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ABSTRACT

Projection on the unit sphere is proposed as a fundamental analytical 

operation in determining 3-D motion and structure of a rigid body from an 

image sequence. Points on the image plane are represented by their central 

projections on the unit sphere, using a homogeneous coordinate 

parameterization. Based on the simple geometry of corresponding points on the 

unit sphere, methods for the determination of 3-D rigid body motion from an 

image sequence are described. For the pure translation case, 2 new methods 

are shown for determining object structure. For a general rigid motion 

consisting of rotation plus translation, the equations used in existing 

methods for objects with curved surfaces are easily derived. Object 

structure can be determined by the method for the pure translation case.

For planar surfaced objects, an efficient method is shown for computing the 

pure parameters.
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I. INTRODUCTION

The determination of 3-D motion of a rigid body from an image sequence is 

important in many applications such as robotic vision. Any 3-D rigid body 

motion can be decomposed into a rotation about an axis through the origin, 

followed by a translation. The motion parameters to be found are the 3 

rotational and 3 translational components. Also, the object structure and 

location relative to the camera must be determined. This can be represented 

by a map of relative depths of object surface points.

Consider a (central projective) image sequence of a moving rigid object 

from a single camera. Various image space data can be used to compute the 

motion parameters. For small interframe object image displacements, optical 

flow [1-2] or image point shifts [3] are found. In general, point 

correspondences (PCs) in the image sequence are found [4-11]. This approach 

is analyzed in this paper, where points on the image plane are represented by 

their central projections on the unit sphere.

3 types of motion are analyzed - pure rotation (about an axis (CO)), pure 

translation, and a general rigid motion (consisting of a rotation plus 

translation). For the case of pure rotation, 2 and 3 frame methods are shown. 

For the case of pure translation, 2 methods are described for determining 

object structure.

For the case of a general rigid motion, past methods for determining the 

motion parameters necessitated the solution of non-linear equations. They are 

solved using numerical methods. The important question of uniqueness of 

solution was not answered even partially until recently by Tsai/Huang [4-5]. 

They have shown that given 4(8) point correspondences, linear methods can be 

used to find a set of pure (essential) parameters for objects with planar
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(curved) surfaces, from which the motion parameters are computed. For the 

curved-surface case, the 8-point linear method has also been presented 

independently by Longuet-Higgins [10], He discussed briefly the uniqueness of 

the 8 essential parameters, but not that of the actual motion parameters. 

Along the line of obtaining nonlinear equations, recently Nagel/Neumann [6-7] 

have derived a vector equation involving only the rotation parameters, which 

is a generalized version of Ullman's polar equation [11]. The method required 

5 PCs over 2 frames to generate 3 equations in 3 unknowns.

The above 2 principal PC methods have the same basic origins using the 

model of central projection on the unit sphere (spherical projection). It is 

seen that PCs on the unit sphere obey a simple geometry with respect to the 

basic motion vectors - the rotational axis and the unit translation. Various 

sets of equations can be written, including those used by Tsai/Huang and 

Nagel/Neumann. For objects with planar surfaces, an efficient method for 

computing the pure parameters is also described.

II. CENTRAL PROJECTION ON THE UNIT SPHERE

AThe central projection on the unit sphere of a point p is the point p 

(fig. 1). Given p, the central projection of p on the image plane (z=F), p

is found from



4

a
P ( 1)

Only p (the unit vector representing the direction of vector p where p = (| p J|

p) can be determined from p; || p || (the depth of point p) is lost. The
A —image point p is represented by p, the re-projection of p on the unit 

sphere.

There is a 1-to-l correspondence between a point on the image plane and

some point on the hemisphere z ) 0 of the unit sphere. The correspondents of
/\finite image space points lie on the open hemisphere z > 0; the correspondents 

of directed points of infinity on the image plane lie on the great circle *z = 

0. Note that the geometrical extensions of the corresponding areas differ in 

one characteristic. The closed hemisphere on the unit sphere is finite, but 

the open plane on the image plane is infinite. It will be shown that the unit 

sphere is preferable as the surface of central projection from a theoretical 

aspect (in terms of geometry).

The parameterization of points on a 2-D surface (e.g. image plane and 

unit sphere) is a crucial step that affects the subsequent analysis. Most of 

the past work uses a non-homogeneous coordinate representation - XY cartesian 

coordinates in the plane and (r 0 0) [r fixed] spherical coordinates on a 

sphere. The alternative parameterization is homogeneous coordinates, which 

will be seen to be advantageous from a computational standpoint.

p is parameterized by its 3-D xyz coordinates (not by spherical 

Note that this parameterization of p is equivalently thecoordinates).
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homogeneous coordinate representation of p, the central projection of p on the 

unit image plane (z = 1).

A word on notation. For the 2 frame analysis« a point p (at time x in

frame 1) moves to the (corresponding) point p' (at time t ' in frame 2).

Associated with the 3-D PC pair (p,p') are the PC pairs (p,p') and (p,p') on

the image plane and unit sphere (respectively). Over 2 frames the term PC

refers implicitly to the latter 2 types, unless otherwise noted. For the 3

frame analysis, a point p* (at time in frame 1) moves to a (corresponding)

point p (at time x in frame 2) and to a (corresponding) point p (at time x°

in frame 3). Associated with the 3-D PC pair (p^,p^,p^) are the PC triples
~1 —7 ~3\ .ai A2 A3\(p ,p ,p ) and (p ,p ,p ) on the image plane and unit sphere 

(respectively). Over 3 frames, the term PC refers implicitly to the latter 2 

types, unless otherwise noted.

The spherical projection model arises naturally in optical flow based 

methods [1-2], It has also been used in the analysis of the pure translation 

case [9], Note that in these methods, points on a sphere are parameterized 

exclusively by (2-D) spherical coordinates.

III. PURE ROTATION ABOUT AN AXIS (CO) (DEGENERATE MOTION CASE 1)

It is assumed that the 3-D object motion (relative to the camera) is a
arotation R by 0 about an axis n (CO) (fig. 2). The 3-D point transformation p 

-> p' is given by

p' = Rp (2)

where
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R is a 3 x 3 orthogonal matrix and det(R)=l

In 3-D, a point and its images under the rotation lie on a circle,

contained in a plane perpendicular to n. This circle defines a cone with 
Alongitudinal axis n (CO).

Though pure rotation about an axis (CO) rarely occurs, it is of use in 

special cases, e.g. where the camera pans within a static environment where 

the axis of rotation pierces the focal point. It is also useful in the 

determination of the rotational component of the displacement between 2 

coordinate systems, a basic operation in computer graphics. Theoretically, 

the following analysis is useful later for a general motion consisting of a 

rotation plus translation.

A. Determination of R - 2 Frame Case

The following is an analysis on the image plane. The image space 

projections of a 3-D point and its images lie on a conic section, the type 

determined by the orientation of n. The image space point transformation 

(X,Y) -> (X',Y') is given by

X* = F rllX * r12Y + r13F 
r31X + r32Y + r33F

Y* = F r21X + r22Y + r23F 
r31X + r32Y + r33F
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-• ”
rll r12 r13

where R = r21 r22 r23

r31Ip» r32 r33

P P' = Rp (3b)

The mapping given by (3a,b) is an orthogonal collineation R, in terms of 

planar XY (non-homogeneous) coordinates (3a) homogeneous coordinates (3b). 

Immediately, there follows a method for determining R from 4 PCs over 2 

frames.

Theorem R1 (4 PC 2 Frame Method)

The rotation R is uniquely determined from 4 (image space) PCs
-  — 9
(Pi,Pi ) i=l,...,4 where

no 3 of p^ i=l,.,.,4 are not contained in a plane (CO)

Proof

There is a 1-to-l correspondence between a (non-singular) collineation 

mapping and a 3 x 3 parameter matrix, such as in (4) [IS] . A parameter matrix 

determines a single mapping, and conversely, a mapping there is a unique 

parameter matrix. As shown in [15-16], any non-singular collineation 

parameter matrix can be determined to a scale factor (hence, the mapping is 

determined) from 4 image space PCs i.e. (p^p!) i=l,...,4 where no 3 of p 

i=l,...,4 are collinear (i.e., no 3 of p. i=l,...,4 are coplanar) . One of the 

(non-zero) elements of R is chosen as 1, from which R is determined to a scale
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factor by solving a system of 8 linear equations in 8 unknowns. An 

alternative, more efficient method is described later [Appendix 2]. R is 

obtained by normalizing rows (or columns) to unit vectors and insuring 

det(R)=l. Then the rotational axis n and angle of rotation 6 are found 

[Appendix 1].

QED

The non-singularity condition is a function of the configuration of 

points in frame 1 - it requires that the 4 points in frame 1 do not all lie on 

a plane (CO). Theoretically, R can always be determined for objects occupying 

3-space. It is now seen that fewer than 4 PCs are actually required to 

determine R.

The following is an analysis on the unit sphere. The projections on the 

unit sphere of a 3-D point and its images lie on a circle, contained in a 

plane perpendicular to n (just as in 3-D). Note that there are not several 

types of loci, as on the image plane. In fact, the point transformation p -> 

' (on the unit sphere) is also a rotation R

P' = Rp
where

*i = R ^ i  1 = 1’2>3 (4)

From (A1.2),

p' = cosOp + (1 - cos0)(n*p)n + sin0(n x p) (5)

Immediately, there follows a method for determining R from 3 PCs over 2

R =

/\ t 
ri
A T 
r 2 
A T
r3
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frames.

Theorem R2 (3 PC 2 Frame Method)

The rotation R is uniquely determined from 3 PCs (p.,p!) i=l,2,3 where 

P^ i=l,2,3 are not contained in a plane (CO)

Proof

A ^
3 PCs ( P ^ p p  i=l,2,3 generates 9 linear equations in the 9 elements of 

R. They are decoupled into 3 sets of 3 linear equations each.

Ar^ = y' where

Ar3 = z-

* T A *"• * ~ P* . —A .
P1 X 1XI V Z1
A T> A A . A
p2 X ' = x t 2 y' = ?2 z' = TJ 9 z2
i T A A . A .
P3 i x3 *

m. 1y3
0m

z3

Only 2 of the 3 rows of R - r^ ^  r3 - need be computed. The 3rd row 

follows from the fact that the r ^  ?2, r3 form a right handed orthonormal 

system (since an element of R is equal to its cofactor). R is uniquely 

determined if A is non-singular - that is det(A)=p^.(p^ x p^) ^ 0, i.e. p^,
A  A
p2* ^3 not on a Sreat circle or p^, p2> p3 are not contained in a plane

(CO)) .

QED
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From (6), R is determined as

(A"1)1

- v (g2V ^ ) [?i  Pi &

From (7a) and Appendix 1, (n,0) are determined from 

case 1 m°d2n0 = ® (rotation is a full turn)
A
n = any unit vector 0 = 0

<S2xS3)

(Paxpj)1

(Plxp2)

(7a)

case 2

m0<*2n® = 71 (rotation is a half turn) (7b)

A AT nn

(pj »ej) (p2xp3) + (p2 *e1) (^xpj) + (p3 *e1) (pn1xp2) + e^A a

A A A A A A v / A A A A . . A A(Pi*e2)(p2xP3  ̂ + ^p2 *e2)(p3xPi) + (P3 *e2)(Pixp2) + e2
/A A ^ A A A a A  A A ^ A  a
tpl *e3 ^ p2xp3̂  + (p2 *e3 ^ p3xpl̂  + p̂3 *e3 ^ pixp2̂  + e3

0 = n

case 3 mod2n0 £ 0, n (rotation is not a full or half turn)

sin 0n = j gi, ^ xg3. J^<Plxp2) + (p2xp3) + <P3XP2)J

cos 6 = | f<P2*P3>‘Pi + <P3*Pi>-P2 + (pi=tpA2)-P3] ‘ 1
QED
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The non-singularity condition is a function of the configuration of 

points in frame 1 - it requires that the 3 3-D points are not contained in a 

plane (CO). Theoretically, R can always be determined for objects occupying 

3-space. In actuality any 2 PCs uniquely determines the rotation. The 

following result contains 2 proofs and methods for determining R from (any) 2 

PCs over 2 frames (fig. 3).

Theorem R3 (2 PC 2 Frame Method 1,2)

The rotation R is uniquely determined by any 2 PCs (p.t £*) i=l ,2,

Proof 1

Since the object lies in front of the camera, a point projection p. on
/\the unit sphere lies on the open hemisphere z > 0. Thus, any 2 distinct p^,

A A /\
P2 are not aligned. A 3rd non-trivial PC (p12* Pi2^ can be determined (fig. 

3a) from

A a * 
p12 = Pi * P2

A a A A  A a A v A
P12= Pi x P2 = Rpl x Rp2 = R(pl x p2* = Rp12 ( 8)

$22 is a pole of the great circle (considered as an equator) containing pj, p2
, . A A A^i.e., P22' Pi» P2 are not contained in a plane (CO)). By Theorem R2, R is 

uniquely determined.

QED1



12

Proof 2

The following is an alternative, geometrically based proof, leading to a 

different method. There are 2 types of PCs on the unit sphere. If p = n or 0
A A A /\= m(2n) then p' = p, i.e., p is a fixed point under R (case A). If p ^ n,

A Athen p rotates by 6 on a circle contained in a plane perpendicular to n (case
A A AB). The following expressions involving only n, (p,p'), cos© are derived from 

(5) .

Case A (fixed PC)

Case B (non-fixed PC)

A A a  a  A
n » p = n * p ' = l  n3 ^ 0 (9a)

<£.p>2 = L 1 - cos0 J
A A

”3 ) 0  (9b)

Note that given n and non-fixed PC (p,p') - cos0 is determined. From 

(5), analogous expressions to (9a,b) involving only (p,p*), n, sin0 are given 

by

Case A (fixed PC) n»(p x p') = 0

( 10 )

Case B (non-fixed PC) n»(p x p') = sin© (n x p)«(n x p)

Note that given n and non-fixed PC (p,p') - sin© is determined.

The following is a procedure for determining 0 given n and a non-fixed PC 

(p,p'). Given n and a non-fixed PC (p,p'), cos0 is found from (9b) and sin0 

is found from (10) - this determines -0. The solution sets (n,0) and (-n,-0) 

are equivalent - they represent the same physical rotation. Given cos0, this 

is an alternative method for determining sin©

sin 0 = k[l - cos20]1/2

( 11)
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k = sgn(sinO) ta tAsgn[n»(p x )]

This is more efficient than (10).

The 3 cases involving 2 PCs are now considered. Consider Case 1 where 

(Pl>p|) is fixed and (p2>Pf) *s non-fixed. Of the 2 possibilities for Case A,
A A

only p = n is possible (otherwise both PCs are fixed under the identity
Atransformation). Thus, n is determined, and 0 can be found from (9b) and (10) 

or (11) using non-fixed (P2,p2)• Note that Case 1 does not have a singular 

conf iguration.

Consider the remaining 2 cases, Case 2 and Case 3. From (9a,b)

n = 0 (12)

The vectors p^-p^ and P2“P2 ẑero or non-zero) are orthogonal (trivially 

or non-trivially) to the vector n (fig. 3b). In the non-trivial case, +n can 

be determined as the normalized cross product of P-̂ -p̂  with p^-p^, provided 

they are not aligned.

The non-singularity condition required is now considered. The cross 

product is given by

(»i - 2i>T

(Pi - pV t

fA , A A A  a A a a  a a  a  a
'Pl“Pl)X(P2“P2̂  = ^PlxP2^ + ^PlxP2^ “ ÎPlxP2^ “ (pi*p2)

_ ,A A A  A A A A A
- 'P^xp2) + R(p2xp2) - Rpjxp2 - Pj X Rp2 (13)

A A A A A A A A
Now, n •[(p^-pj) x (p2“P2^ = 0 ^Pl~Pp x (P2“P2^ = 0

4, A A A A A a A
Pi~Pi* P2“P2 are aligned, or one °f Pl“Pl and P2”p2 *s From (13),

A _ /A , A A A  a  A A A A A a  , A A A A vn.[(p1 -p1 )x(p^-p2)] = n*(p1xp2) + n*R(p1 xp2) - n*(Rp1 xp2) ~ n*(p1xRp2)
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•J1#*
n*(p^xp2) + R n «(pjxp2) ~ n*Lp^xR P2 a, _ * , + p1xRp2-l

-A * * Tv^ A#1- 2n»(plXP2) - (R + R )p2 - (nxp^) (14)

T AConsider R + R . From the decomposition of R by cos 0, sin 0, n in (A1.2),

R + R^ = (S + ST) + (K + K^) = 2S + 0 (S symmetric, K skew symmetric)

= 2[cos 0 1 +  (1 - cos 0) n n*̂ ] (15)

Thus,

(R + R^)p2•(nxp̂ ) = 2[cos0 I + (1 - cos0)nn^]p2•(nxP̂ )

= 2[cos0 P2 + (1 - cos0)(n*P2)n]•(nxp^)

= 2 cos0 n-(^lXp2) , (16)

Substituting into (14) and simplifying,

n * t (Pj-^ )  * (p2-p2)3 = 2(1 - cos©)n* (p^xpj) (17)

There are 2 cases where (17) is 0. The 1st case accounts itself as Case 2, 

cos 0 = 1 ,  i.e. 0 = m(2n) for integral m. That is, the rotation leaves the 

body in a fixed position, whether it be by a trivial rotation by 0 degrees 

(this sub-case can be ruled out) or a non-trivial full turn rotation modulo 

2n. Here, all PCs are fixed and both P^-^ and Pj“P2 are 0. The solution is 

(n,0) = (♦,m(2n)) or R = I.

As with case 1, this case does not have a singular configuration. The 

2nd case accounts itself as a singular configuration of Case 3 (general case), 

where both PCs are non fixed. There, n*(plXp2) = 0, i.e. n, pj, p2 lie on a 

great circle. Here, pj’-pĵ  and P2“P2 are aligned. The non-singular
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configuration of Case 3 gives n. Then 0 is determined from (9b) and (10) or

(11) .

Hence, of the 3 cases for 2 PCs, only 1 (Case 3) has a singular
I

configuration where n cannot be determined. It is now shown that the singular 

condition can be eliminated.

The same procedure in the 1st proof can be used to determine a 3rd PC

^12*^12^ from the 2 PCs (p^, pi) i = 1,2. Then, Pi,p2 >Pi2 are linearly 

independent. Consider the singular configuration of Case 3. Suppose that
A /A *A \ A v a . a An *vpjxp2) = n*vP2xp3) = n'lp^xp^) = 0, i.e., all 3 possible PC pairs among the 

3 PCs are in a singular configuration.

\

x

X

X

p2)

p3)

Pl>

T

T

T
(18)

This implies that det = (plXp2)•[(p2xp3)x(i^xpj)] = [(px•(p2xp^)]2 = 0. This 

is a contradiction, since Pj*^P2xP3) M  if Pi *P2>P3 are independent. Thus,

there is at least 1 (maybe 2, or even 3) PC pair which is in a non-singular
Aconfiguration from which n can be determined from above. Then 0 is determined 

from (9b) and (10) or (11). In summary, all 3 cases have been accounted for, 

in terms of determining R without having any restrictions on singular 

conf igurations.

QED2

The absence of a non-singularity condition is peculiar only to the case 

of pure rotation about an axis (CO). The 2nd proof was more tedious than the 

1st, in that various cases had to be considered individually. However, the 

geometric based mechanics of the procedure for the 2nd proof were considerably
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more intuitive than for the 1st proof. Note that the 2nd proof arrives at the 

solution for (n,0) directly, whereas the 1st proof arrives at the solution for 

(n,0) indirectly via R.

Suppose R is computed by (6) from 3 PCs (p^p!) i = 1,2,3 for any rigid 

motion. If it is not orthogonal, then the motion is not a pure rotation. 

However, the converse is not necessarily true. The question is: Could there

be non-pure rotational (about an axis (CO)) rigid motions which produce the 3
A

observed PCs (p^,p!) i = 1,2,3, from which an orthogonal R was computed? 

Arbitrarily fix the 3-D points p. = fc.J. (k . > 0) i = 1,2,3. Applying the 

rigid body constraint that the lengths p ^ ,  p^pj, p^Pj are invariant, the 

possible configurations of p! are given by

p{ =

^2 = *2^2 where ti*t2 ,t3 are s°luti°ns to

Pj - (19)

plp2 = *1 + l2 2tl*2 pl ‘p2

-------  ̂ 2 2 a  A

P2P3 t2 + t3 2t2t3 p2*p3 
___ 2
p3pl = 43 + ll “ 2t3tl p3 *P1

It has been shown in [13] that there are at most 4 positive solutions. Thus, 

there are up to 3 other possible rigid motions for an arbitrary configuration 

Of pi = tjpj i = 1,2,3.

There is the question of what component of the rotation can be determined 

from a single PC. The answer is given immediately by the following result

using a geometrical approach.
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Theorem R4 (1 PC 2 Frame Method)

The solutions for the rotation obtained from a single PC are given by

Case 1: PC is fixed

- R is a full turn modulo 2ji (0 = m(2n))
A

- n is the fixed PC (0 is undetermined)

Case 2: PC is non-fixed
A A A- n lies on a great circle with pole p'-p 

(for each case 0 is determined)

Proof

Consider Case 1, where the PC is fixed. 1st* this could be the result of 

a multiple of a full turn rotation. 2nd, a single homogeneous equation in n 

can be determined (9b) . For each such n, a corresponding 0 is determined from 

(9b) and (10) or (11) . Thus, the solutions for R are such that the axis n 

lies on a great circle (0 determined for each case), i.e. the solution vectors 

n = tan(0/2)n are contained in a plane (CO) with normal p'-p.

QED

This fact is useful later on in the solution of non-linear equations in 

the case of a general rigid motion. It is impossible to obtain a map of 

relative depths among object surface points - object structure cannot be 

determined.

B. Determination of R - 3 Frame Case

The success of the 2-frame analysis on the unit sphere (both 

theoretically and computationally) directs the 3-frame analysis onto the unit
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sphere. Specifically, a geometrical approach is taken.

The rotation over 3 frames is assumed to have the same axis n (CO). The
1 2  2 33-D interframe point transformations p -> p and p -> p are given by

2 1 ^P = R12 p axis n, angle ©12
( 20 )

3 2 AP = R23 p axis n, angle 0^

The following result is a method for determining the interframe rotations 

from a single PC (fig. 4).

Theorem R5 (1 PC 3 Frame Method)

The solutions for the interframe rotations (R12,R23) over 3 frames from a 

single PC are given by

Case 1: PC is non-fixed (Ri2,R23  ̂ are uniquely determined where

“ mo<*2n®12 ^ modOlIT0O2 £ 0, 2n - modo„02n 23 2n 12

Ca se 2: PC is fixed (Ri2,R23  ̂ are not uniquely determined

- n is determined and (e12>e23* are indeterminate

mo<*2n®12 = mo^2n®23 = ® and ** is indeterminate 
(full turn rotation modulo 2n)

Proof:

Applying (9b) over all 3 interframe pairs,

,*2 vT(p - p )

(p3 - P ) T

(p1 - P )
—

( 21)
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The 3 vectors (p2-p*), (p^-p^)> (p^-p^) (zero or non-zero) are orthogonal to n 

(trivially or non-trivially). There are 2 cases to consider. Consider Case 

1» where all 3 PCs over 3 frames are identical. Then (21) is trivial. This 

means that this fixed PC is in fact +n (the interframe rotation angles cannot 

be determined) or that “od2jr012 = mod^O,* = 0 (the axis n cannot be2n 23
determined).

Consider Case 2, where some 2 interframe PCs are distinct. Then (21) is 

non-trivial. Some 2 of the 3 vectors (p2-p*), p3-p2), (p*-p3) are non-zero 

and perpendicular to n (fig. 4). +n can be found as the normalized cross 

product of any 2 non-zero, non-aligned vectors, p1, p2 cannot be identical by
AO Al aj /»i Aameans of a full turn multiple, otherwise p -p is 0 and p -p and p -p are 

aligned. Similarly, p3 cannot be identical with p1 m̂od2ne23 ^ 2̂n “ 

m°^2jT®12^ nor can ** i^ntical with itself by means of a full turn 

multiple (mod^©^ ^ 0). It is geometrically obvious that in the remaining

cases, all 3 of p*, p2 , p3 are distinct. In fact, the 3 vectors p2-p*, p^~p2 »
A 1 ^3 Ap -p are all non-zero and not aligned. Given +n, (©12, ©23) are found from

(9b) and (10) or (11) .

QED

There are singular cases where one or both of R̂i 2,R23^ cannot be 

determined. For the degenerate case (interframe PCs fixed), the non

singularity condition is a function only of the location of p relative to n. 

For the non-degenerate case (not all interframe PCs fixed) the non-singularity 

condition is a function only of the interframe angles of rotation. The 

following result is a method for determining the interframe rotations from 

(any) 2 PCs over 3 frames.
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Theorem R6 (2 PC 3 Frame Method)

The interframe rotations ^2*^23 over 3 frames are uniquely determined 

from any 2 PCs.

Proof

The result follows from applying Theorem T3 over the 2 interframe pairs 

-> f2 and f2 “> fj.

QED

As in the 2 frame case, a relative depth map of points cannot be 

determined - object structure cannot be determined.

IV. PURE TRANSLATION (DEGENERATE MOTION CASE 2)

It is assumed that the 3-D object motion (relative to the camera) over a 

sequence of images is a translation in a constant direction (fig. 5). The 3-D 

point transformation p -> p' is given by

P' = P + t where t

Ax

Ay

Az

(22)

It is not uncommon to find objects (e.g. wheeled vehicles) which move by pure 

translation. The following analysis can be applied as methods for stereopsis.

A
A. Determination of t - 2 Frame Case

Given 2 image space PCs (p., p') i = 1,2 where p1#p2 ,t are not

collinear, t (FOC/FOE) can be found as the intersection of the lines p^p^ 

and P2P2 . Then the direction t of t can be found. This is a well known
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result.

The point transformation p -> p' (on the unit sphere) is given by

5* = (LnJl £ . !UJ ?
1} P ' l! P H P ' « 1 (23)

A A A  A A AIt follows that t•(pxp') = 0, i.e. t,p,p' lie on a great circle (fig. 6). 

From (23),

A, A U Pi *! .A *
p .  *  *  =  , i ? n i  ( p i x  °

j :  x j .  .  J k J  <? x ¡?.)
* pi i|p ; u * v

(24a)

(24b)

From (24a,b), it follows that p! lies on the arc with end points p^, t (fig. 

5) . This is easy to see since pl̂  must lie on the half of the plane containing 

the great circle, on the same side with t. The following result is a method
Afor the determination of t using 2 PCs over 2 frames (fig. 6).

Theorem T1 (2 PC 2 Frame Method)

A A At is uniquely determined from 2 PCs (p^,p!) i = 1,2 where

1 A A A
pl,P2 't are not contained in a plane (CO).

Proof

From (23), +t can be determined from

ii til2 A ,A
(Pi x Pl> I (Pi x p2) = j p v y p ,„ •'<»! I p2)‘ (25)

provided that t*(p^Xp2) # 0, i.e. t, p-p P2 do not lie on a great circle or t, 

Pf, P2 are not contained in a plane (CO).
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From (24b),

(pj x PjJ’it x pi) > 0 where (p^, pj) is non-fixed PC (26)

A A ^The sign of t is resolved using (26) for a non-fixed PC (p^,p!) .

QED

The non-singularity condition is a function of the configuration of 

points in frame 1 P1#p2 with respect to t - it requires that t, p1# p2 are not 

contained in a plane (CO). Theoretically, t can always be determined if the 

object occupies 3-space. The following result is a method for the
. . . Adetermination of t using 3 PCs over 2 frames.

Theorem T2 (3 PC 2 Frame Method)

A A At is uniquely determined from 3 PCs (p^,p!) i = 1,2,3 where 

pl>P2 »P3 are not contained in a plane (CO)

Proof

By the argument in Theorem R3, if Pi»p2,pg are linearly independent (not 

coplanar) then at last 1 pair (maybe 2, even 3) is not contained in a plane 

(CO) with a non-zero vector t. The result follows from Theorem T1.

QED

The non-singularity condition is a function only of the configuration of 

the points in frame 1 (independent of t) - it requires that p^# p2, are not
A

contained in a plane (CO). Theoretically, t can always be determined if the

object occupies 3-space.
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B. Determination of t - 3 Frame Case

It is assumed the translation over 3 frames is in the same direction t. 

The 3-D interframe point transformations p -> p , p -> p are given by

>2 = p1 + t12 t12 “ H *12 H t
where (27)

p3 = p2 + t23 l23 “ llt23H t
A i Ao AoOn the unit sphere, the interframe point transformations p -> p , p -] 

p are given by

ilLj ,1 11*12« A
llp2 llp lip2 II *

Up2 II a2 + nt23i|A

IIp 3 IIP lip3 «

(28a)

(28b)

A  M  AO A Ao Aa Ao A
From the 2 frame case, t*(p xp ) = 0 and t*(p xp3) = 0, i.e. (p,p ,p ,t) 

on a great circle (fig. 9). The following result is a general method for
A

determination of t using 2 PCs over 2 to 3 frames (fig. 7).

lie

the

Theorem T3 (2 PC 2 to 3 Frame Method)

t is uniquely determined from a total of 2 PCs (pj,p^) (p^'P^ over 2 to 

3 frames where

t, pj.p» are not contained in a plane (CO)

Proof

The case where j = k (2 frame case) follows from Theorem T1 (2 PC Frame 

method). The case where j ^ k (different interframe pairs) is now considered. 

From the fact the P^,p^,p3,t are contained on a great circle,
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.Ai Aj A j A-l A j
(p^ X pj) * (p| X pj) « (p* X p*)

„At aj v v(pi X pj) « (pj x p*) * (Po x pi)

(29)

Ak J A ■
Since (p^ x P2) is aligned with (P2 x p^), the result follows from Theorem T1.

QED

The non-singularity condition for t is a function of the configuration of 

points in frame 1 with respect to t - it requires that t, p^# p2 are not
A

contained in a plane (CO). Theoretically, t can always be determined if the 

object occupies 3-space. The following result is a general method for the
A

determination of t using 3 PCs over 2 to 3 frames.

Theorem T4 (3 PC 2 to 3 Frame Method)

A Aj Ajt is uniquely determined from a total of 3 PCs given 2-3 frames (p^Pj)
Av a J a —

P ^ P p  (P^'P?* where

Pj >P2 »P3 are not contained in a plane (CO).

Proof

By the argument in Theorem R3, if p ^ p ^ P g  are no* contained in a plane 

(CO) (i.e., they are linearly independent) then at least 1 vector pair (maybe 

2, even 3) is not contained in a plane (CO) with a nonzero vector t. The 

result follows from Theorem T3.

QED

The method in Theorem T4 is applicable to the n frame case. The non

singularity condition is a function only of the configuration of points in 

frame 1 (independent of t) - it requires that p*, pj|, p^ axe not contained in
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a plane (CO). Theoretically, t can always be determined if the object 

occupies 3-space.

C. Determination of Object Structure - 2 Frame Case

The determination of object structure for the pure translation case is a 

well known fact. A method based on the spherical coordinate representation of 

points on a sphere was given in [9], Based on a homogeneous coordinate 

parameterization of points on the unit sphere, 2 new alternative methods are 

now described.

The following result contains 2 proofs and methods for the determination 

of object structure over 2 frames (fig. 8).

Theorem T5 (2 Frame Object Structure Method)

Given

A
- t

- set of PCs (p.,p!) i = 1, ..., n

a map of relative depths among t p., pj i = 1, ..., n can be determined

(excluding points on the line (CO) kt).

Proof 1

From (20)
r -' •* *

1 A A IIPi l|A P i • t
llpi II

A A Pi-Pi

A
A AP^t 1 JLÜI

A i Pi %t
ilpill

(30)
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Given t and the PC (p^,p!) the ratios (Up¿If/||PiIP (relative depth of p- to p p  

and (|) t R /)\v[ ID (amount of translation t relative to the depth of p p  can be 

determined from (30) if det = 1 - (p^t)2 £ 0, i.e., p ^ t  £ +1 (p4 does not
A

lie on a line (CO) containing the vector t). A solution is impossible for the 

singular fixed PC (Pj,pp, corresponding to the singular 3-D PC (kt,k't). A 

map of relative depths among p! i = l,...,n is obtained from (II t ll/|| p [ l\) i = 

l,...,n, where points on the line (CO) kt are excluded. This immediately 

gives the object structure. From (tlppl/Hp J ||) i = l,...,n a compl ete map of 

relative depths among t, P^,pi i = l,...,n are obtained (excluding points on 

the line (CO) kt).

QED1

Proof 2

Under the translation, a 3-D line X i mapS to a parallel l i n e u p  Define 

and q[ as the normals to the planes (CO) containing (NCO) and (NCO) 

(respectively) (fig. 9). From the correspondence (q^qp, the direction mj =

mi an<̂  are f°und from

A A ^4i i qj = kjfq.-Dmj kj > 0 (31)

A  ^  j|provided q^»t ^ 0 (t does not lie in the plane (CO) containing X p , i.e.
A A
U i , q p  is non-fixed [12],

Consider an arbitrary set of 3 non-collinear 3-D points Pj,P2 *P3 which 

are contained in a plane n (NCO). In fact, non-collinear P ^ p ^ p ^  are

contained in a plane n' (NCO) (parallel to n) . Define Jt ̂ ̂ as the line 

determined by p.,p. and J a s  the line determined by p!,pt. Given the 3 PCsJ J
/A A A A a  A A  A
^Pj»Pp i = 1*2,3 the sensed correspondences * ^923><123^, ^31'431^
can be determined.
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There are 4 possible cases for the 3 correspondences ^12*^12^ *
A A A

'^2 3*^23)* ^31*^31^ in terms of being fixed or non-fixed. It is now shown

that the correspondences cannot all be fixed. Assume the 3 correspondences
A ^ A ^ A A

are fixed, i.e. q ^ ’t = ^23** = ^31,t: = *n matrix form,

(32)

Since t is non-zero, this requires that det = 212*(¿23*¿31^ = °* i.e.
A /  A
^12' ̂ 23 ' ̂ 31 are contained in a plane (CO). It is now shown that .this leads to 

a contradiction.

Consider the non-trivial case, where all 3 2*^23 »¿31 are distinct.

This implies that the line segments (P1p2» P2p3» P3P1 ) lie in concurrent 

planes (CO). This is clearly impossible for P1 #p2 ,p3 to be coplanar on a 

plane n (NCO).

Consider the trivial case, where a subset of ^12*^23'^31 are aligned. 

Since Pi»P2 ,p3 are coplanar on n, n must contain 0 and all 3 vectors must be 

aligned (the case where only 2 vectors are aligned is excluded). Thus, (32)

implies that f>Pi>P2 »P3 are coplanar on a plane (CO), contrary to assumption.
A yy

Since t is assumed to be given and obtained from (P^,p[) i = l,...,n, some 2 

of P^ i = l,...,n, are not contained in a plane (CO) with t. A point exists 

which is not contained in n (CO). This point can be substituted for one of

Pl>P2 »P3 * in which case t,p^iP2 iP3 are not coplanar on a plane (CO). By 

contradiction, all 3 correspondences are not all fixed (with the proper choice

of Pi>P2'P3)•
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There are 3 remaining cases. In Case 1, all 3 correspondences are non- 

fixed. Here, t does not lie in any 3 of the planes (CO) containing the 3 line 

segments in frame 1. In Case 2, 1 correspondence is fixed and 2 

correspondences are non-fixed. Here, t lies in the plane (CO) of one of the 

line segments in frame 1. In Case 3, 2 correspondences are fixed and 1 

correspondence is non-fixed. Here, t lies in the intersection of planes (CO) 

containing 2 line segments in frame 1. That is, t is contained in a line (CO) 

containing one of P1,p2,p3 .

For Cases 1 and 2, some 2 of m., ,moa ,mai , . . .12'*"23 * 31 can be determined,

the common normal e of n, n' can be found (fig. 9) .

from which

An : e»p = k

where

For Case 3, e cannot be determined. Eliminating k, k ' in (28)

H pj>l _ H Pj 11 £l£j
II Pj U" e*Pi |{ Pj W «‘Pi

(33)

(34)

Thus, the relative depths among p. i = 1,2,3 and pj i = 1,2,3 (object

structure) are determined given e (excluding points on the line (CO) kt).

This procedure is applied to triples of points to cover all points p^ i = 

l,...,n and p^ i = l,...,n. The relative depths among p^, pi i = l,...,n are 

determined (excluding points on the line (CO) kt). For some non-fixed (p^,pp 

( II P ¿11/|| p ! ||) and (lit B/||pJ||) are solved for from (30). Thus, a complete map of 

relative depths among t P^,p- i = l,...,n are obtained (excluding points on 

the line (CO) kt).
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QED2

There are 2 points to note. 1st, the analytical methods based on the 

homogeneous coordinate representation are free of any unnecessary

trigonometric functions inherent in the methods based on the spherical 

coordinate representation [9], The manipulations are less complex, and 

involve only elementary vector operations. 2nd, 2 methods are given - a 

purely analytical method and a geometrically based method. Both are

equivalent from a theoretical standpoint - the difference is purely

computational.

An application is stereopsis, where the 2 cameras are shifted by a known 

amount. By choosing the shift vector with 0 z-component (the optical axes are 

parallel and image planes are contained in the same plane), the 3-D locations 

of all points in front of the camera can always be obtained.

D. Determination of Object Structure - 3 Frame Case

The approach is to apply the 2 methods for the 2 frame case, over all 3

interframe pairs. The following result is a method for determining object

structure over 3 frames (fig. 10).

Theorem T6 (3 Frame Object Structure Method)

Given
A

- t

- PC sets over 3 interframe pairs

<Pi*Pi) i = *,,ni2 fj —> f2

Pj *Pj ) j 1,...,®23 f2 -> f3
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(P^»pj) k = 1 31 f3 -> fl

a map of relative depths among points in all 3 frames can be determined among 

t

(pi«pi) i = 1 .... n12 -> f2

(Pj>Pj) j = l....,n23 f2 -> f3

(pk'pk> k = 1.... n31 f3 "> fl
(excluding points on the line (CO) ki)

Proof

Applying Theorem T5 (2 Frame Object Structure Method) over all 3 

interframe pairs f^ -> f^, f2 -> fg, fg “> f^ determines a map of relative 

depths of 3 sets of points:

/>t /Si i.1\ 
(pi*pi) i 1 , • • •, n^ 2 fi -> f 2

t (pr p1> j = 1 ,..,,n23 f 2 “> f3
f\
t <p3k'pì> k 1, •.. » ^ f3 ">

(excluding points on line (CO) kt)

Since t is common to all 3 sets, the stated result follows.

QED

Note that a map of relative depths of object surface points is obtained

for each frame. A map of n12 + n31* Hj2 ^ 11231 ®23 ^ n3i object surface

points is obtained for frames fl* f2> fg (respectively). There is an
/ n\

analogous result to Theorem T6 for the n frame case —J applications of the
V 2

2 frame object structure methods are required.
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V. ROTATION PLUS TRANSLATION - (GENERAL RIGID MOTION))

It is assumed that the 3-D object motion (relative to the camera) is not 

a pure rotation about an axis (CO) R or a pure translation t, but a general 

rigid motion consisting of a rotation R followed by a translation t (j^OMfig. 

1 1 ).

P' = Rp + t (35)

The 2 degenerate motions are applicable in specific (and often rare) 

situations. In general, the rigid motion has both a rotational and a 

translational component.

A. Objects with Planar Surfaces

It is assumed that the object has a planar surface - polyhedra for 

example. The motion of a single planar surface is isolated. Consider the 

corresponding planes n,n' (NCO) containing the corresponding planar surfaces.

n: e »p = 1

e ' 1
1 + e • t Re

where

(36)

As demonstrated in [4], the mapping (X,Y) -> (X'Y') induced on the image 

plane (z = F) is a non-singular collineation A. The mapping p -> p' induced 

on the unit sphere is given by
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Rp +Le »p *] (37)

equivalent to
A  . , A
PP = Ap where

= [c1+at
A

1

AA C 2 + b t C g + C t J (38)

R 11 r—
1

M

A
c 2

A  1 A  r» A  c3] cj = Rej i = 1,2,3

(38) is a collineation of image space (z = 1 or z = F) points as obtained in 

[4] (derived by an alternative procedure). It is important to note that a 

homogeneous coordinate representation of points is used in (38). A direct 

consequence is a superior method for the solution of A [Appendix 2].

This method has 2 advantages over the method given in [4], Number 1, 

this method is more efficient. Only the solution to 5 sets of 3 linear 

equations in 3 variables is required rather than the solution of a set of 8 

linear equations in 8 variables. Number 2, this method is immune to singular 

cases where some element of A (e.g. *33) is 0. Given A, the motion parameters 

are uniquely determined in 2 or 3 frames [4]. Note that R may be solved in 

the same way by the 4 point 2 Frame Method for the pure rotation case.

B. Objects with Surfaces of Arbitrary Geometry

There are no constraints on the object surface. The range of applicable 

objects now includes those with higher order, non-planar (curved) surfaces. 

Note that the set of applicable objects still includes those with planar 

surfaces.

In 3-D, the rigid motion p -> p' can be decomposed into the 2 basic 

degenerate motions. 1st, p transforms by a pure rotation about an axis (CO) R
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rt A Ato p" = Rp. 2nd, p" transforms by a pure translatiion t to p' = p" + t,

A AOn the unit sphere, the mapping p -> p' is decomposed into 2 motions. 

1st, p rotates by R to p" = Rp. Geometrically, p and p̂ ' lie on a circle 

contained in a plane perpendicular to the vector n. 2nd, p" rotates on a
A A y y  A

great circle (containing t) to p'. Geometrically, p" and p' lie on a great
A

circle T containing t (fig. 12). These geometrical facts are the basis for 

the following derivation.

From the fact that the points Rp^p!,? lie on a great circle Tj, a set of 

n scalar, homogeneous equations can be written.

t-(p! x Rpj) = 0  i = 1 , ..., n (39)

This is equivalent to

Pj E p. = o i = 1, ..., n (40)

where

E = r A  A[ t xc 1 A  A
txc2

A  A
txc3 ]

•

R  = [S1
A
c 2

A  A  A
c 3 ] Cj = R e A 1 = 1,2,3

The analytical solution and conditions for uniqueness to (40) have been 

obtained [5]. 8 PCs are required to determine E to a scale. The SVD of E is 

the basis for the determination of the motion parameters. Alternatively, a 

method using vector operations has also been shown [10].
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The great circles T^ j = have a common diameter + t, i.e. Tj i = 

l,...,n are contained in concurrent planes (CO) (fig. 12). Define g^ as the 

vector which is aligned with one of the poles of

= Rpt x pj (41)

Since g^ i = l,.,.,n are contained in a plane (CO), a set of n - 2 can be

written.

g i * ( g l  x g2) = 0 i ~3, ..., n (42)

This is equivalent to

rn-l'' . -A A  A  , <V -A A . A, A _1 A  A  A[R Pi'(P1xpi)][Rpj’iPjXp^)] - [Rpj'iPjxp?)][R 1P2 *(p1xp2)] = 0

i = 3 , ..., n (43)

This is equivalent to the equation set derived in [6-7], which is a 

generalized form of the polar equation in [11]. 5 PCs generate 3 4th order

equations in the 3 rotational parameters.

Whereas the analytical solution and conditions for uniqueness to (40)
i

have been obtained, a similar theoretical analysis for the solution to (43) 

remains to be done. This problem is currently under investigation. Numerical 

solutions by local, iterative search indicate the possibility of a unique 

solution using as few as 5 points. But it may be that the conditions for 

uniqueness are complex.

The point to note is the fact that the equation sets of the 2 principal 

methods are easily derived from a basic geometrical fact on the unit sphere. 

The spherical projection model was not used in the original derivations of 

these equation sets. The derivation of (40) in [5] was made by elimination of
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"z" in the image space mapping (X,Y) -> (X',Y'). The derivation of (43) in 

[6-7] was made using a lengthy, complex sequence of vector operations. In 

each case, fundamental origins of the equation sets were not isolated and 

their derivations were not intuitively obvious. As a result the 2 methods 

appeared to be unrelated - they in fact have the same origins.

C. Determination of Object Structure

The approach is to apply the 2 Frame Object Structure Method for the pure 

translation case. Given the solution to R, p i = are mapped by R to

Pi = Rp^ i = l,...,n. From (Pj[>Pp i = l*...»n a map of relative depths among 

t (Pi>Pp * = (excluding points on the line (CO) k?) is obtained.

Given the depth of a single point or Jl t II, the 3-D object points can be found.

An application is stereopsis, where the translational component 

describing the relative configurations of the 2 cameras are known. If the 

translation component vector is chosen with 0 z-component, then 3-D locations 

of all points in front of the camera can always be obtained.

VI. SUMMARY

For the degenerate motion case of pure rotation about an axis (CO) R, R 

can be determined but object structure cannot. Over 2 frames, methods using 

4, 3, 2, 1 PC(s) were shown. 2 procedures (purely analytical and 

geometrically based) were given for the 2 PC method. The 3,4 PC methods can 

be used to detect non-pure rotational motion. Over 3 frames, (R^, ^23) are 

uniquely determined from a total of 2 PCs over different interframe pairs.
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For the degenerate motion case of pure translation t, both t and object 

structure can be determined. Over 2 frames, 2 methods (based on the 

homogeneous coordinate representation of points) are shown for determining 

object structure. An application is stereopsis, where the 2 cameras are 

shifted by a known amount. Over 3 frames, object structure can be determined 

by applying the 2 frame methods.

For the general rigid motion case involving a rotation R followed by a
Atranslation t, (R,t) and object structure can be uniquely determined. For the 

case of objects with planar surfaces, an efficient method (based on the 

homogeneous coordinate representation of points) for the determination of the 

collineation matrix A is shown. For the case of objects with surfaces of 

arbitrary geometry, a simple geometric fact on the unit sphere is shown to be 

the basic origin of the 2 principal PC methods.

Overall, the use of the unit sphere as the surface of central projection 

and homogeneous coordinate representation of points is advantageous, both 

theoretically and computationally. A fundamental theory based on the simple 

geometry of PCs on the unit sphere is shown for the 2 degenerate motion cases 

and a general rigid motion. The resultant methods are efficient, more than 

the previously developed methods.
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APPENDIX 1

Determination of (n,0)

Note that a clw (cclw) rotation 0 about n is equivalently a clw (cclw) 

rotation -0 about -n, where 0 6 [-n,n). The sign of the angle 0 (clw/cclw) of
Arotational axis n can be arbitrarily chosen.

The approach is to use the invariant quantities of R. The trace of R is 

a function only of cos 0

Tr(R) = 1 + 2 cos 0 (Al.l)

Thus, cos 0 is determined by the diagonal elements of R in terms of its trace 

(scalar invariant).

The decomposition of R as the sum of a symmetric and skew symmetric 

matrix in terms of (n, 0) is given by

R = S + K (A1.2)

where

S = (s_) = cos 0 I + ( 1 - c o s  0) nnT (symmetric)

K = (kjj) = sin 0 N (skew symmetric)

From (A1.2),

rij “ r j i = (sij + kij) “ <sji + kj î
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= <sij - *ji) + <*ij - kJ4)
= k . . _ k . 

1J Ji
Explicitly,

«■» — -
r32 r23 nl

r13 ~ r31 = 2 sin 0 n2

r 21 ~ r 12 n3,mrn ^

(A1.3)

(A1.4)

Thus, sin On is determined by the off diagonal elements of R, in terms of c 

(vector invariant of R). n can only be determined from (A1.4) where sin 0 £ 

0, i.e. when 0 ^ 0  and 0 A -n (Case 3). There are singular cases where 0 = 0  

(Case 1) and 0 = -it (Case 2) .

Consider Case 1 (rotation is a full turn) where 0 = 0 .  This is detected 

from (Al.l) where cos 0 = 1  (i.e. R = I). n can be any unit vector.

Consider Case 2 (rotation is a half turn) where 0 = 0 .  This is detected 

from (Al.l) where cos 0 = -1. From (A1.2), nn^ can be found from symmetric R.

nn -  [n^n n2n n^n] = J  (R + D

Since n ^ 0, at least 1 of the columns (maybe 2, even 3) of nn*' are non-zero. 

Thus, +n can be determined by normalizing a non-zero column of nn1. Note that 

there is not a problem for the ambiguity in the direction ii, since (n, n) and
A(-n,n) represent the same physical rotation.

Consider Case 3 (general case). (Al.l) gives cos 0. Normalizing c to +c 

fixes sin 0 and its sign. Let n+ = £ and sin 0+ > 0 satisfy (A1.4). Clearly,
^ An_ = -c and sin 0_ < 0 is also a solution. There are 2 solution cases.

case 1 n AC cos 0+ 0+ > 0sin 0+ (>0)

(A1.5)
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case 2 n_ = -c sin 0_ (<0) cos 0_ 0_ < 0

where

e+ , 6 [-n,n)

sin e+ - sin 0_

cos e+ - cos 0_

It is clear that the angles of rotation 0+, e_ for cases 1, 2 (respectively) 

differ only by a sign, i.e., 0+ = -e_. That is, the 2 solutions in (A1.5) are 

equivalent - they represent the same physical rotation.
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APPENDIX 2

Determination of a Non-Singular Collineation Matrix A from 4 PCs

The xyz coordinates of p (on the unit sphere) are in fact the homogeneous 

coordinates of p and p (the central projection of p on the unit image plane z 

= 1). Without loss of generality, the following manipulations will be con

fined on the unit image plane.

Consider the solution of A given 4 PCs (Pi#pJ) i = 1,...,4. Given the 4 

quadrangular points p^, p2, p3, p^ (no 3 of which are collinear), they are 

assigned the fundamental points with relative coordinates

Sir - » 0 0]T

S2r = [0 1 0]T p4r - u 1 1 ]T

*3r = K> 0 1 1T

triangle of reference points unit point

ipect to this basis, the relative 0 0coordinates of p£t °,P3 , °,
P4

o o o
found [18]. The absolute coordinates of P1 #p2,pg fixed by P4 are found from 

solving for s2,Sg in

v  u u

= [px P2 P3]

*1

s2
s„

(A2.1)

Then the absolute coordinates P^f*P2f*P3f,p4f °f Pl»P2»P3,p4 (respectively)

are given by
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o o
Plf = S1P1

p2f = s2p2 p4f = p4 
o o
P3f = S3P3

(A2.2)

0 0 0 0
The coordinates of p',p«,p4,Va relative to the established basis are»1 »P2 >p3 »P4

found from solving di,ei,fi i = 1 , . . . , 4  in

u , o o o
Pi = p̂lf p2f p3f-* 1 ~ 1 > 1 • • »4 (A2.3)

0 . 0 . 0 . 0The relative coordinates pjr, pj,., p of pj, p£, pj, are given by

®ir = [di ei fi]T i = 1 (A2.4)

0 0 0Nonsingular solutions to (A2.1), (A2.3) are obtained, since p^, p^, are

non-collinear. Then A is computed to a scale factor by conventional methods 

[14], from solving for , t2> t3 in

p4r = Iplr p2r (A2.5)

The solution to (A2.5) is non-singular, since P^,P2 »P3 are also non-collinear. 

Then A is given by

(A2.6)

There are 2 points to note. 1st, in terms of operations, only the solutions 

to 5 sets of 3 linear equations in 3 variables are required. 2nd, there are 

no singularities when an element of A is zero. These points make this method
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superior to the one given in [4].

This method is applicable to a general rigid motion of a single planar 

surface and pure rotation about an axis (CO) of a surface with arbitrary

geometry.
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fig. 1 central projection of 3-D PC (p,p') as (p,p') (on image plane) and (p,p') (on unit sphere)
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fig. 2 (3-D rotation R over 2 frames) 3-D: p -> p' image plane: p -> p' unit sphere: p -> •o
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fig. 3 (3-D rotation R over 2 frames)

determination of R from 2 PCs - Methods 1 and 2

unit
sphere

fig. 4 (3-D rotations R ^ ,  R23 over 3 frames)

determination of R12» »23 from correspondences of 1 point
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fig. 5 (3-D translation t over 2 frames) 3-D: p -> p' image plane. P > P unit sphere
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fig. 6 (3-D translation t over 2 frames)

Adetermination of t from 2 PCs
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fig. 7 (3-D translations t^# t23 over 3 frames)

determination A
Of t from 2 interframe PCs



fig. 8 (3-D translation t over 2 frames) determination of object structure
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fig.11 (rotation R plus translation t over 2 frames) 3-D: p -> p' image plane: p -> p' unit sphere:




