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Abstract—Chipkill correct is an advanced type of error correc-
tion used in memory subsystems. Existing analytical approaches
for modeling the reliability of memory subsystems with chipkill
correct are limited to those with chipkill correct solutions that
can only guarantee correction of errors in a single DRAM device.
However, chipkill correct solutions capable of guaranteeing the
detection and even correction of errors in up to two DRAM
devices have become common in existing HPC systems. Analytical
reliability models are needed for such memory subsystems. This
paper proposes analytical models for the reliability of double
chipkill detect and/or correct. Validation against Monte Carlo
simulations shows that the output of our analytical models are
within 3.9% of Monte Carlo simulations, on average.

I. INTRODUCTION

Chipkill correct is an advanced type of error correction in
memory that provides high reliability [12]. A recent large
scale field study of DRAM errors showed that chipkill correct
reduces the detectable uncorrectable error (DUE) rate of
memory by 42X compared to SECDED [1]. As a result,
chipkill correct has become popular among HPC systems.
As the memory capacity of computing systems continues
to increase, the demand for strong error correction such as
chipkill correct will continue to increase as well. As such, it
becomes useful for memory system designers to be able to
predict the reliability of their systems for a particular strength
of chipkill correct.

Existing analytical reliability models for systems with chip-
kill correct are limited to chipkill correct solutions that can
only correct a single error per word [2], [3]. However, chipkill
correct solutions capable of detecting or even correcting up to
two errors in the same word have become standard in existing
HPC systems. For example, the memory subsystem of the
Jaguar supercomputer can detect up to two errors in the same
word [1]. The memory subsystem of the IBM Blue Gene/L
supercomputer is protected by Double Chip Sparing, a form
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(URSC) at Los Alamos National Laboratory, supported by the U.S. Depart-
ment of Energy DE-FC02-06ER25750. The publication has been assigned the
LANL identifier LA-UR-13-21186.

of double chipkill correct which can correct up to two errors
in the same word as long as the second error does not appear
before the first error is detected [14], [6]. As far as we are
aware, analytical reliability models do not exist for memory
subsystems with these levels of protection.

In this paper, we propose reliability models for chipkill
correct solutions that can detect and/or correct up to two
errors per word. We develop models for both simultaneous
double error detection and/or correction as well as Double
Chip Sparing. Unlike previous models for chipkill correct,
our models can also be used to study the effect of memory
scrubbing on memory subsystems with chipkill correct by dis-
tinguishing between permanent faults and transient faults. We
validate our models with Monte Carlo simulations using the
fault rates from a field study of DRAM faults[1]. The memory
error probability calculated using the analytical models are, on
average, within 3.9% of those obtained from the Monte Carlo
simulations.

II. BACKGROUND

A. Memory Organization

A conventional memory subsystem consists of one or more
memory channels; a memory channel usually serves memory
requests independent of other memory channels. A memory
channel, in turn, consists of one or more ranks; a rank is a
group of devices within a channel that serve a memory request
together. Devices that belong to different ranks but share the
same bits in the I/O bus of the memory channel form a lane.
Meanwhile, each rank consists of multiple banks. A bank is a
logical entity that consists of a group of subbanks, one from
each device in the rank. A subbank, in turn, consists of rows
and columns of symbols, which are groups of adjacent bits.

B. DRAM Fault Modes

Sridharan et al. [1] report that multiple symbols in the
same lane, device, subbank, column, and row can become
faulty at the same time due to the fact that these structures
are controlled by their respective device drivers which can
malfunction. The authors also show that these device-level



faults can be either transient or permanent. Transient faults
can be repaired by periodic memory scrubbing. Memory
scrubbing repairs transient faults in the memory channel by
reading every word and then writing back the corrected word.
However, scrubbing cannot fix permanent faults since the
memory location is permanently damaged in a permanent
fault. Our model in Section IV considers these types of faults.
Finally, similar to [1], we define fault as a physical malfunction
in a DRAM device and error as the manifestation of the fault
when a word affected by the fault is accessed.

C. Commercial Chipkill Correct Solutions

Conventional error-correcting codes (ECCs) work by adding
check bits to groups of data bits in memory. These check
bits provide redundant information that allow detection and/or
correction of some set of data bits. Each group of data and
check bits is referred to as a codeword. A special class
of ECCs called linear block codes divide a codeword into
multiple symbols. By storing every symbol of a codeword in a
device in a different lane, commercial chipkill correct solutions
ensure that a fault that develops in a device only affects at
most a single symbol per codeword. Double chipkill detect
and/or correct codes, which are the focus of this paper, ensure
that any two symbol errors can be detected and/or corrected,
respectively. As a result, an undetected or uncorrected error
will occur only if three DRAM devices in different lanes each
develop a fault that overlaps in a single codeword. For the
rest of this paper, a memory error refers to such three-device
errors, which cannot be corrected by double chipkill correct
and Double Chip Sparing, and cannot be detected by double
chipkill detect.

III. RELATED WORK

Although a large body of work in literature model memory
reliability (e.g., [7], [8], [9], [10], [11]), many of these studies
focus on SECDED, which is a weaker form of ECC that targets
random transient faults. SECDED does not provide protection
against many device-level faults, which are the targeted fault
modes of chipkill correct. A small number of studies such
as [2] and [3] also consider device-level faults; however the
models in these studies are limited to chipkill correct solutions
capable of correcting only a single bad symbol per codeword.
In addition, these models do not differentiate between transient
and permanent faults, both of which are shown to occur
frequently in the field [1], [13].

IV. PROPOSED MODELS

In this section, we propose models to calculate the prob-
ability of developing memory error in a memory subsystem
with double chipkill detect and/or correct and Double Chip
Sparing. In particular, our models calculate the probability of
developing fault combinations that result in application errors
when memory locations affected by such fault combinations is
accessed. We do not model the actual probability of application
error due to faults in memory, since this depends heavily on
application memory access patterns.

A. Assumptions

To keep our models tractable, we make several assumptions
about the behavior of DRAM faults. First, we assume faults in
one lane are independent from faults in other lanes. Second, we
assume an exponential fault distribution with a constant fault
rate, which is supported by recent field studies [1]. Third, we
assume an ideal memory scrubber such that no transient fault
persists across memory scrubs.

In our reliability model for double chipkill detect and/or
correct (but not Double Chip Sparing), we also neglect mem-
ory errors where two or more of the three bad symbols are
due to transient faults. The rationale behind this simplification
is that since transient faults are repaired after each memory
scrub, the probability that two or more of the three faults
affecting a codeword are transient is much smaller than the
probability that two or more of the three faults are permanent.
As such, this probability can be neglected with small impact on
the overall probability of encountering memory errors. Note,
however, that our Monte Carlo experiments in Section V used
to validate the analytical model do consider these memory
errors.

Finally, we assume that at least one memory error always
occurs when the same memory structures (e.g., device, sub-
bank etc) in 3 or more lanes of the same channel are faulty.
For example, we assume that when the same subbank (e.g.,
the first subbank) in 3 devices in the same rank are faulty, at
least one memory error occurs.

This assumption is based on the observation that when the
same memory structure in 3 different devices of the same rank
are faulty, having no memory error requires that every symbol
location do not contain matching bad symbols across all 3
devices; the greater the total number of symbols in the memory
structure, the smaller the probability of the event above. Since
memory structures tend to contain a large number of symbols,
the probability of having at least one memory error when
the same memory structures in 3 different devices are faulty
is large. Assuming that the affected symbols in a memory
structure are randomly distributed across the entire memory
structure, the probability of having at least 1 memory error
when the same memory structure in 3 different devices in
the rank are faulty can be approximated by 1 − (1 − x3)y .
x represents the fraction of the total symbols in a memory

Fig. 1. The probability of having at least one memory error when the same
subbank in 3 different devices in the same rank are affected by subbank fault.



structure affected by the fault; as such, x3 represents the
probability that the same symbol in all 3 devices are faulty.
Meanwhile, y is the total number of symbols in a subbank;
as such, (1 − x3)y represents the probability that no symbol
location out of all y symbol locations are faulty across all 3
devices. Let’s consider, for example, a subbank with a total of
y = 215 · 211 = 226 symbols. Figure 1 shows the calculated
probability of having at least one memory error versus the
fraction of the symbols in a subbank affected by a single
subbank fault, when the same subbank in 3 different devices in
the same rank are faulty. The figure shows that the probability
is nearly 1 when the fraction of symbols in a subbank that is
affected by a subbank fault is greater than 0.3%.

B. Reliability Model for Double Chipkill Detect and/or Cor-
rect

Our analytical reliability model differentiates between tran-
sient and permanent faults. Since transient faults are period-
ically removed but permanent faults are not, the model must
consider the time of occurrence of the faults. We used an
iterative approach to enumerate all the possible combinations
of the time of occurrence of the faults that do not lead to
memory errors. Our analytical model also considers different
types of device-level faults (e.g., lane fault, device fault,
subbank fault etc.). As such, it must also consider the location
of each fault to determine whether it overlaps with other
faults to affect a common set of codewords. As the types of
faults to be considered increase, the number of their possible
spatial combinations that do not result in memory errors grows
rapidly. We rely on a recursive method to enumerate these
spatial combinations of different types of faults.

Our method relies on recursively describing the different
types of faults and the set of codewords that they affect. We
define a fault region, or simply region, as the set of codewords
affected by a particular type of fault. Conversely, we refer to
the fault for which a fault region is defined as the spanning
fault of the region. We say that a fault is inside a region
if it affects only a subset of codewords in the region. The
regions corresponding to the faults that affect a proper subset
of codewords of a region are referred to as the sub-regions
of the region. The largest sub-region of a region is called the
immediate sub-region of the region. Conversely, a region is
also called the super-region of its sub-regions. From here on,
we denote a region by x, a sub-region of x by x−, a super-
region of x by x+, and an immediate sub-region of x by x−1.

TABLE I
REGIONS, SUB-REGIONS, IMMEDIATE SUB-REGIONS, SUPER-REGIONS,

AND FAULTS INSIDE A REGION FOR AN EXAMPLE SCENARIO.

x spanning fault fault x− x− 1 x+

of x inside x
channel lane fault lane, device, rank, rank NA

subbank fault bank
rank device fault device, bank bank channel

subbank fault
bank subbank fault subbank fault NA NA channel,

rank

Fig. 2. Regions and sub-regions. The cross represents a lane fault.

Let’s consider a simple example scenario where the only types
of faults to be considered are the lane fault, device fault, and
subbank fault. Table I lists the regions corresponding to these
faults as well as the other terms defined above.

Figure 2 graphically illustrates regions and sub-regions for
the scenario in Table I. Since each region is a set of codewords,
the figure shows that a region spans across N lanes, where N
is the number of symbols in each codeword. The figure shows
an example where a channel contains 2 immediate sub-regions
(2 ranks) and each rank contains 4 immediate sub-regions (4
banks). The figure also shows a lane fault (represented by a
cross). It serves to illustrate that each fault is confined to a
single lane.

We say that x is reliable if it contains zero codewords
with memory error. Note from previously that a memory error
occurs when a codeword is affected by 3 or more faults in 3
or more DRAM devices. Graphically, x is reliable as long as
there does not exist a horizontal slice of x spanning across all
N lanes that intersects with three or more faults inside x. We
observe that x is reliable if for all scrub intervals,

1) x contains no spanning faults of its own and every x−1
is reliable, or

2) x contains a single spanning fault of its own and there
are no two faults that overlap with each other inside any
x−, or

3) x contains exactly two spanning faults of its own and
no x− contains any faults.

To analytically describe the probability that a region is
reliable, we need to define some additional variables. We let
p+ represent the sum of the number of permanent spanning
faults (PSF) of every x+ (e.g., in Figure 2, p+ = 1 when x
represents either a rank or a bank). Let k represent the scrub
interval when the last spanning fault (SF) of all x+s occurs.
Finally, let O be a true/false value representing whether the last
SF of all x+s is permanent (O = T ) or transient (O = F ).
In the special cases where there are no x+s (e.g., when x
represents the topmost region) or where every x+ has neither



PSF nor TSF, O takes on the value of F. We let e(x, t|p+, k, O)
denote the event that x is reliable over timespan t given that
the sum of the number of PSFs of every x+ is p+, the last SF
of all x+s occurs in interval k, and the Boolean condition of
whether the last SF of all x+s is permanent is O. We chose
to let the first scrub interval be interval 1, not interval 0; we
let k equal 0 for the special case where there are no x+s or
when no x+ contains any SF at all.

Under these definitions, the probability that an entire mem-
ory channel with double chipkill detect and/or correct remains
reliable over timespan t is:

R(t) = P (e(x, t|0, 0, F )) (1)

where x above represents a channel and P (e(x, t|0, k, F )) is
the probability of e(x, t|0, k, F ).

To describe e(x, t|p+, k, O), we define some additional
variables. We let p represent the total number of PSFs of x.
We let j represent the scrub interval when the last PSF of x
occurs; similarly, we let l and L represent the interval when
the last transient spanning fault (TSF) of and last transient
fault inside x occur, respectively. e(x, t|0, k, F ) is true if

1) p = 2, L < j (e.g., there are no transient faults in x
during and after the scrub interval when the last PSF of
x occurs), and there are no other permanent faults inside
x for all scrub intervals, or

2) p = 1, max(k, l) < j (e.g., there is no TSF of x and
no TSF of any x+ during or after the scrub interval
when the last PSF of x occurs), and correspondingly,
e(x− 1, t|1, j, T ) for every x− 1, or

3) p = 1, max(k, l) >= j (e.g., the last TSF of x or the last
TSF of all x+s occurs during or after the scrub interval
when the last PSF of x occurs), and correspondingly,
e(x− 1, t|1,max(k, l), F ) for every x− 1, or

4) p = 0, e(x− 1, t|0,max(k, l), F ) for every x− 1.
P (e(x, t|0, k, F )) is, therefore, equal to the sum of

P1(e(x, t|0, k, F )), P2(e(x, t|0, k, F )), P3(e(x, t|0, k, F )),
and P4(e(x, t|0, k, F )), which correspond to the probabilities
of the four exclusive sets of conditions listed above.
P1(e(x, t|0, k, t)) equals to the sum of the individual

probabilities of all fault combinations in both time and space
that satisfy condition 1) of e(x, t|0, k, t). By using the formula
for the exponential fault distribution R(t) = e−λ·t, where λ
is the fault rate, and by letting s be the duration of a scrub
interval, ωx be the incidence rate of the PSF of x in a single
lane, Ωx be the combined incidence rate of all permanent
faults inside x in a single lane, φx be the incidence rate of the
TSF of x in a single lane, and Φx be the combined incidence
rate of all transient faults inside x in a single lane,

P1(e(x, t|0, k, F ))

= e−Ωx(N−2)t

t/s∑
i=1

{[N · e−ωx·s·(i−1)(1− e−ωx·s) ·

t/s∑
j=max(i+1,k+1)

(N − 1)e−ωx·s·(j−1)(1− e−ωx·s) ·

e−Φx(N−2)(t−s·(j−1))]}+

t/s∑
i=1

(
N

2

)
(e−ωx·s·(i−1))2·

(1− e−ωx·s)2 · e−Φx(N−2)(t−s·(i−1)) (2)

The e−(N−2)·Ωx·t term represents the fact that except for
the two lanes with the two PSFs of x, none of the remaining
N −2 lanes of x can contain any permanent fault. The nested
summations account for all combinations of the two PSFs of
x where the two PSFs appear in different scrub intervals. The
underlined summation accounts for the special case where both
PSFs of x occur in the same scrub interval (interval i) so that
only a single summation is needed. Let’s consider the terms
under the nested summation. N stands for the fact that the
first PSF of x has N lanes to choose from. The subsequent
e−ωx·s·(i−1)(1− e−ωx·s) term specifies that the first PSF of x
occurs during the ith scrub interval. Similarly, N − 1 means
that the second PSF of x has N − 1 lanes to choose from
and the subsequent e−ωx·s(j−1)(1 − e−ωx·s) term specifies
that the second PSF of x occurs during the jth interval. The
e−Φx(N−2)(t−s·(j−1)) term that follows specifies that there are
no transient faults in x during and after interval j.

The remaining probabilities, P2(e(x, t|0, k, F )),
P3(e(x, t|0, k, F )), and P4(e(x, t|0, k, F )) can be similarly
translated from their textual descriptions into mathematical
expressions; they are listed in the Appendix.

Meanwhile, e(x, t|1, k, T ) is true if
1) p = 1, L < max(j, k) (e.g., the last transient fault inside

x occurs before the scrub interval when both the PSF of
x and the PSF of a x+ have both occured), and there are
no other permanent faults inside x in all scrub intervals,
or

2) p = 0 and e(x−1, t|1,max(k, l), k > l) for every x− 1.
P (e(x, t|1, k, T )), is, therefore, equal to the sum of
P1(e(x, t|1, k, T )) and P2(e(x, t|1, k, T )), which are the prob-
abilities of the two exclusive sets of conditions listed above.

Finally, e(x− 1, t|1, k, F ) is true if
1) p = 1, max(k, L) < j (e.g., there is no transient fault

in x and no TSF of any x+ during or after the scrub
interval when the PSF of x occurs), and there are no
other permanent faults inside x, or

2) p = 0 and e(x− 1, t|1,max(k, l), F ) for every x− 1.
P (e(x, t|1, k, F ) is, therefore, equal to the sum of
P1(e(x, t|1, k, F ) and P2(e(x, t|1, k, F ), the probabilities of
the two exclusive sets of conditions listed above.
P1(e(x, t|1, k, T )), P2(e(x, t|1, k, T )), P1(e(x, t|1, k, F ),

and P2(e(x, t|1, k, F ) are provided in the Appendix.

C. Double Chip Sparing

Double Chip Sparing can correct up to two bad symbols
in a codeword as long as the second bad symbol does not
occur before the first bad symbol has been detected. To model
Double Chip Sparing without having to take into account
application access patterns, we say that Double Chip Sparing
can correct up to two bad symbols per codeword as long as
the two bad symbols do not occur in the same scrub interval.



To estimate the reliability of Double Chip Sparing using the
reliability model in Section IV, one simply needs to subtract
from the output of the model the probability of the event of
exactly two faults affecting the same codeword in a single
interval. We observe that the probability of having exactly two
faults affecting the same codeword in a single scrub interval
can be calculated as the probability of having two or fewer
faults affecting the same codeword in a single scrub interval
minus the probability of having one or fewer fault affecting
the same codeword in a single scrub interval.

The probability of having one or fewer faults affecting the
same codeword in a single scrub interval can be calculated by

r1(x) = e−N(φx+ωx)·s · r1(x− 1)nx +

N · e−(N−1)(Φx+Ωx)s(1− e−(φx+ωx)s) (3)

where nx represents the total number of x− 1s in x.
Meanwhile, the probability of having two or fewer faults

affecting the same codeword in a single scrub interval can be
calculated by

r2(x) = e−N(φx+ωx)s · r2(x− 1)nx +N ·
e−(N−1)(φx+ωx)s(1− e−(φx+ωx)s)r1(x− 1)nx +(
N

2

)
e−(N−2)(Φx+Ωx)s(1− e−(φx+Φx)s)2 (4)

The probability of having scrub intervals with exactly two
faults affecting the same codeword in at least one scrub interval
over timespan t is, therefore, r2(x)(t/s) − r1(x)(t/s). The
overall reliability of Double Chip Sparing is, therefore,

Rsparing(t) = R(t)− (r2(x)(t/s) − r1(x)(t/s)) (5)

V. VALIDATION

To evaluate our analytical model, we used an example
memory channel consisting of 2 ranks, where each rank
consists of 8 banks, and each bank contains 512 columns of
16B words (for a total of 8KB per memory row). Assuming
that there are 36 symbols per codeword to provide double
chipkill detect and/or correct in existing commercial chipkill
correct solutions [4], we let each channel consist of 36 lanes.

The evaluation model considers the multi-rank, multi-bank,
bank, column, and row faults from [1] and uses also the
corresponding fault rates from [1]. Although [1] reports dif-
ferent types of multi-bank faults (e.g., some multi-bank faults
affect 2 subbanks, others affect 4 subbanks etc), to keep the
corresponding Monte Carlo simulations (described in the next
paragraph) used to validate the models tractable, we model
all types of multi-bank faults as faults that affect all 8 sub-
banks in a device. Note that the proposed analytical models are
also capable of modeling some of these more detailed types
of faults (e.g., dual-bank faults or quad-bank faults, which
affect 2 or 4 adjacent subbanks in a device, respectively).
Similarly, we chose to consider all types of multi-rank faults
as lane faults, whereby every device in a lane is affected.
Correspondingly, the fault regions in the evaluation model are
the channel (region 4), rank (region 3), bank (region 2), word
column and word row (both modeled as region 1). A scrub

Fig. 3. Probability of having one or more memory errors in a channel with
double chipkill detect and/or correct as calculated using the analytical model
and as obtained by Monte Carlo simulations.

Fig. 4. Probability of having one or more DUEs in a memory channel by the
nth year as calculated using the analytical model for Double Chip Sparing
and as obtained by Monte Carlo simulations.

interval of once every 24 hours was used. To ensure that our
analytical model works well for different fault rates, we scaled
the fault rates reported in [1] by factors of 2X and 4X.

We used over 250 million Monte Carlo experiments to
validate the results obtained using the evaluation model. The
Monte Carlo experiments take the same inputs as the evalua-
tion model. Each Monte Carlo experiment simulates a memory
channel; it ends either when the first memory error occurs in
the channel or after a total of 7 simulated years.

Figure 3 shows that the results of the evaluation model
closely match those of the Monte Carlo simulations for
different device fault rates. The curves for the Monte Carlo
simulations almost lie exactly on top of those of the analytical
model. The average difference between the calculated and
simulated values for each data point is only 3.6% with a
standard deviation of 3.9%.

Figure 4 shows that the results of the evaluation models for
Double Chip Sparing also closely match those of the Monte
Carlo simulations for Double Chip Sparing. The average
difference between the calculated and simulated values for
each data point is 3.9% with a standard deviation of 3.2%. On
average across all the calculated data points, the probability of
having an uncorrectable error is 10.3% higher for Double Chip
Sparing than for chipkill correct solutions with simultaneous
double symbol correction; the average is 9.6% higher for data
points obtained via Monte Carlo simulations.



VI. CONCLUSION

In this paper, we propose novel analytical models for the
reliability of simultaneous double chipkill detect and/or correct
and Double Chip Sparing. We validated our analytical models
against Monte Carlo simulations and showed that the mean
and standard deviation of the differences between the model
and Monte Carlo simulations are within 3.9%.

REFERENCES

[1] V. Sridharan and D. Liberty, ”A Study of DRAM Failures in the Field,”
Super Computing, 2012.

[2] M. Blaum, R. Goodman, and R. McEliece, ”The Reliability of Single
Error Protected Computer Memories,” IEEE Transaction on Computers,
1988.

[3] W. F. Mikhail, R. W. Bartoldus, and R. A. Rutledge, ”The Reliability of
Memory With Single-Error Correction,” IEEE Transaction on Computers,
1982.

[4] H. Ahn et al, ”Future Scaling of Processor-Memory Interfaces”, Super
Computing, 2009.

[5] M. Ohmacht, R. A. Bergamaschi, and S. Bhattacharya, ”Blue Gene/l
Compute Chip: Memory and Ethernet Subsystem,” IBM Journal of
Research & Developement, 2005.

[6] HP, ”RAS Features of the Mission-Critical Converged Infrastructure,”
2010.

[7] S. Mukherjee, J. Emer, T. Fossum, and S.Reinhardt, ”Cache Scrubbing
in Microprocessors: Myth or Necessity?” PRDC, 2004

[8] A.M.Saleh, J.J.Serrano, and J.H.Patel, ”Reliability of Scrubbing Recovery
Techniques for Memory Systems,” IEEE Transactions on Reliability,
1990.

[9] L. Schiano, M. Ottavi, and F. Lombardi. ”Markov Models of Fault-
Tolerant Memory Systems under SEU,” Memory Technology, Design and
Testing, 2004.

[10] P. Reviriego, ”Reliability Analysis of Memories Suffering Multiple Bit
Upsets,” IEEE Transactions on Device and Materials Reliability, 2007

[11] J.A. Maestro, ”Reliablity of Single-Error Correction Protected Memo-
ries,” IEEE Transactions on Reliability, 2009

[12] T.J. Dell, ”A White Paper on the Benefits of Chipkill Correct ECC for
PC Server Main Memory,” IBM Microelectronics Division, 1997.

[13] B. Schroeder, E. Pinheiro, and W.D. Webber, ”DRAM Errors in the
Wild: a Large-Scale Field Study,” SIGMETRICS, 2009

[14] A.A. Huwang, L.A. Stefanovici, and B. Schroeder, ”Cosmic Rays
Don’t Strike Twice: Understanding the Nature of DRAM Errors and the
Implications for System Design,” SIGARCH, 2012

APPENDIX

P2(e(x, t|0, k, F ))

= e−(N−1)·ωx·t
t/s∑

j=k+1

N · e−ωx·s·(j−1)(1− e−ωx·s) ·

e−φx(N−1)(t−s·(j−1))P (e(x− 1|1, j, T ))nx (6)

P3(e(x, t|0, k, F ))

= e−(N−1)·ωx·t[e−φx·N ·t ·
P (e(x− 1, t|1, k, F ))nx +
t/s∑
l=1

(1− e−φx(N−1)s)e−φx(N−1)(t−s·l) ·

P (e(x− 1, t|1,max(k, l), F ))nx ] ·
max(k,l)∑
j=1

N(1− e−ωx·s)e−ωx·(j−1)·s (7)

P4(e(x, t|0, k, F ))

= e−N ·ωx·t[e−φx·N ·t · P (e(x− 1, t|0, k, F ))nx +
t/s∑
l=1

(1− e−φx·N ·s)e−N ·φx·(t−s·l) ·

P (e(x− 1, t|0,max(k, l), F ))nx ] (8)

P1(e(x, t|1, k, T ))

= e−Ωx(N−2)t

t/s∑
j=1

(N − 1)e−ωx·s·(j−1) ·

(1− e−ωx·s)e−Φx(N−2)(t−s·(max(j,k)−1)) (9)

P2(e(x, t|1, k, T ))

= e−ωx(N−1)t{e−φx(N−1)t ·
P (e(x− 1, t|1, k, T ))nx +

[
k−1∑
l=1

P (e(x− 1, t|1, k, T ))nx +

t/s∑
l=k

P (e(x− 1, t|1, l, F ))nx ] ·

(1− e−φx(N−1)s)e−φx(N−1)(t−s·l)} (10)

P1(e(x, t|1, k, F ))

= e−Ωx(N−2)t

t/s∑
j=k+1

(N − 1)e−ωx·s·(j−1) ·

(1− e−ωx·s)e−Φx(N−2)(t−s·(j−1)) (11)

P2(e(x, t|1, k, F ))

= e−ωx(N−1)t[e−φx(N−1)t ·
·P (e(x− 1, t|1, k, F ))nx +
t/s∑
l=1

(1− e−φx(N−1)s)e−φx(N−1)(t−s·l) ·

P (e(x− 1, t|1,max(k, l), F ))nx ] (12)

where nx represents the total number of x− 1s in x. When
x does not contain any sub-regions, P (e(x − 1, t|0, k, F )) =
P (e(x− 1, t|1, k, T )) = P (e(x− 1, t|1, k, F )) = 1 .
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