
O ctober 1982 R eport CSG -10

COORDINATED SCIENCE LABORATORY
College of Engineering

A STRUCTURED MEMORY
ACCESS ARCHITECTURE

Andrew Richard Pleszkim

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
S E C U R IT Y C L A S S I F IC A T I O N OF T h i s P A G E (When D a ta E n te red)

REPORT DOCUMENTATION PAGE R E A D I N S T R U C T I O N S j
B E F O R E C O M P L E T I N G F O R M

I . R E P O R T NU MB ER 2. G O VT ACCESS ION NO. 3. R E C I P I E N T ’ S C A T A L O G NU MB ER

4. T I T L E (and S u b t it le)

A STRUCTURED MEMORY ACCESS ARCHITECTURE
5. T Y P E OF R E P O R T & PE R I OD C O V E R E D

Technical Report
5. P E R F O R M I N G O RG , R E P O R T N U M B E R

CSG-10
7. A U T H O R S

Andrew Richard Pleszkun

3. C O N T R A C T OR g r a n t NU MS ER f s ;

N00039-80-C-0556

9. P E R F O R M I N G O R G A N I Z A T I O N N AM E AND AOORESS

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. PROGRAM ELE M EN T . P R O JE C T , TASK A R EA 4 WORK U N IT NUMBERS

11 1. C O N T R O L L I N G O F F I C E NAME AND ADDRESS

J Naval Electronics Systems Command YHSIC Program

12. R E P O R T D A T S
1 Q 8 2

j 13. N U M B E R O F = A G £ S
| 1 1 6

IS. D I ST R I BU T I ON S T A T E M E N T (o f th ia R ep o rt)

Approved for public release; distribution unlimited

17. D I S TR IB U T IO N S T A T E M E N T (o f ab s trac t en te red in 3 !o c k 20, i i d if fe re n t ‘.rom Repo rt)

18. S U P P L E M E N T A R Y NOTES

19. KE Y WORDS (' Can f i nu * on re ve rse s ide i t n e c e ssa ry and id e n t ify by b lock number)

Address trace analvsi:Computation process
Access process
Structured memory access
Degree of overlap

20. A B S T R A C T (C o n tin u e on ravers® ansa I f n ece ssa ry and id e n t ify by b lock number)

When conventional von Neumann architectures reference the memory,
addressing information must first be obtained, usually by transfer from tr.e
memory to the CPU. TVihe work performed by the CPU can be part it toned into a
computation process and an access process. Outside or adding addressing modes
to instructions, little has been done to reduce the work performed by the
access process or to reduce the demands placed on the memory tor access —re rated
activities. This work investigates one method of reducing the von Neumann

DD F CRM
I J AN 733 1473

S E C U R I T Y C L A S S I F I C A T I O N O r T H I S 3 AG E ’ W r e n D a t a E n t e r e d ;

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E f W x w i D a te E n ter ed)

bottleneck and improving the degree of overlap between the computation and
access processes.

Program referencing behavior is first studied by analyzing program address
traces. With the information gained from the address trace analysis, a
Structured Memory Access (SMA) architecture is developed which makes fewer
references to memory and permits the access process to be, by and large,
decoupled from the computation process, thus providing a maximum degree of
overlapped execution and access prediction.

To evaluate the effectiveness of the SMA architecture in reducing
addressing overhead, a comparison is made between a hypothetical SMA machine
and a VAX-like machine with respect to the number of memory references
generated by a set of programs. Depending on the program, the SMA machine
reduced the number of memory references to between 1/5 and 2/5 of those
required by a conventional VAX.

An estimate is also made of an SMA machines performance relative to
that of a VAX. A machine's performance is parameterized by the memory
bandwidth and the computational overhead. It was found that performance is
very sensitive to these parameters; however, an SMA machine performs
significantly better than a conventional machine with the same parameters.

The SMA architecture reduces addressing overhead and provides improved
system performance by (1) efficiently generating operand requests, (2) making
fewer memory references, and (3; maximizing computation and address generation
overlap.

I

A STRUCTURED MEMORY ACCESS ARCHITECTURE

BY

ANDREW RICHARD PLSSZKUN

B.S., Illinois Institute of Technology, 1977
M.S., University of Illinois, 1979

THESIS

Submitted in partial fulfillment of the requirements
the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1982

Urbana, Illinois

A Structured Memory Access Architecture

Andrew Bichard Pleszkun, Ph.D,
Department ox" Electrical Engineering

University of Illinois at Urhana-Champaign, 1982

When conventional von Neumann architectures reference the memory,

addressing information must first be obtained, usually by transfer from

the memory to the CPU. The work performed by the CPU can be partitioned

into a computation process and an access process. Outside of adding

addressing modes to instructions, little has been done to reduce the

work performed by the access process or to reduce the demands placed on

the memory for access-related activities. This work investigates one

method of reducing the von Neumann bottleneck and improving the degree

of overlap between the computation and access processes.

Program referencing behavior is first studied by analysing program

address traces. With the information gained from the address trace

analysis, a Structured Memory Access (SMA) architecture is developed

which makes fewer references to memory and permits the access process to

be, by and large, decoupled from the computation process, thus providing

a maximum degree of overlapped execution and access prediction.

To evaluate the effectiveness of the SMA architecture in reducing

addressing overhead, a comparison i3 made between a hypothetical SMA

machine and a YAX-like machine with respect to the number of memory

references generated by a set of programs. Depending on the program,
the SMA machine reduced the number of memory references to between 1/5

and 2/5 of those required by a conventional YAX.

An estimate is also made of an SMA machines performance relative to

that of a VAX, A machine’s performance is parameterized by the memory

bandwidth and the computational overhead. It was found that performance

is very sensitive to these parameters; however, an SMA machine performs

significantly better than a conventional machine with the same

parameters.

The SMA architecture reduces addressing overhead and provides

improved system performance by (1) efficiently generating operand

requests, (2) making fewer memory references, and (3) maximising

computation and address generation overlap.

i i i

ACKNOWLEDGMENT

The author wishes to express his gratitude and appreciation to his

thesis advisor Professor Edward S. Davidson. Professor DavidsonTs

patient guidance and helpful suggestions were invaluable contributions

to this work. His insight, encouragement, and concern were

indispensable sources of support throughout the author's period of

study.

The author would also like to thank his colleagues in the Computer

Systems Group at the Coordinated Science Laboratory and Professors

B. H. Rau, J. A. Abraham, J. H. Patel, and M. S. Schlansker for their

friendship and the stimulating intellectual atmosphere which they

provided.

Finally, the author wishes to thank his parents and family for

their continual support and encouragement.

iv

TABLE OF CONTENTS

1. INTRODUCTION

Page

1

1.1 The von Neumann Bottleneck 1
1.2 Conventional Answers to the von Neumann Bottleneck 5
1.3 Background for the Structured Memory Access (SMA)

Approach. •..... 7

2. PROGRAM TRACE ANALYSIS 15

2.1 Instruction Analysis 17
2.2 Data Analysis 22

STRUCTURED MEMORY ACCESS MACHINE (SMA) a r c h:

4. AN SMA IMPLEMENTATION *17;
4.1 Data Referencing 48

4.1.1 Data Types .. 43
4.1.2 Immediate and Scalar Operands 49
4.1.31Data Structure and Index Operands 51

4.2 Control Issues .. 53
4.2.1 Instruction Fetching and Operand Request Servicing .. 60
4.2.2 Branching 63
4.2.3 The Computation Processor 7^
4.2.4 Subroutine Call3 76

4.3 A Sample SMA Program 78

5. SMA EVALUATION .. 39

5.1 Number of Memory References Generated 93
5.2 An Estimate of Relative Performance 101

6. CONCLUSIONS 110

5.1 Summary of Results 110
6.2 Suggestions for Future Research 112

REFERENCES .. 114

V

LIST CF FIGURES

1 -1. CPU-Memory Model

1-2. Segmented RAM

1- 3* Successor Accessed Memory

2- 1. The number of blocks with a particular length

2-2. The total number of times a blocks of a particular length
is executed

2-3. Sample data address list

2- 4. Data address list analysis

3- 1 . SMA organization

4- 1. MAP internal organization

4-2. The operand and instruction buffer

4-3. The read and write queues

4-4. The access pattern and access information tables

4- 5. Sample SMA program listing

5- 1. Instruction blocks for Gaussian elimination

5-2. Instruction blocks for quicksort

5-3- Log of the number of memory references for GAUSS
for an nxn matrix

5-4. Log of the number of memory references for EIGEN
for an nxn matrix ..

5-5. Log of the number of memory references for 2S0RT
for a list of length n

5-6. Normalized performance for GAUSS,

5-7. Normalized■performance for EIGEN

5-8. Normalized performance for QSORT

2

10
12
19

20

26
30
41

59
62

66
80
33
91
92

99

100

102

106
108
109

vi

LIST OF TABLES

Page
Percentage of instruction blocks with 1, 2, or more
successors 2 1

Percentage of instructions which reference a type of data ., 24
Data analysis results

Access mechanisms for GAUSS

Access mechanisms for EIGEN

Statistic from a static analysis of GAUSS, EIGEN, and
QSQRT

Dynamic counts of instructions, scalars, and data structures
as a function of n for GAUSS, EIGEN, and QSCRT

33

94

97

1

CHAPTER 1

INTRODUCTION

The von Neumann Bottleneck

In 1946, Burks, Goldstine, and von Neumann authored a paper

[3urk46] which established the basic design of general purpose

computers. To this day, many general purpose computers found on the

market can be classified as von Neumann machines since their

organization is basically she same as that proposed in she 1946 paper.

These von Neumann machines have common characteristic's which affect the

referencing of instructions and data.

Since we are interested in the interactions between the central

processing unit (CPU) and the memory, we may divide von Neumann machines

into a CPU and a memory, ignoring the issue of input-output. The memory

is treated as one uniform structure containing both the instructions and

the data of a program. In order to reference the memory, addressing

information must first be obtained, usually by transfer from the memory

to the CPU. Once this information arrives, the CPU performs some

operations to generate an operand or instruction address. The number of

operations or calculations which the CPU performs to generate addresses

depends cn the program which is being executed and the basic operations

the CPU nas in its repertoire.

The interactions between the CPU and the memory can be modeled with

respect zo address generation, as shown in Figure 1-1 ;Hamm77J.

Data and Instructions

Figure 1-1. CPU-Memory Model.

*3

The work performed by the GPU is partitioned into an access process and

a computation process. The access process generates a stream of read

and write requests to be serviced by the memory. The memory services

write requests by taking data from either the computation or the access

process and placing the data in a memory location specified by the

access process. The memory responds to read requests by generating a

stream of data and instructions which return to the CPU. Soma portion

of these data and instructions are returned to the accessing process to

generate more references, while the remaining portion is received by zne
computation process. In our view, she computation process performs the

useful work of she system, while the work being done by the access

orc-cess is overhead which should be reduced.

Conventional von Neumann architectures are organized so that the

CPU expects to interact with only 1 memory, making a memory request over

1 narrow bus ana receiving only 1 word per memory access. Effectively,

access to the memory is limited, Furthermore, the data associated with

a program is treated as a set of independent items. With such a model

of the memory and the data stored in it, the computation and access

processes are forced to compete for access to the memory. Access to the

memory, therefore, becomes a critical resource and a potential
bottleneck of the entire system. This bottleneck is ca_lad the von

.Neumann bottleneck because it results from a von Neumann machine’s view
of the memory.

act

The potential for a bottleneck to occur can

/ities of che access process can be modified to

be reduced if she

reduce the number ofthe

4

times the memory is accessed. The overhead due to the access process

may also be reduced by overlapping the activities of the access process

with those of the computation process. By predicting and prefetching

read accesses before the data is actually needed, burst bandwidth

requirements are reduced, and memory wait time is reduced. To maximize

this overlap, these two processes must be as independent as possible.

In a von Neumann machine, while the computation process can be

conceptually separated from the access process, in reality is is

impossible to distinguish between access-related and computation-related

instructions and data. This property of von Neumann machines imposes

limitations on the degree of overlap which can be achieved between the

computation process and the access process.

A great deal of work has been done to improve the speed with which

the CFU can perform its operations and, therefore, the speed with which

the computation and access processes perform their tasks. Much has also

been done to improve the speed with which memory responds to requests.

However, outside of adding addressing modes to instructions, little has

been done to reduce the work performed by the access process or to

reduce the demands placed on the memory for access-related activities.

This work presents an investigation of one method of reducing the

von Neumann bottleneck and improving the degree of overlap between the

computation and access processes. Program referencing behavior is first

studied by analyzing program address traces. This analysis indicates

the types of mechanisms which would aid in reducing addressing overhead.

These mechanisms take explicit advantage of a program's structure and of

the regular patterns in which data structures are referenced. Based on

these mechanisms, a Structured Memory Access (SMA)

and evaluated. The SMA machine has an organization

different from conventional von Neumann machines.

machine is proposed

which is somewhat

l ' Z - Conventional Answers to the von Neumann Bottleneck

As stated.earlier, access to the memory is a very critical resource

of a computer system. Most programs place high demands on this

resource, so accesses to the memory significantly affect the performance

of a system. Computer designers have improved system performance by

(!) increasing the speed of the CPU, (2) increasing the speed with which

memory responds to requests, and (3) decreasing the number of memory

accesses made per program. Of these three approaches, the first two

have received the most attention.

The speed with which the CPU performs its operations has seen

steadily increasing, in part due to the availability of faster hardware.

Increases in speed are al30 due to organizational changes within the CPU

such as pipelining [Rama7T] [Ande67J and instruction prefetch [Smit75]

which overlap the execution of instructions. As noted above,

instruction prefetch will reduce the bottleneck somewhat. However, a
faster CPU actually aggravates the memory bottleneck since the CPU can

make memory requests at a higher rate; yet overall system performance
will, nonetheless, improve somewhat.

Concurrent with increases in CPU speed, the speed with which the

memory can respond to a request has also been increasing. As with the

6

CPU, part of this speed-up is due simply to faster hardware; however,

speed increases are also achieved by augmenting the memory with a cache

and by interleaving memory modules [Kapl73] and [Kuck78].

While concentrating on increasing the speed of the CPU and the

memory to improve system performance, computer designers have done very

little to decrease the number of memory accesses made by a program. The

addition of new addressing modes, combined with the already existing

feature of index registers, decreases the number of instructions

required to generate a data address [?D?75j, [7,1X80], [StonSO], and

[Amdl64], The use of an instruction buffer within the CPU can also

decrease the number of memory requests for programs with short,

frequently executed loops of instructions [Ande67]. By holding the

instructions of a loop in such a buffer, the memory is not burdened by

retransmitting the loop instructions for each iteration of the loop. We

have investigated further ways of reducing the number of memory accesses

made per program.

The class of machines known as "super" computers combine the

previously mentioned approaches to form machines which are well suited

for performing array computations. Super computers achieve their high

performance through the use of pipelines, special indexing techniques,

and interleaved or skewed memory structures [Rama77] and [Russ783.

Also, in such machines, the cost of high-speed hardware and wide buses

is not as critical an issue as in more conventional machine designs.

Users of super computers will generally accept reduced perfcrmance/cost

in order to obtain very high performance.

7

The indexing mechanisms provided by these machines are of great

importance in efficiently using accesses to memory and in reducing the

amount of work done by the access process. Indexing mechanisms vary

substantially from one machine to the next. For performing matrix-

oriented computations, one desires as much flexibility as possible in

the way indexing may be used. Most of the super computers permit

automatic stepping through vectors of a data structure with a single

vector instruction. Generally, if one is accessing a matrix, only a

row, column, or diagonal can efficiently be accessed with one

instruction. The TI-A3C, however, does provide both inner-loop and

outer-loop control for stepping through a matrix [Wats?2], While the

indexing facilities combined with the memory structure permit the speedy

access of operands, one is faced with rewriting an algorithm co make
optimal use of a particular machine. The transformation of che
aigorz com can, to seme excent, be automated by using compilers to
vectorize high level language programs. Another approach taken here,

however, is to make the computer organization sufficiently flexible so

that the algorithm need not be transformed into vector instructions.

1.2. Background for the Structured Memory Access (3MA) Approach

Unlike super computers, conventional computers make very limited

explicit use cf program structure or data types in the generaoion of

memory requests. Although some of the explicit address calculation has

been removed from today's computers, there remains a great deal of

computing performed solely for the generation of addresses. By modeling

a computation as a computation process and an access process,

8

Hammerstrom [Hamm77] calculated the addressing overhead and the entropy

of the stream of computation references. These statistics were found by

analyzing the traces of several programs executed on an IBM 360.

In Hammerstrom’s analysis, each program trace is processed in

reverse order to permit the tagging of the instructions and data which

were used solely for the purpose of address generation. Addressing

overhead for a program trace is calculated by summing the number of bits

contained in the address generation related instructions and data and

dividing the resultant sum by the total number of computation-related

memory references. Addressing overhead is measured in bits input to the

access process per computation process reference. For a Gaussian

elimination program and an eigenvalue-finding program, the addressing

overhead was, respectively, 17.2 and 17.0 bits per computation

reference. For a floating point benchmark and a symbol manipulation

program, the addressing overnead was, respectively, 10.0 and 24.1 bits

per computation reference. These results represent a large percentage

of the total number of bits input to the CPU from the memory.

The inefficiency of the conventional access process is exposed when

the addressing overhead is compared with the entropy of the stream of

computation references. The entropy of the computation reference stream
is likewise measured in bits per computation reference and is

Interpreted as the average number of bits needed to select among the

possible successor references, i.e. to choose the particular next

reference address given the current reference address. If the current

and the possible successor reference addresses are known, Hammerstrom

9

found that for the programs he analyzed, between .845 and 1,86 bits per

computation reference are needed to determine the successor reference

address. These values can be treated as lower bounds on the number of

bits which would be needed to specify a successor reference. Comparing

these values to the addressing overhead, we find that they differ by at

least an order of magnitude. Thus significantly more bits than

necessary are being transferred between the memory and the CPU during

the execution of a program.

Addressing overhead represents the number of bits flowing into the

access process per computation reference. The access process generates

addresses for its own data and instructions and for these of the

computation process. These addresses are a type of overhead which can

be measured as the number of bits per computation reference flowing cut

of the access process. Since this overhead is used to fetch information

for the access process as well as the computation process, it could be

reduced if the access process mace fewer references and if memory

references were more efficiently specified. In [Hamm77bj, two types of

second order memories, which reduce the number of bits flowing out of

the access process, are proposed and analyzed in detail.

The first of these is the Segmented Random Access Memory (SRAM). A

schematic of this memory organization is shown in Figure 1-2.

Associated which each RAM of memory is an address register which is

divided into k a-bit segments. Such a technique, with k=2, has been

used by some memory manufacturers to save pin3 on large memory chips.

For each access of this memory, instead of sending k*a address bits to

1C

v= flcq2 kl -r G

llcg2 k ! Bits to Select Segment
g Bits to Load Sec mem

RAM
for
Date
end
Instruction
S to rose

i

Date and
Instructions

£isure 1-2 Segmented RAiM

11

the HAM, v = log^k + a bits are needed per transaction. Instead of
accessing the RAM directly, these bits access one of the k segments of

the address register, replacing the contents of the accessed segment

with the value of the a bits. For an access in which the entire con

tents of the address register must be changed, k transactions are

required. Analysis of the SRAM indicates that it increases addressing

efficiency by approximately 25%, by reducing the number of bits which

must be transferred to the processor per computation reference. The

SRAM produces this reduction since it takas explicit advantage of pro

gram locality. The SRAM, however, has the disadvantage that it is dif

ficult to allocate memory for a program so as to minimise the number of

transactions ter access.

The second memory proposed by Hammerstrom i3 the Successor Access

Memory (SAM). As shown in Figure 1-3? this memory stores pointers to
possible successors along with each data and instruction word. Whenever

a word is accessed, these pointers are loaded into a set of 2 7 successor

registers. To access the next word, only v bits need to be sent to the

memory. Evaluation of this type of memory indicates that the optimal

value of v is 2 for typical computer programs. Thus only 1 bit per

transaction is required. On the average between 1.4 and 4.13 bits

(transactions) are needed per computation reference. Of course, these

values depend on the program and the value of v. Although the SAM is

attractive, it is difficult to use and requires complex mapping hardware

within the memory. Additionally, when the number of successors is

greater than 27, multiple transactions per access are needed ana 3ome

type of indirection mechanism must be provided.

12

RAM

rv;nt

v r i : s / A c c 3 S 3

Figure 1-3* Successor Accessed Memory.

13

The Address Prediction Stack (APS) [PlesSlj is a scheme which, when

added to a conventional computer system, can reduce the required

processor-memory address bandwidth. The analysis of an APS reveals some

interesting results about the structure of a program. The APS is a

least recently used (LRU) stack which has been extended into a second

dimension. Thus, what normally is a single entry in an LRU stack, has

been replaced by a line of entries. Each address points to a block of

memory and each line of entries is a string of sequential block

addresses. Depending on the implementation, a block may be a byte, a

word, or a small page of memory. The APS is associative!:/ searched for

an address match whenever a memory request is made. If the address is

found an the APS, then an identifier for that stack location which con

tains the address is sent to the memory instead of the entire address.

An identical 3tack is required in the memory which also tracks the

memory references. A full memory address may thus be generated within

the memory frcm a given stack location identifier. If an address is not

found in the processor's APS, a miss occurs and an entire address must

be sent to the memory. Depending on the type of update policies used

for the stack and the line parameters of the stack, an APS can reduce

the average number of bit3 needed to specify a memory address to as few

as 8 bits per memory reference.

Evaluation of the APS, based on trace driven simulations, 3 hows a

very high hit rate for the first two lines of the stack. For example*

for a 5 deep APS, with a 5 block line and addresses which point to

14

clocks of 64 words, an overall hit rate of 98-7% was achieved with the

first line of the stack representing 343 of the total references and tne

second line representing 493. The high hit rates in the first two lines

of the stack demonstrate the phenomenon of interleaved sequential

streams. They also demonstrate that programs usually alternate loosely

between two streams, the data stream and the instruction stream. Due to

the LEU policy, stream alternation causes a high hit rate in the second

line.

From the analysis of these three schemes for addressing memory, we

find that the access process roughly alternates between instruction and

data referencing. Also, data reference sequences are less regular than

instruction reference sequences. Knowing, or at least accurately

predicting, possible successor memory references is very important in

achieving an efficient access process and can significantly reduce the

addressing overhead of a program. Additionally, exploiting this

predictability leads to a more nearly autonomous operation of the the

access process and the computation process, thus permitting an

overlapped execution of the two processes.

In the next chapter, the stream of instruction and data references

for a set of programs is analyzed. From this analysis we discover the

patterns of memory referencing which occur during a program execution.

This program referencing behavior indicates the types of adcress

generation mechanisms which should exist to improve the efficiency of

15

the access process.

Memory Access (SMA)

Chapter 4 describes

Chapter 3 presents a description of the ;

architecture which includes such m<

an SMA architecture implementation.

structured

chanisms,

The SMA
architecture is evaluated in Chapter 5.

16

CHAPTER 2

PROGRAM TRACE ANALYSIS

Successful architectural techniques for reducing the von Neumann

bottleneck of conventional computers capitalise on the highly structured

nature of most computer programs. Caches work well if their update

policies accurately predict future memory requests. Index registers

work well when programs step through structures such as arrays. But

while these methods work because of the structured nature of programs,

they make very little explicit use of program structure. Although the

SRAM and SAM do make more explicit use of a program's structure, these

schemes have serious implementation problems and inefficiencies.

A more detailed lock at the structure of memory references is

provided by analyzing the structure of instruction and data references.

The sequential patterns of instruction references are quite different

from those of data references. Analyzing a combined stream of

instruction and data references obscures the sequential nature of

instruction execution and, at the same time, makes it difficult to find

patterns in the accessing of data. Therefore, we found it more useful

to separate the subtrace of instruction references and the subtrace cf

data references and apply distinct analysis techniques to these

subtraces.

17

£.J_. Instruction Analysis

In our analysis, the instructions of a program trace are divided
into instruction blocks, based on Hammerstrom*s definition of ramps and

blocks. For our purposes, we do not use ramps, but prefer instead to

use a slightly different definition of blocks. A block is a

maximal-length ordered set of one or more sequentially stored and

executed instructions, where all entry points to the block are only into

the first instruction and ail exit points from the block only leave the

last instruction in the block. Thus a new oicck always begins with the

target instruction of seme conditional or unconditional tranch

instruction. Each block has an associated set of one or more successor

blocks which may immediately follow that block in execution. In our

trace analysis, wnile instruction references are formed into instruction

blocks, the number of times each successor block is referenced and the

order in which successor blocks are referenced are also tabulated.

Thus, a control flow graph for the program can be mace automatically

from this trace analysis.

Four IBM 360 program address traces were analyzed in such a manner.

Two of these programs, GAUSS and EIGEN, are floating point programs

written in FORTHAN. GAUSS contains 94,273 memory references and

performs a Gaussian elimination on a 2C-by-20 matrix. EIGEN contains

77,563 memory references and finds the eigenvalues of a 1 4-by- 14 matrix.

Of she remaining two programs, CCOBCL is the compilation of a 30B0L

program containing 120,055 memory references and SCOBCL is the execution

of a COBOL program containing 120,068 memory references.

13

Figure 2-1 shows the number of instruction blocks which have a

particular length. The distributions for each of the programs

individually were very similar. The figure has the combined results for

all four programs. Most of the instruction blocks contain very few

instructions. Figure 2-2 shows the total number of times all

instruction blocks of a particular length are executed. From this

figure, we see that relatively short blocks are executed most

frequently. For both figures, the average instruction block length is 5

instructions, while the median instruction block length is 2

instructions.

Not only are block lengths and frequency of use important, but the

flow of control, or the order in which blocks are executed, is also of

interest. An efficient means of predicting successor blocks is needed

since individual blocks contain so few instructions. Table 2-1 is a

listing of the percentage of blocks which have one, two, and more than

two successors. Cne-successor blocks are those blocks which are always

followed by the same block and which are created when that block ends

with an unconditional branch or when some block branches into a set of

sequentially executed instructions. Most blocks which occur before a

DO loop fall into this category. Blocks with two successors have a data

dependent branch occurring as the last instruction of the block. Quite

often the branch reflects the and of some nesting level cf a DC loop.

In such a block, the final operation increments the loop index and tests

the index for completion of the loop. In our traces, the blocks which

have more than two successors always end with the return from a

subroutine which is called from more than two places in one program.

Nu
mb

er
 o

f
Bl

oc
ks

200 250

figure 2-1. Number of blocks with a particular length.

— s,kO

Nu
mb

er
 o

f
ti

me
s

ex
ec

ut
ed

15000-,

u
100 150 2 0 0

B l o c k l e n g t h
2 5 0

Figure 2-2. Number of times a block of a particular
length is executed. rv>o

21
Table 2-1. Percentage of instruction blocks

with 1, 2, or more successors.

]
Program

Number of Successor Blocks

1 2 >2

GAUSS
static 52.9 47.1 oo

dynamic 5.5 94.5 oo

EIGEN
static 55.1 43-5 1 .4
dynamic 24.7 69-7 5To |

CCC3CL j
static 5 6 . 1 3 8 . 2 5.7
dynamic c7. c 49.2 1 3 - 6

SC03CL
static 60.5 35.0 a , 5
dynamic 33.1 55.9 6 . 0 jij

For each of the measured phenomena, we gathered static and dynamic

statistics. A static count refers to the number of times a particular

phenomenon occurs in a program listing. A dynamic count is the number

of times a phenomenon occurs during an execution of the program. Thus,

while a particular loop in a program occurs only once in a static count,

the loop may be executed many times. The number of times the loop is

executed is reflected in the dynamic count. As can be seen from Table
2-1, in a static as well as a dynamic count, very few of a program’s

instruction blocks have more that two successors. Among she

one-successor and two-successor blocks, the one-successor blocks occur

more frequently in a static count, while the two-successor blocks

22

(particularly loops in GAUSS and EIGEN) are more frequently executed.

Subroutines are more common in the CC3CL programs, while the GAUSS
program has no subroutines at all.

The referencing of instructions is a relatively well-behaved

process. Sequential execution of instructions is normally interrupted

by a branch to one of two successors. In many cases, blocks branch back

on themselves, or a few-block cycle is repeatedly executed, to form

loops. Often only one successor block follows an exit from the loop.

To perform well, a machine must be able to handle this type of branching

efficiently. For the traces we analyzed, the number of subroutine calls

was minimal.

2.-2. Data Analysis

As with the referencing of instructions, we would like to see what

order can be discerned from the more complicated process of referencing

data. Program address traces are again used as a basis for finding

sequence patterns of data references.

Initially, the trace of data references was analyzed in a manner

similar to that of the instruction reference traces. This analysis was

performed with the expectation of finding data references grouped into

sets of repeatedly accessed sequences; with each sequence having a

limited number of successor sequences. When the analysis was performed,

we found that most data references formed groups of their own and that

the number of possible, distinct successor data references for each data

reference was large. This result occurred for two reasons. First, the

data used by the access process was mixed with the data being referenced

by imputation process. Thu: D v*ow of a matrix is being

referenced, the data references for index values appear interleaved with

references to the matrix itself. The data reference to an index value,

therefore, has a large set of successor data references, perhaps

including all of the elements of the matrix. The second reason that a

large number of successors occurs is that one data structure may be

accessed in many ways. For example, in a single program, a matrix may

be accessed column by column, row by row, across a diagonal, etc. An

element in the matrix can thus have a large number cf successor data

references in the matrix itself.

When analyzing the data reference stream like an instruction

stream, difficulties arise in developing a coherent model of

data-referencing behavior because the data references are analyzed

without considering the instructions which generate the data references.

We therefore changed our approach to analysing dafca-referencing patterns

associated with the data referenced by a single instruction. If an

instruction references more than one data item, the stream of references

generated by each item is treated separately.

In this model, an instruction can reference either no operand from

memory, scalars from memory, data structure elements from memory, or

both scalars and data structure elements from memory. Scalars and data

structures can actually be determined by the way in which instructions

reference memory, rather than by given information such as in

declaration statements. For our purposes, declaration statements can be

24

misleading and we prefer the following somewhat unusual definitions. If

an instruction, or set of instructions, always references one particular

memory location, the contents of that location is said to be a scalar.

On the other hand, if an instruction references several locations among

all executions of that instruction, the contents of the set of locations

which it references is called a tentative data structure. The set of

data structures are then formed by repetitively taking the set union of

pairs of tentative data structures with common elements until no such

oairs can be found.

Table 2-2 shews the percentage of instructions which either make no

memory references, reference scalars, reference daca structures, or

Table 2-2. Percentage of instructions which reference a
type of data.

Program
no data
reference
to memory

scalars data
structures

i
scalars
and data
structures

GAUSS
static 38.0 56 .8 5.2 0.0
dynamic 43.1 29.1 -22.3 0.0

EIGEN
static 34.3 60.6 5.1 o.c
dynamic 47.9 37.9 14.2 0.0

CCOBOL
static 38.8 42.7 12.5 6,0
dynamic 39.2 35.9 11.6 13 «3

2C0B0L
static 45.1 41 .1 10.0 3*3
dynamic 55.2 29.3 9.4 6.1

25

reference both scalars and data structures. A single instruction which

references more than one item is only counted once. For example, some

instructions reference three scalars each time they are executed. In a

static count such an instruction is counted only once. It is

interesting to note that for programs such as GAUSS and EIGEN, which are

matrix oriented, a high percentage of the instructions do not reference

a data structure. Even for the dynamic count, the instructions

reference scalars or make no memory reference. This result is somewhat

surprising since one might expect most of the executed instructions to

reference data structures. The results for CCOBQL and ECGBCL may also

be somewhat surprising since one mignt not expect a heavy reliance on

data structures in these two programs; yet, between 15$ and 25$ of the

instruction executed made a data structure reference. These results are

somewhat encouraging since scalar addresses should be predictable and

data structure reference addresses may be predictable if effective

structured access mechanisms can be found.

Separating the data references into separate lists for each

instruction allows analysis of each ordered list for data reference

patterns. An example of such a data address list is shown in Figure

2-3a. The instruction at location 1 accesses the memory twice each time

it is executed. One operand’s memory location is always eight memory

locations from, the previous one, while the other operand is always

obtained from the same memory location. From the definitions of data

structures and scalars, the Instruction at location 1 accesses both a

data structure and a scalar. If this instruction’s statistics were

26

Instruction
Address Data Addr o o o J d i .

1 CD

✓17 2 d 3 3 41
(n

~ 7
/

”7/ —7/ 7 7
\ l>-4\

\ 1
VV

1 y
f

' J / ,
f 'r \
\ ^

/ \ W »A > ‘ J

Figure 2-3. Sample data address list.

tabulated in Table 2-2, the statistics would appear in the final column

under scalars and data structures. The instruction would be counted

once for a static count and five times for a dynamic count. The ordered

list of data references may be written in a more compact form by

calculating the displacement from one reference to the next. In the

case of array references, the same displacement often occurs several

times in succession. Thus, to achieve a more compact representation,

those references which caused the same displacement to occur several

times in succession are replaced by a displacement and a count of the

number of times that that displacement occurs. This transformation on

the data address list of Figure 2-3a. produces the data reference _.ist of

Figure 2-3b. The first number is tne address of the first data

reference. Following that number is a list cf pairs of numbers; the

first being the displacement and the second the number cf times that

that displacement occurs. With such a notation, the entire lias cf

addresses for an instruction can be generated.
£ 3 . u^ci

27

From this initial analysis, the frequency of access for scalars and

data structures can be found. The total number of unique scalars and

unique data structure elements may also be found. The number of unique

data structure elements in a program is found by performing a pairwise
comparison of data address lists and checking for common addresses.

Data references with common addresses are then merged to form a list of

the addresses of all the items in a data structure. Table 2-3 is a

summary of this information. The first line of entries for a program

shows the number of unique items, static references, and dynamic

references for scalars and data structures as a percentage of the total

number of the respective references. The entries for the unique scalars

Table 2-3. Data analysis results.

Program
Scalars Data Structures

Unique Static Dynamic Unique Static Dynamic Number

GAUSS 32.5 64.5 51.3 67.5 35.5 48.7 3
212 403 17590 441 222 16679

EIGEN 52.4 91 .7 72,9 47.6 8.3 27.1 7
257 752 19422 233 68 7233

CCOBOL 20.7636
46.4
1108

64.4
50503

79.3
2433

53.6
1278

35.6
27894

168

ECOBOL 14.3 77.6 83.9 85.7 22.4 16.1 239
1043 2225 65877 6242 642 12632

28

and unique data structures should sum to 100.0, since their sum

represents the total number of distinct data items referenced by the

program. The second row of entries for each program is the actual

number of occurrences of each type of reference. For the GAUSS program,

scalars represent 32.5$ of the data locations referenced by the program.

The scalars comprise 64.5$ of the static data references and 51.3$ of

the dynamic data references. The remaining references in each category

are data structure references. While 67.5$ of the data locations
referenced by GAUSS are part of data structures, these locations are

partitioned into only 3 data structures. These data structures in fact

correspond to the 20x20 A matrix, and the x and B vectors for solving

A*x = B.

The number of unique scalars and the number of data structures in
GAUSS and EIGEN is modest. While the number of unique scalars for

CCOBOL and EC0B0L is higher than for GAUSS and EIGEN, the more

significant difference is in the much larger number of data structures.
In CCOBOL and ECOBOL, the percentage of unique scalars is much smaller
than the number of unique data structure items. For all the programs,

the percentage of dynamic scalar references is relatively high. In the
case of GAUSS and EIGEN, which are matrix-oriented programs for which

one might expect a high percentage of dynamic data structure references,

scalars surprisingly comprise more than half of the dynamic references.
For CCOBOL and ECOBOL, the dynamic scalar references are an even higher

percentage of the dynamic references. While this may not be surprising,

it is interesting to note that the dynamic scalar references are high

29

even though the number of data structures Is large and comprise a large

portion of the unique data locations referenced.

In addition to reconstructing the data structures from the address

trace and producing frequency of use information, one can also

reconstruct, by studying the address lists, the indexing loops which

exist in the program. From the pattern of data structure references,

specific loops must exist in the program to generate those patterns.

Figure 2-4, for example, shows the data address list for the instruction

at location 744054 in GAUSS. From the address list, one can deduce that

the lower triangle of a matrix, assumed to be stored in column major

order, is being referenced column by column. For such a reference
pattern to occur, a loop equivalent to:

for i := 1 to n-1 do
for j := i+1 to n do
reference matrix element[i,j];

where n=20, must occur in the program. Each data address list which

referenced a data structure was studied and the loop structure to

generate the address list was deduced. Each address list is not

necessarily associated with a unique loop structure. Several static

data structure references may be combined in the same loop. As we will
see in the next paragraph, the number of distinct access patterns is
less than the number of static data structure references.

Table 2-4 lists all the unique access patterns for data structures
which exist in GAUSS, as deduced from the trace analysis. We refer to

these patterns as access mechanisms because each sequencing structure
for nested loop indices may be treated as an independent mechanism for

30

InstructionAddress Dote Address List
7 4 4054 7 3 8 5 04

□ □ □
□ □ □
□ □ □
□ □ □
□ □ □

□ □ □
in n/ □ '■✓ □ v

(8 ,1 8) (2 4 ,1) (8 ,1 7)
(8 ,1 6) (4 0 ,1) (8 ,1 5)
(8 ,1 4) (5 6 ,1) (8 ,1 3)
(8 ,1 2) (7 2 ,1) (8 ,1 1)
(8 ,1 0) (8 8 ,1) (8 , 9)
(8 , 8) (1 0 4 ,1) (8 , 7)
(8 , 6) (1 2 0 ,1) (8 , 5)
(8 , 4) (1 3 6 ,1) (8 , 3)
(3 , 2) (1 5 2 ,1) (8 , 1)

'U '-
□ □
□ □
□ □
□ □
□ □

• • • □ □
• • • 4 D □

for i 1 to n—1 do
for j := i*f1 to n do

reference matrix element C

(3 2 ,1)
(4 8 ,1)
(84 ,1)
(8 0 ,1)
(9 6 ,1) (112,1)
(1 2 8 ,1)
(1 4 4 ,1)

Figure 2-4. Data address list analysis.

31

Table 2-4. Access mechanisms for GAUSS (n=20).

Structure

Index Level

i j k

Initial End Step Size Initial End Step
Size Initial End Step

Size

A[n,n] 1 n 1 1 n 1
1 n-1 1 i-f 1 n 1
1 n-2 1 1 n 1 i+1 n 1
2 n-1 1 n i -1 i n 1

BCn] 1 n-2 1 1 n-i 1
2 n-1 1 1 n-1 1
1 n 1

C[n] 1 n 1

the accessing of data structures. The index levels labeled i, j, and k

represent, respectively, the outer, inner, and next inner levels of

nesting for a loop. None of the loops in our program traces are nested

more than 3 deep. The column headings labeled init, end, and step size

represent, respectively, the initial value, the final value, and the
step-size for an index. As may be seen, the GAUSS program has

relatively few access mechanisms. While the step size for the indices

is always a constant here, the initial and end values of the indices can

either be a constant, be dependent on the array size, or be dependent on

the current value of some higher level index. The distinction between

32

these types of values is important since the time at which these values

can be bound differs substantially. A constant value is, of course,
known when the program is compiled and thus the value may be

incorporated in the code. A value which is a function of the size of

the array may not be known until the program data is loaded. Once the

program is called or the portion of the program which accesses the

matrix is executed, the size of the matrix can be made readily

available and this size remains constant while the matrix is being

accessed. In contrast, a higher level index value is not set until the
appropriate outer loop variable has been set. Furthermore, this value
changes during execution every time the inner-loop is reentered from

the outer-loop. Outer-loop index-dependent values for inner-loop index

limits must therefore be bound and rebound during execution. In those

cases where the initial or the final value is a function of the array

size or an outer index value, the functions turn out to be very simple.

Such a function is known at compile time; however, the value of the

function is different for each execution of the program or actually

changes during execution. A fourth possibility, not present in GAUSS,

is that a loop is terminated when some data value condition is

calculated and tested during computation.

Table 2-5 for EIGEN is similar to Table 2-4, While the number of

distinct access mechanisms is greater, they exhibit the same features as

those found in the access mechanisms for GAUSS. There are only three

data structures shown in Table 2-5; nowever, Table 2-3 has 7 data
structures listed for EIGEN. The four extra data structures listed in

33

Table 2-5. Access mechanisms for EIGEN (n=l4).

Table 2-3 are due to data structures which are referenced by block move
instructions found in the initialization part of the program. The
references to these four data structures are not shown in Table 2-5
because these references are not generated within program loops.

In an instruction block, several access mechanisms may be active at

the same time and a single access mechanism may be used in more than

34

once place in the block. Also, a large number of scalar references

occur in an instruction block which references data structures. In our

experience, most of these scalar references are used to control access

mechanisms. A machine which minimizes the number of references made by

the access process for controlling itself, must provide the ability to

execute access mechanisms with far fewer such memory references.

4

35

CHAPTER 3

STRUCTURED MEMORY ACCESS MACHINE (SMA) ARCHITECTURE

From the trace analysis described in the preceding sections, it is

possible to determine the control and data structures of a program and

the mechanisms by which data structures are accessed. Realizing that
these structures remain intact in the program’s transformation from a

high-level language to machine level, we believe it is possible to

design a machine which reduces addressing overhead by taking advantage
of a program’s structural information. In this section such a machine,

the Structured Memory Access (SMA) architecture, is proposed. By

carefully organizing the machine’s architectural features, one can

develop an access process which makes fewer references to memory. In
addition, the access process may, by and large, be decoupled from the

computation process, thus providing a maximum degree of overlapped
execution.

Access process overhead exists in two forms. Address specification

overhead refers to the increasing number of address bits needed to

address a memory location as the address space becomes large. Most of
these bits are redundant, given sequence information about address
sequences. This type of overhead translates directly into wider address
fields wherever an entire address is specified. One such case is the

addressing of scalars and branch targets. The second and more costly

form of overhead is address calculation overhead. which refers to

address calculations explicitly performed by the CPU. Address

36

calculation overhead involves some combination of extra instructions,

parts of instructions, registers, memory accesses, and computation time.

These types of overhead can be greatly reduced if machines were designed

differently.

As in most machines, we assume instructions are normally executed

sequentially. At some point in the execution of a sequentiality, a

branch occurs due to a decision made by the program. To generate

requests for instructions, the starting address of the program and also

all the target addresses of all branches which occur during the running

of the program must be specified. In some conventional processors, the

target address of a branch is stored with the branch instruction. In
many cases, however, since programmers are permitted to use the entire
address space for storing programs, the target address usually contains

as many bits as an entire word or even more. If instructions are, at

most, one word long, an entire target address cannot be stored in the

branch instruction itself. To remedy this problem, conventional

machines are designed so that the target address information in the

branch instruction is either an indirect pointer to the true target
address, an offset to be added to a value in some base register, or an

offset to be added to the current value of the program counter.

Since the number of instruction blocks or, equivalently, the number
of branch targets is not as large as the number of memory locations,
these methods for specifying the target address cause an address

specification overhead. One way to reduce this overhead is to specify
an instruction block name as the target of the branch Instead of

i

37

specifying a target address. Since the number of instruction blocks is
small with respect to the total address space, the number of bits needed

to specify a target block is small. Such a reduction in address

specification overhead is bought at the cost of special tables,
implemented in hardware, which store information for directly

translating block numbers into actual addresses.

The SMA machine uses a different approach to reduce the address

specification overhead when accessing the target of a branch. The
complete branch target address is specified in the branch instruction.

However, since the SMA machine provides instruction buffers to capture

repeatedly executed instruction blocks, the number of times the branch

instruction and the target address are accessed is reduced. The

instruction buffer effectively limits the number of bits fetched from

memory to specify a branch target address.

The addressing of scalars is another source of address

specification overhead and similar to the overhead of specifying a

branch target address. To reference scalars, the SMA machine provides a

base register. A scalar reference specification is an offset to be

summed with the contents of the base register to form an entire scalar
address. Entire scalar addresses are not specified with the instruction

as for branch target addresses because one can expect a scalar reference
to occur several times in an instruction block. To reduce scalar

specification overhead, the entire address for the scalar references in
a block would have to be held in an instruction buffer. Such a scheme
would therefore require a large instruction buffer.

38

The referencing of data structures is the prime cause of address

calculation overhead and poses a much more serious addressing problem.

Address calculation overhead causes the larger than expected number of

scalars in the inner loops of the Gaussian elimination program. To

eliminate this overhead, we propose that special hardware be provided to
generate data structure references. Properly organized, this hardware

can reduce the number of memory accesses which must be made to generate
a data structure address.

Conventional machines have index registers to aid in the generation

of data structure reference addresses. Although these are intended to

reduce overhead, significant inefficiency is apparent in the analysis

results for GAUSS. If one considers a high-level description of the
Gaussian elimination algorithm, there is little explicit use of scalars.

The analysis of GAUSS, however, reveals a great number of scalars used

in the program. One could argue that these are used for initialization

or for I/O, but this does not appear to be the case since the dynamic

count for the number of scalar references is extremely high. As will be

seen in Section 5.1, many of these scalars can be eliminated, since they
are being used either for tracking loop indices or for the generation of

data structure references.

The SMA machine implements the function of index registers by using

a hardware stack. This stack tracks all the indices used by a program,

and all data structure references are made by using a set of these index
values. To reduce the number of bits which need to be transferred from

the memory when generating an entire address for accessing a data

39

structure element, tables, located in the SMA machine, are used to store
the base address of a data structure and other information necessary to

generate an entire address from indices. These tables must be loaded

before any instruction which uses them is executed. Depending on the

amount of space allocated for the tables, the number of data structures,

and access mechanisms, the tables may only have to be loaded once, at

the beginning of program execution. If a program has too many data

structures and access mechanisms for a single loading, the tables may

also be loaded at other times during the execution of the program. A

data structure reference specification is a set of pointers to table

entries. Section 4.1.3 provides a detailed explanation of these tables,

the information in them, and how they are used to generate a data

structure reference. Such a scheme provides the flexibility of

generating an access mechanism while maximizing the speed of address

generation through the use of pipelining techniques.

Generally, the value of an index only needs to be associated with

the access process. Thus, the stack containing indices, the tables for

generating data structure references, ana the address generation portion
of the CPU may be separated from the computation-oriented portions of

the CPU. This partition divides the computer system into two
processors: a computation processor (CP) and a memory access processor

(MAP), The CP is used strictly for the computation process, i.e. the

useful computations of the system, while the MAP is responsible for the

access process, i.e. generating all addresses for data and instructions.
The index stack and the associated access tables mentioned above are

40

kept in the MAP. Since only the MAP generates addresses, it controls

all transactions with the memory.

This SMA is shown schematically in Figure 3-1• There is no address

bus between the CP and the memory since all memory requests are

generated and controlled by the MAP. Also, since the CP is not
responsible for addressing, the instructions sent to the CP contain no

addressing information. Thus, the instructions are short and contain

little more than opcodes and register tags. The CP is strictly devoted

to performing computations and contains the ALU of the system;

instructions and data are streamed into the CP by the MAP. The CP may

receive entire blocks of instructions which it then holds in an internal

instruction buffer. If a block happens to loop upon itself, the CP may
execute in a loop mode similar to the loop mode of the IBM 370/91

[Ande67J. In addition, the CP also has a set of registers for holding
the scalars used by an instruction block. The internal instruction
buffer and the registers are provided to eliminate some repealed memory

accessing and its associated time and load on the MAP.

The MAP, which is responsible for providing instructions and data

to the CP, "knows" that the content of memory is composed of instruction

blocks, scalars, and data structures. Each of these presents the MAP

with a unique set of access problems which the MAP handles through its
special hardware. Some of this hardware is activated by a set of

special instructions which are intended for the initialization and

control of the access mechanisms used for address generation. An SMA

program is somewhat different from a program for a conventional machine

Computation
Processor

Instructions and Data

Data

Memory
Access

Processor
instructions

Data Memory

j
Data and

instructions for
Memory Access

Figure 3-1. SMA structure.

42

since it can contains two types of instructions, MAP and CP instructions
and the data type of an operand is explicitly specified in an

instruction. This extra information found in SMA instructions requires

that, at compile time, the compiler be capable of distinquishing loop

control branching from data dependent branching and scalars from data

structures.

Just as with the CP, the MAP has an internal buffer to hold its

instructions and the operand specifications of CP instructions. The MAP

can, therefore, operate in a loop mode fashion. Operation of the MAP

is, to a great extent, independent of the CP. When the MAP begins

receiving instructions it forwards the instructions to the CP. The MAP

saves the operand specification portions and begins generation of
operand addresses. The operand addresses are placed on a queue of

outstanding memory requests: one queue for read requests and one queue
for write requests. As soon as a read request is serviced, the operand
returned by that request is forwarded to the CP. With such a scheme,

the CP concentrates on the useful calculations of a program, while the

MAP is left with the important, but overhead-related, generation of
operand addresses.

Having a two-processor organization presents several options for

locating the circuitry which makes branch decisions. In conventional
systems, the ALU makes branch decisions. In our case, however, all
branch decisions need not be routed through the CP. Two types of branch

decisions occur: decisions based on program data and those based on

indices used for referencing data. We propose that branching decisions

43

can originate from either the CP or the MAP. The branches resolved in

the CP are based on scalar or data structure item values. Those

branches which are based on index values are resolved in the MAP since

the MAP tracks all index values.

Such an organization not only reduces the addressing overhead for a

system but also reduces the serial dependence which exists between the
access process and the computation process. Since the MAP makes branch

decisions based on index values during the execution of a loop, the MAP

can generate memory requests for operands before the CP is ready to

execute the instructions requiring those operands. In fact, the MAP

should normally stay ahead of the CP so as to minimize the amount of

time that the CP waits for data requests from memory. Of course, there

are occasions when the MAP must wait for the CP and vice-versa. For

example, the MAP must wait on the CP when the MAP’s data read queue is

full or when the CP must resolve a computation-dependent branch. On the

other hand, the CP must wait for the MAP when the MAP’s data write queue

is full or when the MAP’s data read queue is empty.

Super computers and vector machines contain special hardware for

array referencing; however, the programming of these machines quite
often requires rearranging of an algorithm to suit the hardware.

Furthermore, their structured data access mechanisms are usually limited
to a single vector of the structure at a time, i.e. "a constant stride,”
or constant step size access mechanism with one index. Also, the same

operation must be executed on each element of the vector. The TI-ASC

offers somewhat more flexibility by providing both an inner and outer

44

loop control for stepping though a matrix, i.e. two active indices.
The SMA machine provides more flexibility in the accessing of matrices

since it offers more index levels by providing a stack on which to store

indices. For example, Tables 2-4 and 2-5 show that when accessing a
2-dimensional structure, occasionally three levels of nesting are used.

These up extra levels of nesting could also prove useful for providing

non-constant strides.

In vector machines, the vector access mechanisms are explicitly
coded into instructions and then recognized and setup during execution

time. The SMA architecture is designed so that data structure access

mechanisms are recognized as early as possible. Depending on the access

mechanisms, accesses mechanisms can be set as early as compile time or
load time. This early recognition can lead to reduced run-time

overhead.

The SMA organization described above is used to reduce the

addressing overhead, primarily by improving the accessing of data
structures through efficient access mechanisms and prefetching. The
process of accessing instructions can likewise be improved if

information concerning the instruction block structure of a program,

which is apparent in high level source code, is kept with the program as

it is translated down to machine level. Retaining the block structure

of a program can be used advantageously to cause the CP to enter and

leave loops.

As mentioned in Chapter 2, the IBM 360/91 bas a built-in loop mode
[Ande67]. Loop mode control is generated dynamically during execution.

45

Upon recognizing a short backwards branch, it is assumed that the second
iteration of a loop is about to begin. The instructions of the loop are

refetched and trapped in the loop buffer where they remain for repeated

execution until the loop ending branch is unsuccessful.

The loop buffers in the CP and the MAP also trap loop instructions.

Unlike the IBM 360/91, however, the loop mode control is set up at
compile time. Loop structures are quite explicit and obvious in the

high level language source code available at compile time. If the

instruction blocks which form the body of a loop are sufficiently short,

they may all be stored in the instruction buffer at the same time. The

processors thus are able to trap the body of a loop the first time the

loop is executed. The loop buffers eliminate the needed for repeated

memory accesses for the same instructions during the execution of a

loop. In any case, repetition requires no data dependent branch and no

wait time. Execution continuation after the loop is also efficient when

the successor block is known, since it can be prefetched during loop
execution.

Many machines today do not have an explicit loop mode. Instead,

caches are used. While caches are not only used to replace loop mode, a
cache does, in fact, perform functions similar to a loop buffer. When a

cache miss occurs, in addition to accessing the word of memory which
caused the miss, several adjacent words are also placed in the cache.

If a program does not have a great deal of spatial locality, it is easy

for the extra memory words which were brought into the cache to go

unaccessed until they are replaced in the cache, Since access to the

46

memory is a critical resource, information which is brought into the

cache and not used is a waste; furthermore, instructions compete with

data for cache space because of the way in which caches are structured.
There is no guarantee that needed information will stay in the cache
because stack update policies don’t "know” which information is useful;

at best, these policies are only heuristic. By keeping block

information with the program (and explicitly controlling data structure

accesses), one knows exactly which instructions to save, and when

prefetching, exactly how many instructions to prefetch. Hopefully, one

can also predict data references sufficiently far ahead of the need for
the data values at the CP. Thus a few small buffers and a simple memory

access processor can potentially eliminate the need for a fast cache

memory, and a single slow memory is sufficient.

This chapter has presented an overview description of the SMA

architecture. The main feature of this architecture is the decoupling
of the computation process from the access process. A memory access

processor (MAP) handles all transactions with the memory and is

responsible for the generation of memory requests. The MAP forwards

instructions and data to a computation processor (CP). The CP performs

all the useful computation of the system and is not burdened with the
overhead of address generation. The decoupling of the computation and

access processes maximizes the execution overlap which can be achieved.

The SMA architecture also provides instruction buffers and address

generation mechanisms which reduce the number of memory references which

are made.

47

CHAPTER 4

AN SMA IMPLEMENTATION

In the previous section, the general organization and features of

the SMA architecture were presented, as were the reasons for their

inclusion. In this section, we describe how such a machine could be

implemented. This description outlines one possible implementation of

an SMA machine and is used to demonstrate that such a machine is

feasible. An attempt is made to keep the discussion sufficiently

general so as not to be burdened by such issues as word size, buffer

size, etc. While these issues are important if such a machine is

actually constructed, a discussion of them does not add to an

understanding of the machine’s operation. When specific numbers are

given for certain machine features, they are given only for illustrative
purposes.

Our discussion is primarily concerned with two issues: the way in
which data accesses are made and the aspects of program control. Since

the SMA machine is primarily proposed to improve the efficiency of data

referencing, we first concentrate on the manner in which data references

are generated. The mechanisms which perform data structure accesses
influence the way in which program control is accomplished, thus,
program control is discussed subsequently.

48

JL.JL. Data Referencing

1.1.1. Data Types

One feature of the SMA machine is the capability of the MAP to
generate addresses for all data which is referenced during the execution
of a program. The SMA 'machine's performance is expected to be better

than that of conventional machines since the SMA machine has special

hardware mechanisms for the generation of operand addresses. In this

implementation, the SMA distinguishes among four types of operands:

(1) immediate operands, (2) scalar operands, (3) data structure
operands, and (4) index operands. Immediate operands are data whose

values are embedded in an instruction. Scalar and data structure
operands are defined as they were previously when the analysis of

program address traces was discussed. Data structure operands are items

from structures such as vectors and matrices. The final type of
operand, an index operand, is the value of one of the current indices
found on the index stack. The index operand is used only to read a
current index value from the index stack and transfer its value to the

CP. An index operand differs from a scalar operand primarily in that

the index operand originates from the MAP while the scalar operand

originates from the memory. To generate operand addresses efficiently,

the MAP must know which of the operand types an instruction is
referencing. The operand type may be specified in a subfield of an

instruction13 operand field or it may be implicitly associated with a

particular instruction. Additionally, an indirect addressing mode is
provided specifically for use in the calling of subroutines and in the

49

accessing of data items from structures such as linked lists. As with

operand type specification, indirect addressing may be specified in a
variety of ways.

While we only discuss the referencing of four operand types, this

discussion does not preclude the addition of other operand types in

other versions of an SMA machine. For instance, at some time it may be

desirable to distinguish explicitly among several types of data

structures. Instead of having a data structure operand, one may wish to

have an array operand, a linked list operand, a binary tree operand,

etc. For each operand type, some special accessing mechanisms are

provided to improve the speed with which an operand address is
generated.

4,.±.iL. Immediate and Scalar Operands

The value of an immediate operand is found in an instruction*s

operand field. If indirect addressing mode is specified with an
immediate operand, the immediate data found in the instruction's operand

field is treated as the address of the actual operand. Thus, indirect

addressing with immediate operands causes a memory access. This
immediate mode of operand referencing is provided to reduce the need to
access memory for repeatedly used constants or constants which are to be
loaded into registers.

Scalar data is treated in the manner of a vector rather than as a

set of disassociated items. The HAP provides base registers which
contain the beginning address of a scalar data area. The specification

50

for a scalar operand includes a specification of a base register and a

displacement into a scalar data area. The MAP can have more than one
scalar base register to aid in the accessing of local and global

variables, such as during subroutine calls. Such a base register can be
used as the argument pointer set during a subroutine call.

Such a scheme is used to minimize the number of bits which are

transferred between the MAP and the memory when scalars are referenced.

For the programs we studied, the number of simultaneously active scalars

is relatively small, particularly in an SMA program (see section 5.1).

Those scalars which are active at the same time are known at compile

time, thus they can be elements of the same scalar data vector.
Specifying only a displacement into a scalar data area can reduce the
size of instructions since the number of bits needed to specify the

displacement is small. For example, if the operand field of an

instruction is 8 bits long, 2 bits could be used to specify which of the

4 data types is being referenced and 1 bit could be used to specify

indirect addressing. The remaining 5 bits in scalar mode could then be
used as a scalar displacement into a scalar data area from which one of
32 scalar items could be selected. If for some reason, more than 32

scalars are needed, the scalar displacement register can be loaded with
a new base address. With a reasonably intelligent compiler, the number

of times the scalar displacement register is reloaded can be kept to a

minimum thus minimizing the number of bits transferred between the
memory and the MAP.

51

iL-JL-3.- Data Structure and Index Operands

The SMA’s memory access processor has special mechanisms to track

indices for data structure computations. These indices are used to

generate the addresses for specific items of the data structure to be

referenced. We describe below how these indices are tracked, how a data

structure reference is specified, and how indices are used to generate
an address.

An index is specified by its current value, final value, step-size
and indexing level. When the index is first established, the current

value is equal to its initial value. At any time, several indices may

be active, and the level, or nesting, of these indices is dictated by
the time at which they were instantiated or setup. So, if one has a

simple loop structure such as:

for I := 1 to n by 1 do
for J := 1 to n by 1 do ;

the index I is at a higher level than the index J. In the SMA, the

current value, final value, and step-size of an index are kept on a LIFO

stack structure known as the index stack (IS). Each stack position is
numbered sequentially, with the bottom of stack numbered level 1. This

convention provides a convenient way of referring to the current value

of any active index because the bottom-most stack entry corresponds to
the outer-most level of nesting, i.e. level 1. When a "setup index"
instruction is executed by the MAP, the initial value, final value, and

step-size are pushed onto the stack. To change the current value of an

index, an "increment index"" instruction is used. This instruction must

52

specify three items, the first gives a number for the level of the index
which is being incremented. The MAP uses this number to select an index

on its stack. When the instruction is executed, the current value of

the index is incremented by its associated step-size. The second two

items are initial addresses of blocks which are the targets of a branch

outcome. If the current value of the index is less than the final

value, control is transferred to the first block which is specified.

If, on the other hand, the current value equals or exceeds the final

value, control is transferred to the second specified block.

This approach of operating on indices in the MAP has several

advantages over conventional methods. The operations for controlling
the indices are relatively simple and regular and can, therefore, be
efficiently performed in special hardware, thereby reducing the amount

of code needed to accomplish them. By checking the index value after

each increment and by having the branching information available, the

next instruction can start being accessed while the CP is still

performing the final computation of a loop. Furthermore, no guess is

made about which direction an index-based branch will take, thus no time
is wasted in fetching blocks of instructions from the main memory which
will not be used.

When the current value of the index has reached its final value,

that index is removed from the stack. Two other methods of removing

indices from the stack are (1) the "remove index" instruction which

removes the highest level current index from the top of the stack and

(2) a "clear all indices" instruction which removes all indices from the
stack.

53

As mentioned earlier, the setup instruction places the initial

value, final value, and step-size for an index on the stack. These

values could be fetched from the memory when they are placed on the

index stack; however, if they can only be fetched from memory one at a

time, the memory fetches would involve substantial overhead. The method

used here, which reduces this overhead, loads the MAP with a set of

templates for these values at the start of program execution. A

template is a specification of the values needed to initialize an index
on the index stack. Templates are loaded into an index template table.

When an index is setup in the IS, the IS is loaded directly from the

index template table. For a particular program, the number of distinct

templates could be fairly small. For example, in Tables 2-4 and 2-5

notice the number of times an index has an initial specification of

1,n,1. In all, GAUSS requires 995 dynamic index setups and 16 static

index setups, but only 8 templates. The situation for EIGEN is similar

since 655 dynamic and 2? static setups are needed but only 14 templates

are used. Each index activated with a particular initial specification
can use the same entry from the index template table. In addition to
the time saved by having templates stored in the MAP, using templates

reduces the number of accesses which are made to the memory. Even if
the number of templates exceeds the table size, judicious reloading

would limit additional overhead.

To access data structures in the SMA, one must combine index values
to form a data address. In the SMA, information for forming proper

54

combinations is stored in two data tables within the MAP. As with some
of the other repeatedly used information, the contents of the tables may

be loaded when the program begins execution. The two tables are the

access pattern table (APT), which indicates the index levels to use, and

the access information table (AIT), which contains information about
data structures.

Each line of the APT is divided into several dimension fields. The

number of dimension fields is an implementation issue and limits the

maximum number of dimensions a structured data access mechanism may

have. Thus, each dimension field is associated with a dimension of the

data structure. Each dimension field is divided into 2 subfields. The

index level subfield (ILF) indicates which level of the index stack (IS)
is associated with that dimension field. The number of bits allocated

to the ILF must be large enough to specify one more than the depth of
the IS. The extra bit combination is used when a data structure has
fewer dimensions than the maximum permissible. When found in an ILF

field, this extra bit combination indicates that the corresponding

dimension is not used for the data structure being accessed.

The second subfield (I0F) contains the value of a small positive or
negative offset to be added to the index before the index is used. This

feature is useful since quite often the index of a data structure access
is an existing presently active index plus or minus a small constant.
From the APT and the index stack, the values of indices for a data

structure reference are determined. An important aspect of using an APT

is that an entry in the APT may be used by more than one data structure

55

since the information is not altered during execution and does not
depend on accessing a specific data structure. Such sharing aids in
minimizing the number of lines found in the APT.

The values of the indices pointed to by the APT entries are used

with information in the AIT to generate a data structure address. For

each data structure currently being used by the program, there is an

entry in the AIT. If the number of data structures in a program is

sufficiently small, the AIT need only be loaded at the beginning of

program execution. If the AIT needs to be reloaded, a compiler using

static information from the source program can keep the reloading of the

AIT at a minimum. Each entry of the AIT is composed of three types of

values: (1) the base address of the data structure (DSBA),

(2) a displacement for each dimension of the data structure (DISP), and

(3) an upper bound for each dimension of the data structure (UPB).

With this background, once it is known that a data structure is to

be referenced and whether direct or indirect addressing is to be used,

a data structure reference may be made by specifying an entry in the APT

and an entry in the AIT. A data structure address is generated by the

following calculation:

Address =

(structure base address) +
((first index value + offset) * first dimension displacement) +
((second index value + offset) * second dimension displacement) +

((final index value + offset) * final dimension displacement)

56

The terms in this address are obtained as shown below, where SA
(specification for APT entry) and SN (specification for AIT entry) are

pointers to entries in the APT and the AIT, respectively. The index

stack (IS), the APT, and AIT are treated as vectors whose elements are
levels of the stack or lines in the table where each line may have

several fields. The notation X[Y].Z refers to the Z field of line Y in
table X. The address is then given by:

Address =

AIT[SN].DSBA +
(IS[APT[SA].ILF1] + APT[SA].I0F1) * AIT[SN].DISP1 +
(IS[APT[SA].ILF2] + APT[SA].I0F2) * AIT[SN].DISP2 +

(IS[APT[SA].ILFn] + APT[SA].IOFn) * AIT[SN].DISPn

The last n terms of this equation represent the successive displacements
from the base address for each dimension of the data structure. Before

each of these terms is added in, a bounds check can be made on the value

of an index by using the upper bounds (UPB) in the AIT. Namely, after

an index value for a dimension is obtained from the IS and the offset in

the APT is added to that index, the resultant value is compared to the

upper bound for that dimension, if the index value exceeds the upper

bound, a referencing out-of-bounds error has occurred.

Occasionally, an algorithm must know the current value of an index.
For example, in a Gaussian elimination algorithm, before pivoting is

performed, a row by row search is performed for the largest valued
element in a column. The value of the index associated with the row

57

which contains the largest valued element is saved as a scalar in memory

(possibly temporarily in a CP register) to be used later when rows are

exchanged. Thus, the current value of the index must be transmitted to

the CP from the MAP. In this example, before the rows are exchanged,
the saved index value is read from memory into the MAP and placed on the

index stack via the setup index instruction. Since indices are stored

in and tracked by the MAP, referencing an index, while straightforward,

is a slightly different process than referencing scalars or data

structures. For these reasons, index operands are a special type of

operand. As with using indices to access data structures, an index is

referenced by indicating which level of the index stack is to be

accessed.

Although the MAP performs many functions, a decoupled organization

permits a great deal of overlap with the "useful” computations occurring

in the CP. Data addresses are generated in the MAP at the same time the

CP is performing its calculations; thus, address calculation overhead is

limited. In conventional architectures, a great deal of access overhead

information must be repeatedly brought into the CPU from the memory.

Since the MAP repeatedly performs very regular calculations, many of

these calculations can be pipelined. The address generation for a data

structure, In particular, is a very good candidate for pipelining.
Addresses can then be streamed to memory at near maximum bandwidth and

the rate of address generation is extremely high.

58

4_ .£. Control Issues

While the preceding discussion indicates how operand addresses are
formed, nothing has been said concerning the control structures of the

SMA or how the CP and the MAP are coupled. As shown in Figure 4-1,

interior to the MAP are several functional units and data storage areas
which control the flow of instructions and data to the CP. We describe

these functional units and data areas briefly before presenting a more

detailed individual description.

As its name implies, the instruction fetcher is responsible for

generating instruction requests. The instruction fetcher sends the

instructions it receives from the memory to the instruction

preprocessor. Among other things, the instruction preprocessor

determines whether to save an instruction in the MAP or to forward it to

the CP. The instruction preprocessor places MAP instructions and all

operand specifications associated with MAP and CP instructions into an

operand and instruction buffer in the MAP. This operand and instruction
buffer is analogous to an instruction buffer in a conventional CPU. An
address generation unit steps through the MAP instructions and operand

specifications found in the operand and instruction buffer and generates

operand addresses. These operand addresses are placed on a read queue
or a write queue. When the memory returns the data associated with

addresses in the read queue, that data is sent to a FIFO buffer in the
CP. The CP sends data to the MAP for the write queue. Addresses in the
write queue which have received their associated data are serviced by
the memory.

Figure *1-1. MAP internal organization. U1
V O

60

The CP has an instruction buffer to hold the instructions it

receives from the MAP. An execution unit in the CP steps through the

instruction buffer, executing instructions one by one. If an

instruction needs a data item from memory, that data is found at the
head of the FIFO buffer. If the buffer is empty execution is suspended

until a data item is received from the MAP. Along with each data item,

the CP receives an additional bit from the MAP which is used as an

end-of-data signal. Assertion of the end-of-data signal in loop mode

indicates that execution of the current instruction loop is to terminate

and that the CP should begin execution of another block found in its
instruction buffer, or wait until a new instruction block arrives from

the MAP. The CP generates data, which the MAP must write to memory, and
signals the success or failure of a test for data-dependent branches.

In the following two sections we discuss in more detail the flow of
instructions into the MAP, how operand requests are serviced, and how

the MAP and CP communicate to resolve branches. Following that

discussion is a section which presents the operation of the CP in more
detail. Finally, section 4.2,4 discusses subroutine handling in the
SMA.

4>2..J_. Instruction Fetching and Operand Request Servicing

A program begins execution by having the monitor or operating
system jump to the beginning of the program. That is, the operating

system sets the program counter (PC) to the starting address of the

program. In the SMA machine, the PC is located in the instruction
fetcher of the MAP. When the PC is set to the beginning of the program,

6 1

the instruction fetcher generates requests for instructions from the
memory. Instruction requests are generated until the end of a block is

encountered. If the instruction at the end of a block is a branch

instruction, be it for the CP or the MAP, the instruction fetcher
suspends operation until the branch is resolved.

While the instruction fetcher is fetching the next instruction, or
waiting for a branch resolution, the instruction preprocessor checks the

opcode of an instruction to determine the number of operands the

instruction has and whether the instruction is for the MAP. While the

CP instructions are passed to the CP, without complete operand

specifications, some additional bits are concatenated on the opcode for

each operand to indicate if the value of an operand is to be found in a

register or at the head of the buffer holding data forwarded by the MAP.

Additionally, an end-of-block bit is sent with the last instruction of
the block. Those instructions which are for the MAP and operand

information for all instructions are routed to the MAP operand and

instruction buffer (OIB). The instruction preprocessor places the

proper number of operand specifications on the OIB by interpreting the

number of operands for the instruction from the instruction’s opcode

field. The OIB saves the MAP instructions and operand specification

information which the MAP needs to generate the memory requests for the
instruction block currently being sent to the CP,

The OIB is a fixed length FIFO stack structure; the important
fields of the OIB are labeled as shown in Figure 4-2. The
data/instruction bit of a line indicates whether the information stored

Data or
Instruction

(i)
Read
0)

Write
(1)

Operand Field or
Instruction Opcode

End of
Block
d)

Address

Figure 4-1. The operand and instruction buffer (OIB).

63

in that line of the OIB is a MAP instruction or an operand
specification. The end-of-block field indicates that the line entry is

the last OIB entry of a block. This information is necessary if

information for more than one block is to be simultaneously stored in

the OIB. The read and write bits indicate whether an operand is to be

read from or written to memory. The address field holds the address of

the first instruction of an instruction block. The address is saved to

be used later to check whether a block loops upon itself.

The instruction preprocessor is responsible for setting the fields
of the OIB. The data/instruction field, end-of-block field, address

field, and the operand specification can be determined by the
instruction preprocessor when it receives an instruction from the

instruction fetcher. To determine if an operand is to be read from or

written to memory, a convention similar to that used in conventional

machines can be used for the SMA machine. For instructions with one

operand, the instruction opcode determines whether the operand access

will cause a read or a write. If an instruction has two operands, the

first causes a read from memory and the second causes a read followed by

a write. If three operands are specified, the first two cause reads

from memory while the third causes a write to memory. Thus, depending
on the number of operands, the instruction preprocessor sets either the

read bit, write bit, or both the read and write bits for each operand.

The address field holds the address of the first instruction of the

block as saved from the PC.

64

The instruction fetcher and instruction preprocessor can operate

simultaneously. The instruction fetcher can generate a request for

another instruction as soon as the fetcher passes the current

instruction to the instruction preprocessor, provided the current

instruction is not the last instruction of the block. While the fetcher
is obtaining another instruction, the instruction preprocessor can check

the instruction just received. Once the preprocessor places entries
into the OIB, the address generator can begin its work. The address

generator need not wait until the operand specifications for an entire

block are placed in the OIB.

With the information stored in the OIB, the address generation unit

can generate all the data requests required by a program. As the OIB is
loaded, the address generator can begin executing MAP instructions and

generating operand addresses by stepping through the entries of the OIB

with its own internal program counter. Using the one-bit
data/instruction entry in the OIB, the MAP knows whether the entry is an

operand, for which it must generate an address, or a MAP instruction,

which it must execute. Operand addresses are formed as described in the

previous chapter and are placed in a read queue or write queue depending

on the value of the read and write bits. If both bits are set, an
address is placed in both queues.

For every address that the address generator places on a queue, it
also sets a one-bit indicator if indirect addressing is being used and

one bit to indicate whether the operand is destined for the MAP or the
CP. The address generator determines whether indirect addressing is

being used by examining the operand specification.

65

The read and write queues are organized as shown in Figure 4-3.

Each entry in the queue is divided into 6 fields: 4 one-bit status

fields, an address field, and a data field. The read queue has an extra
(end-of-data) status bit which is explained below when branch resolution

is discussed. Since the addresses for both CP and HAP operands share

the same queue to preserve order, one bit is used to differentiate

between the two types of addresses. The second status bit indicates

whether direct or indirect addressing is being used. These two bits are

set by the address generator when an address is placed in a queue. A

received bit is used for every queue entry to indicate that read data

has arrived from the memory or that write data has been received from
the CP. The received bit is necessary since operands may arrive from or

be written to memory out of order, depending on the memory organization

and the use of indirection. Also, since immediate operands are placed

on the queues to preserve order and are "ready" when placed, their

received bits are set immediately. Finally, a fourth status bit is used

because the queues are used as buffers for operands going from memory to
the CP and vice-versa. Since the wait time in the queue may vary, a

fourth status bit, a done bit, is added for each entry to indicate that
the associated entry is no longer needed.

Thus, in the case of read operands, the read address is placed in

the address field while the CP/MAP and indirect bits are set

appropriately and the received and done bits are reset. (Of course the

received bit is set if the operand is an immediate operand). A memory

CP/WAP
(1)

indirect
0)

Received
(1)

■
Done
(1)

Address Data End of data
(read only)

•

Figure 4-3. The read and write queues.

67

request controller, which has pointers to the read and write queues,

selects the next entry in one of the queues to be serviced by memory.

With each memory request, the controller sends a tag unique to that

request. These tags are needed to place a serviced memory request in
the proper queue position when the memory services requests out of

order. When the data associated with an address in the queue arrives,

the indirect bit is checked by special hardware. If the indirect bit is

set, the data item is placed in the address field and the indirect bit

is reset. The indirect read queue entry is now treated as a direct

address and generates a new memory request. I-f a data item arrives and

the indirect bit is not set, the received bit is set and the data item

is placed in the data field. The data item may be removed from the

queue by the MAP when it is ready to use the data itself or transfer it

to the CP as appropriate. When the data item is removed, the done bit

is set, indicating that that queue location is ready for re-use.

The addresses in the write queue wait for data from the CP or the

MAP. When addresses are placed in the write queue, any entries which

have the indirect bit may be serviced immediately. An indirect write
address, in effect, forces a read to be performed to obtain the "real”
write address. Once the direct address for an indirect write request

arrives, it is placed in the address field of the entry and the indirect
bit is reset. When the actual data to be written arrives from the C? or
MAP, it is placed in the data field and the received bit is set. As
soon as the indirect bit is reset and the received bit is set, the
memory request controller may make a memory write request for the entry.

6 8

The done bit is set when the memory request is serviced, indicating that
the data item has been written to the memory and the queue location is

ready for reuse.

The addresses in the read and write queues are kept in the order

that they were generated so that the CP receives read operands in the

expected order and the MAP receives write data in the proper order. If

a data item is to written to memory, and then in the near future, is to

be read from memory, it is possible for the address to that data item to

appear in both queues at the same time. In such a case, the read must

not be permitted to occur before the write. Thus, each time a read

address is placed on the read queue, the write queue must be checked for

an outstanding write to that address in order to prevent the reading of
invalid data. Furthermore, if an operand is used repeatedly, such a

comparison of read and write addresses could eliminate some memory

traffic. This feature, the so-called "multi-access feature" is not used
in this SMA organization.

4_. 2,.£. Branching

The previous section described how instructions are brought into
the MAP and the CP, how operand addresses are generated, and how

operands are fetched from the memory and written back to the memory. In

this section, we consider what occurs when a branch instruction is
encountered.

As stated in Section 4.2.1, when the instruction fetcher of the MAP
reaches the end of a block, it checks whether the instruction is a

69

branch instruction. If the instruction is a branch, the instruction

fetcher suspends further sequential instruction requests. As with any

other instruction, the instruction fetcher forwards the branch

instruction to the instruction preprocessor where it is handled like any
other instruction. Thus, the branch instruction makes its way to the
OIB and the address generation unit of the MAP eventually encounters the

branch instruction during its normal execution of items from the 013.
If the branch depends on a condition in the CP, a signal must be

received from the CP before the instruction fetcher and the address

generator can resume operation. This signal indicates the success or

failure of the branch. If the branch, however, depends on the value of

an index in the index stack, the branch is resolved immediately since

the MAP requires no interaction with the CP. Thus, if the result of an

index-dependent branch requires executing a new block of instructions,

the instruction fetcher can begin fetching the instructions of the new

block while the CP is performing calculations on the data for a previous
block. The address generator can even begin making data requests for

the new block while the previous block is still executing in the CP.

This feature represents a significant improvement over conventional

branch resolution and prefetch mechanisms in the higher degree of
computation overlap, elimination of most branch wait time, and the
reduction of memory accesses.

At any one time, the CP’s instruction buffer may contain the CP

instructions for more than one instruction block. The OIB in the MAP
must, at the same time, be capable of holding the accessing information

70

and MAP instructions corresponding to the instruction blocks in the CP.

The CP’s instruction buffer and the MAP’s GIB, while they hold
information for the same number of blocks, are not necessarily the same

size. Depending on the program which is running, sometimes the OIB will
be filled to capacity leaving the instruction buffer partially empty and

at other times, the instruction buffer will be filled while the OIB will

have some unused capacity. Monitoring the amount of information held by

both the buffers is the responsibility of the instruction preprocessor

since the instruction preprocessor fills the OIB and forwards CP

instructions to the CP.

When a branch is resolved, there is a chance that the target block
of the branch is already resident in the OIB and the CP’s instruction
buffer. The address generator checks for this situation by comparing

the branch target address against the first address of each block

currently found in the OIB. (Recall that the first address was saved in

the OIB by the instruction preprocessor when the block was fetched.) If

there is a match, the operand specifications and instructions associated

with that block do not have to be refetched since they are already in
the OIB and in the instruction buffer of the CP from the previous time

the block was executed. The address generator can therefore immediately

begin generation of data addresses for the new block. If, on the other

hand, the information for the block is not in the OIB, the instruction

fetcher is signaled by the address generator that a new block must be

fetched. In such a case, the address generator must wait until
instructions and operand specifications for the new block begin to be
loaded into the OIB before it can begin generating operand addresses.

71

Given that the instruction preprocessor has filled the OIB and the

CP instruction buffer with information for the same blocks, x̂ hen the

address generator of the MAP determines whether the OIB contains a

particular block, the address generator can assume that the same holds

true for CP ’ s instruction buffer. Since the CP contains no information

about branch targets, the CP requires help from the MAP to determine

whether the CP contains a block which is the target of a branch.

Therefore, when a branch is resolved, the MAP must signal the CP which
one of the following three branch options the CP should take:

(1) continue repeated execution of the currently executing block,

(2) execute some other block found in the CP’s instruction buffer, or

(3) expect to receive a new instruction block from the MAP. If the

second option is followed, the MAP must additionally specify which of

the CP’s resident blocks the CP should execute. The MAP accomplishes

this signaling by using a one-bit end-of-data signal associated with the

data bus. For each data item the CP receives, the CP checks whether the

end-of-data signal is set.

Normally, the CP is in a loop mode type of operation and expects a

stream of data from the MAP. That is, if the end of the currently
executing block is not a branch which depends on data in the CP, the

execution unit of the CP will re-execute the currently executing block

as long as the CP receives data from the MAP and the end-of-data signal
Is not set. Thus, the first branch option is the default mode of
operation and is signaled by the absence of an end-of-data signal. This

72

mode of operation is especially well suited for executing an instruction

block which operates on an array. Since the number of times such a loop

is executed depends on the size of the array and the value of indices in

the IS, branches will occur in the HAP based on the value in the IS.

The only effect of these branches have on the CP is that data continues
to be supplied to the CP.

If the HAP determines that branch options 2 or 3 are to be

followed, the end-of-data signal is sent to the CP after the last data

item associated with the currently executing block. An end-of-data

signal only informs the CP that a new instruction block is to be

executed; the CP must also be informed if the new block is in the CP's

instruction buffer or if the CP should expect to receive a new block
from the MAP. This information is conveyed by sending data over the

data bus with the end-of-data signal. The value of this data determines

whether option 2 or option 3 is followed. One data value is reserved to

indicate that the CP should expect a new block from the MAP, i.e. follow

option 3. Any other data value is a pointer to a block in the CP's

instruction buffer, i.e. option 2.

The MAP signals the CP by placing the end-of-data signal and the

pointer on the read queue with the receive bit set. The read queue thus
differs from the write queue since an extra bit is needed for the
end-of-data signal. Every time the flow of program execution is
switched to a different instruction block, the switch is accomplished

through use of the end-of-data signal; thus, program execution in the CP

is controlled through the data stream. Using an end-of-data signal in

73

the data stream is a significant departure from the way program flow is
controlled in conventional architectures.

When the CP performs the test for a data dependent branch, such as

searching a list for a key, the MAP ceases prefetching data until the

branch is resolved. This wait time incurred by the MAP is undesirable

when such a test is executed frequently. Instead, the wait time could

be used to prefetch the data for one of the branch targets. If the MAP

prefetches data for a branch target, but the target is not taken, the CP

must be signaled to purge the prefetched data from its buffer. The

end-of-data signal provides a convenient way of disposing of data

wrongly prefetched by the MAP. A reserved data value, sent with the

end-of-data signal, can signal the CP to purge all buffered and incoming

data until the next end-of-data signal. Such a reserved value would be

written by the MAP into its read buffer whenever the MAP continued

prefetching data and received a wrong-way branch indication from the CP.

This signaling capability would be allowed only by specie]. CP branch

instructions whose opcodes would instruct the CP to purge data upon a
wrong-way branch. All data in the CP read buffer is then purged up to

the "purge” end-of-data signal and all following data is purged up to

the next end-of-data signal. Prefetching instructions in such a case
has no purge problem since the next end-of-data signal after the "purge”

end-of-data signal indicates which instruction block to execute next.

The methods for communication between the MAP and the CP are
designed to limit the number of interruptions in execution due to
branching. Branches which depend on data in the MAP may occur many

74

times without interrupting the operation of the CP; therefore, once the
CP has a block of instructions in its buffer, the MAP can keep a stream
of data flowing into the CP.

iL.£ .£. The Computation Processor

We are primarily concerned with the CP as it interacts with the MAP

unit. That is, while the CP contains the ALU and performs the "useful”
computations for a program, designing an ALU is not our goal. We are

more concerned with the way in which the CP deals with the information

it receives from the MAP.

Basically, the CP receives a stream of CP instructions and data

from the MAP and produces data. As pointed out in the preceding
section, the CP’s instruction buffer and the OIB must store at all times

information for the same number of instruction blocks. Since

instruction blocks do not normally have the same length in both buffers,
this requirement may cause empty space in one buffer or the other at
some times. The instruction buffer is a fixed-length FIFO stack similar

to the MAP’s OIB. As the CP receives instructions from the MAP, it

stores them in its instruction buffer, checks for the one-bit,

end-of-block marking, and also makes a beginning-of-block mark. The CP

executes the incoming instructions as soon as their associated data

arrive. As stated in Section 4.2.2, the last data item for a block of
instructions is followed by an end-of-data signal and a value which

either points to another block in the instruction buffer or indicates

that a new block is to be received from the MAP. With such a design,
for the bodies of single block inner loops which fit in the CP buffer,

75

loop mode occurs automatically. If there are a number of short blocks

in a program which are repeatedly used, the CP instruction buffer can

hold these. Switching between execution of these blocks is accomplished

with the end-of-data signal and the value of the pointer sent with the
signal. If the CP has processed the last instruction of a block but has

not yet used any data with the end-of-data signal, it simply re-starts

execution from the beginning of the block. The CP then continues to

execute the buffered instructions in the block repetitively until the
data with the end-of-data signal is received.

The CP only generates two types of items for the MAP. The first is

data which is to be written back to the memory. Since the MAP generates
write addresses for the data and saves them in order in a queue, and the

write data is generated in the same order by the CP, there is no problem

in sending only data without identifiers back to the MAP. The second

item which the CP generates for the MAP is a branch resolution signal

for a branch which is dependent on data in the CP. Since the test for

such a branch is performed in the CP, the MAP may have to wait for a

signal from the CP to indicate the success or failure of the branch.

Although the CP sends this signal, it does not actually know the target

address of the branch. It is thus not really executing a branch
instruction; it is merely reporting the outcome of a test.

The CP also includes a number of data registers. While the SMA

reduces the number of registers needed, it does not eliminate their

usefulness in the CP. The SMA could be designed with no registers in
the CP; however, temporary data values and repeatedly used scalars would

76

frequently need to be written to and reread from the memory. A CP
instruction opcode explicitly indicates whether registers are to be

used. The register names used by an instruction are sent to the CP from

the MAP as immediate operands with the instruction.

JL-iL-JL- Subroutine Calls

The preceding sections presented the features of the SMA machines
which deal with the execution of the main body of a program. These

features can also handle most types of subroutine calls, since a jump to

a subroutine is equivalent to a branch to a block. The use of recursive

calls creates special problems which can be alleviated by providing

special architectural features.

Consider some of the common ways in which subroutines are called in
programs. First, assume that all of the subroutines which are to be

used with a program are compiled with the main program and that none of

the subroutines are recursive. Furthermore, assume that each subroutine
is called from only one place. In such a case, the code for the

subroutine could be inserted in line and no special jumps would need to

be made to execute the subroutine. Such a case is, in essence,
implemented as a macro expansion.

Now, consider the previous case extended to permit a subroutine to
be called from more than one place. Since copies of the subroutine

could exist in several places, one could plant code inline with each
call at the price of wasted space. On the other hand, one could use
less space by compiling a subroutine with the main program, but

77

including an extra value with the subroutine call which indicates the

block from which the subroutine was called. Upon completion, the

subroutine could test this value to select which in a series of return

jumps should be performed. The selected jump would return control to

the proper block. These schemes can each be implemented without an

explicit subroutine call or return instruction. Such is the case if the

exact sequence of blocks to be executed in a program is known at compile
time.

In many cases, however, subroutines are not compiled at the same

time as the main program. Simple jumps cannot then be used for

subroutine calls or returns. Also, general purpose subroutines may be
called from many programs in many different ways; thus at compile time
it is not known to where control is to return. These are some of the

reasons for the introduction of the control stack for subroutine returns

found in many machines. When a subroutine call is made, the place to

which control Is to return is automatically pushed on a control stack.

When a subroutine return instruction is executed, a value is popped from

the top of the stack and placed in the program counter. In this way,
calls and returns from subroutines are handled very neatly. The control

stack may be stored either in the central processor or in the memory.

While having the control stack implemented in the memory is expensive in
terms of execution time, such an implementation does permit the luxury

of a larger stack, thereby reducing control stack overflow problems. To
access a control stack stored in memory, some stack access information,

such as a top of stack pointer is kept in the processor.

78

A further reason for implementing the control stack in the main

memory becomes apparent when one considers the problems associated with

recursive subroutine calls. Recursive subroutines occur in an important

class of algorithms, and many high-level programming languages permit
recursion. Because of the popularity of recursive algorithms, computer

architects have introduced hardware mechanisms for their support. These

mechanisms could be duplicated in software; however, this involves

substantially more overhead in terms of time than having the hardware

mechanisms available. Having the control stack in the memory permits

using the stack as a convenient place to store passed parameters, and
local variables, as well as return pointers.

The SMA uses a control stack for handling subroutine calls. This
is done by providing a stack pointer (SP), frame pointer (FP), and an

argument pointer (AP) similar to the VAX system. These pointers are

maintained in the MAP and MAP instructions are provided to access the
pointers along with push and pop operations for the SP.

JL.3.. A Sample SMA Program

To clarify the operation of the SMA, consider the following small

section of code:

V: for i := 1 to n do
W: for j := 1 to n do
X: C[i,j] := 0;
Y: for k : = 1 ton do
Z: C[i,j] := C[i,j] + A[i,k] * B[k,j3;

This program segment performs the matrix operation C = AxB, where A, B,

and C are each nxn matrices. This program segment demonstrates how the

79

SMA machine handles several levels of nesting and a repeated inner loop

reference of a data structure item. For this program to run on the SMA

machine, consider the information which must be resident in the MAP.

The index template table, loaded by a MAP instruction, only needs one

entry of 1,n,1 since all the setup index instructions in this program
can use the same template.

The AIT and APT entries for our sample program are shown in Figure

4-4. As stated in Section 4.1.3? the AIT contains the information
needed by the MAP to generate addresses for the three data structures

used in this program. There is a base address entry for each data

structure and a displacement for each data structure's second dimension.

Since all the data structures are only 2 dimensional, the third

dimension displacements are zero. The last three values of each entry

are the upper bound limits for the corresponding dimension. The

matrices in the sample program are each nxn, thus the first and second

dimension upper bound entries are both n. Since the matrices are only 2

dimensional, the third dimension upper bound is set to 0.

The information in the APT indicates how indices are to be used to

generate operand addresses. To generate APT entries, the compiler must
keep track of the indexing level of each program index. In our example,
the index i is at level 1, the index j is at level 2, and the index k is

at level 3. Furthermore, only three different pairs of indices, (i,j),

(i,k), and (k,j), are used in the program. To use these indices, the
APT entries are as shown in Figure 4-4.

80

Access Pattern Table

Entry 1st Dimension 2nd Dimension 3rd Dimension
index
Level Offset Index

Levei Offset Index
Level Offset

1 1 +0 2 +0 0 +0
2 1 +0 3 +0 0 +0
3 3 +0 2 +0 0 +0

Access information Table
Entry

1 2 3
Base Address A—base B—base C—base
2nd Dim. Dlspl. n n n
3rd Dim. Displ. 0 0 0
1st Dim, UB n n n
2nd Dim. UB n n n
3rd Dim. UB1... 0 0 0

Figure 4-4. The access pattern table (APT) and the
access information table (AIT).

81

The AIT is loaded by the MAP "load AIT" instruction. The AIT
entries are loaded one at a time and one load AIT instruction must be

executed for each entry. The load AIT instruction has two operands and

operates in two modes. For both modes, the first operand is the number

of the AIT entry which is to be changed. The second operand is the base

address for a data area which contains the AIT information. For each

entry, a load AIT instruction will generate more than one memory access
since an AIT entry is more than one word long. Since it is assumed that

an AIT entry is composed of a fixed number of sequential words and the

second operand of the instruction is the base address for the entry

information, the MAP can generate the proper number of sequential

addresses to fetch an AIT entry from the memory. The two modes of

operation treat the second operand as a direct base address for the AIT
entry information or as an indirect address which points to a memory

location whose contents are the base address for the AIT entry

information. The direct mode is useful for the loading of information

about global data structures, while the indirect mode is useful when

call by reference of data structures is desired for passing parameters

to subroutines. The indirect mode, of course, involves substantial

overhead in time, since one indirect reference requires two memory
accesses.

The APT is loaded by the MAP "load APT" instruction which is
exactly the same as the load AIT instruction, however it loads the APT

instead of the AIT. The index template table is loaded in the same way
as the AIT and APT, using its own "load TMP" instruction. To load the

8 2

APT, the AIT, and the index template table in the sample program,

indirect addressing mode is not needed since the information in the

tables is local to the currently executing code segment.

Let us assume that the APT and AIT entries are stored contiguously

in memory and that each APT entry requires 3 words of space and each AIT
entry requires 6 words. If the first entry of the APT is at location

100, entries 2 and 3 are at locations 103 and 106 respectively. Entries

1, 2, and 3 of the AIT are then in locations 109, 115, and 121,

respectively. Also, we assume that the template is initially stored in

memory location 127.

An assembly language listing for this example is found in Figure
4-5. The listing gives the SMA instructions and their memory locations.
To the left of the column labeled "Instruction Location" are labels

which correspond to statement labels in the source program. The entries
in the "Comments" column indicate whether an instruction is for the CP

or the MAP and whether the instruction is the end of a block (EOB).

Where operands are required, each operand is represented by a set of

numbers in parentheses. The first number is the operand type. Operand

type 1 is immediate, while a data structure is of type 2. The second

field for immediate operands is the value of the operand. For the data
structure operands, the second number is the AIT entry while the third
number is the APT entry.

The instructions at locations 1 through 3 load the APT while the

instructions at locations 4 through 6 load the AIT. The index template

table is loaded with the instruction at location 7. For each of these

83

Instruction
Location instructions Comments

1 LDAPT (1.1) (1,100) MAP
2 LDAPT (1,2) (1,103) MAP
3 LDAPT (1,3) (1,106) MAP
4 LDA1T (1,1) (1,109) MAP
5 LDAIT (1,2) (1,115) MAP
6 LDAIT (1,3) (1,121) MAP
7 LDTMP (1,127) MAP

V: 8 SET-UP (1,1) EOS, MAP
W: 9 SET-UP (1,1) EOB, MAP
X: 10 CLR (2,3,1) CP
Y: 11 SET-UP (1,1) EOB, MAP
Z: 12 MUL3 (2,1,2) (2,2,3) (1,1) CP

13 ADD 2 0.1) (2,3,1) CP
14 INCR (1.3) (1.12) (1,15) EOB, MAP
15 I NCR (1,2) (1,10) (1,16) EOB, MAP
16 !NCR (1.1) (1.9) (1,17) EOB, MAP
17 STOP EOB, MAP

Figure 4-5 Sample SMA program listing.

84

instructions, immediate operands are used. Thus, the instruction at
location 1 loads entry number 1 of the APT with the information found at

memory locations 100, 101, and 102. The instructions at locations 8 and

9, respectively, setup the i and j indices on the index stack. Since
the setup command references the index template table, its operand is an

immediate operand and simply points to an entry in the table. For our

program, entry one is always used.

The instruction at location 10 sends a zero to C[i,j]. As

indicated by the 2 in the operand specification, this is the first

instance a data structure reference is made. This operand specification

indicates that a data structure is to be accessed and that entries 3 and

1 of the AIT and the APT are to be used, respectively. Instruction 11
sets up index k, again using the first entry of the index template

table. The multiply instruction at location 12 multiplies two operands
and places the product in a register. The first two operand
specifications indicate that data structures are to be accessed while

the final operand specification is an immediate value of one. An
immediate operand may be used either as a register tag pointing to the

register from which an operand value is to be obtained, or it may be the

value of the operand itself. The distinction between these two uses of

an immediate operand (register tag or immediate value) is coded in the
opcode. In this case, the multiply instruction is coded so that the CP
treats the immediate operand as a register tag pointing to register 1.

The following add instruction forms the sum of a register and a second

operand and places the result in the second operand. The first operand

85

is an immediate operand specifying register 1, while the second operand

specifies the data structure. Instructions 14 through 16 are increment

instructions. The increment index instruction takes three operands; the

first operand is the index level to be incremented. The increment index
instruction not only increments the index, but also checks whether the

final index value has been exceeded and performs a branch. If the final

value is not exceeded, the second operand is used as the target of the

branch. If the final value is exceeded, the third operand is used as

the target of the branch.

In the sample program, there are 7 instruction blocks, as seen from

the number of EOBs. Since the MAP’s OIB and the CP instruction buffer

hold information for the same blocks, when the OIB contains the MAP

instructions and operand specifications for instructions 9-16, the CP

contains instructions 10, 12, and 13.

When executing a block which does not require input data, the CP

does not go into loop mode. The CLR instruction, at location 10, is an

example of such a block. In such a case, the CP always waits for an

end-of-data signal from the MAP to indicate whether to repeat execution
of the block or to execute a new block.

The MAP only sends an end-of-data signal to the CP if there is at

least one CP instruction in the destination block. Since the MAP

contains all operand specifications and since every CP instruction has

at least one operand specification, the MAP can determine the existence

of a CP instruction in a destination block by checking its OIB.
Whenever the MAP encounters an end-of-block, the MAP constructs an

8 6

end-of-data signal. Unless there is at least 1 CP instruction in the
destination block, the signal is not sent to the CP. If a CP

instruction is not found, the MAP instructions of the destination block

are executed until the next end-of-block is encountered. A new

end-of-data signal then replace the previously constructed end-of-data

signal. Thus, several end-of-blocks may be found before an end-of-data

signal is actually sent to the CP.

When our sample program is executed, instructions 1 through 9 are
executed with no CP-MAP interactions. During this time, the CP is idle,

waiting for an end-of-data signal. That signal is setup when

instruction 9 is executed since instruction 9 is the end of a block.

After 9 is executed, the MAP determines that the block containing
instructions 10 and 11 contains a CP instruction. Thus, the end-of-data
signal is sent to the CP indicating that the block beginning at

instruction 10 is to be performed. Notice that although instruction 8
is the end of a block, no end-of-data signal is sent to the CP, since

its target block (i.e. instruction 9) does not contain a CP instruction.

After the CP executes instruction 10, it will try to enter loop
mode, i.e. try to re-execute the block containing instruction 10.

However, since this a block does not require input data, the CP enters

in an idle state, waiting for an end-of-data signal. This end-of-data

signal is generated in the MAP at instruction 11 and instructs the CP to

execute instructions 12 and 13* Since the first instruction of the
block (instruction 12) takes an input operand, the CP will execute these
two instruction repeatedly until it encounters an end-of-data signal.

87

On the nth iteration, instruction 14 constructs an end-of-data signal.

However, the target of the branch is now the block containing

instruction 15. Since that block does not contain a CP instruction,

this end-of-data signal is not sent to the CP. Instruction 15 also
constructs an end-of-data signal. Unlike instruction 14, the first n-1

times instruction 15 is executed, an end-of-data signal is sent to the

CP, instructing it to execute the block containing instruction 10.

Execution from instruction 10 proceeds as previously described,

thOn its n “ execution, instruction 15 does not send an end-of-data

signal since its successor block only contains instruction 16, a MAP

instruction. The end-of-data signal constructed by instruction 16 is

not sent to the CP since both of the instruction 16’s successors are
blocks which contain a no CP instructions. The first n-1 times

instruction 16 is executed control is transferred to instruction 9.

From instruction 9, execution proceeds as described above. On the nti:1

iteration of instruction 16, control is transferred to instruction 17,

and the MAP halts. At this point, the CP is in an idle state, awaiting

an end-of-data signal to indicate which block it should execute next.

The next end-of-data signal will instruct the CP to begin a new code
segment.

From Figure 4-5, one can see that most of the instructions are for

the MAP and not quite half of the program is the setup of the MAP

tables. While the use of these tables requires some extra initial time,
they reduce the number of instructions in the inner loop of the program.

As the matrix size increases, the proportion of execution time spent in

8 8

the inner-most loop also increases. Thus, the time to perform
instructions 1 through 7 tends to become insignificant.

Instructions 12 through 14 correspond to the inner-loop of the

program. These represent 3 instructions, 2 CP instructions and 1 MAP

instruction, and 4 operand accesses to memory. If one unit of time is
required for the execution of each instruction, for the generation of

each operand addresses, and if for each memory access and the CP and the

MAP achieve overlapped execution, then the MAP utilization would be 1 (4

operands and instruction 14) the CP utilization would be 2/5, and the

memory bus utilization would be 4/5. This situation seems to indicate a

poor utilization of the CP. One must keep in mind, however, that this
poor utilization only exists if the CP, the MAP, and the memory operate
under the time constraints given above. Under such constraints the MAP

is the bottleneck of the system for this program. Due to the

repetitive, simple, and regular nature of the operations performed by
the MAP, we believe that the MAP can be designed, using pipelining
techniques, so that the time taken to generate an operand address or
execute a MAP instruction is significantly less than the time needed to

execute a CP instruction and that a proper balance for executing real

programs can be achieved.

89

CHAPTER 5

SMA EVALUATION

This chapter evaluates the effectiveness of the SMA machine in
reducing addressing overhead by comparing an SMA machine's performance
to that of a VAX with respect to three algorithms. Two of the

algorithms are written in FORTRAN while the third is written in PASCAL.

From the high-level program source, each program is compiled into

assembly language for a VAX running the UNIX operating system and for a

hypothetical SMA machine. To compile a FORTRAN or PASCAL program into

SMA assembly language, the VAX assembly listing is modified only with

respect to the way data referencing occurs. That is, when a matrix is

being accessed, SMA instructions are added to setup the indices for the

matrix and to increment these indices. These SMA instructions, however,

eliminate the need for some of the variables used and calculations

performed by the VAX. Care is taken not to give either machine any

special advantages. Thus, the code produced for the SMA by this

transformation of VAX machine code is not hand optimized no any extent.

The algorithms used for comparison are a Gaussian elimination
(GAUSS), an eigenvalue-finding algorithm (EIGEN), and a quicksort
algorithm (QSORT). GAUSS is a FORTRAN program from IBM's SSPS package

of subroutines [SSPP68], while the eigenvalue-finding program is from
the Eispack subroutine package [Smit?4]. Specifically, the GAUSS

program is the SIxMQM routine. For the EIGEN program, the kernel

routine, HQR was selected. QSORT uses a recursive algorithm taken from
Horowitz and Sahni [Horo76].

90

For each of the programs, the instruction blocks are identified

from the high-level source. Figure 5-1 is a diagram of the control flow

for GAUSS in terms of instruction blocks. In the case of GAUSS, only

two of the branches are probabilistic in the sense that they are truly

data dependent. Each of the other branches in the program are

determined by the value of an index. These and the unconditional

branches are handled very well by the MAP of the SMA machine.

The control flow for EIGEN is more complicated than that for GAUSS
and involves 61 instruction blocks. Although a diagram of EIGEN’s

control flow is not shown, it has 7 inner loops and contains 24

probabilistic branches. In any case, the control flow for GAUSS, as
well as EIGEN, is identical on both the VAX and the SMA machine.

As seen from Figure 5-2, this is not the case for QSORT. The SMA
version of QSORT has more blocks than the VAX version because indices
and access tables must be setup before the loop of blocks 4,4a and 5,5a

can be executed. Unlike the GAUSS program, most of the branches are

data dependent. Blocks 4 and 5 of the VAX version, which perform

similar functions, are each split into two blocks for the SMA version.

The data dependent branches which cause possible loop back in blocks 4

and 5 of the VAX version correspond to the branches at the end of blocks
4 and 5 of the SMA version. Blocks 4a and 5a of the SMA version each

consist of a single increment index instruction. This instruction
causes a branch back to make the data dependent branch.

93

In the VAX version, the increment of the index is done within the body
of blocks 4 and 5.

Another way in which QSORT differs from the other two algorithms is

in the use of recursion in the algorithm and the use of a subroutine

call. The subroutine calls to block 11 are indicated by the dashed line
from blocks 7 and 9. The subroutine returns are represented by the
dashed lines from block 11 to blocks 7a and 9a. The two recursive calls

of QSORT are indicated by the dashed lines leaving blocks 9a and 9b and

entering block 1. The return from a recursive call occurs at block 10.

Depending on the origin of the call to the current iteration of this

recursive procedure, control returns either to block 9b or to block 9c.

If the recursive call occurred from block 9a control returns to block

9b; if from 9b control returns to 9c. The deterministic nature of

selecting successor blocks for block 10 is not explicitly shown in

Figure 5-2. The overhead for recursion in both machines is roughly the
same.

jjL.JL. Number of Memory References Generated

The results of a static analysis of the programs are shown in Table

5-1. For each program on both machines, the number of access patterns,
the number of distinct data structures, and the number of data structure

references are the same. As pointed out above, the number of
instruction blocks differed only for the QSORT program. The number of
distinct data structures found in GAUSS and EIGEN differ from the number

shown in Table 2-3 because the source programs used for the evaluation
in this chapter are different from the programs analyzed in Chapter 2.

94

Table 5-1. Statistics from a static analysis of GAUSS, EIGEN, and QSORT.

Number of
GAUSS EIGEN QSORT

VAX SMA VAX SMA VAX SMA

instruction blocks 19 19 61 61 14 18
distinct scalars 16 6 36 23 8 8
distinct data structures 2 2 3 3 1 1
access patterns 1 1 11 19 19 1 1
instructions 123 50 534 251 68 59
data references 84 40 446 319 61 62

scalar references 62 13 386 251 54 53
data structure references 22 22 60 60 7 7
index references 0 3 0 8 0 2

Except for QSORT, the greatest difference among the programs is the
number of instructions and the number of scalars and scalar references.

In the SMA version, GAUSS and EIGEN require fewer than half the

instructions needed in a VAX version. When counting the SMA instruction
MAP instructions are also included in the total number of instructions.
That is, a MAP instruction like setup is counted as the total number of

instructions for a program. The difference in the number of data

references between the VAX and the SMA versions for GAUSS is as dramatic

as the difference in the number of instructions. The difference between

the number of static data references to memory for the VAX and the SMA
versions of EIGEN is not as large; nevertheless, the SMA makes only

approximately 75% of the data references of the VAX version. Since the

95

VAX and the SMA versions of GAUSS and EIGEN each make the same number of

data structure references, the difference in data referencing is due to

the scalar references. The SMA programs have fewer distinct scalars

than the VAX programs; thus, for GAUSS and EIGEN, the VAX programs not

only have more scalars but also need more instructions to operate on

these scalars.

The static analysis of QSORT reveals a less pronounced difference

between the VAX and SMA versions. While the SMA version uses 9 fewer
instructions than the VAX version, the number of data references

actually increases by 1. Also, the number of distinct scalars is the

same for both versions.

The differences found in the static analysis translate directly

into substantial differences in the dynamic count of the number of

memory references for each program. To obtain this dynamic count for
GAUSS and EIGEN, the number of memory references generated by each block

is calculated as a function of n, the matrix size. For data dependent

branches, successors are chosen to produce a path with the largest
number of instructions and data references. Therefore, this a worst

case dynamic memory reference analysis. In this analysis, it is also
desirable to see what effects loop mode has on the number of data

references. Thus for each machines there are two cases: one with loop
mode and one without loop mode. Instead of giving the VAX and the SMA
machine the same size loop buffer and comparing them with respect to

that buffer size, it was deemed fairer to Gompare the two machines given
that they had a loop buffer large enough to hold the same number of

96

inner loop blocks, regardless of the difference in size between these
blocks. Thus, in the case of the GAUSS program, blocks (n, i’, j?)j

blocks (q, k !, r), and blocks (c, d, 1) were considered inner loops for

loop mode execution. To hold each set of these blocks in a loop buffer,
the VAX would need to provide a buffer of 24 instructions, while the SMA

would need a buffer of only 8 instructions.

For QSORT, a dynamic analysis is not as straightforward as for

GAUSS and EIGEN, since (1) the order of elements in the list to be

sorted critically effects all calculations and (2) the routine is

written recursively. Fortunately, Knuth [Knut73] gives an analysis of

the number of times sections of a QSORT algorithm are executed as a
function of n, the length of the list to be sorted, The algorithm
presented by Knuth differs from the algorithm we use in that a linear
insertion sort is not used here when the size of the partitions becomes

small. To reflect this, the parameter M of the execution time

parameters was set to 1; thus, the results given for QSORT are only

valid for lists of length greater than 3.

For loop mode on the VAX version of QSORT, the loop buffer was
assumed to be large enough to hold either block 4 or block 5. Such a

buffer would require 7 locations for instructions. The corresponding
blocks in the SMA version are (4,4a) and (5,5a). The loop buffer to

hold one or the other of these sets of blocks would have to be only 3

instructions long.

Table 5-2 shows the equations used for calculating the number of
times instructions, scalars, and data structures are referenced when the

97

Table 5-2. Dynamic counts of instructions, scalars, and data
structures as a function of n for GAUSS, EIGEN,
and QSORT. (hfl ±3 the sum from i=1 to n of 1/i)

VAX SMA

GAUSS

inst. •“^n3 + 20n2 + -l™n + 4 ^ n 3 + 15n2 + I n + 4
0 5

scl. “ n3 + 11 n2 + -lln + 10 In2 + lln + 1

ds. + 7n2 + lln -̂ n3 + 7n2 + lln

EIGEN

inst. 7 1 5 0 “* - 3014n2 + 3695n + 1 9 9 1 27 On3 - 1135n2 + 1597n + 1056
scl. 365n3 - 1 5 1 On2 + 2742n + 1722 205n3 » 9 6 n^ + 1 7 8 1 n + 1 1 7 6

ds. 115 n3 + 74n2 + 257n + 90 115n3 + 74n2 4* 257n + 9 0

QSORT

inst. ~ (n + 1)(hn) , 565n - L5|5 5f(n + U(hn) - Ifln- 86|

scl.
^ < n - 1)(hn) - ^5r. - m -2|(n + Ddin) - ^|n - ii|

ds. 1-|(n + 1)(hn) . IgSn - 12| l|(n + 1)(hn) - M n -

98

each program is executed. The equations for the number of instructions

are generated by first multiplying the number of instructions in a block

by the number of times a block is executed as a function of n. The

products formed for each block are then added together to obtain the

total number of dynamic instruction references. The equations for
scalars and data structures are found in a similar manner. As one might

expect, the number of data structure references made by the VAX and the
SMA are identical for each program. Comparing the dynamic counts for

scalars, one can see that significant differences occur, especially for

GAUSS. These differences can be seen more clearly when the total number
memory references is plotted versus n.

Figure 5-3 gives a dynamic count of the number of memory references
required by the GAUSS program for a VAX arid SMA machine with and without

loop mode as a function of n. For the GAUSS program, the SMA machine
always makes fewer memory references than the VAX, even if the VAX has a
loop mode. The number of memory references needed by an SMA machine

running the GAUSS program on a 100 x 100 matrix is only 20% of the
number of memory references made by the VAX without loop mode.

The results for a dynamic analysis of EIGEN are shown in Figure 5-4
and are similar to the results for GAUSS. For EIGEN, the buffers needed
to hold the important loops are substantially larger than in the case of

GAUSS. The VAX requires a loop buffer of 50 instructions, while the SMA

needs only a loop buffer of 26 instructions. The SMA machine without

loop mode generates approximately the same number of memory references

as the VAX with loop mode. For the EIGEN program operating on a 100 x

L_o
c?

b 8
.s
©

1 Id
 o

"f
th

e
nu

mo
© r

 o
■?

ms
mo

ry
 r

et
 g
rs

nc
ss

vo
V O

Figure 5-3- Log of the number of memory references for GAUSS
for an nxn matrix.

Figure 5-4. Log of the number of memory references for EIGEN
for an nxn matrix. oo

101

100 matrix, the SMA with and without loop mode makes only 30.5$ and

47,2$, respectively, of the references made by the VAX without loop
mode.

As shown in Figure 5-5, the results of a dynamic count of the

number of references made by QSORT are quite similar to those of EIGEN.

This is a little surprising given the similarity of the static counts

for VAX and SMA on QSORT, While the SMA QSORT has slightly fewer

instructions and a few more instruction blocks than the VAX QSORT, the

number of scalar references is almost identical. The reason the SMA

version performs better lies in the way its instructions are distributed

among the instruction blocks. Since the SMA QSORT has more instruction

blocks, some of the instruction blocks must have fewer instructions than
the corresponding blocks in the VAX QSORT. The blocks which are

executed most frequently, that is the inner loops, are the ones which

are most reduced in instruction count. Also the number of memory

accesses for operands is reduced in these blocks. So, while an SMA

program may generate extra blocks for the initialization of access

mechanisms, this overhead is counter-balanced by the reduced amount of
time spent in the inner loops.

AH Estimate of. Relative Performance

Part of a program’s execution time is spent fetching instructions
and data from the memory, while the remaining portion of the execution

time is spent computing. The amount of time spent in obtaining

information from the memory is determined by the effective memory cycle

time. The amount of time required to perform computations is also fixed

og
 b

as
e

10
 o

f
th

e
nu

mb
er

 o
f

me
mo

ry
 r

ef
er

en
ce

s

Figure 5-5. Log of the number of memory references for QSORT
for a list of length n.

102

103

for a particular system. Since both of these are fixed, execution time

can only be reduced by overlapping memory accesses with computations.

If memory accesses completely overlap computations, the execution time

for a program would be the number of memory references multiplied by the
memory cycle time. This quantity is the fastest a program could
execute.

Due to complex CP instructions, resource conflicts, data

dependence, conditional branches, and other synchronization problems, it

is not generally possible to overlap all of the computation time with

memory referencing activity. Thus, the execution time of a program is

the total amount of time spent referencing memory plus some amount of

unoverlapped computation time. We call this unoverlapped computation

time the computational overhead. A portion of this computational

overhead can be allocated to each memory reference, permitting the
execution time of a program to be expressed as:

T = M (1 /v + c)

where M is the number of memory references, c is computational overhead,

and the term 1/v is the amount of time needed per memory access. Thus,

the total execution time of a program is the number of memory references
multiplied by the sum of the amount of time needed per reference and the
amount of computational overhead per memory reference. The variable v

is the memory bandwidth and is included as a parameter so that

comparisons can be made between machines whose memory speeds differ. A
larger v represents a faster memory and, therefore, a reduced memory

104

access time. If the memory is interleaved, v takes the interleaving

factor into account. As the degree of interleaving increases, so does

the value of v. The same algorithm executed on different machines will

yield a different execution time because the term M will vary from
machine to machine, as will the term c. To compare two machines that

have the same memory bandwidth, v is set to 1 and the terms c and M mu3t

be given.

The computational overhead, c, is difficult to measure. It varies

from one program to another and also from one machine to another. This

difficulty occurs because c averages together such machine dependent

functions as the degree of overlap, the speed of functional units, the

latency in execution pipelines, and the dependencies in the programs.

Thus, different models of even the same machine will have different

values of c. The value of c is also a function of the memory bandwidth

v. An increased memory bandwidth can be equated to a faster memory or
reduced effective memory access time. As memory access time decreases,

less computation time can be overlapped with memory accesses, causing c

to increase. The degree to which c is affected by v depends on the
particular machine-memory pair. Sven if c could be accurately measured
for a particular machine and memory, any comparisons using c would only

be valid with respect to that machine coupled with that memory. In our

case, we would like to compare the performance of an SMA machine with

that of a conventional machine. Since an SMA or conventional machine

can be designed many different ways and since each design can have a
different value of c, c is treated as a parameter in our comparisons of

performance.

105

The performance of a machine is given by the inverse of the

execution time. For comparison, we decided to look at the performance

of conventional machines and an SMA machine for c ranging from 0 to 2

and for v taking on values of 1, 2, 4, and 8. The computational

overhead is in units of memory cycle times per memory reference, as is

the term 1/v. The factor M is given by an analysis of the program to be
run. For comparison, we use the number of memory accesses generated by

the GAUSS and EIGEN programs run on a 100x100 matrix and the QS0RT

program run on a list of 100 elements. To aid in comparing one machine

with another, performance is normalized to the performance of a

conventional machine with no computational overhead (c=Q) and a memory
bandwidth of one (v=1).

The results of calculating this normalized performance for GAUSS

are shown in Figure 5-6. Machines with and without loop mode are
treated separately because the presence of loop mode affects the number

of memory accesses required by the program. With a loop mode, those

blocks which can be stored in the instruction buffer and which loop upon

themselves only generate instruction references to load them into the

buffer prior to the first loop iteration. Once loop mode is
established, memory requests for the instructions of the loop are not
needed.

Each vertical line of the graph represents the relative performance
of a machine with a particular memory bandwidth and with the

computational overhead ranging from 0 to 2. Therefore, a conventional

106

50
40
30
20

10

1/T 5
V T n

:Q

c=1

c=2 -

0.5

1 2 4 8 j 1 2 4 8
no loop w / loop

conv. machine
1 2 4 8 1 2 4 8 v
no loop w / loop

SMA machine

Figure 5-6. Normalized performance for GAUSS, (v = memory bandwidth,
c = computational overhead, T = run time)

107

machine with no loop mode, v=1 , and c=1 performs half as well as the
same machine with c=G. In other words, the v=1 machine with c=1 would

require approximately twice as much time to run a Gaussian elimination

program on a 100 x 100 matrix as the machine with c=0. At the other
extreme, a c=0 SMA machine with loop mode and a memory bandwidth of 8

would perform approximately 42 times better than the base machine:

conventional, no loop, v=1, and c=0.

The normalized performance for EIGEN and QS0RT are shown in Figures

5-7 and 5-8, respectively. When one compares the base machine to an SMA

machine running EIGEN and QS0RT, the performance improves greatly but

not as dramatically as for Gaussian elimination. From the figures, one

can see that for a given memory bandwidth, a conventional machine with
loop mode and an SMA machine without loop mode perform almost equally as

well. Furthermore, performance is sensitive to changes in computational

overhead, especially when c varies from 0 to 1. Different machines

should not simply be compared with the same value for c.

108

1/T

1/T

50
40
30
20

10

0.5

c=0
c = 1 +

c=2

T

1 2 4 8 1 2 4 8
no loop w / loopconv. machine

2 4 8 1 2 4 8 v
no loop w / loop

SMA machine

igure 5-?. Normalised performance for EIGEN, (v = memory bandwidth,
c = computational overhead, T = run time)

109

50
40
30
20

V T n

c=Q
c ™ 1

.==o

T

u

10

0.5

T

1

1 2 4 8 , 1 2 4 8
no loop w / loop

conv. machine
1 2 4 8 ! 1 2 4 8
no loop w / loop

SMA machine
v

Figure 5-3. Normalized performance for GS0RT. (v = memory bandwidth
e = computational overhead, T = run time)

1 1 0

CHAPTER 6

CONCLUSIONS

&.JL. -Sumsry. of ,R.esu.lM

Due to the von Neumann bottleneck, a feature inherent in

conventional machine design, inefficiencies exist in the way address

generation is performed in most conventional machines. The studies

cited in Chapter 2 confirm the existence of this bottleneck. The
research presented here has studied the addressing process to discover

where the addressing inefficiencies lie and how they can be reduced.

An extensive analysis of some program address traces was performed

to quantify the types of phenomena which occur in the address stream.

Using this analysis, we can automatically deduce a program’s data and

control structure from a reference trace. No other information or

intuition is required. These structures correspond directly to
structures which can be found in the high-level language versions of the
programs. The types of control structures found in the traces indicate

the types of features which should be included in a machine designed to

generate memory references efficiently.

The proposed Structured Memory Access (SMA) machine contains

features to reduce substantially the addressing overhead found in the

execution of a program. The SMA machine is divided into two different

types of processors: a computation processor (CP) and a memory access
processor (MAP). As their names imply, the CP is responsible for the

1 1 1

useful computations of the system, while the MAP generates all the

memory references for a program. Thus, the MAP performs all

transactions with the memory and passes instruction opcodes and data to

the CP. The SMA machine reduces addressing overhead by providing
special access mechanisms in the MAP to generate references efficiently
for blocks of instructions and several data types. The storing of

bounds information permits bounds checking to occur automatically in

hardware when data structures are accessed. Because of the system’s

organization, the CP and MAP can operate relatively independently of one

another. In particular, prefetching of instructions and data is an
inherent feature of the SMA machine.

The operation of the MAP and its interactions with the CP were

discussed in some detail as were the types of access mechanisms which

reside in the MAP. Some attempt was made to keep the discussion at such

a level so as not to be distracted by implementation details which have

no fundamental effect on the SMA machine’s architecture. The machine’s

ability to reduce addressing overhead was then evaluated. A comparison

was made between a hypothetical SMA machine and a VAX-like machine with

respect to the number of memory references generated by a set of

programs. Depending on the program, the SMA machine reduced the number
of memory references to between 1/5 and 2/5 of those required by a
conventional VAX.

The performance of the SMA machine was then evaluated. A machine’s

performance was parameterized by the memory bandwidth and the

computational overhead. It was found that performance is very sensitive

1 1 2

to these parameters; however, an SMA machine performs significantly

better than a conventional machine with the same parameters.

Suggestions for Future EeseaxfJl

This research primarily considered the accessing patterns found in

the accessing of arrays. While arrays represent a large and important

class of data structures, there are other types of data structures which

are used regularly by programmers. Two frequently used data structures

are linked lists and binary trees. The addressing overhead involved in

accessing these data structures has yet to be investigated.

The SMA implementation which is discussed in Chapter 4 has the
instruction fetcher checking every instruction for an end-of-block.
Thus, a memory request for the next instruction is not made until the
current instruction has been received by the instruction fetcher. If

the MAP could be given the starting address and the block length of

successor blocks, accessing of instructions could made block-oriented
instead of instruction-oriented.

In the performance evaluation which was presented, performance was
parameterized by the computational overhead and memory bandwidth. Since

performance is very sensitive to computational overhead, detailed
simulations should be performed to quantify the computational overhead

of a system, as other system parameters vary.

The MAP of an SMA machine is required to perform all address

generation. In order to distribute this work, investigations should be
made of the types of access mechanisms which could be stored with a data

113

structure. These mechanisms could then be incorporated within the
memory where a particular type of data structure is stored. Moving MAP

functions into the memory could lead to intelligent memories and the

partitioning of the memory into several specialized memory units. Each
specialized memory unit would be an expert at referencing a particular

type of data structure. One approach to improving the performance of

the MAP effectively would be to use multiple MAP units. Investigations
should be made into the feasibility of using not only multiple MAPs but

also using multiple CPs.

[Amdl64]

[Ande67l

[Burk46]

[Cohl81J

[HainII177s^

[H

[H o r o 7 ^ 1

[Kapl73l

114

R e f e r e n c e s

G. M. Amdahl, G. A. Blaauw, and F. P. Brooks Jr., "Archi
tecture of the TBM System/R60." IBM Journal of Research
and Development, Vol. 8, No. 2, April 1964, pp. 87-97.

D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "The
IBM System/360 Model 91: Machine Philosophy and
Instruction-Handling.," IBM Journal o f Research and
Development. Vol. 11, No. 1, January 1967, pp. 8-24.

A. W. Burks, H. H. Goldstine, and J. von Neumann, "Prelim
inary discussion of the logical design of an electronic
computing instrument," Army Ordanance Department Re
port, 1946. Reprinted in Bell and Newell (1971), PP* 92-
119.

E. U. Cohler and J. E. Storer, "Functionally Parallel Ar
chitecture for Array Processors," Computer. September,
1981, pp. 28-36.

D. W. Hammerstrom and E. S. Davidson, "Information Content
of CP Memory Referencing Behavior," Fourth Annual Symposi
um on Computer Architecture. March 1977, pp. 184-192.

B. W. Hammerstrom, "Analysis of Memory Addressing Archi
tecture," Tech. Report R-777, Coordinated Science Lab.,
Univ. of Illinois, Urbana, IL. July 1977-

E. Horowitz and S. Sahni, The Fundamentals of Data Struc
tures. Computer Science Press, Inc., 1976, pp. 347.

K. R. Kaplan and R. 0. Winder, "Cache-based Computer Sys
tems" Computer. Vol. 6, No. 3, March 1973, PP*30-36.

D. E. Knuth, The Art of Computer Programming. Volume
R:Sorting and Searching. Reading, Mass.: Addison-Wesley,
1973, PP. 114-123.

D. J. Kuck, The Structure of Computers and Computations. [Kuckf Vol# ^ jQhn Wiley & SonSj 1g78>

[Ples81]

[PDP75]

[Rama77l

[R u s s 7 8]

[Smit74J

[Smit78]

[Smit82]

[SSPP68]

[Ston80]

[VAX80]

[Wats7 2]

115

A. R. Pleszkun, B. R. Rau, and E. S. Davidson, "An Address
Prediction Mechanism for Reducing Processor-Memory Address
Bandwidth,if Proc. 1981 IEEE Workshop on Computer Architec
ture for Pattern Analysis and Image Database Management,
Nov. 11, 1981, pp. 141-148.

PDP11 Processor Handbook. Digital Equipment Corporation,
1975.

C. V. Ramamoorthy and H. F. Li, "Pipeline Architecture,"
Computing Surveys. Vol. 9, No. 1, March 1977, pp. 61-102.

R. M. Russell, "The CRAY-1 Computer System," Communica
tions of the ACM, Vol. 21, No. 1, January 1978, pp. 63-72.

B. J. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C,
Klema, and C. B. Moler, Lecture Notes in Computer Science.
Volume Matrix Eigensystem Routines - EISPACK Guide.
Springer-Verlag, 1974.

A. J. Smith, "Sequential Program Prefetching in Memory
Hierarchies." Computer. December 1978, pp. 7-21.

J. E. Smith, "Decoupled Access/Execute Computer Architec
tures," Ninth Annual Symposium on Computer Architecture.
April 1982, pp. 112-119.

1130 Scientific Subroutine Package Programmer'a Manual.
International Business Machines Corp., 1968, p. 115.

H. S. Stone, Introduction to Computer Architecture. Sci
ence Research Associates, Inc., 1980.

VAX11/780 Architecture Manual. Digital Equipment Corpora
tion, 1980.

W. J. Wastson, "The TI ASC - A Highly Modular and Flexible
Super Computer Architecture,” Proc. AFIPS Fall Joint Com
puter Conference. 1972, pp. 221-228.

1 1 6

VITA

Andrew Richard Pleszkun was born in Chicago, Illinois on

December 7, 1955. In 1977, he received his B.S. degree in Electrical
Engineering from the Illinois Institute of Technology where he was a

member of Tau Beta Pi. He obtained his M.S. degree in Electrical

Engineering from the University of Illinois in 1979. At the University

of Illinois he was employed as a research assistant with the EnergyI
Research Group from 1977 to 1979, a teaching assistant with the

Department of Electrical Engineering from 1979 to 1980, and a research
assistant with the Computer Systems Group at the Coordinated Science
Laboratory from 1980 to 1982.

j

	83-8533.pdf
	83-8533 original

