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1 Introduction

Algorithms for optimal repair of reconfigurable arrays using spare rows and columns has recently 

become an intensively studied problem. The general problem is the repair of defective elements 

in an ra-by-n array with a set of spare rows and spare columns. A practical application of this 

problem is the repair of large memory integrated circuits in order to enhance manufacturing yield. 

A defective element is repaired by replacing either the entire row or the entire column containing 

the defective element with a spare row or column. A repair (reconfiguration) solution is obtained 

when all defective elements in the m-by-n array have been repaired. Kuo and Fuchs have shown that 

the general problem is NP-complete [11]. Recently, numerous heuristics with worst case exponential 

time complexity have been proposed for this problem. The state-of-the-art is described in the review 

paper by Fuchs and Chang [6], and papers by Hemmady and Reddy [10], Shen and Lombardi [13], 

and Wey and Lombardi [15].

Most existing reconfiguration heuristics are front ended with one or both of the following two 

strategies: early-abort or partial solution. The heuristics are then typically followed by, basically, 

an exponential time exhaustive search. In the early abort approach, the standard heuristic is to 

use a polynomial time algorithm to eliminate as many unrepairable structures as possible, thereby 

reducing the number of problems sent to the exhaustive search. In the partial solution approach, 

a polynomial time algorithm is employed to detect as many mandatory repairs as possible, thereby 

reducing the problem size sent to the final exhaustive search.

Although the worst-case time complexities of these complete reconfiguration algorithms are all 

exponential, very little is known about their average-case time complexity. So far the only published 

approach to analyzing the average case performance of these algorithms has been through ad-hoc

\
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experiments and examples. Little is known about their fundamental average-case performance par­

ticularly as array sizes become large.

An analysis of the average-case time complexity must be based on some distribution of failures 

in the reconfigurable arrays. In our analysis we assume each memory cell has the same probability 

of being faulty. Situations where an entire row or column is faulty are not discussed here, since these 

kinds of faults can be detected easily and repaired before the reconfiguration algorithm begins.

In Section 3, we show that when the failure rate of each cell is too high compared to the number 

of spares, then the array is almost never repairable. We also show that when the failure rate is 

too low compared to the number of spares, then the array can be trivially repaired, but spares are 

wasted. We determine the number of rows and columns and the failure rate for which the resulting 

yield is satisfactory and spares are not wasted. In Sections 4 and 5, a probabilistic analysis of these 

heuristics is presented and their performance under different failure rates are estimated. Finally in 

Section 6, we give an algorithm which runs in 0{n2) average-case time, based on a failure rate which 

is neither too high nor too low.

2 Random  Graph M odel

Throughout the paper, we assume the readers are familiar with basic graph theory terminology [8] 

and algorithmic terminology [1]. For a given array, we construct a bipartite graph G = (Vi U V2, E). 

The vertices of Vi and V2 correspond to rows and columns in the array respectively. If array element 

(1,7) is faulty, then we assign an edge between vertex i in Vi and vertex j  in V2. For simplicity, we 

assume |Vi| = |V2| = n , i.e., the array is of size n x  n elements. We also assume the number of spare
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rows is an and the number of spare columns is /3n, where 0 < a, (3 < 1 are constants. It will be clear 

later in the paper that if these assumptions do not hold, the argument can be modified slightly to 

obtain similar results.

A subset of vertices C C V\ U V2 is called a vertex cover if for every edge (vi,vj) 6 E , either 

Vi E C or Vj E C. A subset of vertices C is called a bipartite vertex cover of size (s ,i), if C is a 

vertex cover and |C fl Vi\ < s and |C fl V2\ < t. The repair problem is to find a bipartite vertex 

cover of size [an. (in) for the given graph. It is not hard to see that this repair problem, though not 

identical to the problem of Kuo and Fuchs [11], is still NP-complete.

We assume each single fault is limited to a single element, each fault appears with equal proba­

bility p(n) and faults are statistically independent of each other. Correspondingly, in,our bipartite 

random graph model, this assumption implies that for each pair of vertices V{ E V\ and vj E V2, 

with probability p(n) there is an edge between V{ and Vj, where n = |Vi| = |V2|. We call p(n) 

the edge probability. A random bipartite graph will be described as Gp(n ) = (Vi U V2,E ) ,  where 

71=1^1 = 1̂ 1.

Throughout the paper, the phrase almost always or almost every means with probability 1 as n

00. For example, if we say almost all graphs have property Q , that means limn—̂oo E{Gp(n) has Q} —

1. When we say an algorithm almost always runs in polynomial time, we mean with probability 1 

as n -+ oo, the algorithm runs in polynomial time. Similarly, the phrase almost never or almost no 

means with probability 0 as n —► oo.

Let the set of graphs we are studying be G, which is a subset of bipartite graphs. We define a 

graph property to be a subset of G. An important fact in random graph theory is that most properties 

appear rather suddenly: for some p = p(n), almost no Gp has Q while for “slightly” larger p almost
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every Gp has Q [3, 14]. This is exactly the case here, when p(ri) is low compared to the number 

of spares, almost all arrays are repairable. When p{n) is high compared to the number of spares, 

almost no array is repairable. Formally, we have the following definition.

D efinition 2.1 A threshold function for property Q is a function p(c,n) such that almost every 

Gp(e,n) has Q if e > 0 and almost no Gp(c,n) has Q if € < 0, where e is a constant.

This definition is different from those in Bollobas [3] and Spencer [14], but satisfies our need and is 

easy to deal with technically.

Finally, there are some basic preliminaries from probability theory [5] that are important in 

random graph analysis. Markov’s Inequality states that if f  is a non-negative random variable and 

t > 0, then P{ti > t } <  E(£)/t, in particular, if f  is integer valued, then £ (f )  -*• 0 implies P ( f  = 

0) l. Also, if f  is a non-negative random variable and t > 0, then P {|f -  f?(OI > *} < ^ aK O /i2> 

or equivalently, P { -  £ (f)l < *} > 1 -  Var(£)/t2. This is known as Chebyshev’s Inequality.

3 R epairability in Term s o f Failure R ate and Spares

In this section, we examine the relationship between failure rate p(n), the number of spares and the 

repairability. It will be shown that when p(n) < c /n , the array is almost always easily repairable, 

and when p(n) > c '/n , the array is almost never repairable, where c and c' are constants depending 

on the number of spares. In other words, the threshold function for the row/column repair to be 

effective is near 0 ( l/n ) .
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T h eo rem  3.1 If the edge probability p(n) = c/n, where c > In4/(1 — a )( l  — /?), then almost every 

bipartite graph Gp has no bipartite vertex cover of size (an,/3n).

P roof. Let X  be a random variable denoting the number of bipartite vertex covers of size (an,/?n), 

and X{ be a {0, l}-random variable denoting whether a specific choice of an  and (3n vertices is a 

vertex cover. Then

E (X )  = £ £ ( * < )
n \ I n 

a n ) \/3n P{Xi  = 1}

< 2n2n (l  -  p in ))11- “ « 1- ' ’ '" 2

= ( 4 ( l - f )  J  =  (4«=-i(1- “,(1- <5))

Since c > In4/(1 -  a ) ( l  -  /3), E (X )  ->• 0. From Markov’s inequality, limn_̂ oo P { X  = 0} = 1. □

If the failure rate p is constant, then intuitively it would seem that the array is repairable if 

a + p _  a(S >  p, because the total number of spare elements is (a + /? — a(3)n2, and the total number 

of faulty elements is approximately pn2. The theorem says that this is not the case.

We can also determine when the arrays are almost always repairable.

T heo rem  3.2 Almost every bipartite graph Gp(n) has a bipartite vertex cover of size (an,/?n), if

p(n) = a +  P u(n)  
n n3/ 2 (1)

where u(n)  is any function such that lim ^oo u(n) = oo.

P roo f. We show the total number of edges is almost always less than (a +  fi)n, if p(n) satisfies (1). 

Let A' be a random variable denoting the number of edges, then X  obeys the binomial distribution
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Failure Rate

Figure 1: Regions where the array is almost always repairable and almost never repairable, 

and E (X )  =  n2p(n), Var(X)  = n2p(n)(l — p(n)). Since

P {X  < (a + fi)n} > P{(ar +  (3)n — 2y/noj(n) < X  < (a  +  /3)n}

= P { \X  -  E ( X )| <

From Chebyshev’s inequality,

P { X < ( a  + ß)n} > =
nu>2(n) \ u 2(n) )

— 1 as n -+ oo

□

The results in Theorem 3.1 and 3.2 are illustrated in Figure 1, where the horizontal axis is the total 

number of spares and a = (3.

The above discussion does not consider the failure of spares. If the spare elements have the 

same failure probability as the array elements, then the problem is given an n-by-n array, to find a
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sub-array of size an-by-(3n, for some fixed a, ¡3 G (0,1). Fuja and Heegard gave an estimation for 

the special case where p is a constant [7]. Write Jfni)n2 as the complement of the complete bipartite 

graph K nun7. In other words, i f nitn2 is an empty graph on ni and n2 vertices.

T heo rem  3.3 If p(n) = c/n, for any c > ln4/(a/3), then almost all bipartite graphs Gp(n) have no 

induced K an,pn•

P roof. Let X  be a random variable denoting the number of copies of induced K an,pn, and Xi be 

a {0, l}-random variable denoting whether a specific set of an and (3n vertices induces an K an,0n•

Then

Since c > ln4/(a/3), we have E ( X ) = 0 as n —► oo. □

Since the results of Theorem 3.1 and Theorem 3.3 are very close, we will follow the tradition

of Kuo and Fuchs [11] and treat the problem as a bipartite vertex cover problem instead of an

induced-subgraph problem in the remainder of the paper.

4 Early-A bort H euristics

In this section, we examine several heuristics which are front-ended with some polynomial time

algorithms to detect as many unrepairable instances as possible. We will show under what p(n),

these heuristics can effectively detect unrepairable instances.
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4.1 D iagonal Test

This method was proposed by Bindels, et al. [2], by observing that any two faulty elements on the 

diagonal line of a memory cannot be repaired by using only one spare row or only one spare column. 

If the number of faulty elements on the diagonal line is greater than the total number of spare rows 

and columns, the memory is unrepairable.

T heo rem  4.1 For a random graph Gp{ri), p(u) — oc -f P + £ uj(n)/y/n is the threshold for Gp(n) 

having (a  +  (3)n edges in any specified set of n pairs of vertices, where 0 < a + (3 < 1 and u;(n) -> oo.

P roof. Let S be a set of designated n pairs of vertices, and X  be a random variable denoting the 

number of pairs of S having an edge between them. Then X  is in binomial distribution. E(X') 

np(n) and Var(X )  = np(n)( 1 -  p(rc)). When e > 0, we show the total number of edges is almost
* ft

always greater than (a + fl)n.

P { X > ( a  + 0)n} > P{(a + 0 )n  + 2 u (n )V n>  X  > {oc + 0 )n )

= P {\X  -  £ (X )| < w(n)Vn)

> 1 _ J 5 W L  = i - o
(iu(n)y/n )2 

= 1 as n —* oo

u>2(n)

When € < 0 we show the total number of edges is almost always less than or equal to (a + (3)n.

P{X < (a  +  0)n)> P { ( a + 0 ) n - u ( n ) V n < X  < (a  + 0)n}

= P {\X  -  E (X ) \< u (n )V n }

= 1 as n —► oo

□
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If we choose the diagonal n elements as the set S  in the theorem, then the theorem says the 

diagonal almost always contains more than (a  + (5)n faults if e > 0, and almost never contains more 

than (a  + 0)n  faulty elements when e < 0. A natural extension of the diagonal test concept is to 

consider all sets D(i) = {((i+j)mod n j )  \ j  = h  2, •••, n}, where D(0) is the diagonal. This extension 

has only a small effect on the last term of the threshold function.

4.2 M axim um  M atch ing

For a bipartite graph, the well known Egervary-Konig’s Theorem says the size of the maximum 

matching equals the size of the minimum vertex cover [12]. If the size of the maximum matching is 

greater than (a + /3)n, then the array is unrepairable [11].

Theorem 4.2 If p(n) =  c/n  where c > In 4/(1 -  a -  /3)2, then the size of maximum matching is at 

least (a  + (3)n.

Proof. Given a bipartite graph G = (Vi U V2,£ ) ,  for any W  C Vi, the deficiency of W, 6(W), is 

defined as \W\ -  |i2(W)|, where R(W )  are TV’s neighbors in V2. Formally, R(W)  = {Vj G V2 | 3v{ G 

IV, (V{, Vj) G E}. The deficiency of G is defined as 6(G) =  max¿(IV) for all W  C V\. The size of the 

maximum matching equals n -  6(G) [12].

We now show the size of the maximum matching cannot be smaller then (a + 0)n. Otherwise, 

there would be a subset of Vi which has deficiency at least (1 — ot — 0)n. Let X  be the number of 

such subsets and write 1 — a — ¡3 = 7 .

E (X )



A contradiction. □

Therefore, the edge probability for Gp having a maximum matching of size greater than an  is 

very close to the edge probability for Gp being unrepairable.

4.3 T otal Faults

As previously stated, the maximum number of faulty elements that can be repaired by an  spare rows 

and ¡3n spare columns is N  = (a + /3 — a(3)n2. If a memory has more than N  faults, it is unrepairable 

[4]. Using a similar argument to Theorem 4.1, we can prove the following theorem.

Theorem 4.3 For a random bipartite graph Gp, p(n) =  a + — a(3 + e u;(n )/n  is the threshold 

function for Gp having more than (a + ¡3 -  a(3)n2 edges, where u{n) -+ oo.

5 Partial Solution H euristics

In this section, we study several heuristics which are front-ended with polynomial time algorithms to 

reduce the problem size by detecting as many mandatory repairs as possible. We show under what 

p(n), these heuristics can reduce the problem size, and by how much.

5.1 M ust-rep air

A row (or column) which contains more than an  (or fin) faults must be replaced, since all the faults 

in the row (or column) cannot be repaired by using spare columns (or rows) only.
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T heorem  5.1 The threshold function for Gp having some vertex with degree greater than an  is 

p(n) = a + ew(n)/n, where o>(n) = ft(n9/ 14) and u>(n) —*■ oo.

P roof. Let X  be a random variable denoting the number of vertices having degree greater than an  

faults, X{ be a random variable denoting the degree of vertex Then E (X )  = Yl?=i E{Xi  > a n } = 

nP{Xi  > cm}. When e > 0, for every row, we have

P{Xi > an] > P{an  + 2a;(n) > X{ > an}

P{\Xi -  E (X i) | < w(n)}

1 as n-+ oo

On the other hand, when e < 0

E (X )  =  nP{Xi > on}

To estimate the tail of the binomial distribution, we need the DeMoivre-Laplace Limit Theorem [3].

It says if npq — oo, 0 < h = Xy/pqn = o{(pqn)2/3} and x -*■ oo, then

Let h = w(n) and x = n1/7. We have E (X )  —*■ 0. a

By applying Bollobas’ proof of general graphs [3], we can show when p(n) = c/n, the maximum 

degree of almost every bipartite graph Gp(n) is 0 (ln 7i / ln ln n ) ,  which is much less than an and (3n.
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5.2 Iso la ted  Faults

When a fault does not share a column and row with any other faults, we call the fault an isolated 

fault. When a set F  of faults share a common column (or row), but none of the faults in F  shares 

any row (or column) with any other faults, we call the column (or row) a linear fault line. These 

concepts have been used in several heuristics, such as the one proposed by Hemmady and Reddy 

[10]. It is usually easy to decide a repair solution with isolated faults and linear fault lines.

Theorem 5.2 The threshold function for a bipartite graph Gp to contain an isolated edge is p(n) 

(0.5 + e)ln n/n.

Proof. Let X  be a random variable denoting the number of isolated edges, X{ be a {0, l}-random 

variable denoting whether edge i is an isolated edge, then

E (X )  =  . £  E(Xt) = (1 - 2(n—1)

= n M ;- + €

= l 2 +  e

In n
n

nln n 
1+2 e

- « H s r
n

When € > 0, E (X )  -» 0. To study E ( X ) when e < 0, we use the second moment method [3, 14]. The 

second moment method says that for a random variable X , P {X  -  0} < {E (X 2) -  E (X )2) /E ( X ) 2. 

In particular, E ( X 2) /E ( X ) 2 -*■ 1 implies P {X  = 0} -»• 0.

E ( X 2) = F ( ( X : ^ ) 2) = ^ ( E ^ 2) + ^ ( E ^ )
t i i ^ j

= E ( X )  + '£ ,E ( X iX j)
‘ift

=E ( X )  + n2( n -  l ) V ( n ) ( l - p ( " ) ) 2<n-2)
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Therefore, E ( X 2) / E ( X ) 2 —* 1 as E( X)  —► oo. 0

The single fault line corresponds to an isolated edge. The above theorem says such isolated edges 

appear around the failure rate (0.5 + e)ln n /n . The linear fault line corresponds to an isolated star 

(a star is a K \ tk for some k). We now consider how many such isolated faults and linear faults there 

are when the failure rate is c/n.

Theorem 5.3 Let p(n) = c /n  for any c > 0. The number of isolated edges is ce~2cn and the 

percentage of isolated edges is e-2c. The total number of edges in stars is e- 2c(2ece c -  l)cn and the 

percentage of edges in stars is e“ 2c(2ece c — 1).

Proof. Let X  be the number of isolated edges, then E( X)  = n2p(n)(l — p(n))2(n ^  = ce 2cn. Since 

the total number of edges is cn, the percentage of isolated edges is e“2c.

Let Yk be a random variable denoting the number of copies of K\,k with only one vertex in Vi, 

then

E(Yk) = » i j / ( » ) ( i - p w r ‘a - p W ) ‘M I

= n ( ^ e-nP' C \ * ( n - 1 )  Ck _ c _ ck

1 ~ n) ~ Uk\e 6

Therefore, the total number of edges in stars is

n ( „„-c\k
2 ^ 2 k E ( Y k) ~  E ( X )  = 2ne~c ' £ , k (ce c) ..-2c.

k=1 k=l
2c/o^ce_c

k\
— ce n

= e“ 2c(2ece -  l)c n

divide by the total number of faults which is cn and the theorem is proved. □
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This theorem says that to consider isolated faults and linear fault lines we may decrease the 

problem size by a fixed percentage. When failure rate is 1/n, for example, about 25% of faults are 

isolated or on a linear fault line.

5.3 C ritical Set

The critical set heuristic by Hasan and Liu [9] is an enhanced version of maximum matching. Es­

sentially the critical set is the intersection of all minimum vertex covers. When there are too many 

edges, the graph almost always contains a perfect matching. If the graph has a perfect matching,

then the critical set is empty. On the other hand, when there are too few edges, these edges are
/

almost all isolated edges in which case the critical set is again empty. When p(n) = n~(3/2+e) for 

any e > 0, we will show the expected number of vertices with degree greater than 1 goes to 0.

2u(epn -  1 -  pn)

Using Hospital’s rule several times, we have E ( X ) —*■ 0.

To conclude, the critical set method works when the failure rate is between p(n) = In n /n  where 

the graph has a perfect matching and p(n) = n- (3/2+e) where all edges are isolated.

5.4 C om parison o f H eu ristics

Results in Section 4 and Section 5 are summarized in Table 1. The first four heuristics are applicable 

only when the failure rate p{u) is a constant. For any p{u) —* 0 as n —*> oo, these heuristics can neither 

detect any unrepairable instances, nor perform any mandatory repair. The isolated fault heuristic



15

Table 1: Probability of successful application of heuristics.

Heuristics Range Applicable
diagonal test p(n) > a + ¡3
total faults p(n) > a + (3 — a/3

must repair (row) p(n) > a
must repair (column) p(n) > (3

isolated faults 0.5 In n /n  > p(n)
maximum matching ln 4 /n (l — a — (3)2 > p(n)

critical set In n /n  > p(n) > n~3/2

is applicable when the failure rate is less than 0.5 In n /n , but it can only decrease the problem size 

by a constant factor when the failure rate is c/n. Therefore, the average-case time complexities of 

these heuristics are exponential. If we consider the applications where entire rows or columns may 

also be defective, then row and column must repair would also be practically useful heuristics. The 

applicable ranges of maximum matching and critical set cover the case when p(n) = c ln.

6 A n A verage-C ase Polynom ial T im e A lgorithm

In this section, we present an algorithm for memory repair such that when p(n) = c/n  for any c < 1, 

the algorithm runs almost always in 0 (n2) time and for any c < 1/ 2, the algorithm runs in expected 

0{n2) time. In Figure 1, p(n) = c/n  for c < 1 covers a considerable amount of the “depend on fault 

distribution” region, especially when the number of spares is small.

Lemma 6.1 If p(n) = c/n for any c < 1, then the expected number of vertices of Gp in tree 

components is 2n + 0(1). The number of vertices in non-tree components is almost always less than 

log n.
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Proof. For general graphs when p(n) = c/n  where c < 1, Erdos and Renyi proved the expected 

number of vertices in tree components is n + 0(1) [3]. This implies that for a bipartite graph Gp(n) 

with p(n) = c/n, where c < 0.5, the expected number of vertices in tree components is 2n + 0 (1). 

In the following we improve the bound to c < 1 for bipartite graphs.

A vertex in a non-tree component must be connected to a cycle of length 2k through a path of 

length m, for some k > 1 and m  > 0. If we sum over the expected number of vertices in.the cycles 

and the paths over all n > k > 1 and 2n > m  > 0, we have an upper bound on the expected number 

of vertices in non-tree components. There are at most n2/f+m ways to form a cycle of length 2k and 

a path of length m, and each way appears with probability (c/n)2k+m. So the expected number of 

vertices in non-tree components is at most

n 2 n
£  (2k + m)c2k+m
k—l m=0

Since when c < 1,

o° CO / oo \ / oo \ 1 1
,2k+m _ | \  ' „2k \ [ \  ' „m | _EZ ^+m = (X>u)[£

k̂=0k=0 m=0
c =

vm=0 1 —  C2 1 —  C

We have

± ± {2k + m)c2̂ < -„ (1 +  c)2( l -  c)3

which is a constant. Therefore, the probability that the number of non-tree vertices is greater than 

logn goes to 0. ®

L em m a 6.2 If a given bipartite graph G = (Vi U V2,E )  is a forest, then we can decide in 0 (n 2) 

time whether there is a bipartite vertex cover of size (s,Z).



17

Proof. The method is a dynamic programming algorithm [1]. For a tree T  with root v, we define 

two sets O P T +(T ) and OPT~{T). O P T +(T) = {(n1?mi), (n2, m2) , . . (n*, m k)} where 0 < nx < 

n2 < • • • < nk < s and t > mi > m 2 > • • • > m k > 0. O PT+(T) contains all minimum bipartite 

vertex covers of size for 0 < * < s and 0 < j  ' < t, with the root v in the vertex cover. Similarly, 

0 PT~( T)  contains all minimum bipartite vertex covers of size (i , j )  with the root v not in the vertex 

cover.

The sets are constructed bottom up. For a vertex v € Vi with k sons vi,v2, .. we first 

construct the sets OPT+(Tt) and O P T "(T t-) of the k subtrees Ti ,T2, .. .,2*. Define a Cartesian sum 

of two binary relations P i © R 2 — {(n i +  n2-> m i + m2)|(ni> mi) ^ -^l an(  ̂ (n2? m 2 ) ^ ^ 2}- Then, we 

first compute:
k

Si =  ©  {OPT+(Ti) U OPT~{Tij)
t=i

After deleting redundant tuples from Si, we have O PT+(T) = Si ® {(1,0)}. Similarly,

k
52 = ® O P r +(Ti)

t=l

After deleting redundant tuples from S2, we have O P T ~(T ) = S2.

To reduce the time complexity, the sets of T \,T 2, .. .,Tjt are merged two at a time: Ti and T2 

are merged first, then merged with T3, then T4, . . . ,  and finally Tk. Disjoint trees are merged in a 

similar fashion. Finally, the graph has a bipartite vertex cover of size (s ,i) if and only if O P T+(G) 

or O PT~(G ) contains element (nt-,mt) such that nt- < s and mt- < t.

Denote C( T) as the time complexity for tree T, we will prove by induction on the size of T  that 

C(T)  < cn2, where |Tj = n and c is some constant greater than 1. When n — 1, it is trivially true.
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Let the subtrees of T  be Ti ,T2, .. -,Tk, k > 1, and we write |Tt| — n,-, then

C(T) < niii2 + (ni +  712)713 + ----- f  0»i + ----1 C(T,-)

<  711 712 +  (T il +  7 7 2 ) 7 1 3  + -------- h (77 l + -------1- 7 ljt_ l)7 lfc  +  Z ) i = l  C7li

=  (C 7 li)7 7 i - f  (77 i +  C772 )7 l2 + -------- f  ( n l  + --------1" ^ J t - 1  +  CUk)nk

<  (n i )cn i +  (Til +  7i2)c7i2 + ----h (711 + --- \- nk)crik

< c(ni 4------ h Tifc)2

= cn2

Therefore, the total time is at most 0 (ti2). Since the set is always of size m in(s,i), a careful analysis 

shows the time complexity is 0(77min(s,i)). ED

Theorem  6.3 When p(n) = c/n for any c < 1, there is an algorithm which finds the bipartite vertex 

cover of size (s,i), and runs almost always in 0 { n 2) time. When c < 1/2, the algorithm runs in 

expected 0(7i2) time.

Proof. The algorithm first finds all tree components of the given graph, which we call the forest. 

This can be done easily in 0(n)  time [1]. The algorithm of Lemma 6.2 is then used to find solutions 

for the forest. Finally, we treat the non-tree components by enumerating all possibilities. Since the 

number of vertices in non-tree components is at most log7i, there will be at most 2*ogn =  n different 

cases. The algorithm compares each of these different cases with the table of the forest to see if it is 

a solution. For each case, it takes 0 (7i) time to verify. The resulting total time complexity is 0 {u  ).

When c < 1/2, the probability that a non-tree component is of size k is at most nkp(n)k = ck. 

Therefore, we can afford 0(2k) time for a non-tree component of size k since the expected time is 

0('2k)0(ck) = 0(1). The time for tree components is still 0 (ti2) in the worst case. Therefore, the
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total expected time is 0 (n2). ^

The following is the highlight of the algorithm, which finds a bipartite vertex cover of size (s,f) 

for G if any, or indicates there is no solution. The operation “find O PT(F)” is described in the proof 

of Lemma 6.2.

Algorithm 1. Repair(Gr, s, t)
Input. G is a bipartite graph, s and t are two integers.
Output. "Yes” and the repair solution, or “no”.
M ethod.
1: find all tree components of G: T i , .. .,2V,
2: F  = U ^ iTi] C = G - F ;
3: find OPT( F );
4: for each bipartite vertex cover (t/i, U2) of C 

if OPT(F)  + (\Ui\, |f72|) < (-M) 
th en  return “yes” and solution;

5: return "no”.
End of Algorithm.

The algorithm has been implemented and executed with previously published test input. In 

addition to the algorithm described in Theorem 6.3, we also included the row/column must repair 

heuristic to take care of faults covering entire rows and columns. Unlike many existing heuristics, 

our algorithm has no special case short cuts. Using the test data, our algorithm has a significant 

performance improvement over existing heuristics such as the branch and bound algorithm of Kuo 

and Fuchs [11], and the critical set algorithm of Hasan and Liu [9], see Table 2. The Kuo and Fuchs 

algorithm and our algorithm execution times are for a Sun 3/50. Hasan and Liu’s algorithm is for a

Pyramid.
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Table 2: Sample performance of algorithms.

Array
size

#  of
spare
rows

#  of
spare

columns

#  of 
defective 

cells

repair­
able

Kuo & Fuchs 
alg.

(seconds)

Hasan & Liu 
alg.

(seconds)

our
alg.

(seconds)

128 x 128 4 4 5 yes 0.12 0.11 0.04
128 x 128 4 4 15 no 0.14 0.08 0.06
256 X 256 5 5 10 yes 0.20 0.15 0.06
256 x 256 5 5 30 no 0.38 0.28 0.06
512 x 512 5 5 15 yes 0.28 0.13 0.44
512 x 512 10 10 19 yes 0.40 0.28 0.12
512 x 512 10 10 45 no 0.92 0.55 0.14
512 x 512 20 20 45 yes 1.32 1.18 0.40
1024 x 1024 20 20 40 yes 1.06 0.63 0.40
1024 X 1024 20 20 60 no 1.78 0.96 0.44
1024 x 1024 20 20 200 no 28.26 11.58 0.50
1024 x 1024 20 20 400 no 178.12 40.71 0.64

7 C onclusions

Random graph theory was used to examine the average-case time complexities of several heuristics for 

reconfigurable arrays as summarized in Table 1. Although the problem is worst-case NP-complete, 

we presented the first provably average-case polynomial time algorithm. The algorithm runs in 

asymptotically 0 (n 2) time on average. We expect that the random graph analysis used in this paper 

can be applied to other reconfiguration heuristics to study average case time complexity and also in 

the development of efficient heuristics.
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