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Reader Aids —

Purpose: Present an analysis

Special math needed for explanations: Probability theory 

Special math needed to use results: None

Results useful to: Fault-tolerant system designers, Processor array designers & users

Summary & Conclusions — Processor arrays, featuring modularity, regular interconnection 

and high parallelism, are well suited for VLSI/WSI implementations and specific applications 

with high computational requirements. Error detection and recovery can be important for certain 

applications of processor arrays. Concurrent error detection (CED) techniques, which check nor­

mal system operations, have been designed to detect errors caused by transient and intermittent 

faults. However, CED techniques typically suffer from costly hardware penalties or performance

costs.



This paper describes the Periodic Application of Concurrent Error Detection (PACED) 

technique which allows the performance costs incurred through the use of time-redundant CED 

in processor array architectures to be reduced. The application of CED is varied in both time and 

space to provide probabilistic detection of errors in processor arrays. Formulae are derived that 

predict, upon error detection, the amount of output to suspect as possibly erroneous, for single 

processors, linear arrays, and two-dimensional mesh processor arrays. The results indicate that 

the error coverage can be surprisingly high when PACED is applied in processor arrays, e.g., 

95% for checking performed 50% of the time.

This research was supported in part by the SDIO/IST and managed by the Office o f Naval Research under contract N00014-89-K-0070, in 
part by the National Aeronautics and Space Administration (NASA) under Contract NAG 1-613, and in part by the Department o f the Navy and 
managed by the Office o f the Chief of Naval Research undo: Grant N00014-91-J-1283.



1

1. INTRODUCTION

Acronyms

CED concurrent error detection
PACED periodic application of concurrent error detection
PE processing element (of an array)

Notation

M period of CED application
N duration of CED application
0 checking offset
csAitN checking sequence array

Preserving data integrity in processor arrays that feature modularity, regular interconnec­

tion, and high parallelism, can be important for certain applications; error detection is one aspect 

of fault tolerance. Concurrent error detection (CED) techniques, which check normal system 

operations, may detect transient and intermittent faults with greater probability than off-line test­

ing methods. Techniques such as rollback, instruction retry, and roll forward can be combined 

with CED for error recovery.

Use of time-redundant CED techniques can reduce the hardware overhead of error detec­

tion, but may degrade system performance. Periodic application of CED (PACED), as described 

in this paper, can reduce the performance degradation incurred through the use of time-redundant 

CED in processor array architectures [2].

Without continuous checking, undetected errors may occur. In this paper, the confidence to 

place on the outputs of a single processor using PACED is studied; formulae are derived that pre­

dict, upon error detection, the amount of output to suspect as possibly erroneous. In linear and 

two-dimensional mesh processor arrays, if detectable errors propagate, then the amount of output 

to suspect can be limited. The estimated PACED error coverages for the single processor and 

array architectures are also studied.
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When a single processor uses PACED, it can be parameterized by Af, the period of CED 

application, and N , the duration of CED application (0 <N <M) .M  and N  govern the time dis­

tribution of CED: in any period of Af computation cycles, N  cycles are checked and M -  N  

cycles are unchecked. With small N/M, less performance degradation can usually be expected, 

but small N/M also reduces the probability of error detection.

When PACED is applied to PEs of a processor array, M  and N  may vary at each PE in the 

array. The PE checking offset O determines the initialization of each PE’s first Af-cycle period; 

varying O at each PE in an array can create patterns of checking in the array. The checking 

sequence, CSMN, is defined as an array of M  values:

CSM)tf[r] = 1, for 0 < r < N -  1,

CSMtN[r] = 0, for N  < r < M  -1 .

EXAMPLE 1.1: The checking sequence for Af = 5 and N  = 2 is CS5 2 = (1,1, 0, 0, 0). □

2. PACED IN A SINGLE PROCESSOR

2.1. Error Arrival Model 

Notation

C confidence to place on processor outputs 
K  length of "cluster interval"
L length of "undetected-errors interval"
q Pr{particular CED technique detects error I error exists}
X mean error arrival rate

This study concentrates on the correctness of outputs, and thus on errors. It is assumed that 

faults cause errors, that errors arrive in clusters or bursts [3], that error clusters follow a Poisson 

arrival process with a constant mean arrival rate, and that errors within clusters are also Poisson 

distributed. No assumptions are made concerning the types or distributions of the faults
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themselves. The following example supports this assumption.

EXAMPLE 2.1: a  two-phase hyperexponential function was fit to error arrival data from one
/V

machine in a seven-unit VAXcluster system [4]. The density of the fitted distribution f ( t )  is 

0.88(0.829£~°,829i) + 0.12(0.012 (t in minutes). The fit was tested using the chi-square test

and could not be rejected at the 0.28 significance level, with r2 = 0.99997. □

The two-phase hyperexponential distribution function can be interpreted as exponentially- 

distributed errors (with parameter 0.829/min) arriving in infrequent, exponentially-distributed 

clusters (with parameter 0.012/min) [4].

2.2. Confidence Analysis

When an error is detected at a processor using PACED, the current outputs of the processor 

should be suspected as possibly erroneous: the detected error may be part of an error cluster and 

other errors in the cluster may have gone undetected. The next two subsections determine, when 

an error is detected, two intervals of time during which outputs should be suspected as possibly 

erroneous: one interval prior, and one subsequent, to the detected error. (If, upon error detection, 

specific action is taken either to eliminate the source of errors or to increase the amount of check­

ing performed, then the outputs produced subsequent to the error detection need not be sus­

pected.) These intervals are determined using two criteria, assuming that the detection of an error 

is independent of whether any other error is detected. 1/ Cluster Intervals: Outputs produced in 

intervals which bound an error cluster are suspected. 2/ Undetected-Errors Intervals: Outputs 

produced in intervals from the time of the current detected error backward to the first undetected 

error and forward to the last undetected error are suspected.

The proofs for the theorems in this section use the following lemmas.

LEMMA 2.1: In a processor using PACED with 1 < N < M  and where the CED technique 

has detection probability q < 1, detected and undetected error arrivals are each exponentially dis­

tributed.
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PROOF: See Appendix. □

LEMMA 2.2: The detected and undetected intracluster error Poisson arrival processes are 

independent.

PROOF: See Appendix. □

2.2.1. Fault-active intervals

When an error is detected, if no other errors were detected within K  time units either prior 

to or subsequent to the detection, then with probability C the error cluster is contained within 

these cluster intervals. Assuming clusters occur infrequently, then outputs produced earlier than 

K  time units before, or later than K  time units after, the detected error can be trusted with confi­

dence C (i.e., are correct with probability C). All outputs produced within K  time units before or 

after the detected error should be suspected as possibly erroneous: the outputs may be used but 

the user should be aware that some of this output may be incorrect. Figure 2.1 illustrates the K- 

length cluster intervals.

THEOREM 2.1: Let a processor use PACED with 1 <N <M  and q<  1. Upon error detec­

tion, outputs produced either before K  time units prior to, or after K  time units subsequent to, the 

detected error can be trusted with confidence C, where K  satisfies:

K £ -  ^  r— ln(l -  C) 
N Kq

K K
time

<_______________ J. ic.______________>
trust suspect suspect trust

Error Detected

Figure 2.1. Cluster intervals of length K.
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Outputs produced within K  time units before or after the detected error should be suspected as 

possibly erroneous, since the error cluster is contained in those intervals with probability C.

PROOF: See Appendix. □

For multiple detections, cluster intervals are taken around each detection with no signifi­

cance attached to overlaps. If a second error detection occurs within K  of a first, then the follow­

ing outputs should be suspected: those produced within K  before the first detection, those pro­

duced between the two detections, and those produced within K  after the second detection.

EXAMPLE 2.2: Let q = 1, N/M = 0.5, and C = 0.99. Using X = 0.829 err/min (Example 2.1), 

if an error is detected, then outputs generated earlier than 11.1 min prior to the detected error, or 

later than 11.1 min after the detected error, can be trusted with a confidence of 0.99, provided no 

other errors are detected within 11.1 min of the detected error. All outputs produced less than 

11.1 min before or after the detected error should be suspected as possibly erroneous. □

Figure 2.2(a) shows C versus X and K, given q = 1 and N/M = 0.5. With small X, K  needs to 

be larger to achieve a given C. Small values of K  can reach high confidence levels when X is 

larger: for X > 0.5 err/min, C > 0.95 can be achieved with K > 12 min with N/M = 0.5.

Figure 2.2(b) shows how C is affected either by N/M (with q = 1) or by q (with N/M =1), 

given X = 0.829 err/min. (In the expression for K  given in Theorem 2.1, setting q -  1 and varying 

N/M from 0 to 1 is equivalent to setting N/M = 1 and varying q from 0 to 1.) Given K=  12 min, 

N/M > 0.3 (if q = 1) or q > 0.3 (if N/M = 1) suffices to give C > 0.95. This is an encouraging 

result: if q = 1, designers can use non-continuous checking (the goal of PACED) and still achieve 

high confidence in outputs produced near a detected error. If N/M = 1, then the precise value of q 

is not critical, for large enough K: this is encouraging as well, as it may be difficult to estimate q 

accurately.
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lambda

Figure 2.2(a). Cluster intervals, C vs. X, 

N=5, Af=10, q= 1.

Figure 2.2(b). Cluster intervals, 

C vs. iV (#=1) or q (N/M=l).

2.2.2. Undetected-errors intervals

Theorem 2.1 determined the length of cluster intervals during which the error cluster proba­

bly existed. If, upon error detection, only those outputs since the first undetected error and until 

the last undetected error are suspected, then the time intervals in which to suspect outputs will be 

shorter. These intervals have length L. Figure 2.3 shows the relationship between K  and L.
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K K

time
L L

_________ a ic.________oiL _ 1 _____ >
trust suspect suspect trust

First Undetected Error Error Detected Last Undetected Error 

Figure 2.3. Undetected-errors intervals of length L.

THEOREM 2.2: Let a processor use PACED with 1 <N <M  and q < 1. Upon error detec­

tion:

Case (a): Outputs produced prior to L time units before the detected error can be trusted 

with confidence C; the interval extends from the detected error back to the probable time of the 

first undetected error.

Case (b): Outputs produced subsequent to L time units after the detected error can be 

trusted with confidence C; the interval extends from the detected error forward to the probable 

time of the last undetected error.

In both cases, the length L satisfies:

r M  1 , 
L - ~ N ^

f  \
1 - C

, N
X~ q MJ

Outputs produced within L time units before or after the detected error should be suspected as

possibly erroneous.

PROOF: See Appendix. □

EXAMPLE 2.3: For the processor in Example 2.3 {q = 1, X = 0.829 err/min, N/M = 0.5, C =

0.99), when an error is detected, the outputs generated prior to 9.4 min before, or subsequent to 

9.4 min after, the detected error can be trusted with a confidence of 0.99, provided no other errors 

are detected in those time intervals. All outputs produced less than 9.4 min before or after should
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be suspected as possibly erroneous. In this example, use of L-length intervals reduces the amount 

of output to suspect by about 15%. □

Plotting C versus L yields graphs similar in shape to Figure 2.2. However, for a given set of 

parameter values, a desired confidence level can be achieved with a value of L smaller than the 

necessary value of K.

2.3. Error Coverage

Notation

10 an error arrival time
X length of a time interval
Gfcx) generating function for the number of error arrivals

Cl\, <?2» b> c parameters of G(z, x)
oc, A,*, X2 parameters of two-phase hyperexponential distribution

The error coverage of the PACED technique is the probability that an error will be 

detected. When an error is detected, the backward undetected-errors interval will, in effect, 

"cover" all the undetected errors in that interval by casting them under suspicion. Similarly, the 

forward undetected-errors interval will "cover" any future undetected errors. Hence, an error will 

not be covered only if no other errors are detected in the time intervals of length L before and 

after it.

The probability that an error will not be covered is the probability that the error itself goes 

undetected and that no other errors are detected in the L-length intervals before and after the 

error. This probability will be determined using the following generating function.

LEMMA 2.3: The generating function G(z, x), for the number of error arrivals from a two- 

phase hyperexponential distribution with pdf of the form aXxe~X{t + (1 -  a)'Ki e~Xlt, in an interval 

[t0, t0 + x] or [i0 -  x, i0], given that there was an arrival at i0, is given by:
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G(z,x) = S l z L e - ^  + b ~ a 2 _
¿Zj — ¿Z2 #1 ^2

where 0 < z < 1, ¿q and a2 are the roots of the following quadratic equation in s:

s2 + (^(1 -  otz) + ^ (1  -  (1 -  a )z))s + (1 -  z ) ^ ^  = 0 , 

b = (1 -  a)^! + 06̂ 2, and a, and are the parameters of the distribution (Example 2.1).

PROOF: See Appendix.

Then,

Pr{error not covered}

Since Pr{error covered} = 1 -  Pr{error not civered}, then:

( N T  N  
estimated error coverage = 1 -  G l -  q — , L (1 - q  —)

\  M J M

EXAMPLE 2.4: For a single processor using PACED, let q -  1, N/M = 0.3, C = 0.99, and the 

distribution of Example 2.1 model error arrivals, viz., f  (t) = 0.88(0.829 + 0.12(0.012

g-o.oi2ty yjjjg gives l  = 17.1 min and the estimated error coverage = 94.5%. Hence, with only 

30% checking, almost 95% coverage can be achieved.

Figure 2.5 plots the estimated error coverage versus N/M when q = 1, M  = 10, and C = 0.99. 

The plot shows the coverage is > 95% for all values of N/M > 0.4. High coverage can be 

obtained with small N/M because, as the length L of the undetected-errors interval is long, many 

error arrivals would be expected to occur. Then, at least one of them would likely be detected, 

leading to the coverage of the error by casting suspicion on outputs produced at the time of the

error. □
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Figure 2.5. Single processor estimated error coverage, 

q = 1, (i= 11.1 min/err.

3. PACED IN A LINEAR ARRAY

Notation

V number of PEs in linear array
L error detection latency
D error propagation distance

For a V-PE unidirectional linear processor array, inputs enter at the top and left of the array; 

outputs are produced at the bottom and right. Data flow only from left to right and from top to 

bottom. The computational activity at each PE consists of receiving input, performing a task with 

or without applying CED, and sending output A task is a fine-grained set of data manipulations, 

such as a multiply-accumulate operation. Such arrays have implemented algorithms such as FFT 

processing [5] and image edge detection [6]. For two PEs in the array PE, and PE; , if i < j, then 

PE, i ‘s upstream of PE; and PE j is downstream from PE,.
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Assumptions

1. All communication channels in the array are fault-free.

2. If an erroneous array output is produced by a PE, an erroneous propagating output will also 

be produced and sent downstream (e.g., by using the AN-code [7]).

3. PEs are code-disjoint: erroneous inputs or state values will cause erroneous propagating 

outputs.

Assumption 2 ensures an error can be detected downstream if an erroneous array output is 

produced; Assumption 3 ensures PEs that are not checking will propagate errors.

3.1. Error Detection Latency

The error detection latency L is the number of computation cycles an error propagates until 

it is detected; is the maximal value. Use of <9, = (Nti) mod Af,- has been shown to minimize 

in linear arrays [8].

LEMMA 3.1: Given a V-PE unidirectional linear processor array using PACED with q = 1, 

Af,- = Af, Ni = N, 1 <N <M, and <9,- = (Ni) mod Af, it can be shown that the detection latency of 

an error created in the unchecked cycle r at PE,, Lr, is [ (Af -  r)/N~\, where N < r < M -  1 and 

i < V -  Lmax. The maximum error detection latency in the array, Lmax, is f (M -  N)/N~\, for all 

PE, such that i < V -  L ^ .

PROOF: See Appendix. □

EXAMPLE 3.1: Figure 3.1 shows the checking pattern in a 7-PE unidirectional array with 

Af, = 5, Ni = 2, and <9, = (2i) mod 5. Computation cycles proceed vertically; each row shows the 

checking activity in the array during a cycle, where — and x represent a PE doing a task and a 

checked task, respectively. The checking pattern sets up waves of checked cycles that advance 

upstream over time to catch propagating errors.
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An error created at PE2 in cycle 10 (marked by *) would be detected by PE4 in cycle 12 

(labeled L2), hence L* = 2. An error created at PE2 in cycle 11 (marked by o) or cycle 12 ($) 

would be detected by PE3 in cycle 12 (L3) or cycle 13 (L4): L3 = 1 and L4 = 1, respectively. 

Finally, Lmax = L2 = 2. □

3.2. Error Propagation Distance

The maximum number of unchecked cycles through which a detected error could have 

propagated will enable determination of the amount of previously produced output to suspect as 

possibly erroneous from each PE in the linear array, upon error detection.

LEMMA 3.2: Given a V-PE unidirectional linear processor array using PACED with perfect 

detection (q = 1), let Af, = Af, N { = N, and 1 < N < M. Using 0 { = (Ni) mod Af, it can be shown 

that an error detected by PE,’s r^ checked cycle, 0 < r < N  -  1, propagated through at most Dr 

unchecked cycles, where Dr = min(i, f(Af + r + 1)/A~| -  2).

PROOF: See Appendix. □

EXAMPLE 3.2: Using the array of Example 3.1 (Figure 3.1), D0 for an error detected at PE3 

at computation cycle 12 is |"(5 + 0+  l)/2~|-2 = 1, because PE! checked computation cycle 10. 

For an error detected at PE3 at computation cycle 13,D !=[(5  + 1 + 1)/2~| - 2  = 2, because PE0 

checked computation cycle 10. □

computation PE
cycle 0 1 2 3 4 5 6

10 X X * — — X X
11 X — 0 — X X —
12 — — . t u L* — —
13 — — X u — — —
14 — X X — — — X

Figure 3.1. Checking pattern in a 7-PE array.
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3.3. Suspected Outputs

Upon error detection, outputs produced both in the recent past (Theorem 3.1) and the near 

future (Theorem 3.2) should be suspected as possibly erroneous.

THEOREM 3.1: Given a V-PE unidirectional linear array using PACED with perfect detec­

tion (q = 1), let Mi = M, N { = N, 1 <N <M, and <9, = (M) mod M. If PE, detects an error at its 

r^ checked cycle in computation cycle c,0  <r < N  then the output from PE, in c should be 

suspected as possibly erroneous. Also, the outputs produced by PE,.*, in cycle c -  k, for 1 < k < 

Dr, should be suspected. All other unsuspected, previously-produced outputs can be trusted with 

a confidence of 1, unless a later error detection makes it necessary to suspect them.

PROOF: See Appendix. □

EXAMPLE 3.3: Figure 3.2 shows a 10-PE unidirectional linear array with M, = 13, A, = 3, 

and Oi = (3i) mod 13. Let PEg detect an error in cycle c (X in the figure). The output from PE8 

in cycle c should be suspected. Also, the outputs of PE7, PE6, PE5, and PE4 in cycles c -  1, c -  2, 

c -  3, and c -  4, respectively (marked by *), should be suspected as possibly erroneous. All other 

outputs generated up through cycle c can be trusted with a confidence of 1, unless a later error 

detection makes it necessary to suspect them. # □

computation PE
cycle 0 1 2 3 4 5 6 7 8 9
c - 5  
c - 4

— — — X
X

X
*

— — — —
X

c - 3 — — X X — * — — — X
c - 2 — — X — — — * — X X
c - 1 — X X — — — — * X —
c — X — — — — — X X —

Figure 3.2. Suspected previously produced outputs, 10-PE array.
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Future outputs need to be suspected when an error is detected at one of the end elements 

PE,-, where i > V - Lmax.

THEOREM 3.2: Given a V-PE unidirectional linear array using PACED with perfect detec­

tion (q = 1), let M, = M,Ni  = N , \ < N < M ,  and <9, -  (Ni) mod M. If PE^-l̂ *,- detects an error 

at its r1*1 checked cycle in computation cycle c, where 0 < r < N  -  1 and 0 < i < Lmax -  1, then the 

following outputs should be suspected as possibly erroneous.

Case (a) If (r + ( L ^  -  1 -  i)N  + k) mod M > Ny then the outputs from PEv_Lniix+,-+;- in 

cycle c + j  + k should be suspected, where 0 < j < - 1  -  i;if  r < N  -  l, then k -  0, otherwise

0 < k < M - N ( r = N - l ) .

Case (b) All output from PEV_! in cycles c + Lmax -  1 -  / until its next checked cycle should 

be suspected.

All other unsuspected, future outputs can be trusted with a confidence of 1, unless a future 

error detection makes it necessary to suspect them.

PROOF: See Appendix. □

EXAMPLE 3.4: Figure 3.3 shows the 10-PE linear array of Example 3.3 where Lmax = 4. 

PE6 has detected an error at check r = 2 in cycle c (marked X). The future outputs to suspect are 

those from: PE6 in cycle c + 1, PE7 in cycles c + 1 and c + 2, PE8 in cycles c + 2 and c + 3, and 

PE9 in cycles c + 3 and c + 4 (marked *), plus the detection (X). All other unsuspected, future 

outputs can be trusted with a confidence of 1, unless a later error detection makes it necessary to 

suspect them. □

The patterns of outputs to suspect upon error detection are static; they can be determined 

pre-run time and retrieved, when needed, with little run time overhead.

The amount of output to suspect upon error detection in the linear array is much less than 

that for the single processor: using the undetected-errors intervals in the single processor
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computation
cycle 0 1

c+  1
c + 2 — —
c + 3 — —
c + 4 — —
c + 5 — —

PE
2 3 4 5

— — x x

—  x x  —

6 7 8 9
X — — —
* * —  —

—  * * —
—  —  * *

Figure 3.3. Suspected future outputs, 10-PE array.

(Example 2.3: q = 1, X = 0.829 err/min, N/M = 0.5, C = 0.99), outputs from 18.8 min (9.4 min 

before and after an error detection) should be suspected. In the linear array, only a few tens of 

computation cycles’ outputs need ever be suspected; with 15-20 |is cycle times in VLSI 

implementations [6], less than one second’s output would need to be suspected. Since PEs can 

check other PE outputs, PACED can give high confidence in most array outputs upon error 

detection with non-continuous checking.

3.4. Error Coverage

Assuming errors occur uniformly distributed throughout the linear array, an estimate of the 

error coverage can be made. Since all Af-cycle periods are identical, it suffices to examine the 

coverage of one Af-cycle period. There are MV potential sites in one Af-cycle period at which 

errors may occur: one for each PE in each cycle. Since it is assumed errors propagate unmasked 

through the array, only some of these sites could lead to propagation of undetected errors out of 

the array, if an error were to occur. The number of these sites divided by the number of potential 

sites gives an estimate of the error coverage.

Figure 3.4 shows the estimated error coverage for a 16-PE linear array as a function of N/M, 

when Af = 10 and q = 1. The graph shows that even for small values of N/M, the error coverage 

is quite high (greater than 70% for N/M = 0.1). The coverage climbs quickly as N/M increases; 

any checking ratio > 0.4 gives an estimated error coverage > 95%. The cooperation amongst the
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Figure 3.4. Estimated error coverage for a 16-PE linear array.

PEs that allows propagated errors to be detected affords this rise in coverage for small N/M. This 

result is promising, as it allows low checking ratios and thus, low performance cost, while still 

maintaining good error coverage.

4. PACED IN A TWO-DIMENSIONAL ARRAY

Notation

U
V
RISE, RUN 
L

number of rows of PEs in 2-D array 
number of columns of PEs in 2-D array 
determine Oi r giving slope of checking pattern 
error detection latency

For a UxV two-dimensional (2-D) mesh-connected processor array, inputs enter at the top 

and left of the array; outputs are produced at the bottom and right. Data may only flow from left 

to right and from top to bottom. Similar arrays have implemented algorithms such as matrix 

operations [9] and image processing [10].
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For two PEs in the array PEi ; and PE*. /, if i < k or j  < /, then PEi ; is upstream of PE*. / and PE*. / 

is downstream from PE,j. The offset Oitjis determined by two parameters called RISE and RUN: 

RISE/RUN gives the slope of the waves of checking in the checking pattern. The confidence 

analysis of the 2-D array is based on the same assumptions as in Section 3.

4.1. Error Detection Latency

An algorithm is used to determine and Lr, the latency of an error created in an 

unchecked computation cycle r of PEI;, for Nitj <r<  When PACED is applied to a 2-D 

array, Oitj = (Mitj+ i + j - ( U -  1 -  i)RUN -  (V -  1 -  j)RISE) mod MUj. Depending on RISE 

and RUN, any PE in the 2-D array may create an error that propagates undetected, so is 

defined as the largest finite error detection latency.

EXAMPLE 4.1: Figure 4.1 shows a 10x10 array amidst a computation, with MUj= 10, N itJ = 

3, RISE/RUN = 2/1, and 0 Uj = (2i + 3j  -  17) mod 10. The detection latency for an error created 

at PE^s in^ycle c (e in the figure), when PE ^ performs its 6th check, is L5 = 2, since both PE3 6 

and PE2J detect the error in cycle c + 2. The figure shows how the error propagates through the 

array (* in the figure) until detection (X). For this array, = L3 = 3. □

j j j
0 1 2 3 4 5 6 7 8 9 i 0 1 2 3 4 5 6 7 8 9 i 0 1 2 3 4 5 6 7 8 9

0 — — — — X — — — — X 0 — — — X X — — — X X 0 — - — X — — — — X —
1 — — — X X — — - X X 1 - - - X - - - - X - 1 - - X X - - - X X -
2 — — — X - e — - X - 2 - - X X - - * X X - 2 - - X - - - - X - -
3 — — X X — — — X X — 3 - - X - - * - X - - 3 - X X - - - X X - -
4 — — X — — - — X - — 4 - X X - - - X X - - 4 - X - - - * X - - -
5 — X X — - — X X - - 5 - X - - - - X - - - 5 X X - - - X X - - -
6 — X — — — — X - - - 6 X X - - - X X - - - 6 X - - - - X - - - -
7 X X — — - X X - - - 7 X - - - - X - - - - 7 X - - - X X - - - X
8 X — — — - X — - - - 8 X - - - X X - - - X 8 - - - - X - - - - X
9 X - - — X X — - — X 9 — — — — X — — — — X 9 — — — X X — — — X X

computation cycle c computation cycle c + 1 computation cycle c + 2

Figure 4.1. Error detection latency L5.
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4.2. Suspected Outputs

In the 2-D array, the outputs to suspect upon error detection are determined using algo­

rithms that run in 0(UV  • N itj) time, assuming N itjis constant for all PEi ; .

EXAMPLE 4.2: Figure 4.2 shows a 10x10 processor array using PACED with Muj-  13, N itj 

= 5, RISE/RUN = 3/1, and <9I; = (2i + 4j  -  23) mod 13. Each grid shows the array in one com­

putation cycle. The outputs to suspect are marked @ (the error detection) and * (whence the error 

might have propagated).

If an error is detected at PE9 9 in cycle c, its output should be suspected as possibly erro­

neous. Also, the.outputs from the following PEz; should also be suspected: PE98 and PE89 in 

cycle c -  1; PEgj, PE88, and PE ^ in cycle c - 2 ;  PE78 and PE69 in cycle c -  3; and PE49 in 

cycle c -  4. All other unsuspected, previously-produced outputs can be trusted with a confidence 

of 1, unless a later error detection makes it necessary to suspect them. □

EXAMPLE 4.3: Figure 4.3 shows a 10x10 processor array using PACED with M Uj = 10, N Uj 

=3, RISE/RUN = 2/1, and Oitj = (2i + 3 j -  17) mod 10. The figure is notated as in Figure 4.2.

Figure 4.2. Suspected previously produced outputs, 10x10 array.
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If an error is detected at PE8>8 in cycle c (marked @) its output should be suspected as pos­

sibly erroneous. Also, the outputs from the following PE,j should also be suspected: PE8 9 and 

PEg s in cycle c + 1, and PE9 9 in cycle c + 2 (all marked by *). All other unsuspected, future out­

puts can be trusted with a confidence of 1 (until, of course, the next error detection). □

As in the linear array, the patterns of outputs to suspect upon error detection are static, and 

can be determined before run time and retrieved as needed upon error detection at run time.

An C analysis program was written to determine the minimum number of outputs to suspect 

for varying PACED parameters. A 20x20 array was tested, using MUj = 15, Nitj = 1, 2, • • • 15, 0 Uj 

-  (15 + / +j  -  (19 -  i)RUN -  (19 -  j)RISE) mod 15, and q=  1, and varying RISE and RUN. The 

experiment found that only approximately one second’s output needed to be suspected upon error 

detection. Again, this is a great improvement over the amount of suspected output in the single 

processor case, due to the cooperation of PEs checking other PE outputs to afford high confi­

dence in outputs with only periodic checking.

computation cycle c

(3  checked task □  unchecked task EH error detected (suspect) 0  suspected output 

Figure 4.3. Suspected future outputs, 10x10 array.
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4.3. Error Coverage

The error coverage in the 2-D array can be estimated if it is assumed that errors occur uni­

formly distributed throughout the array. Only one M-cycle period need be examined, as all other 

M-cycle periods are identical and have the same coverage. In one M-cycle period a UxV 2-D 

mesh array has MUV potential sites at which error may occur: one for each PE of the array, in 

each cycle. Since it is assumed that errors propagate unmasked through the array, only a fraction 

of the potential sites an lead to errors’ propagating undetected out of the array, if an error occurs. 

The estimated error coverage is the number of these sites divided by the total number of potential 

sites.

Figure 4.4 shows the estimated error coverage for a 4x4 PE mesh array as a function of 

N/M, when M = 10 and q = 1. When N/M is small, the error coverage is low; but the coverage 

increases quickly as N/M increases: greater than 95% coverage can be achieved with N/M just 

0.5 or greater. As for linear array, infrequent checking can yield high error coverage — and infre­

quent checking can reduce the performance cost of applying CED.

N/M(M= 10)

Figure 4.4. Estimated error coverage for a 4x4 mesh array.
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APPENDIX

PROOF OF LEMMA 2.1: Let E, represent the number of error arrivals in a time interval of 

length t, with exponentially distributed interarrival times. Let D, and U, represent the number of 

detected and undetected errors that arrive in the same time interval, respectively. If the interar­

rival times are exponentially distributed, this implies that the arrivals follow a Poisson process.

Pr{D, = *} = lP r{ E ,= « }
n=k

'n V
q M

1 - q
NX
M

n-k

f AT  ̂
M

1 N  
l - q M )

£  M n n\ (
n=k n \ k \ (n- k) \

N \ n 
l - q M )

i. N  Y

k\

, N
e~XqM'

This is a Poisson distribution, with modified error arrival rate X  = XqN/M. The proof that unde­

tected arrivals are exponentially distributed is substantially similar and results in a Poisson pro­

cess with a modified error arrival rate X" = X( 1 -  qN/M). □

PROOF OF LEMMA 2.2:

Pr{U, = *&  Df = /} 
Pr{D, = /}
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f N \  \

_  V
k\

= Pr{U, = k)

- W - Ae at

Thus,

Pr{U, = k & D, = /} = Pr{U, = *} • Pr{D, = /} □

PROOF OF THEOREM 2.1: Let D represent the detected error interarrival time. Since 

detected errors follow a Poisson process with parameter XqN/M, Pr{D > t] = e~XqNtlM and 

Pr{D <f} = 1 -

Let K  be the length of a time interval such that Pr{D <K}>C.  Then,

, -Xq— K  . _1 -  e M > c

K  * ~Tr7 " l n ( l - 0  • □ N Kq

PROOF OF THEOREM 2.2: Case (a): Let D and U represent the detected and undetected 

error interarrival times, respectively. From Lemma 2.1, both random variables are exponentially 

distributed with parameters X  = XqN/M and X ' = ^( 1 -  qN/M), respectively.

The quantity D -  U represents the time between the first undetected error and the first 

detected error. The probability Pr{D - U  > t) is now determined using a joint probability distri­

bution.

oo oo

Pr{D -U  > t) = f f \ ”e~v 'x ■ X’e-Vydydx
0 x+t

= K c~Vt
X ' + X  

X '
It follows that P r { U- D< i}  = l -  — —— e~Xt. Let L be the length of a time interval such

A + A

that Pr{D -  U < L) > C. Then,
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1 - -XL
X" + \ '

> c

i

r M  1 ,
L - - i v ^ ln

1 - C
. N  

q M J

Hence, with confidence C, the first undetected error occurred within L time units before the 

detected error.

Case (b): Let U represent the time to the last undetected error before the next detected error, 

and V, the time to the next detected error.

First, the probability is determined that the last undetected error occurs in some infinitesi­

mal time slice du at time u while the next detected error occurs in some infinitesimal time slice 

dv at time v, where v > u. (If it were known that v < u, i.e., no undetected errors occur before the 

next detected error, then none of the outputs produced between the two error detections would 

have to be suspected.)

The expression below has a term for each of the following conditions: 1) no errors are 

detected in interval u starting from the current error detection; 2) at least one error is undetected 

in interval du; 3) no errors occur in interval v -  u; and 4) at least one error is detected in interval 

dv. (The variable U should be defined as the time of the last undetected error before the fault 

becomes inactive, but since the distribution of fault lifetimes is unknown, U is predicated instead 

on the next error detection. In the derivation, then, the next detection is allowed to take place at 

any time slice dv from u to infinity, in effect allowing the fault to become inactive.)

Pr{(u < U <u + du) & (v i V  <v + dv)} = e~v“(l -  -  «r’-'*)

= a a e au

The terms 1 -  e r 'du and \ -  e Xdv have been simplified using the approximation 1 -  e~

x + o(x) as x —» 0.
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Now, the probability that U is greater than some L is determined, using the joint probability 

just derived.

Pr{U > L ]  = j  j X'X"e~x'“e,Me^d vd u
L u

N -X L
=  (1 ~ q M )e

L is determined such that Pr{U > L} < 1 -  C, where C, the confidence, is set arbitrarily 

close to 1.

Pr{U > L} < 1 - C

N  v ,( \ - q - ) e - XL Z 1 - C

„ M  1 ,
' - V

f  ^

1 - C

1 N  
l ~ q MJ

Hence, with confidence C, the last undetected error occurred within L time units after the 

detected error. Outputs produced prior to L time units before the detected error, or subsequent to 

L time units after the detected error, can be trusted with confidence C; outputs produced within L 

units of time either before or after the detected error should be suspected as possibly erroneous. □

PROOF OF LEMMA 2.3: Let N(z) represent the number of error arrivals in the time interval 

[i0, t0 + t]. Let Sn be the sum of n error interarrival times. Since there was an arrival at i0,

Pr{iV(x) = n) = Pr{Sn < x < Sn+l}.

This equation also applies to the number of arrivals in the interval [i0 -  x, t0]. Let F(ra)(x) = Pr{5„ 

< x} be the CDF of Sn. Then,

Pr{ N(x) = n) = F^'Cc) -  F*'M',)(x)

£Pr{W(T) = n}z" = 2 F w (x) z" -  z’1 ( 2  z"+1 )
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G(z,x) = GP(z, x) -  z HGfCz, x ) ~ l )

= (1 - z-1)Gf(z, x) + z_1 

Taking the Laplace transform of GF(z, x):

¿(GP(z,t)) = E L (F w (t))z"

5;
i -

otX, ( l - o O ^ Y  „---------f------------  2
X.J +  S 'h2 +  S j

1___________
( ( l - a ) ^
r--------1 r— ;-------  ZÂ«i +5 Ki + s J

Hence,

-i\ r-1G(z, x) = (1 - z ~ l) L
s

L V
1 -

1_________
f a \  (1 ~a)^2

+  S +  5

+ z-1

J J

a \ ~  a 2

where ax and a2 are the roots of:

a' -  e-°'x + e**
Cl 1 — d2

s2 + ( \ l( l - a z )  + X2( l - ( l - a ) z ) ) s  + ( l - z ) X lX2 = 0 

and b = (1 -  a ) ^  + a  A$. □

PROOF OF LEMMA 3.1: By design of the checking pattern, if CSMtN[r] is the checking 

activity at PE, in some computation cycle c, then CSM N[(r + y(N -  1) + z) mod M] is the check­

ing activity at PE,+>, in cycle c + z. With perfect detection, errors only propagate through 

unchecked cycles, so the proof only considers N <r< M  -  1.

If an error occurs at PE, during its cycle, it will go undetected: this cycle is unchecked 

(CSMiN[N] =0) .  In the next cycle, the error will propagate to PE,+1 and be detected if 

CSM)̂ [(2A0 mod M] = 1 (i.e., if PE,+1 is checking). If CSMN [(2N) mod M] = 0, then the error
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will propagate to PE,+2 in the next cycle, where it will be detected if CSm n [(3N) mod M] = 1; 

and so on.

The latency of detection of this error, L#, is the number of computation cycles required for 

the error to reach a checked cycle. In terms of the checking sequence, is the smallest integer 

number of N-bit hops needed to reach s such that CSMî [i] = 1 (i.e., 0 < s < N -  1) from N, 

where CSMtN[N] = 0. This is a distance o f M - N  bits.

Ln - N > M - N  

Ln = [(M-N)/N~\

Similarly, L^+1, the latency of an error created during the N  + 1st cycle (an unchecked 

cycle, since CSMiN[N +1] = 0), is f { M - N -  1)/A~|. In general, an error created during cycle r 

(an unchecked cycle: CSM)̂ [r] = 0) will have latency Lr = \ { M -  N - { r -  N))IN'] = 

\ (M -  r)/N"|, N <r < M -  1. Clearly, L# > LN+1 > • • • > Therefore, the maximum error 

detection latency, L ^ ,  is LN: L ,^  = LN = [ ( M -  N)/N~|.

This analysis applies to all PEs in the array except the end elements, PE, where i > 

V - L ^ .  At these PE,, an error may propagate undetected out of the array since for these PE, 

there are fewer than PEs downstream. □

PROOF OF LEMMA 3.2: Let CSM ̂ [0] at PE, detect an error in computation cycle c. The 

checking activity at PE,_! during cycle c -  1 is CSMtN[(-N) mod M]. The maximum number of 

unchecked cycles through which the detected error may have propagated, D0, is the number of 

computation cycles required to reach a checked cycle, minus 1, counting backwards in time. In 

terms of the checking sequence, D0 + 1 is the smallest integer number of N-bit hops needed to 

reach CSMtN[r], 0 < r < N  -  1, from CSM)# [0]. This is a distance of M -  N + 1 bits.

(D0 + l )N > M -  N + l

D0 = [ ( M - N  + \) /N^\- l  

= f (M+ l)/N~\-2
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Similarly, Dj = f (M + 2 )/N~] -  2. In general, Dr = \{M + r + l)/iV~| - 2 ,  0 < r < i V - l .  For 

PEs near the beginning of the array, there may be fewer than Dr PEs through which the error 

propagated. Hence, at PE„ Dr = min(i, f (M + r + l)/i\f| -  2), for 0 < r < N -  1. □

PROOF OF THEOREM 3.1: By Lemma 3.2, the detected error propagated through at most 

Dr unchecked cycles to reach PE,. Thus, the error was created at some PE,_fc in a cycle 

c -  (k + y), where 1 < k < Dr and y = 1, 2, 3, • • •.

Figure A.1 shows a 10-PE array with M  = °o and N  = 2. The X marks an error detection at 

PE5 in cycle c and the *s mark the Dr cycles through which an error may have propagated to 

reach PE5.

Suppose that the error had occurred at PE4 in cycle c -  2, c -  3, or c -  4. The error would 

have been detected by PE6 in cycle c, c -  1, or c - 1 ,  respectively. Suppose the error had 

occurred at PE3 in cycle c -  3, c -  4, or c -  5. This error would have been detected by PE6 in 

cycle c or c -  1, or by PE7 in cycle c - 1 ,  respectively.

In general, any error created at PE,.*, before cycle c - k  would either have been detected by 

cycle c (and the appropriate outputs already suspected), or gone undetected (if the error propa­

gated out of the array). This is a result of the checking pattern, in which each PE, performs its

computation PE
cycle 0 1 2 3 4 5 6 7 8 9
c - 6
c -  5 * — — — — — — — — —
c - 4  —  * —  —  —  —  —  —  —  x

c - 2  — — — * — — — x x —

— — — — — X x — — —

Figure A .l. Error propagation in a 10-PE array.
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last checked cycle (CSm<n[N - 1]) during the same computation cycle that PE,_! performs its 

first checked cycle (CSMiV[0]). Hence, only the outputs from PE,.*, in cycles c - k  need be sus­

pected, 1 < k < Dr, as well as that from PE, in c. All other unsuspected, previously produced out­

puts can be trusted with a confidence of 1, unless a later error detection makes it necessary to 

suspect them. □

PROOF OF THEOREM 3.2: By use of (9, = (Ni) mod M  in the linear array, when PE, in cycle 

c performs its checked task (CSM//[r] = 1), then PE,+y in cycle c + z will perform 

C S ^ [ ( r  + y (iV -l) + z)modAfl.

Now, let PEy-L^+i detect an error in cycle c by CSMtN[r], for 0 < i < -1 .  These

PEy-j 4-t are those PEs that could create errors that propagate undetected out of the array. The 

detected error will propagate to PEy.j in cycle c + - 1  -  i. In that cycle, if PEy.j is not

checking (i.e., (r + ( L ^  -  1 -  i)N) mod M > N), then this error will propagate out of the array 

and outputs from all PEs and cycles through which the error propagated should be suspected as 

possibly erroneous. That is, if (r + ( L ^  -  1 -  i)N) mod M>N,  then the output from PEv. TwH>J- 

in cycle c + j  should be suspected, 0 < j  < Lmax — 1 — i. If PEV_T ̂ , -  will check at the next cycle 

c + 1, then this gives part a) when r < N - l  { k -  0).

If r = N  -  1 (PEy.^+j won’t check in cycle c + 1), then as in the above case when r < 

N - 1, if (r + ( L ^  - 1  -  i)N + k) mod M > N, then the output from PEy_Lmax+,+;- in cycle 

c + j  + k should be suspected, where 0 < j  < — 1 — i and k = 0. In addition, for each of the

next M -  N  unchecked cycles, errors may propagate out of the array. This is likely since an 

error has already been detected at PEv_T w +; and the fault may still be active while that PE is not 

checking. The additional outputs to suspect depend upon whether PEy.j is not checking when 

the errors arrive there. That is, for each cycle c + k, 1 < k < M -  N,  if (r + ( L ^  -  1 -  i)N + k) 

mod M> N, then the output from PEy_Lnax+I+; in cycle c + j  + k should be suspected, for 0 < j  < 

Lmax -  1 -  i. This completes part a) when r = N -  1.
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Once an error propagates to PEy.j while it is not checking, all of its outputs until its next 

checked cycle should be suspected as possibly erroneous since its outputs are not checked by any 

other PE. Hence, all of the outputs from PEV_! in cycles c + -  1 -  i (the earliest that the

error, first detected at P E y .^ ^  in cycle c, could corrupt PEy^) until its next checked cycle 

should be suspected as possibly erroneous. This gives part b) in the statement of the theorem.

All other unsuspected, future outputs from the array can be trusted with a confidence of 1, 

unless a future error detection makes it necessary to suspect them. □
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