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The signal probability of a node in a digital circuit is the fraction 
of time that that node remains at logic 1. The importance of the 
signal probability concept has been recognized for testability 
analysis and for power estimation. It is also known that the problem 
of finding the exact probabilities is $\cal NP$-hard. As a result, all 
previous work in this area has focused on approximating the signal 
probability values, while maintaining reasonable execution time. 
However (as recent review article has observed), there is no existing 
robust technique for solving this problem. The accuracy of all 
existing efficient techniques is unpredictable and unreliable, making 
them unattractive in practice. In this work, we present a new 
approximate technique for computing the signal probabilities that is 
based on statistical estimation. A key feature of our approach is 
that the desired accuracy can be specified up-front, along with a 
desired measure of confidence. This approach has been implemented in a 
prototype C program, which we have verified on a large number of test 
cases. The direct accuracy control is very attractive in practice, 
boosting designers' confidence in the tool. The method is also quite 
efficient, solving a 22,000 gate circuit in a little over an hour on a 
SUN spare ELC.



S tatistica l E stim ation  o f th e Signal Probability  in VLSI C ircuits

Farid N. Najm
University of Illinois at Urbana-Champaign 

Coordinated Science Laboratory 
1308 West Main Street 

Urbana, IL 61801

A bstract
The signal probability of a node in a digital circuit is the fraction of time that that node 
remains at logic 1. The importance of the signal probability concept has been recognized for 
testability analysis and for power estimation. It is also known that the problem of finding 
the exact probabilities is VP-hard. As a result, all previous work in this area has focused on 
approximating the signal probability values, while maintaining reasonable execution time. 
However (as recent review article has observed), there is no existing robust technique for 
solving this problem. The accuracy of all existing efficient techniques is unpredictable and 
unreliable, making them unattractive in practice. In this work, we present a new approximate 
technique for computing the signal probabilities that is based on statistical estimation. A 
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1. Introduction
Consider a combinational circuit that is part of a larger synchronous sequential circuit. The 

signal probability [1] of a node is defined as the fraction of clock cycles in which the final state 
of that node is a logic 1. The signal probability is completely determined by the Boolean 
function implemented at that node, and by the signal probabilities at the primary inputs of 
the combinational circuit.

The importance of the signal probability concept has been recognized for testability 
analysis [2-4] and power estimation [5]. In testability analysis, the signal probability of a 
node is a measure of controllability, i.e., of how easy it is to control the logic value at that 
node from the primary inputs. In power estimation, the signal probability gives the fraction 
of clock cycles in which a node makes a (power consuming) logic transition.

From a computational complexity standpoint, the problem of estimating the signal prob
ability is not trivial. In fact, it can be easily shown (by a transformation from satisfiability) 
that it is A/T’-hard [6]. As a result, several approximation techniques have been developed 
to compute estimates of the signal probability while maintaining reasonable execution times. 
In [3] and [5], internal circuit nodes were assumed to be independent, providing a very fast 
but potentially very approximate solution. Improvements on these techniques were proposed 
in [4, 7, 8] to improve the accuracy at the cost of some reduction in speed.

A drastically different approach, proposed in [2] and refined in [10, 11], is based on 
estimating upper and lower bounds on the signal probability of a node. It can also be shown 
that the problem of estimating non-trivial bounds on the signal probability is also A/’7?-hard. 
The proof of this result is quite simple and, for completeness, is given in appendix A.

Yet another approach was proposed in [9] that relates the signal probability to the 
first spectral component of a Boolean function. Unfortunately, spectral techniques are too 
expensive to be used in practice, typically requiring exponential time and space.

In the review article [12], it was concluded that none of the forgoing techniques are robust 
enough to be of practical value. The techniques based on an independence assumption can 
be too approximate or otherwise too expensive, and the bounding techniques can produce 
very loose bounds.

In this paper, we propose a new approach to estimating the signal probability that is 
based on statistical estimation, essentially a Monte Carlo technique. Simply put, we apply 
randomly-generated logic patterns to the circuit inputs and, for every node, monitor the 
fraction of time that that node is at logic 1. Provided the input patterns are uncorrelated, the 
measured fractions will converge to the true probabilities (by the law of large numbers [13]). 
In order to determine when to stop this process, and whether the values obtained are at 
all close to the correct solution, we use the notion of confidence interval from statistics [13]
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to provide a stopping criterion. Using this, it becomes possible, for instance, to stop the 
iterative process when we are 99% confident that the measured values are within 0.01 of 
the true probabilities. The desired accuracy and confidence levels can be specified up-front 
by the user. This is a key feature of our approach that gives the user direct control on 
the accuracy of the approximation, and sets this work apart from previous approximation 
methods, which do not offer such error-control. We will present experimental results that 
show that this technique is robust (i.e., that it works well over a wide range of circuits) and 
fast enough to be applicable to VLSI circuits.

As is the case with all previous work in this area, the technique to be presented is limited 
to combinational circuits. We are currently working on extensions to sequential circuits. 
The remainder of this paper is organized as follows. The next section contains the detailed 
description of the statistical estimation approach. Section 3 describes our implementation 
and presents experimental results. Conclusions are given in section 4. Finally, two appendices 
are included to present some mathematical proofs.

2. S tatistica l Bounds
We assume that every primary input node to the combinational circuit is assigned a signal 

probability value equal to the fraction of clock cycles in which it is expected to be at logic 1. 
As a result, some input patterns may be more probable than others. For instance, if an input 
node has a signed probability of 0.9, then those patterns in which it is at logic 1 are more 
probable. Likewise, if a node has a probability of 0, then input patterns in which that node 
is at 1 can not occur. These probabilities, along with the Boolean functions implemented by 
the circuit, completely determine the signal probabilities at all other nodes.

Suppose we repeatedly apply random input patterns to the circuit, chosen so that : 
(1) they are uncorrelated, and (2) their frequency of occurrence is consistent with the input 
signal probabilities. Let us also monitor internal circuit nodes and count the number of 
times each of them is at logic 1. We call the application of an input pattern a trial and the 
occurrence of a 1 at a node a success, while a 0 is called a failure. The result is what is 
commonly known as a process of Bernoulli trials [13].

If p is the (unknown) probability at an internal node, and if x successes are observed in 
a sequence of n  trials, then by the law of large numbers [13] :

xlim — =  p (1)n —►<» n

This, then, would be a straightforward way to estimate the signal probabilities. However, 
the problem with this simplistic approach is that there is no way to tell when x /n  is close 
enough to p, in order for us to stop the process.

- 2-



The solution comes from the study of statistical estimation of proportions [13] and can be 
summarized as follows. The number of possible successes in n trials is a random variable x, 
with a binomial distribution with parameter p. Since the form  of the distribution is known, it 
becomes possible to assign a confidence level to how closely x /n  approximates p. If a  and E  
are small numbers between zero and one, this is usually expressed as “we are (1 — a) x 100% 
confident that — p\ < E .” For a given value of E  and a, one can look up the minimum 
required number of trials n in statistical tables [13]. As a result, this analysis provides a 
stopping criterion that can be used to terminate the iterative sampling process.

However, since tables are finite, this imposes a limit on n and/or leads to very large 
tables. The alternative option of expressing the bounds analytically based on the binomial 
distribution is too computationally expensive. Instead, it is much more efficient to use 
approximations to the binomial distribution. For instance, if np and n (l — p) are greater 
than 5, then the binomial can be approximated by a normal distribution [13]. Furthermore, 
when p < 0.1 or p > 0.9 then according to [14] a good approximation to the binomial is 
given by the Poisson distribution. This leads to two stopping criteria, each of which applies 
to those nodes whose probabilities are in the corresponding range. Since we do not know 
the node probabilities a priori, the minimum value of n  required to achieve the E  error 
bound with (1 — a) x 100% confidence is chosed as the maximum  of those computed from 
the two approximations, which we consider as two separate cases below. In fact, we will 
further subdivide the Poisson case into two cases, according to whether x is small (less than 
15) or not. The reason for this will become clear shortly. Finally, it is convenient before 
proceeding to require a minimum value of 50 for  n, so that np < 5 is equivalent to p < 0.1 
and n (l — p) < 5 is equivalent to p > 0.9.

2 .1 . T he case p £ [0.1,0.9]
In this case, and since n  > 50, both np and n (l — p) are greater than 5, and the binomial 

can be approximated by a normal distribution, so that in order to know with (1 — a) x 100% 
confidence that | J — p\ < E , we need [13] :

trials, where za/2 is defined so that the area to its right under the standard normal distri
bution curve is equal to a /2 , as shown in Fig. 1.

The value of za/2 can he computed, for any given value of a, using the Gaussian distribu
tion function erf() available on unix systems. To illustrate, suppose we want to compute the 
signal probabilities throughout the circuit to within 0.1 with 95% confidence. Then E = 0.1, 
(1 — a) =  0.95, which gives za/2 =  1.96, and therefore n =  96. Therefore, it is enough to
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Figure 1. Definition of za/2.

Absolute error to be tolerated in signal probability

Figure 2. Stopping criterion when p E [0.1,0.9].

apply 96 input patterns in this case. Based on (2), we can plot the minimum required n 
versus E  for the case p E [0.1,0.9] for different levels of confidence, as shown in Fig. 2.

As expected, the number of patterns required increases for smaller error bounds E. We
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have deliberately focused on this part of the curve to show that values as low as E  = 0.01 
are feasible, provided the logic simulation of the circuit is fast enough. A best candidate for 
this kind of simulation would be a compiled simulation technique.
2 .2 . T h e case p £  [0.1,0.9] and x is large (>  15)
According to [14], when p < 0.1 or p > 0.9, then a good approximation to the binomial is 

given by the Poisson distribution. Through a relationship between the Poisson distribution 
and the %2 (pronounced chi-square) distribution [14], it becomes possible to bound the value 
of p, and derive a stopping criterion, as follows.

By symmetry, it’s enough to look at the case p < 0.1. In that case, we know with 
(1 — a) x 100% confidence, that [14] :

¿ X ? _ a/2 < P < ¿ x ’ /2 (3)

where x 2/ 2 *s such the area to its right under the %2 distribution is equal to a /2 . In " 
the above inequality, the number of degrees of freedom of the x 2 distributions is /  =  2x in 
the case of X i_a/2> anc  ̂ /  =  +  1) for X«/2 j where x is the number of successes observed
in n  trials.

From the above, we have :
x 1 x x 1
~ - ^ / 2 ^ _ a/2 W

We want to take n samples such that, with (1 — a) x 100% confidence, |^ —p| < E. Using (4), 
it is enough to require :

- ^ - ¿ x ’ /2 and (5)
Since x > 15, then /  > 30 and the values of x „ /2 an<̂  ^ i-a /2  can a P P r o x i m a te d  [14] 

using :
x ^ l ( v ^ 7 T T + ^ ) 2 (6)

where q stands for a /2  in one case, and 1 — a /2  in the other. If we denote the ratio x /n  by 
p and use the above approximation, we can rewrite the stopping criterion as :

4n(p -  E) < (y/4pn -  1 -  za/2)2 and 4n(p + E) > (yjkprn +  3 +  za/2)2 (7)
Each of these inequalities can be written as a quadratic in y/n whose roots give the required 
range of n. The lengthy analysis (see appendix B) yields :

n  >
^ 2a/2V2 E  +  0.1 + y /(£  +  0.1)z2/2

~2E (8)
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2.3 . T he case p £ [0.1,0.9] and x is sm all
The case /  =  2x < 30 and/or /  =  2(x +  1) < 30, occurs when x <  15, so that x /n  < 15/n. 

It is still true that an upper bound on p is given by ¿ X a /2 > with /  < 32, which may or 
may not mean that we can use the approximation (6). However, since the value of the x 2 
distribution increases with the number of degrees of freedom / ,  it follows that p < ^ X 2a /2  

with /  =  32, for which the approximation holds, and we can write :

(9)

_____ 2Finally, since x /n  < 15/n < ^  (\/63 +  za/2) f°r useful values of za/2, we can write
x- - Pn 63 +  Za/2)

and the stopping criterion is given by :

n > \/63 +  zaj2
2 V E (1 0)

The comparison between the three resulting lower bounds on n are shown in Figs. 3 and 4.

Figure 3. Comparison of the different bounds at (1 — a) x 
100% =  95% confidence.
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Figure 4. Comparison of the different bounds at (1 — a) x 
100% =  99% confidence.

To summarize, for a given error bound E  and confidence level (1 — a) x 100%, we 
determine the minimum number of patters n  to be applied by taking the maximum of the 
three lower bounds predicted by equations (2), (8), and (10). In the next section, we will 
present some experimental results of of the application of this procedure to a variety of 
benchmark circuits.

3. Im plem entation  and R esults
This approach has been implemented in a prototype C program, using zero-delay logic 

simulation in order to evaluate the internal logic values for a given input pattern. The exe
cution time results on a SUN Sparc ELC are shown in Table 1 for the ISCAS-85 benchmark 
circuits [15]. For the largest circuit, with 3512 gates, it takes under 12 minutes to find the 
signal probabilities to within 0.01 and with 99% confidence. This performance can be further 
improved by using compiled simulation to speed up the logic evaluation process.

In order to validate the accuracy of the approach, we ran the statistical estimation 
on c6288 for n  =  1,000,000 patterns and used the resulting values as “accurate” signal 
probabilities (with n  =  106, it can be shown that we have 99.99% confidence that the 
estimation error is less than 0.0019). We then compared the results of the runs in Table 1 
to the “accurate” probability values and formed the two histograms shown in Figs. 5 and 6. 
These figures show the results for (1 — a) x 100% =  95% and 99%, respectively. The
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Table 1. Execution time results for the ISCAS-85 benchmark circuits.
Circuit
Name

Number of 
gates

Number of 
inputs

Total Time (sec)
E  = 0.01, (1 — a) =  95%

Total Time (sec)
E  = 0.01, (1 — a) =  99%

c432 160 36 15.58 26.64
c499 202 41 20.89 35.70
c880 383 60 41.05 70.42

cl355 546 41 56.59 97.05
cl908 880 33 94.46 161.99
c2670 1193 157 140.68 241.32
c3540 1669 50 186.07 319.18
c5315 2307 178 269.53 462.54
c6288 2406 32 273.97 460.90
c7552 3512 206 406.39 697.30

percentage of nodes outside the specified error bounds of ±0.01 is 2.25% in Fig. 5 and 
0.899% in Fig. 6. As expected, these percentages are less than a  x 100% =  5% and 1% 
respectively. We should point out that c6288 is one of the hardest circuits to solve by 
traditional techniques because it has extensive reconvergent fanout.

Figure 5. Error histogram for c6288, comparing the results of 
a (1 — a) x 100% =  95% run with a much longer n = le6  run.
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Figure 6. Error histogram for c6288, comparing the results of 
a (1 — a) x 100% =  99% run with a much longer n = le6 run.

Finally, we ran the program on the combinational parts of the ISCAS-89 benchmark 
circuits [16] and show the results in Table 2 (execution times are for a SUN Sparc ELC). 
We can solve a 22,000 gate circuit in under lHr 14mins. This indicates that this approach 
is practical for VLSI circuits, especially if the software is optimized and a suitable compiled 
simulation approach is adopted.

4. C onclusions
We have presented an efficient and reliable method for finding the node signal probabilities in 
combinational digital circuits. The method is based on statistical estimation, and guarantees 
that the user-specified error tolerance is met, with a user-specified confidence level. The fact 
that the desired accuracy can be specified up-front is a key feature of this technique that 
makes it very attractive in practice. We have presented experimental results for two common 
benchmark circuit sets that show that the technique is also quite efficient : we can solve a 
22,000 gate circuit in a little over an hour of cpu time, on a SUN spare ELC. This indicates 
that this approach is practical for VLSI circuits.

As is the case with all previous work in this area, the current implementation of this tech
nique is limited to combinational circuits. We are currently investigating future extensions 
to allow the handling of sequential circuits.
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Table 2. Execution time results for the ISCAS-89 benchmark circuits.
Circuit
Name

Number of 
gates

Number of 
inputs

Total Time (sec)
E  = 0.01, (1 — a) =  95%

Total Time (sec)
E  =  0.01, (1 -  =  99%

sll96 529 31 55.25 94.51
sl238 508 31 54.19 93.17

sl3207.1 7951 650 926.30 1586.70
sl423 657 91 73.53 125.87
sl488 653 14 71.63 122.56
si 494 647 14 69.61 124.54

sl5850.1 9772 600 1125.74 1914.79
s208.1 104 18 8.49 14.61

s27 10 7 1.15 1.81
s298 119 17 10.28 16.85
s344 160 24 14.90 24.94
s349 161 24 14.51 24.76

s35932 16065 1763 1968.19 3359.59
s382 158 24 13.57 23.13

s38417 22179 1524 2586.00 4430.14
s38584.1 19253 1462 2353.19 4028.00

s386 159 13 13.56 23.26
s400 164 25 14.77 25.43

s420.1 218 34 19.96 34.16
s444 181 24 17.24 29.27
s510 211 25 20.59 35.24
s526 193 24 17.59 30.44

s526n 194 24 17.95 30.98
s5378 2779 214 316.94 541.82
s641 379 54 37.11 63.23
s713 393 54 38.28 65.47
s820 289 23 29.51 51.23
s832 287 23 29.25 50.67

s838.1 446 66 46.42 78.25
s9234.1 5597 247 637.88 1084.18

s953 395 22 38.05 66.22
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A ppendix  A
The signal probability of a node is a real number p £ [0,1]. We call 0 and 1 trivial 

bounds on p. We will prove that establishing non-trivial bounds on the signal probability in 
a general combinational circuit is A^P-hard [6].

A Boolean expression is said to be satisfiable if there exists an assignment of 0’s and l ’s to 
its variables that gives it the value 1. We recall the satisfiability problem from mathematical 
logic [6], to be abbreviated SAT, which is defined as follows. A Boolean variable or its 
complement is called a literal. Given a Boolean expression in conjunctive normal form  
(CNF), i.e., it is the product (logical and) of a set of sub-expressions called clauses where 
every clause is the sum (logical or) of a number of literals. The problem is to decide whether 
or not the expression is satisfiable. It is well known [6] that SAT is A/’P-complete.

SAT is a decision problem, i.e., it has a true/false solution. In order to prove that some 
other decision problem P  is also MV-c.omplete, it is enough to show that an instance / sat 
of SAT can be transformed in polynomial time to an instance Ip  of P, such that Ip  is true 
if and only if / sat is satisfiable. This is summarized by saying that S A T  is transformable 
in polynomial time to P. A problem that is not a decision problem, but that is at least as 
hard as a decision problem that is known to be WP-complete, is said to be fifV -hard.

With this background, the proof becomes very simple, as follows. Let /  be a Boolean 
expression in CNF. We can build, in linear time, a digital circuit with two output nodes : 
f i  implementing the function / ,  and f 2 implementing its negation / .  It’s easy to see that, if 
all primary inputs are assigned 0.5 probabilities, then the signal probability at / j  is strictly 
greater than 0 if and only if /  is satisfiable, and that at f 2 is strictly less than 1 if and only 
if /  is satisfiable. Thus the problem of deciding whether the signal probability at a node is 
strictly greater than 0, or strictly less than 1, is A/^P-complete. This completes the proof.

A ppendix  B
We will derive the final form (8) of the stopping criterion in the case “p ^ [0.1,0.9] and x 

is large (>  15).” We start with the intermediate form (7), which we repeat for convenience :
4n(p -  E) < (-y/4pn  -  1 -  za/2)2 (B . 1)
4n(p + E) > (y/4pn  +  3 +  za/2)2 (B .2)

We will consider each of these inequalities and find the minimum value of n required for it 
to hold. The largest of these values will be the desired answer.

We first consider (B .l) and observe that if p < E  then any value of n will suffice. In the 
sequel, let p > E , which allows one to write :

2y/nyjp  -  E  < ±{y/^pn  -  1 -  za/2) (B .3)
- 11-



where the “+ ” sign applies in case \/4pn  — 1 > za / 2  and the ” sign applies otherwise. 
This leads to :

(2\ fn \J p  — E  ±  zai 2)2 < 4pn — 1 ( 5 A )
which can be rewritten as a quadratic in y/n :

4E n  =F ^za/2y /p  -  E y /n  -  (1 +  z2aj2) > 0 (5 .5 )
Solving the two quadratics in the left-hand-side of (B.5), we find two roots in each case :

+ z<*/2 Vp-  E ±  J z ^ p T Ë  --  E ± J ^ P  + Eand ----------------- r-z:-----------------2 E 2 E
Since the smaller of the two roots is negative in both cases, and since 4E  > 0, then y/n  needs 
to be bigger than the larger of the two positive roots in order to satisfy (B.5), leading to :

n >
za/2 V P  ~ E  +  yJz2a/2p + E

2 E (5 .7 )

In the case of (B.2), a similar sequence of steps leads to the quadratic in y/n :
45n  -  4za/2y/p + E y/n  +  [z2a/2 -  3) > 0 

whose larger root leads to the following requirement on n :
(B.8)

n  > za/2\/P + E + y j  Za/2P +
25 (5 .9 )

By making a term-by-term comparison, it’s clear that the right-hand-side of (B.9) is greater 
than that of (B.7). Therefore, in order to satisfy the stopping criterion (7), it is enough to 
require that n  satisfy (B.9).

Finally, since when the stopping criterion is satisfied we have p — p < 5 ,  and since 
p < 0.1, then p < 0.1 +  5 ,  which leads to :

n > /*a/2V 5F+ 5T  +
(5.10)

which is the desired final form (8) of the stopping criterion.

- 12-
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