pipelines, special indexing techniques,
and interleaved or skewed memory structures [Rama77] and [Russ783.
Also, iIn such machines, the cost of high-speed hardware and wide buses
is not as critical an issue as Iin more conventional machine designs.
Users of super computers will generally accept reduced perfcrmance/cost

in order to obtain very high performance.



The indexing mechanisms provided by these machines are of great
importance in efficiently using accesses to memory and in reducing the
amount of work done by the access process. Indexing mechanisms vary
substantially from one machine to the next. For performing matrix-
oriented computations, one desires as much flexibility as possible in
the way 1indexing may be used. Most of the super computers permit
automatic stepping through vectors of a data structure with a single
vector iInstruction. Generally, if one is accessing a matrix, only a
row, collumn, or diagonal can efficiently be accessed with one
instruction. The TI-A3C, however, does provide both inner-loop and
outer-loop control for stepping through a matrix [Wats?2], While the
indexing facilities combined with the memory structure permit the speedy
access of operands, one is faced with rewriting an algorithm co make
optimal use of a particular machine. The transformation of che
aigorzcom can, to seme excent, be automated by wusing compilers to
vectorize high Ilevel [language programs. Another approach taken here,
however, is to make the computer organization sufficiently Tflexible so

that the algorithm need not be transformed into vector instructions.

1.2. Background for the Structured Memory Access (3MA) Approach

Unlike super computers, conventional computers make very limited
explicit wuse cf program structure or data types in the generaoion of
memory requests. Although some of the explicit address calculation has
been removed from today"s computers, there remains a great deal of
computing performed solely for the generation of addresses. By modeling

a computation as a computation process and an access process,



Hammerstrom [Hamm77] calculated the addressing overhead and the entropy
of the stream of computation references. These statistics were found by

analyzing the traces of several programs executed on an IBM 360.

In Hammerstrom’s analysis, each program trace 1is processed in
reverse order to permit the tagging of the instructions and data which
were used solely for the purpose of address generation. Addressing
overhead for a program trace is calculated by summing the number of bits
contained in the address generation related instructions and data and
dividing the resultant sum by the total number of computation-related
memory references. Addressing overhead is measured in bits input to the
access process per computation process reference. For a Gaussian
elimination program and an eigenvalue-finding program, the addressing
overhead was, respectively, 17.2 and 17.0 bits per computation
reference. For a floating point benchmark and a symbol manipulation
program, the addressing overnead was, respectively, 10.0 and 24.1 bits
per computation reference. These results represent a large percentage

of the total number of bits input to the CPU from the memory.

The inefficiency of the conventional access process is exposed when
the addressing overhead 1is compared with the entropy of the stream of
computation references. The entropy of the computation reference stream
is likewise measured In bits per computation reference and is
Interpreted as the average number of bits needed to select among the
possible successor references, 1i.e. to choose the particular next
reference address given the current reference address. If the current

and the possible successor reference addresses are known, Hammerstrom



found that for the programs he analyzed, between .845 and 1,86 bits per
computation reference are needed to determine the successor reference
address. These values can be treated as lower bounds on the number of
bits which would be needed to specify a successor reference. Comparing
these values to the addressing overhead, we find that they differ by at
least an order of magnitude. Thus significantly more bits than

necessary are being transferred between the memory and the CPU during

the execution of a program.

Addressing overhead represents the number of bits flowing into the
access process per computation reference. The access process generates
addresses for its own data and instructions and for these of the
computation process. These addresses are a type of overhead which can
be measured as the number of bits per computation reference flowing cut
of the access process. Since this overhead is used to fetch information
for the access process as well as the computation process, it could be
reduced 1if the access process mace Tewer references and if memory
references were more efficiently specified. In [Hamm77bj, two types of
second order memories, which reduce the number of bits flowing out of

the access process, are proposed and analyzed in detail.

The first of these is the Segmented Random Access Memory (SRAM). A
schematic of this memory organization 1is shown in Figure 1-2.
Associated which each RAM of memory is an address register which is
divided into k a-bit segments. Such a technique, with k=2, has been
used by some memory manufacturers to save pin3 on large memory chips.

For each access of this memory, instead of sending k*a address bits to
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the HAM, v = log™k + a bits are needed per transaction. Instead of
accessing the RAM directly, these bits access one of the k segments of
the address register, replacing the contents of the accessed segment
with the value of the a bits. For an access in which the entire con-
tents of the address register must be changed, k transactions are
required. Analysis of the SRAM indicates that it increases addressing
efficiency by approximately 25%, by reducing the number of bits which
must be transferred to the processor per computation reference. The
SRAM produces this reduction since it takas explicit advantage of pro-
gram locality. The SRAM, however, has the disadvantage that it is dif-

ficult to allocate memory for a program so as to minimise the number of

transactions ter access.

The second memory proposed by Hammerstrom i3 the Successor Access
Memory  (SAM). As shown in Figure 1-3? this memory stores pointers to
possible successors along with each data and instruction word. Whenever
a word is accessed, these pointers are loaded into a set of 27 successor

registers. To access the next word, only v bits need to be sent to the

memory. Evaluation of this type of memory indicates that the optimal
value of v is 2 for typical computer programs. Thus only 1 bit per
transaction 1is required. On the average between 1.4 and 4.13 bits

(transactions) are needed per computation reference. OF course, these
values depend on the program and the value of v. Although the SAM is
attractive, it is difficult to use and requires complex mapping hardware
within the memory. Additionally, when the number of successors is
greater than 27, multiple transactions per access are needed ana 3ome

type of indirection mechanism must be provided.
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The Address Prediction Stack (APS) [PlesSlj is a scheme which, when
added to a conventional computer system, can reduce the required
processor-memory address bandwidth. The analysis of an APS reveals some
interesting results about the structure of a program. The APS is a
least recently used (LRU) stack which has been extended 1into a second
dimension. Thus, what normally is a single entry in an LRU stack, has
been replaced by a line of entries. Each address points to a block of
memory and each [line of entries 1is a string of sequential block
addresses. Depending on the implementation, a block may be a byte, a
word, or a small page of memory. The APS is associativel:/ searched for
an address match whenever a memory request is made. If the address is
found an the APS, then an identifier for that stack location which con-
tains the address is sent to the memory instead of the entire address.
An identical 3tack 1is required in the memory which also tracks the
memory references. A full memory address may thus be generated within
the memory frcm a given stack location identifier. IT an address is not
found in the processor®"s APS, a miss occurs and an entire address must
be sent to the memory. Depending on the type of update policies used
for the stack and the line parameters of the stack, an APS can reduce
the average number of bit3 needed to specify a memory address to as few

as 8 bits per memory reference.

Evaluation of the APS, based on trace driven simulations, 3hows a
very high hit rate for the first two lines of the stack. For example*

for a 5 deep APS, with a 5 block line and addresses which point to
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clocks of 64 words, an overall hit rate of 98-7% was achieved with the
first line of the stack representing 343 of the total references and tne
second line representing 493. The high hit rates in the first two lines
of the stack demonstrate the phenomenon of iInterleaved sequential
streams. They also demonstrate that programs usually alternate loosely
between two streams, the data stream and the instruction stream. Due to
the LEU policy, stream alternation causes a high hit rate in the second

line.

From the analysis of these three schemes for addressing memory, we
find that the access process roughly alternates between instruction and
data referencing. Also, data reference sequences are less regular than
instruction reference sequences. Knowing, or at least accurately
predicting, possible successor memory references iIs very iImportant in
achieving an efficient access process and can significantly reduce the
addressing overhead of a program. Additionally, exploiting this
predictability Uleads to a more nearly autonomous operation of the the
access process and the computation process, thus permitting an

overlapped execution of the two processes.

In the next chapter, the stream of instruction and data references
for a set of programs is analyzed. From this analysis we discover the
patterns of memory referencing which occur during a program execution.
This program referencing behavior iIndicates the types of adcress

generation mechanisms which should exist to improve the efficiency of



15

the access process. chapter 3 presents a description of the :structured
Memory Access (SMA) garchitecture which includes such ™ chanisms,
Chapter 4 describes 5n SWA architecture implementation. The SMA

architecture is evaluated in Chapter 5.
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CHAPTER 2

PROGRAM TRACE ANALYSIS

Successful architectural techniques for reducing the von Neumann
bottleneck of conventional computers capitalise on the highly structured
nature of most computer programs. Caches work well if their update
policies accurately predict future memory requests. Index registers
work well when programs step through structures such as arrays. But
while these methods work because of the structured nature of programs,
they make very little explicit use of program structure. Although the
SRAM and SAM do make more explicit use of a program"s structure, these

schemes have serious implementation problems and inefficiencies.

A more detailed lock at the structure of memory references Iis
provided by analyzing the structure of instruction and data references.
The sequential patterns of instruction references are quite different
from those of data references. Analyzing a combined stream of
instruction and data references obscures the sequential nature of
instruction execution and, at the same time, makes it difficult to find
patterns in the accessing of data. Therefore, we found it more useful
to separate the subtrace of instruction references and the subtrace cf
data references and apply distinct analysis techniques to these

subtraces.
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£.J . Instruction Analysis

In our analysis, the instructions of a program trace are divided
into instruction blocks, based on Hammerstrom*s definition of ramps and
blocks. For our purposes, we do not use ramps, but prefer instead to
use a slightly different definition of blocks. A block 1is a
maximal-length ordered set of one or more sequentially stored and
executed instructions, where all entry points to the block are only into
the first instruction and ail exit points from the block only leave the

last instruction in the block. Thus a new oicck always begins with the

target instruction of seme conditional or unconditional tranch
instruction. Each block has an associated set of one or more successor
blocks which may immediately follow that block 1iIn execution. In our

trace analysis, wnile instruction references are formed into instruction
blocks, the number of times each successor block is referenced and the
order in which successor blocks are referenced are also tabulated.
Thus, a control flow graph for the program can be mace automatically

from this trace analysis.

Four IBM 360 program address traces were analyzed in such a manner.
Two of these programs, GAUSS and EIGEN, are floating point programs
written in FORTHAN. GAUSS contains 94,273 memory references and
performs a Gaussian elimination on a 2C-by-20 matrix. EIGEN contains
77,563 memory references and finds the eigenvalues of a 14-by- 14 matrix.
Of she vremaining two programs, CCOBCL is the compilation of a 30BOL
program containing 120,055 memory references and SCOBCL is the execution

of a COBOL program containing 120,068 memory references.
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Figure 2-1 shows the number of instruction blocks which have a
particular length. The distributions for each of the programs
individually were very similar. The figure has the combined results for
all four programs. Most of the instruction blocks contain very few
instructions. Figure 2-2 shows the total number of times all
instruction blocks of a particular length are executed. From this
figure, we see that relatively short blocks are executed most
frequently. For both figures, the average instruction block length is 5

instructions, while the median instruction block length is 2

instructions.

Not only are block lengths and frequency of use important, but the
flow of control, or the order in which blocks are executed, is also of
interest. An efficient means of predicting successor blocks 1is needed
since individual blocks contain so few instructions. Table 2-1 is a
listing of the percentage of blocks which have one, two, and more than
two successors. Cne-successor blocks are those blocks which are always
followed by the same block and which are created when that block ends
with an unconditional branch or when some block branches into a set of
sequentially executed instructions. Most blocks which occur before a
DO loop fall into this category. Blocks with two successors have a data
dependent branch occurring as the last instruction of the block. Quite
often the branch reflects the and of some nesting level cf a DC loop.
In such a block, the final operation increments the loop index and tests
the index Tfor completion of the loop. In our traces, the blocks which
have more than two successors always end with the return from a

subroutine which is called from more than two places in one program.
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Table 2-1. Percentage of instruction blocks
with 1, 2, or more sSuccessors.

1 Number of Successor Blocks
Program

GAUSS

static 52.9 47.1 oo

dynamic 5.5 94.5 oo
EIGEN

static 55.1 43-5 1.4

dynamic 24.7 69-7 5To |
CCC3CL j

static 56 .1 38.2 5.7

dynamic c7.c 49.2 13-6
SCO3CL

static 60.5 35.0 a,b

dynamic 33.1 55.9 6.0

(ST =

For each of the measured phenomena, we gathered static and dynamic
statistics. A static count refers to the number of times a particular
phenomenon occurs in a program listing. A dynamic count is the number
of times a phenomenon occurs during an execution of the program. Thus,
while a particular loop in a program occurs only once in a static count,
the 1loop may be executed many times. The number of times the loop is
executed is reflected in the dynamic count. As can be seen from Table
2-1, in a static as well as a dynamic count, very few of a program’s
instruction blocks have more that two sSuccessors. Among she
one-successor and two-successor blocks, the one-successor blocks occur

more frequently in a static count, while the two-successor blocks
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(particularly loops in GAUSS and EIGEN) are more frequently executed.
Subroutines are more common in the CC3CL programs, while the GAUSS

program has no subroutines at all.

The referencing of instructions 1is a relatively well-behaved
process. Sequential execution of instructions is normally interrupted
by a branch to one of two successors. In many cases, blocks branch back
on themselves, or a few-block cycle is repeatedly executed, to form
loops. Often only one successor block follows an exit from the loop.
To perform well, a machine must be able to handle this type of branching

efficiently. For the traces we analyzed, the number of subroutine calls

was minimal.

2.-2. Data Analysis

As with the referencing of instructions, we would like to see what
order can be discerned from the more complicated process of referencing
data. Program address traces are again used as a basis for Ffinding

sequence patterns of data references.

Initially, the trace of data references was analyzed 1in a manner
similar to that of the instruction reference traces. This analysis was
performed with the expectation of finding data references grouped into
sets of repeatedly accessed sequences; with each sequence having a
limited number of successor sequences. When the analysis was performed,
we found that most data references formed groups of their own and that
the number of possible, distinct successor data references for each data

reference was large. This result occurred for two reasons. First, the



data used by the access process was mixed with the data being referenced
by imputation process. Thu: D Vow of a matrix is being
referenced, the data references for index values appear interleaved with
references to the matrix itself. The data reference to an index value,
therefore, has a Jlarge set of successor data references, perhaps
including all of the elements of the matrix. The second reason that a
large number of successors occurs is that one data structure may be
accessed in many ways. For example, in a single program, a matrix may
be accessed column by column, row by row, across a diagonal, etc. An

element in the matrix can thus have a large number cf successor data

references iIn the matrix itself.

When analyzing the data reference stream Jlike an instruction
stream, difficulties arise in developing a coherent model of
data-referencing behavior because the data references are analyzed
without considering the instructions which generate the data references.
We therefore changed our approach to analysing dafca-referencing patterns
associated with the data referenced by a single instruction. If an
instruction references more than one data item, the stream of references

generated by each item is treated separately.

In this model, an instruction can reference either no operand from
memory, scalars from memory, data structure elements from memory, or
both scalars and data structure elements from memory. Scalars and data
structures can actually be determined by the way in which instructions
reference memory, rather than by given information such as in

declaration statements. For our purposes, declaration statements can be



24

misleading and we prefer the following somewhat unusual definitions. It
an instruction, or set of instructions, always references one particular
memory location, the contents of that location is said to be a scalar.
On the other hand, if an instruction references several locations among
all executions of that instruction, the contents of the set of locations
which it references 1is called a tentative data structure. The set of
data structures are then formed by repetitively taking the set union of
pairs of tentative data structures with common elements until no such

oairs can be found.

Table 2-2 shews the percentage of instructions which either make no

memory references, reference scalars, reference daca structures, or

Table 2-2. Percentage of instructions which reference a
type of data.

no data scalars
Program reference scalars data and data
to memory structures structures
GAUSS
static 38.0 56 .8 5.2 0.0
dynamic 43.1 29.1 -22.3 0.0
E1GEN
static 34.3 60.6 5.1 0.c
dynamic 47.9 37.9 14.2 0.0
CCOBOL
static 38.8 42.7 12.5 6,0
dynamic 39.2 35.9 11.6 133
2C0OBOL

static 45.1 4 1 10.0
dynamic 55.2 29.3 9.4 6.1
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reference both scalars and data structures. A single instruction which
references more than one item is only counted once. For example, some
instructions reference three scalars each time they are executed. In a
static count such an instruction 1is counted only once. It 1is
interesting to note that for programs such as GAUSS and EIGEN, which are
matrix oriented, a high percentage of the instructions do not reference
a data structure. Even for the dynamic count, the instructions
reference scalars or make no memory reference. This result is somewhat
surprising since one might expect most of the executed (iInstructions to
reference data structures. The results for CCOBQL and ECGBCL may also
be somewhat surprising since one mignt not expect a heavy reliance on
data structures in these two programs; yet, between 15% and 25% of the
instruction executed made a data structure reference. These results are
somewhat encouraging since scalar addresses should be predictable and

data structure reference addresses may be predictable if effective

structured access mechanisms can be found.

Separating the data references into separate lists for each
instruction allows analysis of each ordered list for data reference
patterns. An example of such a data address list is shown 1iIn Figure
2-3a. The instruction at location 1 accesses the memory twice each time
it iIs executed. One operand’s memory location is always eight memory
locations from, the previous one, while the other operand 1is always
obtained from the same memory location. From the definitions of data

structures and scalars, the Instruction at location 1 accesses both a

data structure and a scalar. IT this instruction’s statistics were
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Instruction
Address Data Addrece ..

17 24 33 41
S A

—_
CD

(s

\

y g /}\
> |
\W»J

—_—

Figure 2-3. Sample data address list.

tabulated in Table 2-2, the statistics would appear in the final column
under scalars and data structures. The instruction would be counted
once for a static count and five times for a dynamic count. The ordered
list of data references may be written in a more compact form by
calculating the displacement from one reference to the next. In the
case of array references, the same displacement often occurs several
times iIn succession. Thus, to achieve a more compact representation,
those references which caused the same displacement to occur several
times in succession are replaced by a displacement and a count of the
number of times that that displacement occurs. This transformation on
the data address list of Figure 2-3a produces the data reference _.ist of
Figure 2-3b. The Ffirst number 1iIs tne address of the first data
reference. Following that number is a list cf pairs of numbers; the
first being the displacement and the second the number cf times that
that displacement occurs. With such a notation, the entire lias cf ;;

addresses for an instruction can be generated.
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From this initial analysis, the frequency of access for scalars and
data structures can be found. The total number of unique scalars and
unique data structure elements may also be found. The number of unique
data structure elements in a program is found by performing a pairwise
comparison of data address lists and checking for common addresses.
Data references with common addresses are then merged to form a list of
the addresses of all the items in a data structure. Table 2-3 is a
summary of this information. The first line of entries for a program
shows the number of unique items, static references, and dynamic
references for scalars and data structures as a percentage of the total

number of the respective references. The entries for the unique scalars

Table 2-3. Data analysis results.

Scalars Data Structures
Program
Unique Static Dynamic Unique Static Dynamic Number
GAUSS 32.5 64.5 51.3 67.5 35.5 48.7 3
212 403 17590 441 222 16679
EIGEN 52.4 a .7 72,9 47.6 8.3 27.1 7
257 752 19422 233 68 7233
CCOBOL 20.7 46.4 64.4 79.3 53.6 35.6 168
636 1108 50503 2433 1278 27894
ECOBOL 14.3 77.6 83.9 85.7 22.4 16.1 239

1043 2225 65877 6242 642 12632
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and unique data structures should sum to 100.0, since their sum
represents the total number of distinct data items referenced by the
program. The second row of entries for each program 1is the actual
number of occurrences of each type of reference. For the GAUSS program,
scalars represent 32.5% of the data locations referenced by the program.
The scalars comprise 64.5% of the static data references and 51.3% of
the dynamic data references. The remaining references in each category
are data structure references. While 67.5% of the data locations
referenced by GAUSS are part of data structures, these locations are
partitioned into only 3 data structures. These data structures in fact
correspond to the 20x20 A matrix, and the x and B vectors for solving

A*x = B.

The number of unique scalars and the number of data structures Iin
GAUSS and EIGEN is modest. While the number of unique scalars for
CCOBOL and ECOBOL 1is higher than for GAUSS and EIGEN, the more
significant difference is in the much larger number of data structures.
In CCOBOL and ECOBOL, the percentage of unique scalars is much smaller
than the number of unique data structure items. For all the programs,
the percentage of dynamic scalar references is relatively high. In the
case of GAUSS and EIGEN, which are matrix-oriented programs for which
one might expect a high percentage of dynamic data structure references,
scalars surprisingly comprise more than half of the dynamic references.
For CCOBOL and ECOBOL, the dynamic scalar references are an even higher
percentage of the dynamic references. While this may not be surprising,

it is iInteresting to note that the dynamic scalar references are high
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even though the number of data structures Is large and comprise a large

portion of the unique data locations referenced.

In addition to reconstructing the data structures from the address
trace and producing frequency of wuse information, one can also
reconstruct, by studying the address lists, the indexing loops which
exist iIn the program. From the pattern of data structure references,
specific loops must exist in the program to generate those patterns.
Figure 2-4, for example, shows the data address list for the instruction
at location 744054 in GAUSS. From the address list, one can deduce that
the lower triangle of a matrix, assumed to be stored in column major
order, 1is being referenced column by column. For such a reference
pattern to occur, a loop equivalent to:

for 1 = 1 to n-1 do
for j = i+l to n do
reference matrix element[i,j];
where n=20, must occur in the program. Each data address list which
referenced a data structure was studied and the loop structure to
generate the address list was deduced. Each address list 1is not
necessarily associated with a unique loop structure. Several static
data structure references may be combined in the same loop. As we will

see in the next paragraph, the number of distinct access patterns is

less than the number of static data structure references.

Table 2-4 lists all the unique access patterns for data structures
which exist in GAUSS, as deduced from the trace analysis. We refer to
these patterns as access mechanisms because each sequencing structure

for nested 1loop indices may be treated as an independent mechanism for
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IAS(S rgs(s) Dote Address List

744054 738504  (8,18) ( 24,1) (8,17
8.16) ( 40,1) (8,15
8,14) ( 56.1) (8,13
8.12) ( 72.1) (811
8,10) ( 88,1) (8, 9
8, 8) (104,1) (8, 7
8. 6) (12011) (8, 5
8. 4) (136.1) (8, 3
(3, 2) (152,1) (8, 1
IUI-
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for | - 1tg n=ldo
é thl to n do
ference matrix element C

Figure 2-4. Data address list analysis.
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Table 2-4. Access mechanisms for GAUSS (n=20).

Index Level
Structure i j k
Initial End Step  Initial End S  ynitial End SteP
Si1ze Size Size
A[n,n] 1 n 1 1 n 1
1 n-1 1 i-f1 n 1
1 n-2 1 1 n 1 i+1 n 1
2 n-1 1 n i -1 i n 1
BCn] 1 n-2 1 1 n-i 1
2 n-1 1 1 n-1 1
1 n 1
c[n] 1 n 1

the accessing of data structures. The index levels labeled i, j, and Kk
represent, vrespectively, the outer, inner, and next inner levels of
nesting for a loop. None of the loops in our program traces are nested
more than 3 deep. The column headings labeled init, end, and step size
represent, respectively, the initial value, the final value, and the
step-size for an index. As may be seen, the GAUSS program has
relatively few access mechanisms. While the step size for the indices
is always a constant here, the initial and end values of the indices can
either be a constant, be dependent on the array size, or be dependent on

the current value of some higher level index. The distinction between
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these types of values iIs important since the time at which these values
can be bound differs substantially. A constant value is, of course,
known when the program 1is compiled and thus the value may be
incorporated 1iIn the code. A value which is a function of the size of
the array may not be known until the program data is loaded. Once the
program is <called or the portion of the program which accesses the
matrix is executed, the size of the matrix can be made readily
available and this size remains constant while the matrix is being
accessed. In contrast, a higher level index value is not set until the
appropriate outer loop variable has been set. Furthermore, this value
changes during execution every time the inner-loop 1is reentered from
the outer-loop. Outer-loop index-dependent values for inner-loop index
limits must therefore be bound and rebound during execution. In those
cases where the initial or the final value is a function of the array
size or an outer index value, the functions turn out to be very simple.
Such a function 1is known at compile time; however, the value of the
function is different for each execution of the program or actually
changes during execution. A fourth possibility, not present in GAUSS,
is that a loop 1is terminated when some data value condition Iis

calculated and tested during computation.

Table 2-5 for EIGEN is similar to Table 2-4, While the number of