July 2008 UILU-ENG-08-2209

CRHC-08-05

AUTOMATIC VERIFICATION OF
DISTRIBUTED AND LAYERED
SECURITY POLICY

IMPLEMENTATIONS

Sankalp Singh, William H. Sanders, David M. Nicol and
Mouna Seri

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

REPORT DOCUMENTATION PAGE Jom spproved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1 AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 2008
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Automatic Verification of Distributed and Layered Security Policy Implementations CNS-0524695 (from NSF)
6. AUTHOR(S) 2006-CS-001-000001 (from DHS)

Sankalp Singh, William H. Sanders, David M. Nicol, and Mouna Seri

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING RGANIZATION
Coordinated Science Laboratory REPORT NUMBER
University of Illinois UILU-ENG-08-2209

1308 West Main St. CRHC-08-05

Urbana, IL 61801

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 AGENCY REPORT NUMBER

U.S. Department of Homeland Security, Washington, DC 20528

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Access control has long been the linchpin of intrusion prevention. Modern networked systems that are
intended to be secure have a global policy, usually implicit, that specifies the overall system-level objectives
with respect to access to various resources. The policy indicates both what is inadmissible, so that the intrusion
attempts from within and without the network may be prevented, and what accesses must be allowed, so that the
essential functionality of the system is not compromised. This policy is implemented through the configuration
of myriad local devices and mechanisms, including router-based and host-based firewalls and discretionary or
mandatory OS-based access control mechanisms (e.g., SELinux). The complex interactions among these
distributed and layered mechanisms can mask problems and lead to subtle errors. In this paper, we introduce a
framework for performing a comprehensive security analysis of an automatically obtained snapshot of the
access control policy implementation to check for compliance against a (potentially partial) specification of the
global access policy. The framework has been implemented as the Access Policy Tool. APT helps to increase
confidence in the efficacy of the intrusion prevention mechanisms in place by allowing for reasoning about the
security policy at a high level of abstraction. We describe our analysis techniques and demonstrate their
efficiency, scalability, and extensibility by using APT for a variety of test cases.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Security Assessment, Access Control, Policy, Firewalls, SCADA and Process Control 23
Systems 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

Automatic Verification of Distributed and

Layered Security Policy Implementations

Sankalp Singh, William H. Sanders, David M. Nicol, and Mouna Seri

Information Trust Institute
University of Illinois at Urbana-Champaign
Urbana, IL, USA
{sankalp,whs,dmnicol,seri}@uiuc.edu

Abstract. Access control has long been the linchpin of intrusion pre-
vention. Modern networked systems that are intended to be secure have
a global policy, usually implicit, that specifies the overall system-level
objectives with respect to access to various resources. The policy in-
dicates both what is inadmissible, so that the intrusion attempts from
within and without the network may be prevented, and what accesses
must be allowed, so that the essential functionality of the system is not
compromised. This policy is implemented through the configuration of
myriad local devices and mechanisms, including router-based and host-
based firewalls and discretionary or mandatory OS-based access control
mechanisms (e.g., SELinux). The complex interactions among these dis-
tributed and layered mechanisms can mask problems and lead to subtle
errors. In this paper, we introduce a framework for performing a compre-
hensive security analysis of an automatically obtained snapshot of the
access control policy implementation to check for compliance against a
(potentially partial) specification of the global access policy. The frame-
work has been implemented as the Access Policy Tool. APT helps to
increase confidence in the efficacy of the intrusion prevention mecha-
nisms in place by allowing for reasoning about the security policy at a
high level of abstraction. We describe our analysis techniques and demon-
strate their efficiency, scalability, and extensibility by using APT for a
variety of test cases.

Keywords: Security Assessment, Access Control, Policy, Firewalls, SCADA and
Process Control Systems

1 Introduction

Networked systems are used in a large number of settings, including several crit-
ical infrastructure systems, such as chemical plants; electric power generation,
transmission, and distribution facilities; water distribution networks; and waste
water treatment facilities. The emerging scenarios and the likely trends for the
future of critical networked systems demand that the problem of securing these
systems receive immediate attention, especially in the area of controlling ac-
cess to the critical elements of the system over communication networks. Given
the mission-critical nature of a significant number of large networked informa-
tion systems, it is extremely important to ensure their protection against cyber-
attacks, which, in a worst-case scenario, could result in loss of life, or in massive
financial losses through loss of data, actual physical destruction, misuse, or theft.

A modern networked system includes a variety of devices and mechanisms
to control access to its resources. These access control mechanisms include, but
are not limited to, router-based dedicated firewalls; host-based firewalls, which
could be based in software or hardware; operating-system-based mechanisms,
such as the mandatory access control in NSA’s SELinux; and middleware-based
mechanisms, such as the Java Security Manager, that provide for specification
and enforcement of fine-granularity access control policies for Java programs.

The importance of correctly implementing access control for effective intru-
sion prevention cannot be overestimated. A survey of the SANS top 20 vul-
nerabilities [1] shows that a significant number of them are defended against by
appropriate configurations of access control policy. To defend systems against the
most critical known threats, one has to be able to validate security policy imple-
mentation. However, distributed and layered mechanisms, such as those listed
above, can interact in complex ways that can lead to subtle errors and mask
problems. It can be difficult to discern the global picture that emerges from the
local configurations of these myriad access control elements. As a result, it is
not surprising that misconfigurations of these mechanisms are a major source of
security vulnerabilities. In fact, a recent study suggests that most firewalls (the
most popular access control mechanism) suffer from misconfigurations [2]. It is
important for the administrators of computer networks to have ways to make
sure that high-level specifications of such system access constraints are reflected
in the actual configurations of the access control mechanisms spread throughout
the system. Furthermore, if the implementation of policy (device configurations)
is not in compliance with the specification, a diagnosis to locate the root causes
of the problem is critical.

Managed

* d e %
1248 Gicon il x 1408_{ qacon x1568_["Gcor il x1724_Sicon il
124 “oeso X m X wird_orse
x1224_| qinc . X. 1384 Qe ~Lm x170h_I qunc =
x1214_] x 137 _| 3 x. 1604 _|
QINIDS QINIDS 1 Q3NIDS ANIDS 1
= = L ! o = =
1 wav X vu PREY W peveay VL S peyegy X 1..74_@
B Pamp In Wire w/ADF - W
[l ADFNIC IQUAD 1 QUAD 2 UAD 3 [QUAD 4
A Exponment Conrot togging netwark - - -
Coime] [rvionmenTaL [|
T . =]
c1ash_| pms
PLANNING = =]
o Ky o [Wing Ops
== 1788wt . 2158 paans AN [AMC CONUS
—l . 2168 sowebat | 7 AN ’
Win2000 — - _m
in . —) >108_[aove |
== i g . -
Ny X w’:‘.L{__wn)L
X180 e ’“Lﬂﬁ”,i %1064 | wms
~m_
. . . . 0oh_[Tvar |
X.181 wES | swchar X "’LJ CAF | X.198 CombOps |

Fig. 1. Representative Network

This paper describes the Access Policy Tool (APT), a tool that we have de-
veloped in answer to the needs described above. APT analyzes the security policy
implementation for conformance with the global security policy specification. It
integrates policy rules (i.e., configuration information) from a large variety of
sources typically found in a modern network and provides for a detailed offline
analysis, as well as dynamic online analysis of incremental configuration changes
for detection of policy implementation holes during operation. It ensures scala-
bility with increasing network size and complexity via a statistical analysis mode.
For increased usability and ease of information management, the tool includes a
graphical front-end.

2 Access Control in Networks

Access control has long been the linchpin of system security; modern systems
have multiple access control methodologies, different security models, and sep-
arate configurations for each methodology and each device. Together these all
form the access control implementation. However, only very limited technol-
ogy exists to answer crucial questions about precisely what security posture is

produced, how the different access control policies interact, and whether the im-
plementation is in compliance with an overall statement of global access control
policy, among others.

To better appreciate the issue, let’s examine some of the access control com-
ponents of a distributed system. Firewalls are critical assets in the protection
of a network. A firewall is configured through its rules (collectively referred to
as a rule-set), which it can use to mold and shape the traffic that crosses it. A
firewall matches the incident network traffic against its rules, using traffic char-
acteristics such as the source of origin, intended destination, and communication
protocol, and either forbids or allows the traffic to pass through depending on
the action indicated by the matching rule. A typical setting usually contains a
distributed firewall implementation, wherein traffic may need to pass through
more than one firewall to transit the network. Firewalls can be used to divide the
network into secure zones that limit user and application access between zones.
For example, Figure 1 shows a real-life network we have studied (developed as a
part of a large DARPA project), composed of multiple network zones (in boxes)
isolated by devices that enforce access control policy. Of particular interest is the
fact that there are eight separate zones, and over 50 different policy enforcement
devices (including SELinux on some of the hosts).

A system can also have host-based firewalls, implemented in either software
or hardware. Software-based firewalls, such as iptables [3] in Linux and several
commercial ones available for Windows, are implemented in the host operating
system. Hardware-based firewalls, such as 3Com’s Embedded Firewall (EFW)
PCI card [4], are implemented on the network interface card (NIC) itself, and as
a result, those firewalls are tamper-resistant to cyber-attackers who might gain
control of the operating system on a host.

There are published guidelines (e.g., the National Infrastructure Security
Coordination Center (NISCC) guide to good practices in firewall deployment [5])
to facilitate the development of unique rule-sets for the different firewalls at an
operating site, but they are fairly generic and have to be customized by network
system administrators to the specific needs of their sites.

However, access control is more complex than just firewall rules. In security-
conscious settings, hardened versions of traditional operating systems have been
adopted. These include SELinux [6] (developed by the NSA), which is a secure
version of the Linux operating system. Similar functionality for Windows oper-
ating systems can be provided through third-party software, such as the Cisco
Security Agent [7]. Such software can provide mandatory mechanisms such as
role-based access control, type checking, and multi-level security models.

One can use a global policy to specify at a system level the overall objectives
with respect to access control. It specifies both what connectivity between roles
and devices is inadmissible, and what connectivity must be supported. The rules
are stated in terms of sets of roles and devices, rather than individual ones. For
example, “An account manager in the sales network zone must be able to use
sftp to forward any file in the Monthly Sales directory to his Reports directory,
on the sales server found in the management network zone.” Clearly, multiple
access control policies are at play here; it is also clear that the rules can be
stated in a form that allows a program analyzing access control configurations
to determine whether the rule is satisfied.

The critical problem this work addresses is that networked systems only
check fine-grained local access policy rules at single devices, not global policy.
Global access policy implementations may or may not comply with global policy
requirements. Without a way to check that compliance, serious security vulner-
abilities can and do exist in real implementations of critical systems, causing
them to fail in potentially harmful ways when attacked.

3 Related Work

The complexity of implementing an access control policy through configuration
of a large nuinber of distributed devices and the risk of conflicts among these
devices have spawned a significant amount of work. However, the majority of
the work focuses on internal consistency among rules of a single firewall [8—
13]. A conflict detection tool for distributed firewall systems has been described
in [14], but it only checks for certain kinds of syntactic errors, such as overlapping
rules, and not for semantic errors with respect to a specification of the intent.
Furthermore, none of the work takes into account the collective fine-grained
access control provided by the network-based mechanisms (e.g., firewalls) and
host-based mechanisms (e.g., SELinux policies). Also, none of the above work
has been applied to and optimized for specific classes of networks.

Another vector of research effort focuses on automatic generation of consis-
tent policy implementation (at devices) from formal description of global pol-
icy [15,16]. Cisco provides CiscoWorks [17], a suite of products that enable top-
down firewall policy management that includes configuration management, a pol-
icy manager that generates policies from high-level specifications, and log/audit
analysis. Those are appropriate for new, vendor-homogeneous systems, but do
not address existing implementations or heterogeneous systems. Furthermore,
they require specification of detailed and exhaustive global security policy. For

most current network system administrators, the ability to check existing config-
urations against policy specifications that indicate intended high-level behavior
would likely be more useful.

Vendor-neutral tools have recently appeared that consider access control in
a distributed system, including the Skybox firewall compliance auditor [18] and
Red Seal SRM [19]. Both tools use network topology and routing information to
determine potential network flows. Red Seal SRM uses vulnerability databases
and specification of software running on hosts to compute risk measures, while
Skybox determines when firewall rules allow violation of a more abstractly stated
global policy. In comparison, our approach incorporates sophisticated statistical
analysis for highly improved scalability and also naturally admits integration of
higher-level layers of access control policy (e.g., SELinux policies, and/or role-
based access in trusted networks).

The problem of checking implementation against specification is also known
as “model checking” [20]. This line of research has a rich history in the context
of proving the correctness of both hardware and software. The key abstraction
is a finite-state machine, and the key problem is that the size of the state-
space explodes with the complexity of the system. As we consider integration of
higher layers of access control mechanisms, the finite state machine view may
be appropriate for them. However, while it is possible to map network access
control into a classical model-checking framework, we aren’t convinced of the
value of doing so. Much of the attention in model-checking is paid to compact
representation of the state-space; we already have a representation of the problem
(i.e., the rule-graph, to be described), which is a graph whose number of nodes is
linear in the number of rules. Furthermore, our analysis takes advantage of the
problem domain rather than a general state-space, with an approach that lends
itself naturally to optimizations for scalability. The research on “attack graphs,”
largely an application of model checking, is of some relevance when considering
the scalability issue, particularly when compared to the statistical analysis that
we have developed. Ritchey and Ammann [21] use model checking to identify
a single violating path in an attack graph. Sheyner et al. [22] provide a more
comprehensive analysis, but suffer from the state-space explosion problem, since
the entire attack graph needs to be analyzed to provide the relevant metrics,
thereby severely limiting the scalability. Ou et al. [23,24] have used a prolog-
based approach, rather than the traditional model checking, for attack graph
generation and analysis; however, their solution does not seem to be able to
scale to large networks that are also deep (i.e., graphs with potentially long

APT Graphical

Front-end APT Analysis Engine

TCP/TLS

Network topology description (or a selection from
topologies cached at the analysis engine)

o

Configuration information captured from
access control elements on the network

P
Policy specification

>
>

Analysis setup

Results

AL

Modified configuration information

>
»>

Policy specification

>
»

Analysis setup

>
< Results

<

Fig. 2. APT Architecture

paths), or to calculate generic metrics that are functions of paths rather than
edges in the graph.

4 APT Architecture

As shown in Figure 2, APT has two independent components:

— a graphical front-end (or management console), written in Java Swing, that
system administrators can run from their workstations and use to provide
information about the basic network topology, to enter specifications of the
global access policy (or subsets thereof), and to set up analyses; and

— an analysis engine, written in C++, which captures the system state and
analyzes that information with respect to policy specifications.

As indicated in Figure 2, the two components of the tool communicate se-
curely over the network using TCP/TLS protocols. This segregation of function-
ality makes it possible to use the analysis engine as an appliance that can be

plugged into a suitable spot in the network, from which it can establish secure
connections to the access control elements present on the network and capture
the relevant configuration information. The actual interface between the tool
and the user (the front-end) can then be freely placed where it is convenient for
the user.

As shown in the figure, the user first provides a description of the network
topology using the graphical front-end. That can be done using the easy-to-use
drawing tools included with the front-end, or via text files that can be read by
the front-end. The information to provide includes all the relevant access con-
trol elements (firewalls, proxy servers, wireless access points); details for each
element, such as its IP address(es) and parameters that the analysis engine can
use to establish secure connections to the element to capture its configuration;
and all the network interactions between the listed elements. Entities can be
grouped together to indicate sub-networks and LANSs, and properties can be
specified for such groupings. The front-end converts the visual topology rep-
resentation provided by the user to an internal XML representation. We use
XML as our underlying language for internal representation for most of the in-
formation in the tool, which provides the added benefit that we may interface
third-party tools and applications simply by providing wrappers that output the
XML conforming to our schemas. It is also possible to browse and select from
the list of topology descriptions previously cached remotely at the analysis en-
gine. In either case, once the topology is decided, the information is sent over
the network to the analysis engine. The analysis engine uses that information
to securely obtain the snapshot of the access control policy implementation, in
the form of configuration files from the various devices indicated in the topology
description (described in more detail in Section 5). It also indexes and caches
the topology description and captured configuration information (both of which
are encrypted before storage for added security). The captured information from
all the different sources is then converted to XML (a unified schema for firewall
rules and another for OS-based mechanisms), and the resultant XML is sent
back to the front-end, where the user can then highlight various elements in the
topology diagram and look at their current configurations (e.g., rule-sets for a
firewall).

The user then specifies the global access constraints, which are a subset of
the possible comprehensive access policy. They indicate some intended behavior
against which the user wishes to check the policy implementation for compliance.
The user uses a graphical front-end to specify constraints for the various elements
or groupings of elements, and the tool considers their conjunction. The individual

constraints can express positive as well as negative assertions about the nature
of traffic, roles, user-classes, or applications that can access a particular set of
resources (hosts, specific files or applications, and so forth). In other words,
we can express things that should never happen as well as things that must
be allowed. Once specified, the constraints are converted into an internal XML
representation. This further allows the freedom to use third-party technologies,
such as a variety of modal logics, to specify the global access constraints.

The next step for the user is to set up the analysis. The user can select
either an exhaustive analysis or a statistical analysis, following which the front-
end sends the policy specification and setup information for the analysis to the
analysis engine. The analysis engine sends back the results as it obtains them,
giving the user the option to abort the analysis at any stage and do post-analysis
on the partial results. The user can manipulate, filter, or navigate through the
results, if any violations are found, to visualize the problem and diagnose the key
misconfigurations behind the violations. A variety of post-analysis techniques are
available in the front-end to help the user identify the likely root causes of the
violations. Once the user has some possibilities in mind, hypothetical changes
can be analyzed using the front-end; the user can make proposed changes to
the configuration of various elements (e.g., modify, delete, or reorder certain
rules), and the new information will be sent to the analysis engine, which then
performs a quick re-analysis to see if the (hypothetically) modified configuration
information now conforms to the specification of the access policy. This feature
can also be used to check planned changes in configuration for compliance quickly
before they are actually rolled out.

5 Analysis Engine Internals

Figure 3 gives an operational overview of the APT analysis engine. The front-end
supplies the analysis engine with information about the network topology and the
parameters for establishing secure network connections with the access control
elements of the topology. Examples of such parameters include keys for estab-
lishing VPN connections to Cisco PIX firewalls and a guest username/password
for establishing SSH connections to Linux/SELinux hosts. Using the supplied
information, the analysis engine can establish connections and obtain the rele-
vant configuration information, hence capturing a snapshot of the access policy
implementation. The configuration information can take many forms depending
on the mechanisms and devices being used to enforce access control. It may
consist of custom rule descriptions for different kinds of firewalls, SELinux type

ey
m) | osbased
Access Controt
Router-based —

Dedicated Firewalls | Complete report of
= l constraint violation
N/ e\ - Legend
/ Transform \ XML (\ —— Secure collection
{ % unified \ \ |Consistency! sl Offline analysis
\¢ F';:‘:" \ / i Checker sy Online change
= N -4 monitoring & analysis
- =R \ Schema | __//n
N
v 1
Ho_st-based Other Formal access XML
Firewalls

Sources

Fig. 3. Operational Overview of the Analysis Engine

and role transition policies, or Java Security Manager policies. APT integrates
policy rules from a large variety of such sources. We have developed a unified
XML schema that captures the essence of the union of all the classes of access
control mechanisms that one is likely to encounter in a modern IT network. The
analysis engine includes modules that convert the policy rules (configuration in-
formation) from the different sources, with rules from each source in their own
custom language, into XML conforming to our unified schema. That allows for
easy extensibility as support for new access control mechanisms and devices can
be added by simply writing the translation modules for those devices.

In APT’s offline analysis mode, it is not necessary to tightly integrate the
analysis engine with the system being analyzed, and if needed, the analysis engine
can be directed to read in the configuration snapshot that has been collected
offline a priori and placed locally on the file system. In the online analysis mode,
the analysis engine either periodically checks with access control devices for any
changes in configuration, or is specifically directed towards those changes by the
user via the front-end.

5.1 Consistency Checker

The consistency checker forms the core of the analysis engine. It takes as input
the XML representations of the collective configuration information from the
various devices and of the formal specification of the access constraints provided
by the front-end, and sets up an analysis based on the parameters supplied by
the user (again, using the front-end). As described in Section 4, the output, in
the form of the list of violations, is sent back to the front-end. In the online

10

Network Architecture Possible Network Layer Rule Graph

WAN
| =
Border firmwall rulesy” 27 ¥ 4 ‘@erder firewell nies
(nbound) '(,L (.;\ ,’L? \" W\O’. (outbound)

ST
Man frewall rdes | ‘L{‘j‘

: ;
/—1 § Ma n firewall rules
] :
" Partner g_f;rame toud ! {inbound) S N\\jﬁ:if (outbound)

w Dlelnbulmn ufon - Tunnel Traffic \ \ R?%/
ke :f‘za-"

Proxy servers

— - \ /\ . "y
f/_\ (- D\ intemal frewal rules ! } Intemal firewall res
f\ﬁ:‘numln/g',»———‘—y En\;mer'nnu) ﬂﬂl \ (inbound) (oumomﬂ)

SR \ 7 w, 4
N v
li ,/ . 4 = ‘, o
e T
t(- DMZ 3 f Operstorgorade T Host firawali rules
= (" HSMTU) b s (inbound 2nd outbound)
o «
B \ Hosts
\

(O rulewith accept action
@ rule with deny action

Prox;;;;;r N\, - 4 \\ é’ p——
\‘ 4 \\ ,‘/."’/9 fg
PCS Val o 1]
NP =3
. g L PR
N
Network layer node expands into »‘;.\.b <
host layer rule graph é

Fig. 4. Constructing Rule Graphs

mode, if an intrusion detection and alert correlation system has been deployed
on the network, the results may also be forwarded to it in the form of an alert.

The network topology and the configuration information (policy rules) from
the access control devices are internally represented by the consistency checker
using a specially constructed data structure called a multi-layered rule graph.
Figure 4 shows a simplified representation of a possible two-layered rule graph
for the network shown on the left side of the figure. The rule graph captures the
network interconnectivity and data flow among the policy enforcement rules.
In the top-level, or the network-layer, rule graph, there are some nodes that
correspond to devices that accept traffic and other nodes that correspond to rules
in devices through which traffic passes. A firewall (dedicated or host-based) is
represented by as many nodes as it has rules, with both inbound and outbound
rules being presented; a host (terminal or proxy) is represented by just one node.
A node representing rule r; in firewall F,,, directs an arc to a node representing
rule r; in firewall F, if the action (access control decision) associated with the
rule r; is to accept, and a network packet that is thus accepted can be received
(in accordance with the network topology) by firewall F,,. A node representing
a proxy host (that allows for traffic to pass through it) has both incident and
outgoing arcs.

11

Nodes representing hosts may further expand into a lower-level rule graph;
Figure 4 shows a potential host-layer rule graph (modeled as a directed graph
with labeled edges) representing the SELinux policy rules for one of the hosts
in the network-layer rule graph. The arcs in this rule graph change the security
contexts and/or the permissions of various objects present on the host.

The overall strategy used by the consistency checker is to analyze paths from
traffic sources to terminal nodes in the rule graph. A terminal node may be a
rule associated with a “deny” action, a destination, or an exit from the system. A
path describes a possible sequence of access policy decisions applied to all traffic
that traverses the corresponding devices in the network. The analysis approach
is built around the observation that knowing which rules in the system make
decisions about a piece of traffic tells us something about the attributes of that
piece of traffic. A network packet arriving from the Internet may in principle
carry any source address, any destination address, any protocol, and any set of
user privileges. If the packet is accepted by a particular rule in the border firewall,
then we can infer that its attributes do not satisfy the preconditions of the earlier
rules in the firewall’s rule-set, but do satisfy the preconditions of the rule that
it matched. Every time a rule recognizes traflic, it refines the attributes of the
traffic to reflect the constraining influence of the rules against which the traffic
was tested at the firewall. Given a path in the rule graph, the consistency checker
can compute successive refinements of the attribute set of traffic, user classes,
and object permissions that can possibly traverse that path. At each stage along
a path, the current attribute set is matched against the formal specification of

the access constraints to confirm whether it is in violation.

Exhaustive Analysis: In the exhaustive analysis mode, the consistency checker
analyzes the multi-layered rule graph for the system in its entirety, considering
each piece of configuration information collected. It then produces a complete list
of sequences of access decisions (e.g., firewall rules or SELinux transition rules)
that can result in traffic that violates one or more of the global access constraints.
The analysis can be directed to use a specific starting point as the initial source
of the traffic (e.g., a particular host or the WAN/Internet); if a starting point
is not specified, all the hosts in the topology are considered starting points in
turn.

The data structures for rule graphs and traffic attribute sets, and the algo-
rithms to manipulate them, are very critical to the analysis performance. We
use a number of optimizations for analysis speed-up. They include the use of
multidimensional interval trees for representing the network traffic component

12

of the attribute sets and custom set data structures for efficient representation
of the discrete component of the attribute sets (e.g., security contexts or object
permissions). We also use intelligent caching of results of analyses of sub-paths
to minimize repeated computations.

Statistical Analysis: When the networked system (considered together with
the relevant components of the IT network) being analyzed is large and deep, the
sheer combinatorics of the possible interactions among the access control devices
and mechanisms may render a comprehensive exhaustive analysis computation-
ally impossible. The underlying rule graph would simply contain too many paths
to allow an exhaustive exploration, especially when the actual paths of interest
(i.e., the violations) form a very small subset of the set of all possible paths
through the rule graph.

To handle this challenge, APT incorporates an advanced statistical analysis
mode that produces a sample (likely incomplete) set of policy violations, and
a quantitative estimate of the remainder. The latter may take the form of esti-
mates of the total number of violations, the fraction of all traffic that violates
global policy, or the probability that there are no violations given that none were
discovered after the analysis was performed for a specified amount of time.

The tool obtains statistically valid estimates of such quantitative measures
without actually exploring the entire rule graph. It does so through repeated and
random exploration of an extended version of the rule graph to sample a few
paths, using mathematically formulated heuristics to guide the choice at each
step of the exploration towards the likely sources of policy violation. The desired
set of metrics is calculated for each sampled path, and then we use “importance
sampling” [25] to remove the bias introduced by the guidance heuristic and
obtain unbiased estimators of the metrics. As the analysis continues, the user
can watch the progress of the analysis, including the convergence of the chosen
set of metrics using the graphical front-end. The process can be continued until
a user-specified relative error bound is reached or a user-specified fraction of the
rule graph has been explored. The user can also abort the analysis at any time.

The key idea of importance sampling can be illustrated by a simple exam-
ple. Let X be a random variable with probability density function p, A C R,
and v = Pr{X € A}. Define the indicator random variable 1{xc 4} as follows:
sample from X’s distribution and observe z, if z € A set 1{xca} = 1, otherwise
set 1yxeca} = 0. It follows that v = E,[1¢{xeayl, with the expectation taken
with respect to p. The naive Monte Carlo approach for estimating y would
be to generate N samples, X, Xs,..., Xy, using the density p, and then use

13

AN = % vazl 1{x,ca} as an unbiased estimator of v (EplAn] = 7). The width
of the confidence interval around 4x will be proportional to the standard de-
viation y/v(1 — 7)/N. For the estimate to be meaningful, the magnitude of 4n
needs to be significantly larger than the window of uncertainty around it, i.e.,
the ratio of sampling standard deviation to mean (relative error) needs to be
small. If A corresponds to a rare event, i.e., y is very small, the relative error is
approximately 1//7N, and obviously a very large N is needed to minimize the
relative error.

Importance sampling achieves small relative error using significantly smaller
N than this standard approach calls for. We define another probability density
function p'(x), with p’(z) > 0 for all z € A for which p(z) > 0. Then, v =
Ep[1{xeayLy(X)], where Ly is the likelihood ratio, i.e., Ly (2) = p(z)/p'(z),
and the subscript in the expectation denotes sampling using density p’. We use
P’ to generate N samples X1, Xs,..., Xy, and 4y = & Eivzl l{X;eA}LP’(X;)
is an unbiased estimator of 7. The sampling with a different density is usually
referred to as a “change of measure” and p’ is called the “importance sampling
density.” It has be shown [25] that to reduce the variance of the estimator AN
we need to make the likelihood ratio p(z)/p’(z) small on the set A. Since p is a
given, this means that we should choose a p’ that biases towards z € A. The aim
then is that through use of importance sampling, the relative error associated
with N samples will be smaller than it would be for N samples from a normal
Monte Carlo scheme. This implies greater accuracy for the estimator, meaning
significantly better results for the same number of samples.

An identical discussion applies for estimating oo = E,[W(X)1{xca}), where
W is some function of the random variable.

Importance sampling has a long history in contexts as diverse as estimations
of integrals in high dimensions, chemistry, communications, reliability, and eco-
nomics. We have used it ourselves to estimate measures of an attacker’s success
against a system with known vulnerabilities [26]. It is a general technique, but
the challenge in using it lies in applying the general theory to a specific context.

We have formalized the approach for use in APT, developing heuristics for
change of measure that exploit domain knowledge. It must be understood that
all randomness in this formulation comes from the randomness of sampling, not
from the system itself. If we choose a path through a rule graph randomly, we
can say something about the probability of the traffic description at the end of
the path having certain properties or metrics, but the probability is with respect
to the randomness used in choosing the path. The path chosen is like the random
variable X in the example above, and the event of the path violating the global

14

policy is like an indicator 1{xc4}. Probability measure p reflects the random
selection of rules that define the path.

We now describe the formulation for estimating the total number of paths
through the rule graph that end in deviation from global policy. In the interest
of space, we will focus our discussion on network layer rule graphs, and later
provide a brief description into how the analysis applies to multi-layered rule
graphs. The first step is to identify a useful sample space, or set of events that
can occur during sampling. Let S be the set of all rule-graph nodes. Let Sp
denote the set of root nodes, i.e., the traffic sources. A sample sequence denotes
any infinite sequence {d; € S, i > 0}. There is no supposition of any kind of
structure except that each element of the sequence is drawn from S. We use
the term walid prefizes to describe legitimate complete paths in the rule-graph,
starting in Sp and terminating in a final policy decision (e.g., firewall denies, or a
host accepts). “Legitimate” here means that there exists a packet with attributes
such that the firewall rules force it to traverse that path.

We say that a valid prefix is interesting if the corresponding path conflicts
with global policy, and let V be the set of all interesting prefixes. Let the sample
space, {2, be the set of all sample sequences. We define a probability measure
P on {2 such that all sample sequences are equally likely. We can enumerate
the nodes in S, transform each index into a single digit in the base |S| number
system, and define a random variable X on {2 that maps a sample sequence
to a real number (0.d1dads . . .)|s|, where d; are the base |S| digits representing
the nodes. Hence, X provides a one-to-one correspondence between {2 and [0, 1].
Therefore, under P, X is uniformly distributed over [0, 1], and has a probability
density function p(z) =1 if = € [0, 1] and 0 otherwise. Henceforth, we drop the
subscript |S|, and all real numbers are in base |S|.

The set of all sample sequences with the interesting prefix (0.dyds ... d;) (i.e.,
all sample sequences whose first [elements are identically dy,ds, ..., d;) form a
closed interval of length |S | " starting at (0.dids...d;). For every interesting
prefix v, the corresponding interval is denoted by I,,, and its length by l,,. Notice
that if v, w € V, then I, NI, = 0. It can be seen that A = (J,¢y, I, forms a finite
union of disjoint intervals. Hence, the probability of a uniform sample u € [0, 1]
also having u € A is the sum of lengths of the constituent intervals. Due to the
sheer size of {2, this total probability would be very small, and membership in
V would be a rare event under uniform sampling on [0, 1].

The objective of this formulation is the construction of an unbiased estimator
of the total number of interesting prefixes (i.e., [V| = 7). We define a function
W : [0,1] — Z, that takes the value |S|' for all points in an interval corre-

15

sponding to an interesting prefix of length [, and is zero elsewhere. Therefore,
we have

By[W (0] = BolW (X)lpxen] = [" W (o)l penyple) de

= LEA W(z)p(z)dz = Uezv("~ W (z)p(z) d:v)

-S (L o) = Sl)

vEY
=Y _Isi™IsI™ = =T, (1)
vEV

where the introduction of summation is possible because A is a finite union of dis-
joint I,’s. Hence, we estimate |V| by estimating E,[W (X)]. As described earlier,
the standard unbiased estimator for T would be Ty = + Zf’zl W (X;), where
X1, Xs,..., X~ are N random samples drawn from [0, 1] (or, equivalently, from
1) with density p(z). However, this estimation would be extremely inefficient, as
most samples would not correspond to valid prefixes, let alone interesting ones.
The value of this formulation is that given = that corresponds to a valid prefix,
the computation of the probability mass it represents under uniform sampling
is straightforward. Each sample under the importance sampling approach ran-
domly generates a path dj,ds,ds, ... through the rule graph, stopping when a
final policy action is applied. The path chosen automatically corresponds to a
valid prefix. The probability distribution used to select d; given d1,dz,...,d;—1
is the biased sampling strategy. Whatever that strategy is, g»,; denotes the prob-
ability of selecting d;, given the prior selections di,ds, ..., d;—1, understanding
that v = (dy, da, . . .,d;). Mapping a selected sequence back into a real number z
gives rise to a new probability density function p’ on [0, 1], driven by our biasing
strategy. As we have shown in [26], this is a valid change of measure, and the

value of p'(z) for z € I, for some interesting prefix v is

Ly L
1it: @i - I[i1 v,
length of I, |S|=t

Ly
p(z) = =18/"[[@i forallzel,. (2

i=1
Therefore, using importance sampling, we sample N valid prefixes accord-
ing to our biasing strategy, map each into base |S| numbers X, Xz,...,Xn,
and construct the estimator (1/N) vazl(p(X,-) /P (X:))W (X;). Despite the large
numbers symbolically expressed above (e.g., |S |*+), the actual computations used
in estimating E,[W (X)] can be done involving much smaller values, avoiding the

risk of round-off and precision errors.

16

As systems being analyzed grow in size and sophistication, we anticipate that
APT’s statistical analysis mode will become increasingly relevant, providing the
tool with superior scalability. We previously demonstrated the efficacy of our
techniques in our work on fast model-based penetration testing [26], in which
we analyzed a model of a networked system and attacker behavior to quantify
the system’s security posture. We were able to analyze system models with
91700 gtates, which is a dramatic improvement over the state-of-the-art (222°
states) [22].

6 Experimental Evaluation

In this section, we demonstrate the efficacy of APT by using it to verify the access
control policy implementation in a variety of settings. We begin with test-cases
that are relatively small in size, such as the networking system typically found
in a process control setting, and show how the exhaustive analysis can be used
to weed out misconfigurations of access control devices. We then demonstrate
APT’s scalability through the use of statistical analysis for analyzing a much
larger system that is beyond the capability of the exhaustive analysis. In all the
experimental evaluations described below, APT’s analysis engine was running
on an AMD AthlonXP-64 3700+ machine with 2GB of RAM.

Figure 5 shows a testbed developed at the Sandia National Labs to represent
a networking infrastructure at a typical Oil and Natural Gas (ONG) operator.
The focus here is on the protection of the process control network. The network
contains two dedicated Cisco PIX firewalls, each with 15 rules. Out of the 17
hosts in the network, 5 have host-based firewalls (iptables in Linux). All the
hosts run the stock versions of the Windows or Linux operating systems. The
rulesets for the various firewalls were populated based on the settings found at
a number of actual ONG sites.

The global access constraints were defined, using APT’s graphical front-end,
to emphasize the tightly controlled isolation of the process control network from
the rest of the IT network. In particular, they specified that the hosts in the
process control network could access each other; however, only one (the PCN
Historian) could be accessed from outside the process control network. The only
ways the PCN Historian could be accessed were via the DMZ Historian, by a
“sysadmin” class user, and via a host in the corporate network, by a “man-
ager” class user. APT’s graphical front-end facilitated easy specification of these
constraints, which were subsequently translated into the underlying XML rep-
resentation of the global policy.

17

S & @

Business User Business User BGSP Internet Firewall
Corporate Network)
@ BGSP
(Via VPN)
Terrpinal DWIZ BGSP
Service$ Server Histgrian lnlgrne\/Ex!ranet
BMZ Network e
- PCN Firewall OMZ Klnbomnk
BGSP ~ Bad Guy Starting Point
BGSP
{Via VPN)
Process Controf Network
Oy ()
S i
i SCADA PONH LGN HMI SCADA PCN Historian
Refinery Process Conlrol Network ___Pipeline Process Control Network
. 4
Protocol Gateway/ BGSP 3 " BGSP Protagol Gateway!
OPC Server . 20211 \@PC Server
W \ Wircless Link B et
8 Satellite Link
@ E @ Ej Ej Master
BGSP PLCIRTU PLCRTU PLCIRTU Flow Computer Terminal Unit

(Vi3 Wiretess)

Fig. 5. A Representative Process Control Testbed (courtesy Sandia Nat. Lab.)

APT’s analysis engine, using the information about the network topology
provided by the front-end, automatically and securely captured the configura-
tion snapshot of the system. An exhaustive analysis of the system was then per-
formed. The analysis identified a total of 83 paths (sequences of firewall rules)
in 10 seconds. The tool was then instructed to perform a post-analysis on the
results to further pinpoint the root causes of the violations. The post-analysis,
based on frequency of occurrence in the list of violations, identified four rules,
two in each of the two Cisco firewalls acting in series, as the likely culprit. It
further identified the attributes of the traffic that they were allowing to pass
and also indicated the subset of the global access constraints that the traffic was
violating. Using the graphical front-end, we were able to test hypothetical modi-
fications to the highlighted rules and perform quick re-evaluation to discover the
appropriate changes that resulted in zero violations of the policy specification.
As is evident from this experiment, APT’s exhaustive analysis functionality was
very useful for a reasonably small network. A complete analysis of the testbed
indicated that the rule graph for the system had about 230,000 paths. Hence,
the number of violations not only helps identify and correct misconfigurations,

18

but also, when viewed in the context of the total number of ways traffic could
travers the system, can serve as a quantitative measure of the system’s security
posture.

We also used APT to analyze the sample scripts used in the evaluation of the
“Firewall Policy Advisor” by Al-Shaer and Hamed [12-14]. We captured all the
misconfigurations in their sample scripts [14]. Note that APT’s functionality is
a superset, since our analysis is not limited to the analysis of relations between
just two firewalls, and we can check for inconsistencies (due to the use of multi-
dimensional interval trees) as well as explicit policy violations.

To explore the scalability of the tool, we tested it on the example setup shown
in Figure 1. This testbed represents an intrusion-tolerant publish-subscribe sys-
tem developed as part of a DARPA-funded research effort. The system contains
1) over 40 hosts, of which 29 are running SELinux (each with 4 or more process
domains) and all of which have hardware NIC-based firewalls (with more than
20 rules per firewall), and 2) 8 Cisco PIX firewalls. As can be imagined, the
configuration of the large number of access control elements in this system in
adherence to the global security policy is an extremely complicated task.

The global access constraints were set to emphasize tightly controlled access
to the “System Manager” group of machines (the top row of 4 machines in
the figure). These machines could access one another in very specific ways (to
run Byzantine fault-tolerance algorithms) and could be accessed by only a very
small set of other machines, and only by processes from specific domains on
those machines. Again, APT’s graphical front-end and underlying XML schema
were used for the specification of the global access constraints.

We then deliberately misconfigured a rule in the hardware NIC-based firewall
for one of the system manager machines, allowing for traffic that would result in
the violation of the global policy. The exhaustive analysis was able to identify
the resulting 263 violations and pinpoint the root cause in about 140 seconds
(focusing primarily on the firewall rules, and not on the host-based access control
mechanisms). Note that.the total number of paths in the rule-graph for this
system is huge, which explains the time taken by the analysis.

We then made the problem more complex by introducing problems in two
firewalls, a Cisco PIX dedicated firewall and the hardware NIC-based firewall for
one of the system manager machines, such that the violation only occurred in
the access decision sequences that included both rules. The exhaustive analysis,
again limited to firewall rules, identified 155 violations and the two modified rules
in about 200 seconds. However, when the host-based access control mechanisms
were also included in the analysis, the exhaustive analysis could not complete,

19

even after running for more than 3 hours, setting the stage for a demonstration
of increased scalability provided by the statistical analysis.

As described earlier, APT’s statistical analysis can provide a sample set of
violations and an estimate of the remainder. For that purpose, we use the total
number of viclations as the quantitative estimate of the remainder. The biasing
heuristic we use for guiding importance sampling is based on shortest distance,
i.e., it assigns higher weight to those access decisions that would guide the traffic
closest (in a network topology sense) to the hosts that are included in the speci-
fication of the global policy. The stopping criterion for the sampling was 500,000

samples or 5% relative error with 95% confidence, whichever was achieved first.

Statistical analysis on the Figure 1 testbed for the one-rule misconfiguration
example described above resulted in an answer in under 10 seconds (with the
relative error convergence being the stopping criterion). The analysis estimated
255 violations, which is within 3% of the exact answer obtained from exhaustive
analysis.

For the example with two misconfigured rules, the statistical analysis ob-
tained an answer within 4% of the exact answer in about 10 seconds when only
firewall rules are being analyzed, and in about 25 seconds when host-based access
control mechanisms are also being modeled.

We tested another example, in which, in addition to the two misconfigured
rules, we also introduced a misconfiguration in the SELinux policy for the host
with the misconfigured host-based firewall, such that the global policy was now
violated only when all three access control points were included. Again, the ex-
haustive analysis could not produce the complete list of violations after running
for more than 3 hours, but the statistical analysis was able to provide an es-
timate with a 10% confidence interval (where the number of samples analyzed
was the stopping criterion) in about 1 minute. Additional accuracy required a
disproportionate increase in the time required for the analysis. To obtain an
estimate with a 5% confidence interval, it was necessary to run the analysis for
about 5 minutes.

Hence, we can see that statistical analysis allows APT to analyze fairly com-
plex systems within reasonably short periods of time. The tool’s performance
can likely be improved further with the use of better biasing heuristics, which is
an avenue that we will continue to explore in the future.

20

7 Conclusion

Deployment of a large number of distributed and layered access control mecha-
nisms, such as firewalls, is the staple solution to the problem of enforcing security
policy. Hence, it is very important to ensure that all the access control mecha-
nisms work collectively in harmony, and that their complex interactions do not
mask subtle errors and thus introduce security vulnerabilities. In this paper, we
have described the Access Policy Tool, which provides an easy way for network
system administrators and security experts to analyze their security policy imple-
mentations (configurations of various devices on their networks) for conformance
with global security specifications. It features ease of information management
through a graphical front-end, offline as well as online analysis of the compli-
ance of a configuration with the desired or intended behavior, and scalability
through the use of statistical techniques for the estimation of security posture.
Those capabilities allow users to gain confidence in an implementation before
actual deployment, make it possible to reason about policy at an increased level
of abstraction, and permit system administrators to detect policy holes created
during operational use of a system.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. CNS-0524695 and the U.S. Department of Homeland Security
under Grant Award Number 2006-CS-001-000001. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as necessarily representing the views of the National Science Foundation, or the
official policies, either expressed or implied, of the U.S. Department of Homeland
Security.

The authors would also like to thank Jenny Applequist for her editorial as-
sistance.

References

1. SANS Institute: SANS Top-20 2007 Security Risks (2007 Annual Update).
http://www.sans.org/top20/ (Apr 2008)

2. Wool, A.: A Quantitative Study of Firewall Configuration Errors. Computer 37(6)
(Jun 2004) 62-67

3. Netfilter.org: The Netfilter.org “iptables” Project.
http://www.netfilter.org/projects/iptables/index.html (Apr 2008)

21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

3Com Corporation: 3Com Embedded Firewall Solution.
http:/ /www.3com.com/other/pdfs/products/en_US/400741.pdf (Apr 2008)

. Centre for the Protection of National Infrastructure: NISCC Good Prac-

tice Guide on Firewall Deployment for SCADA and Process Control Networks.
http:/ /www.cpni.gov.uk/Docs/re-20050223-00157.pdf (Apr 2008)

National Security Agency: Security-Enhanced Linux.
http://www.nsa.gov/selinux/index.cfm (Apr 2008)

Cisco Systems: Cisco Security Agent.

http:/ /www.cisco.com/en/US/products/sw/secursw/ps5057/index.html (Apr
2008)

Gouda, M.G., Liu, A.X.: Firewall Design: Consistency, Completeness, and Com-
pactness. In: Proc of DSN 2004, Tokyo, Japan (Mar 2004) 320-327

Hari, A., Suri, S., Parulkar, G.M.: Detecting and Resolving Packet Filter Conflicts.
In: Proc of IEEE INFOCOM (Vol. 3), Tel Aviv, Israel (Mar 2000) 1203-1212
Eppstein, D., Muthukrishnan, S.: Internet Packet Filter Management and Rect-
angle Geometry. In: Proc of ACM-SIAM Symp on Discrete Algorithms (SODA
2001), Society for Industrial and Applied Mathematics (2001) 827-835

Boboescu, F., Varghese, G.: Fast and Scalable Conflict Detection for Packet Clas-
sifiers. Computer Networks 42(6) (2003) 717735

Al-Shaer, E., Hamed, H.: Firewall Policy Advisor for Anomaly Detection and Rule
Editing. In: Proc of IEEE/IFIP 8th Intl Symp on Integrated Network Mgmt (IM
2003), Colorado Springs, CO (Mar 2003) 17-30

Al-Shaer, E., Hamed, H.: Management and Translation of Filtering Security Poli-
cies. In: Proc of the 38th IEEE Intl Conf on Communications (ICC 2003), An-
chorage, AK (May 2003) 256-260

Al-Shaer, E., Hamed, H.: Discovery of Policy Anomalies in Distributed Firewalls.
In: Proc of IEEE INFOCOM (Vol. 4), Hong Kong (Mar 2004) 2605-2616
Guttman, J.D.: Filtering Postures: Local Enforcement for Global Policies. In: Proc
of IEEE Symp on Security and Privacy, Oakland, CA (May 1997) 120-129
Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A Novel Firewall Manage-
ment Toolkit. ACM Trans on Computer Sys 22(4) (2004) 381-420

Cisco Systems: CiscoWorks Management Center for Firewalls.

http:/ /www.cisco.com/en/US/products/sw/cscowork/ps3992/index.html (Apr
2008)

Skybox Security: Automated Firewall Management Software.

http:/ /www.skyboxsecurity.com/products/FCA.html (Apr 2008)

RedSeal Systems: RedSeal Security Risk Manager.

http:/ /www.redseal.net/Product-Overview.shtml (Apr 2008)

Clark, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge,
MA (2000)

Ritchey, R.W., Ammann, P.: Using Model Checking to Analyze Network Vulner-
abilities. In: Proc of IEEE Symp on Security and Privacy, Oakland, CA (2000)
156-165

22

22,

23.

24.

25.

26.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated Generation
and Analysis of Attack Graphs. In: Proc of IEEE Symp on Security and Privacy,
Oakland, CA (2002) 273-284

Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: A Logic-Based Network Se-
curity Analyzer. In: Proc of 14th USENIX Security Symp, Baltimore, MD (2005)
113-128

Ou, X., Boyer, W.F., McQueen, M.A.: A Scalable Approach to Attack Graph Gen-
eration. In: Proc of 13th ACM Conf on Computer and Communications Security
(CCS 2006), Alexandria, VA (2006) 336-345

Heidelberger, P.: Fast Simulation of Rare Events in Queueing and Reliability
Models. ACM Trans on Modeling and Computer Simulations 5(1) (1995) 43-85
Singh, S., Lyons, J., Nicol, D.M.: Fast Model-Based Penetration Testing. In: Proc
of 2004 Winter Simulation Conf (WSC’04), Washington, DC (Dec 2004) 309-317

23

