COORDINATED SCIENCE LABORATORY
 College of Engineering
 Applied Computation Theory

LOWER AND UPPERBOUNDS FOR THE GENERAL JUNCTION ROUTING PROBLEM

Sanjeev Rao Maddila Dian Zhou

11. TITLE (Include Security Classification)

Lower and Upper-Bounds for the General Junction Routing Problem

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

VLSI layout design consists of two phases: placement and routing. In the placement phase circuit modules are positioned, and in the routing phase they are interconnected. After the placement phase the area unoccupied by the modules, called the routing area, is decomposed into sub-regions. Thereafter, the routing phase is divided into two stages: global routing and local routing. In the global routing stage, nets are assigned to various sub-regions, and in the local routing stage, the nets are assigned to the tracks and columns. In general, the sub-regions, in a placement of rectangular modules, can be "L"-, "S"-, "T"-, or " X "-shaped junctions (the simple rectangular channel is a special case of these general-shaped junctions).
(continued)
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

XUNCLASSIFIEDNNLIMITED SAME AS RPT.
22a. NAME OF RESPONSIBLE INDIVIDUAL
21. ABSTRACT SECURITY CLASSIFICATION Unclassified
22b. TELEPHONE (Include Area COde) 22 Cl . OfFICE SYMBOL
19. ABSTRACT (continued)

In this paper, we present new non-trivial lower and upper bounds for local routers for general shaped junctions. To the best of our knowledge, these are the first known theoretical results for these problems. For routing of two-terminal nets in arbitrary junctions, we provide optimal results by showing upper bounds which match the universal lower bounds. In the case of routing of three-terminal nets, our upper bounds match the existential lower bounds for the case of "L"-shaped junctions. For instance, we show $t 1+t 2=d 1+d 2$ for routing twoterminal nets, and $t 1+t 2=\frac{3}{2}(d 1+d 2)$ for routing threeterminal nets in some " L "-shaped junctions, where $d 1$ and $d 2$ are the densities of the two associated channels and $t 1$ and $t 2$ are their widths. All our lower bounds are valid for both the knock-knee and the Manhattan routing models, while our upper bounds are only valid for the knock-knee routing model.

LOWER AND UPPER-BOUNDS FOR THE GENERAL JUNCTION ROUTING PROBLEM \dagger

Sanjeev Rao Maddila and Dian Zhou

Coordinated Science Laboratory
University of Illinois, Urbana, IL 61801

Abstract

VLSI layout design consists of two phases: placement and routing. In the placement phase circuit modules are positioned, and in the routing phase they are interconnected. After the placement phase the area unoccupied by the modules, called the routing area, is decomposed into sub-regions. Thereafter, the routing phase is divided into two stages: global routing and local routing. In the global routing stage, nets are assigned to various sub-regions, and in the local routing stage, the nets are assigned to the tracks and columns. In general, the sub-regions, in a placement of rectangular modules, can be "L"-, "S"-, "T"-, or "X"-shaped junctions (the simple rectangular channel is a special case of these general-shaped junctions).

In this paper, we present new non-trivial lower and upper bounds for local routers for general shaped junctions. To the best of our knowledge, these are the first known theoretical results for these problems. For routing of two-terminal nets in arbitrary junctions, we provide optimal results by showing upper bounds which match the universal lower bounds. In the case of routing of three-terminal nets, our upper bounds match the existential lower bounds for the case of " L "-shaped junctions. For instance, we show $t_{1}+t_{2}=d_{1}+d_{2}$ for routing two-terminal nets, and $t_{1}+t_{2}=\frac{3}{2}\left(d_{1}+d_{2}\right)$ for routing three-terminal nets in some "L"shaped junctions, where d_{1} and d_{2} are the densities of the two associated channels and t_{1} and t_{2} are their widths. All our lower bounds are valid for both the knock-knee and the Manhattan routing models, while our upper bounds are only valid for the knock-knee routing model.

[^0]
1. Introduction

A widely used strategy in VLSI layout design is the so called building-block layout strategy, which usually consists of two phases: the placement phase and the routing phase [5,6,13,16,25,34]. In the placement phase, the circuit blocks of arbitrary sizes are positioned on a layout surface and the routing area between blocks is defined by specifying a set of disjoint rectangles (not necessarily unique) (see Figure 1). In the routing phase, the interconnections among the blocks are carried out in two phases of global routing and local routing. The global router first assigns nets to the various rectangles of the routing area. A net connecting terminals lying in more than one rectangle is divided into several sub-nets, each of which belongs entirely to one rectangle [$32,14,23,33$]. The local routers determine the routing of sub-nets inside each rectangle $[7,11,28,1,15,21,29,35,27,19,8,12]$.

The terminals of a sub-net are of two types: fixed and free. The position of a fixed terminal is predetermined (for example, by the connections of nets on the circuit blocks), whereas the position of a free terminal can be moved along the side of the rectangle it belongs. The problem of routing nets in a

Figure 1. Placement of modules and decomposing the routing area
rectangle with fixed terminals on two opposite sides of the rectangle and free terminals on the other two sides, is called the channel routing problem (CRP). The problem of routing nets in a rectangle with fixed terminals on all four sides of the rectangle is called the switchbox routing problem (SRP). For the example shown in Figure (1), the global router first divides net i, passing through the rectangles r_{1}, r_{2} and r_{3}, into three sub-nets $i-i^{\prime}$ in $r_{1}, i^{\prime}-i^{\prime \prime}$ in r_{2} and $i^{\prime \prime}-i$ in r_{3}. The introduced terminals i^{\prime} and $i^{\prime \prime}$ on the common boundaries of $r_{1}-r_{2}$ and $r_{2}-r_{3}$ are fixed or free depending on the routing sequence of these rectangles. If r_{1} is routed before r_{2}, then terminal i^{\prime} is free for r_{1} and fixed for r_{2}. If, instead, r_{2} is routed before r_{1}, then i^{\prime} is free for r_{2} and fixed for r_{1}. It is easy to see that when both r_{1} and r_{3} are routed before r_{2}, the problem of routing sub-nets in rectangle r_{2} is a switchbox routing problem.

The traditional layout systems use channel routers and switchbox routers for routing rectangles. The best known results for these routers are listed in Table 1. It is also known that in general, because of cyclic precedence constraints in the placement, all the rectangles can not be treated as channel routing problems $[5,6,13,16,34]$. Hence, switchbox routing problems are unavoidable. It is known that the general switchbox routing problems are harder to route and require excessive routing area (compared to the channel routing problems), which makes them undesirable. To avoid routing switchboxes, one can form "L-", "T-" and "X"-shaped junctions by combining switchboxes and channels together [5, 12, 19, 24]. The problem of routing in these junctions is referred to as the junction routing problem (JRP). For instance, r_{1}, r_{2} and r_{3} in Figure (1) can be combined to form an "L"-junction. Intuitively, routing such junctions is easier than routing switchboxes since they are less restrictive. Thus far, the only algorithms known for routing in junctions are heuristic in nature. In this paper, we propose the first provably good algorithms to route in general shaped junctions of Figure (1) (i.e., "L-", "S-", "T-", and "X"-shaped). In the first part of this paper, we discuss lower bounds on the channel widths of a junction, and, in the second part, we discuss the corresponding upper bounds.

An important issue when considering the layout problem is the routing model. The routing model describes the rules of layout of wires during the routing phase. There are three different kinds of routing models: Manhattan, knock-knee, and restricted-overlap [30]. In the Manhattan model, two wires may

Results	Lower bounds		Upper bounds		
Geometry	2-term.	Multi-term.	2-term.	3-term.	multi-term.
2-sided CRP	d	d	$\underset{\text { PS84] }}{d}$	$\frac{3 d}{2 d}_{\text {[PS 84] }}$	$\frac{3 d}{2}+O(\sqrt{d \log d})$
3-sided CRP	d	$\frac{3 d}{2[S Z 88]}$	$\begin{gathered} d \\ {[P S 84]} \\ \hline \end{gathered}$		$\begin{gathered} 2 d-1 \\ {[P S 84]} \end{gathered}$
Switchbox	$2 \begin{gathered} \left(d_{h}+d_{v}\right) \\ {[M Z 88]} \end{gathered}$	$2 \begin{gathered} \left(d_{h}+d_{v}\right) \\ (M Z 88] \end{gathered}$	-	-	[188

Table 1: Previous Results
share a grid point only by crossing at that point but the wires are not allowed to overlap [1,4]. In the knock-knee model wires may share a grid point either by crossing or by bending at that point; again, the wires are not allowed to overlap $[22,26,18]$. On the other hand, in the restricted-overlap model, two wires are allowed to overlap for $O(1)$ units (usually 1 or 2) [$2,3,8,10$. In this paper, we will only discuss the non-overlap models. Our lower bounds are valid for both the Manhattan and the knock-knee models, but our upper bounds are only valid for the knock-knee model.

Other important issues for the consideration of layout problems are the assumptions about the placement model. The placement model describes the rules for the placement of blocks and restrictions on the adjustments of the routing region permitted during the routing phase. All the previous results summarized in Table 1 are derived under the assumption that all the allowable operations do not change the density ${ }^{1}$ of the routing problem. In this paper, we assume a placement model that permits one to move circuit blocks in the routing phase (in order to facilitate routing), under the restriction that the densities of all the channels associated with the junction do not change. These assumptions are required since all our bounds are expressed in terms of the densities of the problems, and they are quite realistic since changing the densities of previously routed regions could make their routings unusable.

In the Section 2, we first give the definitions for the general junctions. In Section 3, we present lower bounds for "L", "S", "T", and "X"-junctions. In Section 4, we first present upper bounds for routing

[^1]two-terminal nets in "L"- and "S"-junctions, and then we use these bounds to obtain upper bounds for other junctions. Later, we develop similar bounds for three-terminal nets. Finally, we state some open problems and suggest an alternative technique for decomposing the routing area based on these results.

2. Definitions and Notation

We call two rectangles adjacent if they share a non-zero length of their boundaries. We refer to a collection of adjacent rectangles as a junction. In the following, we define four types of junctions and the corresponding junction routing problems by combining routing problems of several adjacent rectangles together:

An L-junction $L\left(t_{1}, t_{2}, x_{0}, y_{0}\right)$ is an "L"-shaped region that is the union of the following four rectangular regions (assuming without loss of generality ${ }^{2}$, that $t_{1} \geq t_{2}$) (see Figure 2(a)):

$$
\begin{aligned}
& L=\left\{(x, y): x<0,-t_{1} \leq y \leq 0\right\} \\
& T=\left\{(x, y): 0 \leq x \leq t_{2}, 0<y\right\} \\
& J_{1}=\left\{(x, y): 0 \leq x \leq x_{0},-t_{1} \leq y \leq 0\right\} \\
& J_{2}=\left\{(x, y): 0 \leq x \leq t_{2},-y_{0} \leq y \leq 0\right\}
\end{aligned}
$$

where $0 \leq x_{0} \leq t_{2}$ (distance between the origin and the vertical segment of the "dent") and $0 \leq y_{0} \leq t_{1}$ (distance between the origin and the horizontal segment of the "dent") are the offset parameters predetermined by the positions of the surrounding circuit blocks. We refer to sets L and T as the left and top channels and to the set $J_{1} \cup J_{2}$ as the junction area. Any shortest Manhattan path between $(0,0)$ and ($x_{0},-y_{0}$) is called the bottleneck of the junction area. A simple L-junction (one without a "dent") corresponds to $x_{0}=t_{2}$ and $y_{0}=t_{1}$.

An S-junction $S\left(t_{1}, t_{2}, x_{0}, y_{0}\right)$ is an " S "-shaped region that is the union of the following three rectangular regions (assuming without loss of generality, that $t_{1} \geq t_{2}$) (see Figure 2(b)).

[^2]\[

$$
\begin{aligned}
L & =\left\{(x, y): x<0,-t_{1} \leq y \leq 0\right\} \\
R & =\left\{(x, y): x>x_{0},-y_{0} \leq y \leq t_{2}-y_{0}\right\} \\
J & =\left\{(x, y): 0 \leq x \leq x_{0},-t_{1} \leq y \leq t_{2}-y_{0}\right\}
\end{aligned}
$$
\]

where $0 \leq x_{0}$ (distance between the origin and the right end of R), and $0 \leq y_{0} \leq t_{1}$ (distance between the lower shore of R and the upper shore of L) are the offset parameters of the junction which are determined by the positions of the surrounding circuit blocks. We refer to sets L and R as the left and right channels and to set J as the junction area. Any shortest Manhattan path between $(0,0)$ and $\left(x_{0},-y_{0}\right)$ is called the bottleneck of the junction area. There are two distinct configurations of S-junctions (as shown in Figure 2(b)): (1) when its left and right channels are a "containing" pair ${ }^{3}$, and (2) when its they are a "noncontaining" pair. By the symmetry of Left and Right channels under rotations and reflections, it is easy to check that these two configurations encompass every type of S-junction. The three-sided channel is a special case of an S-junction, where $t_{2}=0$.

A T-junction $T\left(t_{1}, t_{2}, t_{3}, x_{0}, y_{0}\right)$ is a " T "-shaped region that is the union of the following five rectangular regions (assuming without loss of generality, that $t_{1} \geq t_{3}$)(see Figure 2(c)):

$$
\begin{aligned}
L & =\left\{(x, y): x<0,-t_{1} \leq y \leq 0\right\} \\
T & =\left\{(x, y): 0 \leq x \leq t_{2}, \max \left(0, t_{3}-y_{0}\right)<y\right\} \\
R & =\left\{(x, y): t_{2}<x,-y_{0} \leq y \leq t_{3}-y_{0}\right\} \\
J_{1} & =\left\{(x, y): 0 \leq x \leq x_{0},-t_{1} \leq y \leq 0\right\} \\
J_{2} & =\left\{(x, y): 0 \leq x \leq t_{2},-y_{0} \leq y \leq \max \left(0, t_{3}-y_{0}\right)\right\}
\end{aligned}
$$

where $0 \leq x_{0} \leq t_{2}$ (distance between the origin and the right end of set R) and $0 \leq y_{0} \leq t_{1}$ (distance between the origin and the lower shore of R) are the offset parameters predetermined by the positions of the surrounding circuit blocks. We refer to sets L, R, and T as the left, right, and top channels, respectively and to the set $J_{1} \cup J_{2}$ as the junction area. Any shortest Manhattan path between $(0,0)$ and

[^3]

Figure 2. Different kinds of junctions
$\left(x_{0},-y_{0}\right)$ is called the bottleneck of the junction area. There are two distinct configurations of Tjunctions (as shown in the Figure 2(c)): (1) when its horizontal (left and right) channels are a "containing" pair, and (2) when its horizontal channels are a "non-containing" pair.

An X-junction $X\left(t_{1}, t_{2}, t_{3}, t_{4}, x_{0}, y_{0}\right)$ is an " X "-shaped region that is the union of the following six rectangular regions (assuming without loss of generality that $t_{1} \geq t_{3}$ and $t_{2} \geq t_{4}$) (see Figure 2(d)):

$$
\begin{aligned}
L & =\left\{(x, y): x<\min \left(0, x_{0}-t_{4}\right),-t_{1} \leq y \leq 0\right\} \\
T & =\left\{(x, y): 0 \leq x \leq t_{2}, \max \left(0, t_{3}-y_{0}\right)<y\right\} \\
R & =\left\{(x, y): t_{2}<x,-y_{0} \leq y \leq t_{3}-y_{0}\right\} \\
B & =\left\{(x, y): x_{0}-t_{4} \leq x \leq x_{0}, y<-t_{1}\right\} \\
J_{1} & =\left\{(x, y): \min \left(0, x_{0}-t_{4}\right) \leq x \leq x_{0},-t_{1} \leq y \leq 0\right\} \\
J_{2} & =\left\{(x, y): 0 \leq x \leq t_{2},-y_{0} \leq y \leq \max \left(0, t_{3}-y_{0}\right)\right\}
\end{aligned}
$$

where $0 \leq x_{0} \leq t_{2}+t_{4}$ (distance between the origin or the left shore of T and the right shore of B) and $0 \leq y_{0} \leq t_{1}$ (distance between the origin and the lower shore of R) are the offset parameters determined by the positions of the surrounding circuit blocks. We refer to sets L, R, T, and B as the left, right, top, and bottom channels, respectively, and to the set $J_{1} \cup J_{2}$ as the junction area. Any shortest Manhattan path between $(0,0)$ and $\left(x_{0},-y_{0}\right)$ is called the bottleneck of the junction area. There are three distinct configurations of X-junctions, as shown in the Figure 2(d), (1) when both its horizontal and vertical channel pairs are "containing", (2) when both its horizontal and vertical channel pairs are "non-containing", and (3) when its horizontal channels are "containing" and the vertical channels are "non-containing" or vice-versa.

In general, the above defined junctions can be more appropriately viewed as multi-way junctions. For instance, S- and L- junctions can be thought of as 2-way junctions, T- and X-junctions can be thought of as 3- and 4-way junctions, respectively. However, since their shapes resemble "L"-, "S"-, " T "- and " X "-shapes in special cases, we prefer to use the previously introduced terminology. This is consistent with the conventional definitions of "L"-, "T"-, and "X"-channels used in the literature [19, 12, 24].

Next, we define some of the fundamental notions required for any routing problem. We introduce this notation for the case of a simple channel routing problem. A net N is a collection of terminals:
$N=\left(\left\{T_{1}, \cdots, T_{t}\right\},\left\{B_{1}, \cdots, B_{b}\right\}, R_{r}, L_{l}\right)$, which are to be connected ${ }^{4}[9]$. In a rectangle of width w, the upper terminal T_{j} (here T_{j} is considered as a symbol) is located at grid point ($T_{j}, w+1$) (here T_{j} is considered as an integer), and the lower terminal B_{j} is at $\left(B_{j}, 0\right) . R_{r}$ and L_{l}, the right and left free terminals of N lying on the right and left sides of the rectangle, represent connections of N with its sub-nets lying in different rectangles. Both r and l can be either 0 or $1 . N$ is called a j-terminal net if $t+b+r+l \leq j$. The distance between the upper and lower terminals, w, is referred to as the width of the channel. The density d of a channel routing problem is defined as the maximum, over all crosssections C, of the local density $\delta(C)$ at cross-section C :

$$
\delta(C)=\mid\left\{N \mid N \text { is a net with } \min \left\{T_{1}, B_{1}, L_{l}\right\} \leq C \text { and } \max \left\{T_{u}, B_{l}, R_{r}\right\} \geq C+1\right\} \mid .
$$

We can similarly define the junction-area density D_{j} in the junction area, as the number of nets required to cross its bottleneck. A routing problem in a k-way junction is specified in terms of the densities of the associated channels and the junction area. For example, a routing problem in an L-junction is specified by the densities in the Left channel d_{1}, Top channel d_{2}, and its junction-area D_{j}. The capacity of a cross-sectional cut $C, \kappa(C)$, is defined as the length of C.

3. Lower Bounds for various Junction Routing Problems

For the channel routing problem, the density is a trivial lower bound on the channel width $[11,17]$. Similarly, a trivial lower bound on the total channel width of a k-way junction is $\sum_{i=1}^{k} t_{i} \geq \sum_{i=1}^{k} d_{i}$, where t_{i} and d_{i} are the width and density of the i-th associated channel. In this section, we present a set of nontrivial lower bounds for routing in general types of junctions. In proving these lower bounds we use the following observation: the capacity of a chosen cross-sectional cut has to be at least as big as the number of nets required to cross $i t$. In the same way that the density of a channel routing problem provides a trivial lower bound on the channel width, the junction-area density, as defined in the previous section,

[^4]provides a lower bound on the length of the bottleneck. This in turn implies a lower bound on the junction "size", which is captured in the sum of the widths of its associated channels. We refer to such a lower bound as a universal lower bound since it depends on the junction density of any given problem. In contrast, we also prove existential lower bounds on junction size by constructing specific worst-case routing problems. Any routing problem that violates the universal lower bound condition can not be routed; so we assume that the global router has checked for this condition at every bottleneck and guarantees of no such violation during the local routing phase. In constructing the existential worst-case routing problems, we ensure that the universal lower bound is not violated. Our technique consists of presenting a specific terminal arrangement and choosing proper sets of cross-sectional cuts. Then, by arguing that the capacity (length) of these cuts has to be more than their densities (number of nets required to cross it), we obtain our lower bounds. In the following, we first discuss the existential lower bound for L-junctions. Next, we obtain lower bounds for S-junction, T-junction, and X-junction using the same technique.

3.1. Lower Bounds for L-Junctions

As indicated previously, we denote the densities of the Left and the Top channels of an L-junction by d_{1} and d_{2}, and their widths by t_{1} and t_{2}, respectively. The offset parameters of the L-junction are represented by x_{0} and y_{0}. We assume without loss of generality, that $t_{1} \geq d_{1}$ and $t_{2} \geq d_{2}$ which follows from the trivial lower bounds on channel widths.

Consider the routing problem with terminal arrangement as shown in Figure (3). The set of $d_{1} / 2$ terminals, L_{B}, on the bottom shore of the Left channel is divided into sets s_{1} and s_{2} of cardinalities n_{1} and n_{2} (one of them could possibly be empty). Terminals of s_{1} are connected to terminals on the rightmost vertical segment (above the dent) of the junction area, as shown in the Figure (3), and the n_{2} terminals of s_{2} are connected to terminals on the leftmost vertical segment (below the dent) of the junction area. Similarly, L_{T}, the set of $d_{1} / 2$ terminals on the top shore of the Left channel is divided into two sets, s_{3} and s_{4}, where the n_{3} terminals of s_{3} are connected to terminals on the rightmost (upper) vertical seg-

Figure 3. Lower Bound example for an L-junction
ment of the junction area and the n_{4} terminals of s_{4} are connected to terminals on the leftmost (lower) vertical segment of the junction area. All the d_{1} terminals of L_{B} and L_{T} are also connected to other terminals in the Left channel, thereby giving a density of d_{1} in the Left channel. We introduce similar sets T_{R} and T_{L} on the right and left shores of the Top channel, which are partitioned into subsets $s_{1^{\prime}}, s_{2^{\prime}}, s_{3^{\prime}}$, and s_{4}. These sets are connected to the bottom segments of the junction area as shown in Figure (3).

The partitions of sets L_{B}, L_{T}, T_{R} and T_{L} are chosen such that, the connection of nets does not violate the junction-density, D_{j}, in other words

$$
\left|s_{1}\right|+\left|s_{3}\right|+\left|s_{1^{\prime}}\right|+\left|s_{3^{\prime}}\right| \leq x_{0}+y_{0}
$$

In order to find the cardinality of the various sets s_{i}, we discuss the sequence in which the terminals of the Left channel are connected. First of all, we connect as many of the $d_{1} / 2$ terminals of L_{B} to the y_{0} locations on the rightmost segment of the junction area, thus $\left|s_{1}\right|=n_{1}=\min \left(y_{0}, d_{1} / 2\right)$. Then, we connect any remaining terminals of L_{B} to the leftmost segment of the junction area, thus $\left|s_{2}\right|=n_{2}=\max \left(0, d_{1} / 2-y_{0}\right)$. Next, we try to connect the terminals of L_{T} to the remaining terminals (if
any) on the rightmost segment, and finally we connect all the remaining terminals of the top shore to the remaining terminals on the leftmost segment. Hence, $\left|s_{3}\right|=n_{3}=\min \left(d_{1} / 2, \max \left(0, y_{0}-d_{1} / 2\right)\right)$ and $\left|s_{4}\right|=n_{4}=\max \left(0, d_{1} / 2-\max \left(0, y_{0}-d_{1} / 2\right)\right)$. The terminals of the Top channel are connected in a similar fashion; so

$$
\begin{aligned}
& \left|s_{1^{\prime}}\right|=n_{1^{\prime}}=\min \left(x_{0}, \frac{d_{2}}{2}\right), \\
& \left|s_{2^{\prime}}\right|=n_{2^{\prime}}=\max \left(0, \frac{d_{2}}{2}-x_{0}\right), \\
& \left|s_{3^{\prime}}\right|=n_{3^{\prime}}=\min \left(\frac{d_{2}}{2}, \max \left(0, x_{0}-\frac{d_{2}}{2}\right)\right) \\
& \text { and }\left|s_{4^{\prime}}\right|=n_{4^{\prime}}=\max \left(0, \frac{d_{2}}{2}-\max \left(0, x_{0}-\frac{d_{2}}{2}\right)\right) \text {. }
\end{aligned}
$$

It is easy to check that

$$
\begin{gathered}
n_{1}+n_{2}=\frac{d_{1}}{2}=n_{3}+n_{4}, \quad n_{1}+n_{3}=\min \left(y_{0}, d_{1}\right) \\
n_{1^{\prime}}+n_{2^{\prime}}=\frac{d_{2}}{2}=n_{3^{\prime}}+n_{4^{\prime}},
\end{gathered} \quad n_{1^{\prime}+n_{3^{\prime}}=\min \left(x_{0}, d_{2}\right)} .
$$

For any feasible routing of this problem, we require that the capacity of any cross-sectional cut is at least as big as the number of nets required to cross it. This gives us a way to prove lower bounds on $t_{1}+t_{2}$. In the following we consider four sets of cuts H_{1}, H_{2}, V_{1}, and V_{2} as shown in Figure (3). For example, H_{1} consists of a vertical segment, between the shores of the Left channel (of length t_{1}) and a horizontal segment (of length $d_{1} / 2+x_{0}$). Although H_{1} is a pair of segments, we still refer to H_{1} as a cross-sectional cut.

For cut H_{1}, we have

$$
\kappa\left(H_{1}\right)=t_{1}+\left(\frac{d_{1}}{2}+x_{0}\right)
$$

$$
\delta\left(H_{1}\right)=d_{1}+\frac{d_{1}}{2}+\min \left(x_{0}, d_{2}\right)+\max \left(0, \frac{d_{1}}{2}-\max \left(0, y_{0}-\frac{d_{1}}{2}\right)\right)
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1} \geq d_{1}+\min \left(0, d_{2}-x_{0}\right)+\max \left(0, \frac{d_{1}}{2}-\max \left(0, y_{0}-\frac{d_{1}}{2}\right)\right) \tag{1}
\end{equation*}
$$

For cut H_{2}, we have

$$
\begin{gathered}
\kappa\left(H_{2}\right)=t_{1}+\left(\frac{d_{1}}{2}+t_{2}\right) \\
\delta\left(H_{2}\right)=d_{1}+\frac{d_{1}}{2}+d_{2}+\min \left(y_{0}, \frac{d_{1}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1}+t_{2} \geq d_{1}+d_{2}+\min \left(y_{0}, \frac{d_{1}}{2}\right) \tag{2}
\end{equation*}
$$

For cut V_{1}, we have

$$
\begin{gathered}
\kappa\left(V_{1}\right)=t_{2}+\left(\frac{d_{2}}{2}+y_{0}\right) \\
\delta\left(V_{1}\right)=d_{2}+\frac{d_{2}}{2}+\min \left(y_{0}, d_{1}\right)+\max \left(0, \frac{d_{2}}{2}-\max \left(0, x_{0}-\frac{d_{2}}{2}\right)\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{2} \geq d_{2}+\min \left(0, d_{1}-y_{0}\right)+\max \left(0, \frac{d_{2}}{2}-\max \left(0, x_{0}-\frac{d_{2}}{2}\right)\right) \tag{3}
\end{equation*}
$$

For cut V_{2}, we have

$$
\begin{gathered}
\kappa\left(V_{2}\right)=t_{2}+\left(\frac{d_{2}}{2}+t_{1}\right) \\
\delta\left(V_{2}\right)=d_{2}+\frac{d_{2}}{2}+d_{1}+\min \left(x_{0}, \frac{d_{2}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1}+t_{2} \geq d_{1}+d_{2}+\min \left(x_{0}, \frac{d_{2}}{2}\right) \tag{4}
\end{equation*}
$$

By combining inequalities of Equations (1) and (3), we get

$$
\begin{align*}
t_{1}+t_{2} \geq d_{1}+ & d_{2}+\min \left(0, d_{1}-y_{0}\right)+\max \left(0, \frac{d_{1}}{2}-\max \left(0, y_{0}-\frac{d_{1}}{2}\right)\right) \tag{5}\\
& +\min \left(0, d_{2}-x_{0}\right)+\max \left(0, \frac{d_{2}}{2}-\max \left(0, x_{0}-\frac{d_{2}}{2}\right)\right)
\end{align*}
$$

By combining inequalities of Equations (2) and (4), we get

$$
\begin{equation*}
t_{1}+t_{2} \geq d_{1}+d_{2}+\max \left(\min \left(x_{0}, \frac{d_{2}}{2}\right), \min \left(y_{0}, \frac{d_{1}}{2}\right)\right) \tag{6}
\end{equation*}
$$

Both Equations (5) and (6) give nontrivial lower bounds for all the values of x_{0} and y_{0}, but, for particular values of the offset parameters, one of them will give a better bound than the other. This kind of analysis is summarized in the Figure (4), which shows the regions of dominance for the two equations. For example, if $x_{0} \leq d_{2} / 2$ and $y_{0} \leq d_{1} / 2$, then inequality of (5) gives

$$
\begin{align*}
t_{1}+t_{2} & \geq d_{1}+d_{2}+0+\frac{d_{1}}{2}+0+\frac{d_{2}}{2} \\
& =\frac{3}{2} d_{1}+\frac{3}{2} d_{2} \tag{7}
\end{align*}
$$

And inequality of (6) gives

$$
\begin{equation*}
t_{1}+t_{2} \geq d_{1}+d_{2}+\max \left(x_{0}, y_{0}\right) \tag{8}
\end{equation*}
$$

It is easy to check that for the gbove mentioned range of values for x_{0} and y_{0}, lower bound of Equation

Assuming $d_{1} \geq d_{2}$

Figure 4. Tradeoff regions of Equations (5) and (6)
(7) is always better than the bound of Equation (8) ${ }^{5}$. For the case when $x_{0} \geq d_{2} / 2$ and $y_{0} \geq d_{1} / 2$, Equation (5) gives

$$
\begin{align*}
t_{1}+t_{2} & \geq d_{1}+d_{2}+\max \left(0, d_{1}-y_{0}\right)+\min \left(0, d_{1}-y_{0}\right)+\max \left(0, d_{2}-x_{0}\right)+\min \left(0, d_{2}-x_{0}\right) \\
& \geq 2 d_{1}+2 d_{2}-x_{0}-y_{0} . \tag{9}
\end{align*}
$$

And, Equation (6) gives

$$
\begin{equation*}
t_{1}+t_{2} \geq d_{1}+d_{2}+\max \left(\frac{d_{1}}{2}, \frac{d_{2}}{2}\right) \tag{10}
\end{equation*}
$$

It is easy to check that Equation (9) gives better bounds than Equation (10) if $\left(d_{1} / 2+d_{2} / 2\right) \leq x_{0}+y_{0}$ $\leq d_{1}+d_{2}-\max \left(d_{1} / 2, d_{2} / 2\right)$. For a simple L-junction, where $x_{0}=t_{2}$ and $y_{0}=t_{1}$ (without any "dent"), we have $t_{1}+t_{2} \geq d_{1}+d_{2}+\max \left(d_{1} / 2, d_{2} / 2\right)$.

We have obtained lower bounds for various range of values of the offset parameters x_{0} and y_{0}. In order to obtain the strongest existential lower bound we choose the worst case settings of x_{0} and y_{0}. Thus, we can write the following theorem.

Theorem 1: The existential lower bound for any general L-junction is $t_{1}+t_{2} \geq \frac{3}{2}\left(d_{1}+d_{2}\right)$.
In the following all the existential lower bounds are stated for the worst case settings of the offset parameters of the junctions.

3.2. Lower Bounds for S-Junctions

We denote the densities of the Left and Right channels of an S-junction by d_{1} and d_{2} and their widths by t_{1} and t_{2}, respectively. The junction area is described by one rectangle. The offset parameters of the junction are denoted by x_{0} and y_{0}. We assume without loss of generality, that $t_{1} \geq d_{1}$ and $t_{2} \geq d_{2}$, which follows from the trivial lower bounds. Moreover, in the case of an S-junction, we also assume that the height of the junction area (i.e., $t_{1}+t_{2}-y_{0}$) is $\geq V_{j}$, where V_{j} is the maximum column density in the

[^5]junction area, referred to as the vertical density of the S-junction. This is obvious, since the junction area is like a channel whose width has to be at least as big as its density. This sort of lower bound is also referred to as a universal lower bound.

Consider the routing problem with terminal arrangement as shown in Figure (5). The set of $d_{1} / 2$ terminals, L_{T}, on the top shore of the Left channel is partitioned into three subsets s_{1}, s_{3}, and s_{5}, one or two of them could possibly be empty. The n_{1} terminals of set s_{1} are connected to terminals on the bottom half of the right segment of the junction area, as shown in Figure (5), and the n_{3} terminals of set s_{3} are connected to equal number of terminals of the bottom shore of the Right channel, and the rest n_{5} terminals of $s s$ are connected to a similar set of terminals of the bottom shore of the Left channel. Similarly, L_{B}, the set of $d_{1} / 2$ terminals of the top shore of the Left channel is partitioned into three subsets s_{2}, s_{4}, and s_{5}. The n_{2} terminals of s_{2} are connected to terminals on the top half of the right segment of the junction area, n_{4} terminals of s_{4} are connected to terminals on the top shore of the Right channel, and finally the n_{5} terminals of s_{5} are connected to terminals of the similar set on the top shore of the Left channel.

Figure 5. Lower Bound example for an S-junction

All the d_{1} terminals of L_{T} and L_{B} are also connected to other terminals in the Left channel, which results in a channel density of d_{1} in the Left channel. The sets of $d_{2} / 2$ terminals of the top and bottom shore of the Right channel, R_{T} and R_{B}, respectively, are partitioned into subsets $s_{1^{\prime}}, s_{2^{\prime}}, s_{3^{\prime}}, s_{4^{\prime}}$ and $s_{5^{\prime}}$ and connected in a similar fashion, where $\left|s_{3}\right|=\left|s_{3^{\prime}}\right|$ and $\left|s_{4}\right|=\left|s_{4}\right|$. Moreover, x_{0} terminals on the top shore (or set s_{6}) of the junction area are connected to x_{0} terminals on its bottom shore.

It is easy to check that the arrangement of nets in our routing problem does not violate the junction density requirements, i.e.,

$$
\left|s_{3}\right|+\left|s_{4}\right|+\left|s_{6}\right| \leq x_{0}+y_{0} .
$$

The cardinality of the various sets s_{i} is decided by the sequence in which terminals are connected. First of all, we connect as many of the $d_{1} / 2$ terminals of the top shore of the Left channel with the bottom $\left(t_{1}-y_{0}\right) / 2$ locations on the right segment of the junction area, thus $n_{1}=\min \left(d_{1} / 2,\left(t_{1}-y_{0}\right) / 2\right)$. Then, we connect an equal number of terminals from the bottom shore to the top half of the right segment. Similar connections are made in the Right channel, thus $n_{1^{\prime}}=n_{2^{\prime}}=\min \left(d_{2} / 2,\left(t_{2}-y_{0}\right) / 2\right)$. In general, there will be some leftover terminals in both channels. We try to use as many of them as possible (i.e., until there are no more leftover in one of the channels) by connecting terminals of the top shore of one channel to terminals on the bottom shore of the other channel. Thus, $n_{3}=n_{4}$ $=\min \left(\max \left(0, d_{1} / 2-\left(t_{1}-y_{0}\right) / 2\right), \max \left(0, d_{2} / 2-\left(t_{2}-y_{0}\right) / 2\right)\right)=n_{3^{\prime}}=n_{4^{\prime}}$. And finally, the remaining $n_{5}=\max \left(0, \max \left(0, d_{1} / 2-\left(t_{1}-y_{0}\right) / 2\right)-\max \left(0, d_{2} / 2-\left(t_{2}-y_{0}\right) / 2\right)\right)$ terminals of the top shore of the Left channel are connected to equal number of terminals of its bottom shore. Similarly, $\left.n_{5^{\prime}}=\max \left(0, d_{2} / 2-\left(t_{2}-y_{0}\right) / 2\right)-\max \left(0, d_{1} / 2-\left(t_{1}-y_{0}\right) / 2\right)\right)$ terminals of the top shore of the Right channel are connected with equal number of terminals on its bottom shore.

It is easy to check that

$$
\begin{gathered}
n_{1}+n_{3}+n_{5}=\frac{d_{1}}{2}=n_{2}+n_{4}+n_{5} \\
n_{1^{\prime}}+n_{3^{\prime}}+n_{5^{\prime}}=\frac{d_{2}}{2}=n_{2^{\prime}}+n_{4^{\prime}}+n_{5^{\prime}}
\end{gathered}
$$

$$
n_{1^{\prime}}+n_{4^{\prime}}+n_{5^{\prime}}=\frac{d_{2}}{2}
$$

For any feasible routing of the problem given in Figure (5), we require that the capacity of any set of cuts is at least as big as the number of nets required to cross it. In the following we consider three cuts H_{1}, H_{2} and H_{3} as indicated in the Figure (5).

For cut H_{1}, we have

$$
\begin{aligned}
& \kappa\left(H_{1}\right)=t_{1}+\left(\frac{d_{1}}{2}+x_{0}+\frac{d_{2}}{2}\right)+t_{2} \\
& \delta\left(H_{1}\right)=d_{1}+\frac{d_{1}}{2}+x_{0}+\frac{d_{2}}{2}+d_{2}
\end{aligned}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1}+t_{2} \geq d_{1}+d_{2} \tag{11}
\end{equation*}
$$

For cut H_{2}, we have

$$
\begin{gathered}
\kappa\left(H_{2}\right)=t_{1}+\left(\frac{d_{1}}{2}+x_{0}\right) \\
\delta\left(H_{2}\right)=d_{1}+\frac{d_{1}}{2}+x_{0}+\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{align*}
& t_{1} \geq d_{1}+\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right) \\
& \text { or } t_{1} \geq \min \left(\frac{3}{2} d_{1}, 2 d_{1}-y_{0}\right) \tag{12}
\end{align*}
$$

For cut H_{3}, we have

$$
\begin{gathered}
\kappa\left(H_{3}\right)=t_{2}+\left(\frac{d_{2}}{2}+x_{0}\right) \\
\delta\left(H_{3}\right)=d_{2}+\frac{d_{2}}{2}+x_{0}+\min \left(\frac{d_{2}}{2}, \frac{t_{2}-y_{0}}{2}\right) .
\end{gathered}
$$

Combining these equations, we get

$$
\begin{align*}
& t_{2} \geq d_{2}+\min \left(\frac{d_{2}}{2}, \frac{t_{2}-y_{0}}{2}\right) \\
& \text { or } t_{2} \geq \min \left(\frac{3}{2} d_{2}, 2 d_{2}-y_{0}\right) . \tag{13}
\end{align*}
$$

Inequality of Equation of (11) gives only a trivial bound, but by combining Equations (12) and (13), we
get the following non-trivial bound

$$
\begin{equation*}
t_{1}+t_{2} \geq \max \left(\min \left(\frac{3}{2} d_{1}, 2 d_{1}-y_{0}\right), \min \left(\frac{3}{2} d_{2}, 2 d_{2}-y_{0}\right)\right) \tag{14}
\end{equation*}
$$

For example, if $y_{0} \leq \min \left(\frac{d_{1}}{2}, \frac{d_{2}}{2}\right)$ then

$$
t_{1}+t_{2} \geq \frac{3}{2}\left(d_{1}+d_{2}\right)
$$

It is easy to check that the arrangement of Figure (5) can also be used for the second type of S-junction (i.e., "containing" type) shown in Figure 4(b). Thus we can write the following theorem.

Theorem 2: The existential lower bound for any general S-junction is $t_{1}+t_{2} \geq \frac{3}{2}\left(d_{1}+d_{2}\right)$.

As noted previously, a three-sided channel is a special case of an S-junction. We use the terminal arrangement as shown in Figure (6) for proving identical lower bounds for the three-sided problem. This arrangement is similar to the one in Figure (5), except that it is restricted to one channel. The $d_{1} / 2$ terminals of L_{T} and L_{R} are partitioned into subsets s_{1}, s_{2}, s_{3}, and s_{4} where

$$
\begin{aligned}
& \left|s_{1}\right|=\left|s_{3}\right|=\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right) \\
& \left|s_{2}\right|=\left|s_{4}\right|=\max \left(0, \frac{d_{1}-t_{1}+y_{0}}{2}\right) .
\end{aligned}
$$

In addition x_{0} terminals on the top shore of the junction area are connected to x_{0} terminals on its bottom

Figure 6. Lower Bound example for a 3-Sided Channel
shore. In the following we consider two cuts H_{1}, and H_{2} as shown in Figure (6).

For cut H_{1}, we have

$$
\begin{gathered}
\kappa\left(H_{1}\right)=t_{1}+\left(\frac{d_{1}}{2}+x_{0}\right) \\
\delta\left(H_{1}\right)=d_{1}+\frac{d_{1}}{2}+x_{0}+\max \left(0, \frac{d_{1}-t_{1}+y_{0}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1} \geq d_{1}+\max \left(0, \frac{d_{1}-t_{1}+y_{0}}{2}\right) \tag{15}
\end{equation*}
$$

For cut H_{2}, we have

$$
\begin{gathered}
\kappa\left(H_{2}\right)=t_{1}+\frac{d_{1}}{2} \\
\delta\left(H_{2}\right)=d_{1}+\frac{d_{1}}{2}+\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1} \geq d_{1}+\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right) . \tag{16}
\end{equation*}
$$

For $y_{0} \leq t_{1}-d_{1}$, the lower bounds of Equations (15) and (16) are: $t_{1} \geq d_{1}$ and $t_{1} \geq \frac{3}{2} d_{1}$. This arrangement of terminals will be used in constructing the terminal arrangement for the T-junction. Thus, we can write the following theorem.

Theorem 3: The existential lower bound for any general three-sided channel is $t \geq \frac{3}{2} d$.
This lower bound matches the lower bound proved in [31] for a "simple" three-sided channel.

3.3. Lower Bounds for T-Junctions

We denote the densities of the Left, Right, and Top channels of a T-junction by d_{1}, d_{2} and d_{3}, and their widths by t_{1}, t_{2} and t_{3}, respectively. The junction area is described by the union of two rectangles. The shape parameters of the junction are denoted by x_{0} and y_{0}. We assume without loss of generality, that $t_{1} \geq d_{1}, t_{2} \geq d_{2}$, and $t_{3} \geq d_{3}$, which follows from the trivial lower bounds.

Figure 7. Lower Bound example for T-junction

Consider the routing problem with terminal arrangement as shown in Figure (7). The sets of $d_{1} / 2$ terminals on the top and bottom shores of the Left channel, and the sets of $d_{3} / 2$ terminals of the top and bottom shores of the Right channel are connected to each other in a fashion similar to the arrangement shown in Figure (5) for the S-junction. The sets of $d_{2} / 2$ terminals on the left and right shores of the Top channel are connected to bottom segments of the junction area in a fashion similar to the arrangement shown in Figure (6), for the three-sided channel. We choose four different cuts H_{1}, H_{2}, V_{1}, and V_{2}, as shown in Figure (7).

For cut H_{1}, we have

$$
\begin{gathered}
\kappa\left(H_{1}\right)=t_{1}+\left(\frac{d_{1}}{2}+x_{0}\right) \\
\delta\left(H_{1}\right)=d_{1}+\frac{d_{1}}{2}+\max \left(0, d_{2}-t_{2}+x_{0}\right)+\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{1} \geq \frac{3}{2} d_{1}+\max \left(0, d_{2}-t_{2}+x_{0}\right)+\min \left(0, \frac{t_{1}-d_{1}-y_{0}}{2}\right) . \tag{17}
\end{equation*}
$$

For cut H_{2}, we have

$$
\begin{gathered}
\kappa\left(H_{2}\right)=t_{3}+\left(\frac{d_{3}}{2}+t_{2}\right) \\
\delta\left(H_{2}\right)=d_{3}+\frac{d_{3}}{2}+d_{2}+\min \left(\frac{d_{3}}{2}, \frac{t_{1}-y_{0}}{2}\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{equation*}
t_{2}+t_{3} \geq d_{2}+\frac{3}{2} d_{3}+\min \left(0, \frac{t_{1}-d_{3}-y_{0}}{2}\right) \tag{18}
\end{equation*}
$$

For cut V_{1}, we have

$$
\begin{gathered}
\kappa\left(V_{1}\right)=t_{2}+\left(\frac{d_{2}}{2}+t_{3}\right) \\
\delta\left(V_{1}\right)=d_{2}+\frac{d_{2}}{2}+\min \left(\frac{d_{2}}{2}, \frac{t_{2}-x_{0}}{2}\right)+\min \left(d_{3}, t_{3}-y_{0}\right) \\
+\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{align*}
t_{2}+t_{3} \geq \frac{3}{2} d_{2} & +d_{3}+\min \left(0, \frac{t_{2}-d_{2}-x_{0}}{2}\right)+\min \left(0, t_{3}-d_{3}-y_{0}\right) \tag{19}\\
& +\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{align*}
$$

For cut V_{2}, we have

$$
\begin{gathered}
\kappa\left(V_{2}\right)=t_{2}+\left(\frac{d_{2}}{2}+t_{3}+t_{1}-y_{0}\right) \\
\delta\left(V_{2}\right)=d_{2}+\frac{d_{2}}{2}+\max \left(0, \frac{d_{2}-t_{2}+x_{0}}{2}\right)+\min \left(d_{1}, t_{1}-y_{0}\right)+\min \left(d_{3}, t_{3}-y_{0}\right) \\
+\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{align*}
t_{1}+t_{2}+t_{3} \geq d_{1}+d_{2}+d_{3}+y_{0}+ & \min \left(0, t_{1}-d_{1}-y_{0}\right)+\max \left(0, \frac{d_{2}-t_{2}+x_{0}}{2}\right)+\min \left(0, t_{3}-d_{3}-y_{0}\right) \\
+ & \min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right) \tag{20}
\end{align*}
$$

If $y_{0} \leq \min \left(t_{1}-d_{1}, t_{3}-d_{3}\right)$, and $x_{0} \leq t_{2}-d_{2}$, the lower bounds of Equations (17) thru (20) are as follows:

$$
\begin{aligned}
t_{1} & \geq \frac{3}{2} d_{1} \\
t_{2}+t_{3} & \geq d_{2}+\frac{3}{2} d_{3} \\
t_{2}+t_{3} & \geq \frac{3}{2} d_{2}+d_{3} \\
t_{1}+t_{2}+t_{3} & \geq d_{1}+d_{2}+d_{3}+y_{0}
\end{aligned}
$$

These equations can be summarized as follows

$$
t_{1}+t_{2}+t_{3} \geq d_{1}+d_{2}+d_{3}+\max \left(\frac{d_{1}+d_{2}}{2}, \frac{d_{1}+d_{3}}{2}, y_{0}\right)
$$

The construction for the other form of T-junction (i.e., "containing" type) is identical and all the bounds would be similar. Thus, we can write the following theorem.

Theorem 4: The existential lower bound for any general T-junction is $t_{1}+t_{2}+t_{3} \geq \frac{3}{2}\left(d_{1}+d_{2}\right)+d_{3}$.

3.4. Lower Bounds for X-Junctions

We denote the densities of the four channels (in a clockwise sequence, starting at the Left channel) by d_{1}, d_{2}, d_{3}, and d_{4}, respectively, and their channel widths by t_{1}, t_{2}, t_{3}, and t_{4} respectively. As before, the shape (offset) parameters of the X-junction are x_{0} and y_{0}. In all the following we assume that $t_{1} \geq d_{1}$, $t_{2} \geq d_{2}, t_{3} \geq d_{3}$, and $t_{4} \geq d_{4}$ which follows from the trivial lower bounds on channel widths. Without loss of generality, we assume $d_{1} \geq d_{3}$ and $d_{2} \geq d_{4}$.

Consider the routing problem with terminal arrangement as shown in Figure (8). The sets of $d_{1} / 2$ terminals on the top and bottom shores of the Left channel, and the sets of $d_{3} / 2$ terminals of the top and bottom shores of the Right channel are connected to each other in a fashion similar to the arrangement

Figure 8. Lower Bound example for X -junction
shown in Figure (5). Also, the sets of $d_{2} / 2$ terminals on the left and right shores of the Top channel, and the sets of $d_{4} / 2$ terminals on the left and right shores of the Bottom channels are connected to each other in a similar fashion. We choose four different cross-sectional cuts indicated by H_{1}, H_{2}, V_{1} and V_{2}. The capacities of these cuts are equal to their lengths which are represented as $\kappa\left(H_{1}\right), \kappa\left(H_{2}\right), \kappa\left(V_{1}\right)$ and $\kappa\left(V_{2}\right)$, and the densities of these cuts are the number of nets required to cross them which are represented as $\delta\left(H_{1}\right), \delta\left(H_{2}\right), \delta\left(V_{1}\right)$ and $\delta\left(V_{2}\right)$, respectively.

For cut H_{1}, we have

$$
\begin{gathered}
\kappa\left(H_{1}\right)=t_{1}+\left(\frac{d_{1}}{2}+t_{4}\right) \\
\delta\left(H_{1}\right)=d_{1}+\frac{d_{1}}{2}+\min \left(\frac{d_{1}}{2}, \frac{t_{1}-y_{0}}{2}\right)+\min \left(d_{4}, t_{4}-x_{0}\right) \\
+ \\
\min \left(\max \left(0, d_{2}-t_{2}+x_{0}\right), \max \left(0, d_{4}-t_{4}+x_{0}\right)\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{gather*}
t_{1}+t_{4} \geq \frac{3}{2} d_{1}+d_{4}+\min \left(0, \frac{t_{1}-d_{1}-y_{0}}{2}\right)+\min \left(0, t_{4}-d_{4}-x_{0}\right) \tag{21}\\
+\min \left(\max \left(0, d_{2}-t_{2}+x_{0}\right), \max \left(0, d_{4}-t_{4}+x_{0}\right)\right)
\end{gather*}
$$

For cut H_{2}, we have

$$
\begin{gathered}
\kappa\left(H_{2}\right)=t_{3}+\left(\frac{d_{3}}{2}+t_{2}\right) \\
\delta\left(H_{2}\right)=d_{3}+\frac{d_{3}}{2}+\min \left(\frac{d_{3}}{2}, \frac{t_{3}-y_{0}}{2}\right)+\min \left(d_{2}, t_{2}-x_{0}\right) \\
+ \\
\min \left(\max \left(0, d_{2}-t_{2}+x_{0}\right), \max \left(0, d_{4}-t_{4}+x_{0}\right)\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{align*}
t_{2}+t_{3} \geq d_{2}+ & \frac{3}{2} d_{3}+\min \left(0, \frac{t_{3}-d_{3}-x_{0}}{2}\right)+\min \left(0, t_{2}-d_{2}-y_{0}\right) \tag{22}\\
& +\min \left(\max \left(0, d_{2}-t_{2}+x_{0}\right), \max \left(0, d_{4}-t_{4}+x_{0}\right)\right)
\end{align*}
$$

For cut V_{1}, we have

$$
\begin{gathered}
\kappa\left(V_{1}\right)=t_{2}+\left(\frac{d_{2}}{2}+t_{3}\right) \\
\delta\left(V_{1}\right)=d_{2}+\frac{d_{2}}{2}+\min \left(\frac{d_{2}}{2}, \frac{t_{2}-x_{0}}{2}\right)+\min \left(d_{3}, t_{3}-y_{0}\right) \\
+\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{gathered}
$$

Combining these equations, we get

$$
\begin{align*}
t_{2}+t_{3} \geq \frac{3}{2} & d_{2}+d_{3}+\min \left(0, \frac{t_{2}-d_{2}-x_{0}}{2}\right)+\min \left(0, t_{3}-d_{3}-y_{0}\right) \tag{23}\\
& +\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{align*}
$$

For cut V_{2}, we have

$$
\kappa\left(V_{2}\right)=t_{4}+\left(\frac{d_{4}}{2}+t_{1}\right)
$$

$$
\begin{aligned}
\delta\left(V_{2}\right)=t_{1}+\frac{d_{4}}{2} & +t_{4}+\min \left(\frac{d_{4}}{2}, \frac{t_{4}-x_{0}}{2}\right)+\min \left(d_{1}, t_{1}-y_{0}\right) \\
& +\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{aligned}
$$

Combining these equations, we get

$$
\begin{align*}
t_{1}+t_{4} \geq d_{1} & +\frac{3}{2} d_{4}+\min \left(0, \frac{t_{4}-d_{4}-x_{0}}{2}\right)+\min \left(0, t_{1}-d_{1}-y_{0}\right) \tag{24}\\
& +\min \left(\max \left(0, d_{1}-t_{1}+y_{0}\right), \max \left(0, d_{3}-t_{3}+y_{0}\right)\right)
\end{align*}
$$

Lower Bounds given by Equations (21) thru (24) hold for every choice of x_{0} and y_{0}. However, one of these equations gives the best possible bound for given choice of values for the offset parameters. For example in the case, when $y_{0} \leq \min \left(t_{1}-d_{1}, t_{3}-d_{3}\right)$ and $x_{0} \leq \min \left(t_{2}-d_{2}, t_{4}-d_{4}\right)$, Equations (21) thru (24) become as follows:

$$
\begin{aligned}
& t_{1}+t_{4} \geq \frac{3}{2} d_{1}+d_{4} \\
& t_{2}+t_{3} \geq d_{2}+\frac{3}{2} d_{3} \\
& t_{2}+t_{3} \geq \frac{3}{2} d_{2}+d_{3} \\
& t_{1}+t_{4} \geq d_{1}+\frac{3}{2} d_{4}
\end{aligned}
$$

These equations can be summarized as follows:

$$
t_{1}+t_{2}+t_{3}+t_{4} \geq d_{1}+d_{2}+d_{3}+d_{4}+\max \left(\frac{d_{1}+d_{2}}{2}, \frac{d_{1}+d_{3}}{2}, \frac{d_{2}+d_{4}}{2}, \frac{d_{3}+d_{4}}{2}\right)
$$

It is easy to check that by using cuts H and V (Figure 8), one can show that

$$
t_{1}+t_{2}+t_{3}+t_{4} \geq d_{1}+d_{2}+d_{3}+d_{4}+\max \left(x_{0}, y_{0}\right)
$$

The construction for the other two forms of X -junction is identical and all the bounds would be similar.
Thus we can write the following theorem.

Theorem 5: The existential lower bound for an X-junction is $t_{1}+t_{2}+t_{3}+t_{4} \geq \frac{3}{2}\left(d_{1}+d_{2}\right)+d_{3}+d_{4}$.

4. Upper bounds for the General Junction Routing Problems

In the previous Sections, we proved lower bounds on the junction size in terms of the channel densities. In this section, we present a set of upper bounds on the junction size for the general junction routing problem. Upper bounds for a given junction routing problem are said to be matching the lower bounds if they equal the existential lower bounds for the worst case instance. On the other hand, upper bounds for a given routing problem are said to be optimal if they match the universal lower bounds, i.e., an optimal router uses minimum possible area (of the channels and junction region) for every instance. In this section we assume that for the junction routing problem (JRP), the widths of all its channels are no less than their corresponding densities, and the junction bottleneck is no less than the junction-area density. For any k-way $J R P$, we will prove $t_{i} \leq d_{i}, i=1, \cdots, k$ for two-terminal-net case and $t_{i} \leq \frac{3}{2} d_{i}, i=1, \cdots, k$ for the three-terminal net case. Our upper bounds for the case of two-terminalnet $J R P \mathrm{~s}$ are optimal, and the upper bounds for the case of three-terminal nets are matching bounds for "L", and "S"-junction routing problems.

A general junction consists of a junction area (which is the union of up to two rectangles) and associted channels, as defined previously. One approach for routing a general junction is by decomposing it into subproblems of routing separately in the channels and the junction area. The sequence of routing the various subproblems is important. For example, if the channels are routed first then the junction area routing problem becomes a switchbox routing problem. As mentioned before, in general the problem of routing in a switchbox requires excessive area which makes them unfavorable. Our approach is to first route the junction area and then the associated channels. Thus, our junction router is composed of two parts: a junction area router and a channel router. We develop a junction area router for the general junction areas. After routing the junction area, routing in the associated channels is achieved by the existing three-sided channel router of [22]. We first discuss the case of 2-terminal nets. The case of multi-terminal nets is solved by decomposing multi-terminal nets into two-terminal nets.

In Section 4.1, we present the upper bound for routing a two-terminal-net simple L- and S-JRP, where the junction area is a single rectangle. In Section 4.2, we derive upper bounds for the case of $J R P$ s with general junction area, which is the union of two rectangles. In Section 4.3, by decomposing threeterminal nets into two-terminal nets, we develop upper bounds for the three-terminal-net general $J R P$ s. In Section 5, we summarize the results of this paper and indicate a technique for generalizing our upper bounds for the case of more than three-terminal nets.

4.1. Upper Bound for 2-Terminal Simple Junction Routing Problem

A simple junction routing problem is a $J R P$ where the junction area is a single rectangle, whereas a general junction routing problem is a $J R P$ where the junction area consists of union of two rectangles. In this section, we develop routers for the two junctions with simple junction areas, i.e., L- and S-junctions, which are then used in the next section to develop routers for junctions with general junction areas.

4.1.1. Simple L-junction Router

The simple L-junction router plays a fundamental role in the proof of the upper bounds for the general $J R P$. As is shown later, a general junction routing problem can be routed by using the simple Ljunction router for appropriately chosen parts of the problem.

A routing problem in an L-junction consists of routing in the associated channels and the junction area. In our approach we first route the junction area and then the associated channels, as shown in Figure (9). In the following, we give an optimal junction area router.

While routing the junction-area (of the L-junction of Figure 9), we represent the crossings of nets from the Left and Top channels into the junction area by introducing terminals on its left and top sides. A terminal is introduced on the left boundary of the junction area, if and only if there is some net with one terminal to the left of this boundary and another terminal to the right. Terminals on the top boundary are introduced similarly. These terminals are free to move along the boundary they lie on, since the corresponding channels are routed only after we finish routing the junction area. In the rest of this paper,

Figure 9. L-junction Routing Problem
we represent the required crossings from one side of the cut to the other side of the cut by introduced terminals. These introduced terminals are free or fixed depending on the sequence of routing.

A simple-junction-area routing problem (simple-JaRP, for short) is specified by a set of nets with terminals on sides A, B, C, and D of a rectangular junction area. The terminals on the adjacent sides A and B are fixed, and the terminals on sides C and D are free. Moreover, unlike the conventional switchbox routing problem, the simple JaRP permits one to use the channel areas to complete the connections of its nets. These "extended" connections outside the junction area are completed during the routing of the corresponding channels. Figure 10(a) specifies the JaRP of the example in Figure (9). Terminals $4^{\prime}, 5^{\prime}$ and 7^{\prime} are free on side D, and terminals $3^{\prime \prime}, 5^{\prime \prime}$ and $6^{\prime \prime}$ are free on side C.

Since the position of terminals on sides C and D is free, different terminal sequences result in different number of nets crossing a (horizontal or vertical) cut, hence the previous definition of local density is not appropriate. We redefine the local density of a (horizontal or vertical) cut in the junction area as the minimum, over all terminal sequences on C and D, of the number of nets crossing the cut. The difficulty of routing the junction area arises from the fact that some cross sectional cuts are oversaturated, i.e., the

Figure 10. Simple-junction-area Routing
density of the cut exceeds its capacity. For example, the capacity of the indicated horizontal cut H, in Figure 10(a), is 3 and the number of required crossings is 4 . The existing switchbox routing algorithm can not be directly used in this situation. Therefore, it is impossible to complete the routing entirely
inside the junction area without increasing its area. We resolve this problem by dividing a net crossing an oversaturated cut into two parts which do not cross this cut, and connecting them later in the appropriate channels. Consequently, the density of the cut is decreased. For the example of Figure 10 (c), net 1 is divided into two nets by using two empty grid points on side D, specified by two pairs $1-\varepsilon$ (1) (see Figure 10 (d)). (Terminal label $\varepsilon(i)$ represents the extension of net i which is not connected in the junction area.) These two nets are then considered as two "new" two-terminal nets in the junction area routing. Since the positions of both the terminals labeled $\varepsilon(1)$ are free on side D, one of them can be placed above H and the other below H. Thus, the density of H is decreased by one. This process can be repeatedly applied for every cut till there is no oversaturated cut. Then, using the channel routing algorithm of [22], the junction area can be routed without any increase in area. In the following, we only discuss the case of oversaturated horizontal cuts, since the method to resolve oversaturation of vertical cuts is identical.

We call a terminal of a net belonging to side X (where $X \in\{A, B, C, D\}$) as its x-terminal. Denote a net with one terminal on side A and the other terminal on side B as an $A B$-net. Similarly, we define for $A C$-nets, $B C$-nets, $B D$-nets, $C D$-nets, $A D$-nets, $A A$-nets, and $B B$-nets. (Note: There are no $C C$-nets or $D D$-nets.) The number of such nets is denoted as $N_{a b}, N_{a c}, N_{b d}, N_{b c}, N_{c d}, N_{a d}, N_{a a}$, and $N_{b b}$, respectively.

Lemma 1: For an oversaturated horizontal cut H, i.e., $\delta(H)>\kappa(H)$, there is at least one $A B, B B$ or $B C$ net crossing it.

Proof: (by contradiction) We claim, if there are no $A B, B B, B C$ nets crossing H, then H can not be oversaturated. The $A A$-nets do not contribute to $\delta(H)$ since both its terminals lie on one side of the horizontal cut H. Also, the $B D$-nets do not contribute to $\delta(H)$, since by proper choice of the location of their d-terminals one can avoid the crossings of any $B D$ nets at H. We also ignore the $A C$-nets while counting oversaturation of H, because each such net adds exactly one to $\delta(H)$ and $\kappa(H)$ (since its a-terminal uses one terminal on side A). Hence for oversaturation, we only consider $A D$ and $C D$-nets. By arranging the free d-terminals of $A D$ and $C D$-nets, we ensure that the d-terminals of all the $C D$-nets lie above the d -
terminals of $A D$-nets. The d-terminals of $C D$-nets are arranged consecutively starting at the top track; the d-terminals of $A D$-nets are arranged consecutively starting at the bottom track (See Figure (11)). Note that such an arrangement ensures that only one kind of nets (either $A D$ or $C D$) cross H, if any. We assume without loss of generality, that $A D$-nets cross H. Since, each such net uses one terminal of side A, the total number of $A D$-nets is less than the length of H. Hence H can not be oversaturated. This proves our claim.

Lemma 2: For a horizontal cut H with oversaturation $y=\delta(H)-\kappa(H)$, the total number of $A B$, $B B$, and $B C$ nets crossing H is at least y.

Proof: This follows trivially from the previous Lemma, because for every unit of oversaturation there is at least one $A B, B B$ or $B C$ net so for y units of oversaturation there are at least y such nets.

In fact, we can claim a slightly stronger result.
Lemma 3: For a horizontal cut H with oversaturation $y=\delta(H)-\kappa(H)$, the total number of $A B$ and $B B$ nets crossing H is at least y.

Theorem 6: For a horizontal cut H with oversaturation $y=\delta(H)-\kappa(H)>0$, there are at least $2 y$ empty grid points on side D of the simple-junction area.

Proof: We denote the lengths of sides A and B by l_{a} and l_{b}. The capacity of a horizontal cut H is $\kappa(H)=l_{a}$.

Using Lemma 1, for the worst-case of oversaturation, all the $A B, B C$ and the $B B$-nets of the problem could cross H. We assume without loss of generality, that the d-terminals of $C D$ and $A D$-nets have been arranged such that, all the $C D$ nets appear "above" the $A D$-nets, as described in Lemma 1 . The distance between cut H and side C is at least $N_{a b}+N_{b b}$, and the distance between cut H and side A is at least $N_{b c}+N_{b b}$. If $N_{c d} \geq N_{a b}+N_{b b}$ then only $C D$-nets cross H, and if $N_{a d} \geq N_{b c}+N_{b b}$ then only $A D$ nets cross H, otherwise neither of them cross H. It is easy to check that the arrangement of terminals as shown in Figure (11) has the maximum possible density for the horizontal cut H. We prove our theorem statement by showing that there are at least $2 y$ empty grid points on D, for this worst-case example. Let

Figure 11. Worst case arrangement with maximum crossings across H
x_{d} be the number of empty grid points on the side D. We write the following equations by counting the number of terminals on each side of the boundary,

$$
\begin{gather*}
N_{a d}+N_{a b}+2 N_{a a} \leq l_{a} \tag{25}\\
N_{a b}+N_{b c}+2 N_{b b} \leq l_{b} \tag{26}\\
N_{c d}+N_{b c} \leq l_{c}=l_{a} \tag{27}\\
N_{c d}+N_{a d}+x_{d}=l_{d}=l_{b} . \tag{28}
\end{gather*}
$$

From Equation (28), we obtain

$$
\begin{equation*}
x_{d}=l_{b}-N_{c d}-N_{a d} . \tag{29}
\end{equation*}
$$

The density of $H, \delta(H)$, can be written as follows (refer to Figure 11):

$$
\begin{equation*}
\delta(H) \leq N_{a b}+N_{b b}+N_{b c}+\max \left\{\left(N_{c d}-N_{a b}-N_{b b}\right),\left(N_{a d}-N_{b c}-N_{b b}\right), 0\right\} . \tag{30}
\end{equation*}
$$

The first three terms of Equation (30), represent the number of $A B, B C$, and $B B$-nets crossing H and the last term represents the three different cases where (1) only $C D$-nets cross H, (2) only $A D$-nets cross H. and (3) no $A D$ or $C D$-nets cross H. In the following we consider these three cases separately.

Case 1: ($C D$-nets crossing H)

$$
\begin{gathered}
\text { i.e., }\left(N_{c d}-N_{a b}-N_{b b}\right) \geq\left(N_{a d}-N_{b b}-N_{b c}\right) \\
\text { and }\left(N_{c d}-N_{a b}-N_{b b}\right) \geq 0 . \\
\delta(H) \leq N_{a b}+N_{b b}+N_{b c}+N_{c d}-N_{a b}-N_{b b} . \\
\delta(H) \leq N_{b c}+N_{c d} \leq l_{a} . \text { Hence, there is no oversaturation in this case. }
\end{gathered}
$$

Case 2: ($A D$-nets crossing H)

$$
\begin{gathered}
\text { i.e., }\left(N_{a d}-N_{b c}-N_{b b}\right) \geq\left(N_{c d}-N_{a b}-N_{b b}\right) \\
\text { and }\left(N_{a d}-N_{b c}-N_{b b}\right) \geq 0 . \\
\delta(H) \leq N_{a b}+N_{b b}+N_{b c}+N_{a d}-N_{b c}-N_{b b} . \\
\delta(H) \leq N_{a b}+N_{a d} \leq l_{a} \text {. Hence, there is no oversaturation in this case. }
\end{gathered}
$$

Case 3: (no $A D$ or $C D$-nets crossing H)

$$
\begin{align*}
& \text { i.e., }\left(N_{c d}-N_{a b}-N_{b b}\right) \leq 0 \\
& \text { and }\left(N_{a d}-N_{b b}-N_{b c}\right) \leq 0 . \tag{31}
\end{align*}
$$

Then, $\delta(H) \leq N_{a b}+N_{b b}+N_{b c}$. Hence, there may be oversaturation in this case.
The amount of oversaturation is $y=\delta(H)-l_{a}$.

$$
\begin{equation*}
y \leq N_{a b}+N_{b b}+N_{b c}-l_{a} . \tag{32}
\end{equation*}
$$

Using Equations (29) and (32), we obtain

$$
\begin{gathered}
x_{d}-2 y \geq l_{b}-N_{c d}-N_{a d}-2\left(N_{a b}+N_{b b}+N_{b c}-l_{a}\right) \\
x_{d}-2 y \geq\left(l_{b}-N_{a b}-N_{b c}-2 N_{b b}\right)+\left(l_{a}-N_{a b}-N_{a d}\right)-\left(l_{a}-N_{b c}-N_{c d}\right) .
\end{gathered}
$$

From Equations (25) and (27), we get $l_{a} \geq \max \left\{\left(N_{a b}+N_{a d}\right),\left(N_{b c}+N_{c d}\right)\right\}$, and from Equation (30), we get $l_{b} \geq N_{a b}+N_{b c}+2 N_{b b}$. Hence, $x_{d}-2 y \geq 0$ or $x_{d} \geq 2 y$. This completes the proof of the theorem.

Using Lemmas 1,2 and 6, and Theorem 6, we can formulate the following algorithm for resolving oversaturation of all the horizontal cuts of a simple junction area.

Step 1:

Arrange the c and d-terminals of $A C$ and $B D$-nets on the free sides C and D so these nets can be
connected by straight wires. Then, remove all $A C$ and $B D$-nets, and the corresponding tracks and columns.

Step 2:

Arrange the d-terminals of all $A D$ and $C D$-nets, such that the d-terminals of $C D$-nets are above the d-terminals of $A D$-nets. Place the d-terminals of $C D$-nets consecutively starting at the top track. Place the d-terminals of $A D$-nets consecutively starting at the bottom track.

Step 3:

Calculate the density of each horizontal cut. If there is no oversaturated horizontal cut, then go to Step 4. Else, choose a cut H, such that $\kappa(H)<\delta(H)$. Let $y=\delta(H)-\kappa(H)$ be the amount of oversaturation of H. Find $2 y$ empty grid points on side D (follows from Theorem 6) and choose $y A B$, $B B$ or $B C$-nets which cross H. Replace each of the chosen $A B$-net by an $A D$ - and a $B D$-net, each $B B$-nets by two $B D$-nets, each $B C$-nets by a $B D$ - and a $C D$-net. Go to Step 1 .

Step 4:

Since there are no oversaturated cuts in the junction area, route the junction area by using the threesided router ${ }^{6}$ of [22], where terminals of sides A, B and D are considered fixed.

Step 5:

Finally, combine the routing of Step 4 with the straight wire connections of nets removed in Step 1. Stop.

The example of Figures 10 (a) thru (e) illustrate the above algorithm. By Step $1, c$-terminal of net 6 and d-terminal of net 7 are aligned as shown in Figure 10(a). Then, they are routed by straight wires. After which we remove these nets and the corresponding track and column (Figure 10(b)). Using Step 2, d-terminals of nets 4 and 5 are rearranged (Figure 10 (c)). The cut H is an oversaturated cut. Next, by Step 3 we resolve the oversaturation of H. Net 1 crossing H is replaced by two $B D$-nets connecting each of its b-terminals to one empty grid points on D (Figure $10(\mathrm{~d})$). In the remaining problem there are no

[^6]more oversaturated cuts and hence it can be routed without using any extra columns or tracks (Figure 10(e)).

After finishing the junction area routing terminals on sides C and D are fixed, so we need to route two three-sided channels (Left and Top), which can be achieved optimally using [22]. We can set $l_{a}=d_{2}$ and $l_{b}=d_{1}$. Then, the time complexity of the above algorithm can be related to the associated channel densities.

Theorem 7: The above junction area routing algorithm is guaranteed to terminate with no oversaturated cuts. The time complexity of this algorithm is $O\left(d_{1}+d_{2}\right)$.

Proof: Each time when the algorithm reduces the oversaturation of a cut by one, it removes at least one net from the junction area. Since the total number of nets is $\leq d_{1}+d_{2}$, the algorithm goes through Step 1 thru Step 3 at most $d_{1}+d_{2}$ times. The initial arrangement of $A D, C D, B C$-nets on sides C and D requires $O\left(d_{1}+d_{2}\right)$ time. The density of all the cuts can also be computed in the same time. After which removal of each oversaturating net takes $O(1)$ time. Finally, Step 4 requires $O\left(d_{1}\right)$ time to route the three-sided channel using [22]. Hence, the complexity of the whole algorithm is $O\left(d_{1}+d_{2}\right)$.

The channel router of [22] in the worst case requires $O(n)$ time, where n is the number of columns of the channel. Hence, the time complexity of our simple L-junction router for two-terminal nets is $O\left(d_{1}+d_{2}\right)+n_{1}+n_{2}$, where n_{1} and n_{2} are the numbers of the columns in the Left and Top channels. Then, we can write the following theorem.

Theorem 8: A two-terminal nets can be optimally routed in a simple L-junction with $t_{1}=d_{1}$ and $t_{2}=d_{2}$. The time complexity of the algorithm is $O\left(d_{1}+d_{2}\right)+n_{1}+n_{2}$.

4.1.2. S-junction Router

In this subsection, we discuss the problem of routing in an S-junction, which is another one of the fundamental problems. As discussed in the next section, this router can be used to design routers for general T - and X -junctions. A routing problem in an S-junction consists of routing in the associated channels
and the junction area. Similar to the case of L-junction, we first route the junction area and then the associated channels (see Figure (12)). In the following we give an optimal router for the junction area of an S-junction.

As discussed before, we assume that the junction density D_{j} is no more than the bottleneck of the junction. Moreover, the density of any vertical cut in the junction area, called V_{j}, is no more than the height $h_{j}=t_{1}+t_{2}-y_{0}$ of the junction area rectangle. We discuss the problem of routing for both configurations of the S-junctions, namely the "containing" and the "non-containing" type (Figure 2(b)). For the "containing" type of S-junction of Figure (12) the routing of nets is carried out as follows:

Step 1:

Choose an arbitrary sequence of the introduced terminals on the right opening of the junction area. Route the junction rectangle J using the three-sided channel router of [22]. This determines a sequence of introduced terminals on the left opening of J.

Step 2:

Use the three-sided channel router for routing the Left and Right channels of the junction.
The initial choice of the sequence of terminals in Step 1 does not change the densities of the associated channels and the junction area. Unfortunately, this scheme can not be used in the case of the "noncontaining" configuration of the S-junction. This is because, by an inappropriate choice of the sequence

Figure 12. Routing a 'Containing' S-junction
of terminals on the right opening, we may not be able to route the junction area due to the fixed sequence on its left segment. Also, some of the nets connecting terminals of the junction area may need to be extended and connected in the Right channel. Therefore, the crossing sequence at the right (or the left) opening can not be arbitrarily fixed. In the following, we devise a different scheme to route in the "noncontaining" type of S-junction.

Here again we first router the junction area J and then the associated channels. If there are no oversaturated horizontal or vertical cuts in the junction area, it can be routed by using a switchbox router. In our problem, there are no oversaturated vertical cuts, however, there might be some oversaturated horizontal cuts. Therefore, some of the nets of J have to be extended beyond its left and right openings and to be connected in the associated channels. The choice of extended nets and the proper sequence of terminals at the left and right openings is found as follows: (Figure 13)
(a) remove the oversaturation of all the horizontal cuts by expanding the switchbox horizontally (by adding extra columns adjacent to J in the channel area);
(b) route the expanded switchbox using the existing algorithms;
(c) retain the routing of the junction area and discard the routing in the extended area (including the routing in the added columns).

Figure 13. Routing a 'Non-Containing' S-junction

The "non-containing" type S-junction can be routed using the following algorithm:

Step 1:

Choose arbitrary sequences of the introduced terminals on the left and right openings of J. Divide J into two parts J_{t} and J_{b}, where J_{t} is the region above the origin, and J_{b} is the region below the origin. Calculate the horizontal densities V_{t} and V_{b} in regions J_{t} and J_{b} (i.e., maximum over all the horizontal cuts in that region), respectively.

Step 2:

If V_{t} and V_{b} are no bigger than x_{0} (capacity of any horizontal cut), go to Step 3. Otherwise, if V_{t} is bigger than x_{0}, then introduce $x_{t}=V_{t}-x_{0}$ columns on the right side of J in the Right channel.

Shift the terminals on the right opening of J to the right side of the extension part (keeping the same sequence). Similarly, if V_{b} is bigger than x_{0} then extend J in the left direction.

Step 3:

Route the modified junction area using the existing switchbox router of [15].

Step 4:

Remove the routing in the extension regions.

Step 5:

Route the Left and the Right channels using the three-sided channel router [22].

Thus, we can state the following theorem.
Theorem 9: A two-terminal nets can be optimally routed in a S-junction with $t_{1}=d_{1}$ and $t_{2}=d_{2}$.

4.2. Upper Bounds for 2-Terminal General Junction Routing Problem

In this section, we route general junctions by using the above developed simple L-junction and Sjunction routers. The strategy used here is the same as in the previous section; first route the junction area and then the associated channels. The most general kind of junction can be routed by a straight forward decomposition of the junction into sub-regions, which are simple L- and S-junctions, and three-sided
channels. According to the definition, the general junction area is an union of two rectangles J_{1} and J_{2}. If one can route this junction area without using any extra area, by connecting the nets which cause the problem of oversaturation in the channel area (as we did for simple L-JRP), then one can route the general junction optimally. The most general junction defined in this paper is the X -junction, and L-, and Tjunction can be considered as special cases of the X-junction, so we illustrate our approach by discussing upper bounds only for X-junctions.

For a general X-junction shown in Figure (14), we call the overlap region of J_{1} and J_{2} as \bar{J}, where \bar{J} $=\left\{(x, y): 0 \leq x \leq x_{0},-y_{0} \leq y \leq 0\right\}$. The junction area $J_{1} \cup J_{2}$ routing can be done by routing the two

fixed terminals for routing J_{2} Figure 14. General junction area routing
junction area rectangles J_{1} and J_{2}. To route J_{1}, we introduce terminals on the top and right sides of \bar{J} representing the connections from region $L \cup J_{1} \cup B$ to region $T \cup J_{2} \cup R$. According to our assumptions about the universal lower bounds, the number of nets crossing these two sides is no more than the capacity of these two sides. We can always choose a sequence of these introduced terminals. By considering the introduced terminals as fixed terminals, the routing in J_{1} is a simple-JaRP, and can be solved by using the previous algorithm. To route J_{2}, we erase the routing of nets inside region \bar{J}, but fix the crossing sequence at the left and bottom sides of \bar{J} which is determined during the routing of J_{1}. The introduced terminals on the top and right sides of \bar{J} are now erased. Finally, routing in J_{2} is another simpleJaRP and can be completed optimally. This gives us the following theorem.

Theorem 10 : The general junction area for two-terminal nets can be routed optimally.
After finishing the routing of the general junction area, the associated channels are routed optimally using the channel router of [22]. We conclude this section with the following theorems.

Theorem 11 : The general k-way junction routing problem for two-terminal nets can be routed optimally, i.e., $t_{i}=d_{i}, i=1, \cdots, k$, where t_{i} and d_{i} are respectively the width and density of the i th channel.

Theorem 12 : The time complexity of the router of an k-way $J R P$ is $O\left(\sum_{i=1}^{k} d_{i}+\sum_{i=1}^{k} n_{i}\right)$, where n_{i} is the number of columns of the i th channel.

We can also route more general types of " T "- and "X"-junction, i.e., when $x_{0} \geq t_{2}$ and $y_{0} \geq t_{1}$. This is done by first routing the S-shaped region of the junction area and then routing the remaining parts as L-junctions or three-sided channels, as illustrated from the example in Figure (15).

4.3. Upper Bounds for 3-terminal Junction Routing Problems

In this section we discuss upper bounds of three-terminal nets JRPs. This is achieved by appropriately decomposing each three-terminal net into two two-terminal nets and then using the routers discussed in the previous sections. The decomposition of nets is done by duplicating one of their terminals.
2. Route this region as a 3-sided channel

Figure 15. General junction area decomposition

The duplicated terminal is placed in a new track or column which is inserted besides the terminal that is duplicated, and both these terminals are interconnected. Thus, during the decomposition procedure the number of tracks and columns increases. As we will show next, by a proper choice of decomposition of nets this increase in the size of the junction area can be bounded. In fact, the required increase in the junction area is less than the required increases in the channels by the best known channel routers. In other words, the existing channel routers are the "bottleneck" in our routing algorithm. Our upper bounds match the existential lower bounds in the case of L-junction.

Once the decomposition procedure transforms all three-terminal nets into two-terminal nets, the transformed two-terminal nets junction area routing problem is carried out by the algorithms of the previous section. We only discuss the decomposition in the cases of simple L-JaRP and S-JRP, since the general junction area routing can be achieved by combining these routers, as discussed earlier. For the three-sided channel routing problem of three-terminal nets, we still use the channel router of [22] which uses $\frac{3 d}{2}$ tracks in the worst case (which is a matched bound) for a routing problem with density d. It therefore suffices to show that the increase in the width and the height of the junction area are bound by
half of their original values. This proves that $\sum_{i=1}^{k} t_{i} \leq \frac{3}{2} \sum_{i=1}^{k} d_{i}$ for a three-terminal-net k-way $J R P$.
In the following we first classify nets according to their terminal positions on the sides of a simple junction area. Then, we present the rules of decomposition for the various classes of nets. By counting the number of the duplicated terminals introduced by the decomposition procedure on each side, an upper bound for the simple simple JaRP is obtained. Finally, by combining the upper bounds for channel routing and the junction area routing, we obtain the result for the general $J R P$.

The sides of the junction area are denoted by A, B, C and D, where the terminals of A and B are fixed and the terminals of C and D are free. Let X_{1}, X_{2} and X_{3} (where $X_{i} \in\{A, B, C, D\}, i=1,2,3$) be the positions of the three terminals of a net N. Then, we call net N an $X_{1} X_{2} X_{3}$-net. For example, an $A A B$-net has two of its terminals on side A and another terminal on side B. It is easy to check that there are a total of nineteen different types of nets in a simple junction area routing problem, according to their terminal positions. These nets are classified in four sets.

Set I: $A A-, A C-, A D-, B B-, B C-, B D-$, and $C D-$ nets.
Set II: $A A A-$, and $B B B$ - nets.
Set III: $A A B-, A B B-, A A C-, B B C-, A A D-$, and $B B D-$ nets.

Set IV: $A B C-, A B D-, A C D-$, and $B C D-$ nets.

We denote the number of these nets in a given routing problem by $N_{a a}, N_{a c}, \cdots, N_{b c d}$, respectively. As a rule, while decomposing a net, we introduce duplicated terminals only on the sides where the net originally has at least one of its terminals. When we say an $X_{1} X_{2} X_{3}$ net is decomposed with a duplicated terminal on side X_{i}, for $i=1,2$, or 3 , we mean that the X_{i}-terminal of the net is duplicated. In other words, if for an $X_{1} X_{2} X_{3}$ net the duplicated terminal is on X_{2}, it is decomposed into an $X_{1} X_{2}$-net and another $X_{2} X_{3}$ net. In order to duplicate a terminal on a side, say on side A (or side B), we insert a column (resp. a row) and duplicate that terminal thus increasing the width (resp. height) of the simple junction area by one (Figure 16). There are three different ways to decompose an $X_{1} X_{2} X_{3}$ net depend-

Figure 16. Decomposition of a Three-Terminal Net
ing on the choice of the side where the duplicated terminal lies on. For instance, an $A B D$ net has the three different decompositions shown in Figure (16):
(1) $A B D$-net $\rightarrow A D$ - and $A B$-nets with duplicated terminal on side A;
(2) $A B D$-net $\rightarrow A B$ - and $B D$-nets with duplicated terminal on side B;
(3) $A B D$-net $\rightarrow A D$ - and $B D$-nets with duplicated terminal on side D.

Since we add one column (resp. one row) for every duplicated terminal, the total amount of increase in any side of the junction area is equal to the number of duplicated terminals on that side.

Our strategy is to distribute the duplicated terminals evenly around the sides of the junction area. When the context is clear, we will use $N_{x_{1} x_{2} x_{3}}$ to express both the number of $X_{1} X_{2} X_{3}$-nets (original definition) and the $X_{1} X_{2} X_{3}$-nets. For instance, when we say that $\alpha N_{a a b}$ nets with duplicated terminals on side A we really mean that " $\alpha N_{a a b} \mathrm{AAB}$-nets are decomposed with duplicated terminals on side A ". We propose the following decomposition scheme:

The nets in Set I are not decomposed.
The nets in Set II are decomposed as follows:
$N_{a a a}$ nets are decomposed with duplicated terminals on side A
$N_{b b b}$ nets are decomposed with duplicated terminals on side B.
The nets in Set III are decomposed as follows:

$$
\begin{gathered}
\frac{2\left(N_{a a b}+N_{a a c}+N_{a a d}\right)}{3}+\frac{N_{a b b}}{3} \text { nets with duplicated terminals on side } A \\
\frac{2\left(N_{a b b}+N_{b b c}+N_{b b d}\right)}{3}+\frac{N_{a a b}}{3} \text { nets with duplicated terminals on side } B \\
\frac{N_{a a c}+N_{b b c}}{3} \text { nets with duplicated terminals on side } C \\
\frac{N_{a a d}+N_{b b d}}{3} \text { nets with duplicated terminals on side } D .
\end{gathered}
$$

The nets in Set IV are decomposed as follows:

$$
\begin{aligned}
& \frac{N_{a b c}+N_{a b d}+N_{a c d}}{3} \text { nets with duplicated terminal on side } A \\
& \frac{N_{a b c}+N_{a b d}+N_{b c d}}{3} \text { nets with duplicated terminal on side } B \\
& \frac{N_{a b c}+N_{a c d}+N_{b c d}}{3} \text { nets with duplicated terminal on side } C \\
& \frac{N_{a b d}+N_{a c d}+N_{b c d}}{3} \text { nets with duplicated terminal on side } D .
\end{aligned}
$$

In this way all nets of three-terminals are divided into two-terminal nets. The total number of duplicated terminals on side A is

$$
=N_{a a a}+\frac{2\left(N_{a a b}+N_{a a c}+N_{a a d}\right)}{3}+\frac{N_{a b b}}{3}+\frac{N_{a b c}+N_{a b d}+N_{a c d}}{3} .
$$

By counting the number terminals on side A, we can write for the width of the junction area, l_{a},

$$
l_{a} \geq 3 N_{a a a}+2\left(N_{a a b}+N_{a a c}+N_{a a d}\right)+N_{a b b}+N_{a b c}+N_{a b d}+N_{a c d} .
$$

Hence, we obtain that the number of duplicated terminals on side A is less than $\frac{l_{a}}{3}$, which means the increase on side A is less than one third of its original value. The same argument can be applied to the
increase of sides B, C, and D. The terminals on sides C are free, therefore its duplicated terminals can be aligned in columns containing the duplicated terminals of A. This implies that increases in one side can be shared by the opposite side. Similarly, the duplicated terminals of sides D and B can be aligned in rows. Hence, we have the following theorem.

Theorem 13: The three-terminal nets in a simple junction area can be routed by increasing the width and height of the junction area, by no more than one third of its original size.

Next, we discuss the case of general junctions. We again decompose the three-terminal nets into two-terminal nets by duplicating terminals of the net on the junction area boundary. We illustrate the technique for a junction area which is the union of two rectangles, as shown in Figure (17). We partition the boundary of $J_{1} \cup J_{2}$ into twelve pieces, i.e., $A, A^{\prime}, \ldots, F, F^{\prime}$. The nets are decomposed in a fashion similar to the case of a simple junction area: $\frac{i}{3} N_{x_{1} x_{2} x_{3}}$ nets of type $X_{1} X_{2} X_{3}$ are decomposed with the duplicated terminals on side X_{j}, where $X_{j} \in\left\{A, B, C, D, E, F, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}\right\}$ and $i \in\{0,1,2,3\}$ is the number of terminals of such nets on side X_{j}. It is easy to check that the number of duplicated terminals on any side X_{j} (i.e., the increase in its length) is no more than its original size. However, since each of the sides with fixed terminals (namely, A, A^{\prime}, B, and B^{\prime}) face a side with free

Figure 17. Decomposition of 3-terminal Nets in a General Junction Area
terminals, their increases can be shared. Hence, the total increase on the left opening $C \cup E$ (resp. top, right and bottom openings) is no more than one third its original size. Thus, we can write the following theorem.

Theorem 14: The three-terminal nets in a general junction area can be routed by increasing the width (distance between left and right opening) and height (distance between top and bottom opening) of the junction by no more than one third of their original sizes.

Finally, applying the three-sided channel router of [22], the associated channels can be routed in $\frac{3 d_{i}}{2}$, where d_{i} is the density of the i-th associated channel. Hence, we obtain the following theorem.

Theorem 15: The three-terminal-net k-way junction routing problems can be routed with $\sum_{i=1}^{k} t_{i} \leq \sum_{i=1}^{k} \frac{3 d_{i}}{2}$, for $k=2,3,4$.

5. Discussion and Open Problems

We have presented new techniques to prove lower and upper bounds for general junction routing problems. All the results of this paper are summarized in Table 2. These are the first known theoretical results for the problems of junction routing.

From Table 2, it is clear that for two-terminal nets the universal lower bounds match the upper bounds for all junctions. Hence, these results are optimal. For three-terminal nets the lower bounds for the case of L-junction also match the upper bounds. However, there is a gap for the case of other junctions, which is an open problem. The upper bound results for multi-terminal nets (more than 3-terminals) as shown in the Table can be obtained trivially, i.e., by duplicating every terminal of the junction area. Actually, these bounds can be improved by using the decomposition technique outlined for the case of three-terminal nets [20]. By our scheme for the multi-terminal router, one can expect better upper bounds if there is an improved multi-terminal router for the three-sided channel.

All the routers presented in this paper, except the S-junction router, give layouts which are threelayer wirable. In general, the S-junction router gives layouts which are four-layer wirable. Our upper

	Lower bounds		Upper bounds		
	2-terminal	multi-terminal	2-terminal	3-terminal	multi-terminal
L-junction	$\geq d_{1}+d_{2}$	$\geq \frac{3}{2}\left(d_{1}+d_{2}\right)$	$\leq d_{1}+d_{2}$	$\leq \frac{3}{2}\left(d_{1}+d_{2}\right)$	$\leq 2\left(d_{1}+d_{2}\right)$
S-junction	$\geq d_{1}+d_{2}$	$\geq \frac{3}{2}\left(d_{1}+d_{2}\right)$	$\leq d_{1}+d_{2}$	$\leq 2\left(d_{1}+d_{2}\right)$	$\leq 2\left(d_{1}+d_{2}\right)$
T-junction	$\geq d_{1}+d_{2}+d_{3}$	$\geq \frac{3}{2}\left(d_{1}+d_{2}\right)+d_{3}$	$\leq d_{1}+d_{2}+d_{3}$	$\leq \frac{3}{2}\left(d_{1}+d_{2}+d_{3}\right)$	$\leq 2\left(d_{1}+d_{2}+d_{3}\right)$
X-junction	$\geq d_{1}+d_{2}+d_{3}+d_{4}$	$\geq \frac{3}{2}\left(d_{1}+d_{2}\right)+d_{3}+d_{4}$	$\leq d_{4}+d_{2}+d_{3}+d_{4}$	$\leq \frac{3}{2}\left(d_{1}+d_{2}+d_{3}+d_{4}\right)$	$=^{2}\left(d_{1}+d_{2}+d_{3}+d_{4}\right)$

Table 2: Summary of Our Results
bounds are valid only for the knock-knee routing model, while it is an open problem to find upper bounds for the Manhattan model. In the case of the overlap model both the problems of finding lower and upper bounds are open.

This paper has given some indications that routing a junction requires less area than routing a switchbox. This implies that dividing the routing region into channels and junctions is likely to be better than dividing into channels and switchboxes. This is still an open problem. In fact, there are scores of other problems related to the decomposition of the routing region in junctions. For example, the problem of determining the "best" sequence to route the various junctions. Finally, the problem of routing in more than 4-way junctions is another interesting problem.

References

[1] Baker, B. S., S. N. Bhatt, and F. T. Leighton, "An Approximation Algorithm For Manhattan Routing,' Proc. of the 15th Ann. ACM Symp. on Theory of Computing, pp. 477-486, 1983.
[2] Berger, B., M. Brady, D. Brown, and F. T. Leighton, 'Nearly optimal algorithms and bounds for multilayer channel routing," 1986.
[3] Brady, M. and D. Brown, "An algorithm for three layer channel routing using restricted overlap," in Proc. of the 23rd Allerton Conf. on Communication, Control, and Computing, Monticello, IL., pp. 674-675, 1985.
[4] Chen, K. A., M. Feuer, K. H. Khokhani, N. Nan, and. S. Schmidt, "The chip layout problem: an automatic wiring procedure," Proc. of 14th Design Automation Conference, pp. 298-302, 1977.
[5] Chen, N. P., C. P. Hsu, and E. S. Kuh, "The Berkeley Building Block laout system," Technical Report, Electronics Research Laboratory, University of California, Berkeley, 1983.
[6] Dai, W. M., T. Asano, and E. S. Kuh, "Routing region definition and ordering scheme for Building-Block layout,' IEEE Trans. Computer-Aided Design, vol. 4, pp. 189-197, 1985.
[7] Frank, A., "Disjoint Paths in a Rectilinear Grid," Graph Theory Conf., (Logow, Poland), 1981.
[8] Gao, S. D. and S. Hambrusch, "Two-layer channel routing with vertical unit-length overlap," Algorithmica, vol. 1, pp. 223-232, 1986.
[9] Gao, S. D. and M. Kaufmann, "Channel Routing of Multiterminal Nets," Proc. 28th Sym. on Foundations of Comp. Sc., pp. 316-325, 1987.
[10] Hambrusch, S., "Channel routing algorithms for overlap models," IEEE Trans. Computer-Aided Design, vol. 4, pp. 23-30, 1985.
[11] Hashimoto, A. and J. Stevens, "Wire Routing by Optimizing Channel Assingment," Proc., 8th Design Automation Conf.," pp. 214-224, 1971.
[12] Hsu, C. P., "A New Two-Dimensional Routing Algorithm," 19th Design Automation Confernce, pp. 46-50, 1982.
[13] Kajitani, Y., "Order of channels for safe routing and Optimal Compaction of routing area,' IEEE Trans. Computer-Aided Design, vol. 2, pp. 293-300, 1983.
[14] Karp, R. M., F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V. Vazirani, and V. V. Vazirani, "'Global Wire Routing in Two-Dimensional Arrays," Algorithmica, pp. 113-129, 1987.
[15] Kaufmann, M. and K. Mehlhorn, "Routing Through a Generalized Switchbox," J. Algorithms, vol. 7, pp. 510-531, 1986.
[16] Kawanishi, H., S. Goto, T. Oyamada, and K. Kani, "A routing method of building block LSI," Rec. 7 th Asilomar Conf. on Cir. Sys. and Comp., pp. 119-123, 1973.
[17] Leighton, F. T., "New Lower Bounds for Channel Routing,' MIT VLSI Memo 82-71, 1981.
[18] Lipski, W., "On the structure of three-layer wirable layouts," in Advances in Computing Research. JAI Press, pp. 231-243, 1985.
[19] Liu, M. L., W. J. Zhuang, and S. Q. Chen, "Three-side channel, two-adjacent-side channel and their routers," Proc. of IEEE Sym. on Circuits and Systems, pp. 1226-1229, 1986.
[20] Maddila, S. R. and D. Zhou, "On the problem of routing multiterminal nets in junctions," Manuscript in Preperation, April, 1988.
[21] Mehlhorn, K. and F. P. Preparata, "Routing through a Rectangle," J. ACM, vol. 33, pp. 60-85, 1986.
[22] Mehlhorn, K., F. P. Preparata, and M. Sarrafzadeh, "Channel Routing in Knock-Knee Mode: Simplified Algorithms and Proofs," Algorithmica, vol. 1, pp. 213-221, 1986.
[23] Ng, A. P.-C., P. Raghvan, and. C. D. Thompson, "Experimental results for a linear program global router," Procc. of 23rd ACM/IEEE Design Automation Conference, pp. 659-662, 1986.
[24] Nishizeki, T., N. Saito, and K. Suzuki, "A Linear-Time Routing Algorithm for Convex Grids," IEEE Trans. Computer-Aided Design, vol. CAD-4, pp. 68-76, January, 1985.
[25] Otten, R. H., "Automatic Floorplan Design," IBM Thomas J. Watson Research Center, , vol. RC9656, 1982.
[26] Preparata, F. P. and W. Lipski, "Three Layers Are Enough," IEEE 23rd Symp. on Found. of Compt. Sci.,, pp. 350-357, 1982.
[27] Preparata, F. P. and W. Lipski Jr., "Optimal three-layer channel routing," IEEE Trans. Computers, vol. 33, pp. 427-437, 1984.
[28] Rivest, R. L., A. Baratz, and G. Miller, "Probably Good Channel Routing Algorithms," VLSI Systems and Computations, H. T. Kung, B. Sproull, and G. Steel, (eds.), pp. 153-159, 1981.
[29] Sarrafzadeh, M. and F. P. Preparata, 'Compact Channel Routing of Multiterminal Nets,' Annals of Discrete Math., April, 1985.
[30] Sarrafzadeh, M., "Hierarchical approaches to VLSI circuit layout," Coordinated Science Laboratory, Technical Report, Dec. 1986.
[31] Sarrafzadeh, M. and D. Zhou, "Lower-bound for the three-sided channel routing problem," personal communication, 1988.
[32] Soukup, J., 'Global Router,' Proc. 16th Design Automation Conference, pp. 481-484, 1979.
[33] Vecchi, M. P. and S. Kirkpatrick, "Global wiring by simulated annealing," IEEE Trans. Computer-Aided Design, vol. 2, pp. 215-222, 1983.
[34] Verheyen, H. Th., R. Nouta, and P. Dewilde, "FLOORPLANNING, A new placement and routing strategy," Proc. Int. Symp. on Circuits and Systems, pp. 453-456, 1984.
[35] Yoshimura, T. and E. S. Kuh, "Efficient Algorithms for Channel Routing," IEEE Trans. Computer-Aided Design, vol. 1, pp. 25-35, 1982.

[^0]: \dagger This work was partially supported by the National Science Foundation under grant 1-5-29510 and by the Semiconductor Research Corporation under grant 1-5-80259.

[^1]: ${ }^{1}$ Channel density is an important parameter used in measuring the complexity of a channel routing problem.

[^2]: ${ }^{2}$ This assumption is justified, by the symmetry of the rectangular regions and by an appropriate numbering of the regions.

[^3]: ${ }^{3}$ Two horizontal (or vertical) channels are said to be a "containing" pair, if extensions of the shore-lines of one channel lie entirely inside the other channel, else they are said to be a "non-containing" pair.

[^4]: ${ }^{4}$ This definition of nets is defined for a channel routing problem, where there is at most one terminal of a net on the left or the right side. In the case of nets in a switchbox routing problem, there may be more than one terminals of a net on the left or the right side of the rectangle.

[^5]: ${ }^{5}$ Note: The lower bound of Equation (7) is the same as combining the lower bounds for two separate three-sided channels, for which one can show $t \geq \frac{3}{2} d$, for three and more terminal nets.

[^6]: ${ }^{6}$ The channel router of [22] can be easily modified to give an optimal router for the three-sided channel.

