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many of the processor subsystem functions. The MMU is a multi-chip level-sensitive scan-design (LSSD) 

that does not support special testing hardware. Scan-based test methods could not be used for this design, 

because LSSD rules were only followed at the chip level. The functional diagnostics approach suggested 

in this paper uses the system’s instruction set to diagnose the MMU. This method uses a "divide-and- 

conquer" approach to reduce the testing complexity. An added advantage of this approach is that the same 

diagnostics have been used for MMU debug, system integration and system qualification. During this pro

cess we have detected design errors, permanent faults, and even the known timing problems in the logic.
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ABSTRACT

This paper describes a functional diagnostics method to test the Memory Management Unit (MMU) 

of the RP3 system. The Research Parallel Processor Prototype (RP3) is a highly parallel computer being 

built at the Watson Research Center The RP3 is designed to have 512 processors, but the prototype being 

built has 64 processors. This system supports both private and shared address spaces. Virtual memory 

management is done across both of these spaces. Translation look-aside buffers are used for this vitual-to- 

real address mapping.

The MMU is one of the more complex modules of the RP3 processor. It provides the control for 

many of the processor subsystem functions. The MMU is a multi-chip level-sensitive scan-design (LSSD) 

that does not support special testing hardware. Scan-based test methods could not be used for this design, 

because LSSD rules were only followed at the chip level. The functional diagnostics approach suggested 

in this paper uses the system’s instruction set to diagnose the MMU. This method uses a "divide-and- 

conquer" approach to reduce the testing complexity. An added advantage of this approach is that the same 

diagnostics have been used for MMU debug, system integration and system qualification. During this pro

cess we have detected design errors, permanent faults, and even the known timing problems in the logic.



1.0 Introduction

In order to successfully build any system, a methodology to test the system must be defined. 
Several test approaches may be needed to diagnose the system at all levels of integration. Often 
special hardware is incorporated in the design to enable it to be easily tested. Scan-based test 
methods have often been used to diagnose the lower levels of integration. Although these methods 
provide good fault coverage, they can take a long time to execute.

In large systems like the Research Parallel Processor Prototype (RP3) [PFIS85], which consist 
of many subsystems, reducing the time complexity of the test method is very useful. This reduction 
helps qualify the large number of components used and is also helpful during system integration 
and qualification. The Functional Diagnostic Method (FDM) used to test RP3 [RATH88]] has 
been very effective in both fault coverage and testing time. This paper describes how this method 
was used to test RP3's MMU.

FDM uses the system's instruction set to test the system. This method partitions the systems 
into several functions and then defines tests for each of these functions. The MMU is one of these 
functions. This "divide-and-conquer" approach reduces the complexity of the tests. In order to test 
the MMU, it is partitioned like the whole system and tests for these sub-functions were developed. 
Using this approach, we were able to develop the MMU diagnostics in 4 man-months. Using 
similar diagnostics for other portions of the system, we were able to qualify the 64 processors of the 
RP3 prototype in about 3 months.

This paper is organized as follows: the next section gives an overview of the RP3 system and 
discusses our motivation to use the FDM approach to test the MMU. Section-3 gives an overview 
of the MMU organization, while section-4 describes the TLB array topology. In section-5, an 
overview of the MMU diagnostics method is given. This is followed by a description of the fault 
model and test generation. Finally, we relate some of the experiences we had with these diagnostics 
and give a summary of our findings.

2.0 Background and Motivation

The RP3 is a highly parallel computer system being built at the IBM T. J. Watson Research 
Center. It has been architected to have 512 processors, 2 GBytes of memory, 192 MBytes/second 
I/O, and an interconnection network with a peak bandwidth of 13 GBytes/second. A prototype 
of the RP3 is currently being built with 64 processors. The organization of a 64-processor RP3 
system is shown in Figure 1 on page 2. It can support both shared memory and distributed 
memory-based computing models. The main reason behind building this machine is to conduct 
research in the highly parallel processing area. A more detailed description of this system is given 
in [PFIS85]

This system uses the ROMP microprocessor [ROMP86], an IBM RISC processor, as its main 
computational units. In order to support the various functions defined by the RP3 architecture 
[PFIS85], the support chips for the ROMP processor could not be used. Therefore, the project 
designed its own memory management unit (MMU), cache unit (CU), memory controller (MC), 
the network (NI) and switch (SI) interfaces. Figure 2 on page 3 shows the organization of the 
Processor-Memory element/subsystem (PMF). The MMU in this PMF organization is responsible 
for virtual memory management and also controls the cachcability at a page level. The actual cache 
management is done by the CU. The CU supports a 32K-byte common instruction/data cache. 
This is a software-managed cache, that is: (1) software maintains cache coherence without hard
ware support; and (2) cacheability is defined at the page level, this information is stored along with 
the virtual memory management information. The NI is responsible for directing memory refer
ences to either its PMF/s memory or to another PMF/s memory across the network. This infor-
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mation is derived by the NI from the memory reference's address. More detailed descriptions of 
the PME operations are given in [BRAN85] and [RP3P88]

This system supports both private and shared addresses spaces. Virtual memory management 
is done across both these spaces. The translated real addresses can also be interleaved and hashed 
across the memory modules of the system through the network. The number of memory modules 
a real page is interleaved and hashed across is defined on a page basis by the system. The MMU 
controls interleaving by providing the interleave factor, while hashing is controlled by turning it 
ON/OFF for each PME by software. If hashing is turned ON, then all translated addresses are 
hashed. Addresses are hashed across the memory modules specified by the interleave factor. The 
NI actually executes this interleaving and hashing. More information on these memory operations 
is given in [PFIS85, RP3P88].

Figure 1. RP3 System Overview



FPU Floating Point Unit
101 I/O Interface
PM Performance Monitor

Figure 2. RP3 Processor-Memory Element (PME)

For RP3, testing issues were complicated by several system design/integration issues. First, the 
I^evel Sensitive Scan Design (LSSD) [EICII78] rules were only followed at the chip level. They 
were not followed at the card or subsystem level. Second, besides LSSD no other test support logic 
was provided in the design. The chips/cards did not provide any test points to interface test 
equipment. Therefore, the ability to control or observe a card or subsystem test was limited. This 
issue was aggravated further because it was not possible to connect any test equipment to the sub
systems assembled in the RP3 frame. Finally, it was not possible to single cycle or multiple cycle 
the system.

Due to these limitations and because we wanted to support testing at system speed, we decided 
to functionally test the MMU. The chips used by the MMU were individually tested using scan- 
based tests, before they was integrated as one unit. The diagnostics to test the MMU were devel
oped using the system's instruction set only. Only one set of diagnostics was developed. These 
diagnostics were used to debug the hardware in the lab. They were also used for system integration 
and system qualification.

To develop these diagnostics, we started with the high level functional description of the MMU 
and the system. The description of the MMU's functions was in the system's Principles of Oper
ations (POPs) manual. We supplemented this with discussions with the engineers whenever the 
POPs manual did not offer enough information. Only when timing sensitive or pattern sensitive 
faults were found during system debug in the lab, did details of the logic design have to be studied. 
Working with high level design information has the following advantages: (1) it verifies the func
tions in the design; (2) checks the correctness of the information in the POPs manual; and most 
of all (3) makes the diagnostics portable across technology upgrades. T his last point is especially 
important because of the large effort usually invested in developing diagnostics.

Previous work in functional diagnostics has mainly been based on testing microprocessors. 
MMU testing issues have been discussed by Giles and Scheucr [GII.E86]. Although their work 
also uses a structured testing approach similar to that suggested by FDM, their tests assume avail-
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ability of test hardware in the design. Their methods also assume that automatic test equipment 
will be used to execute these tests. In the RP3 system, none of these assumptions were supported. 
Further, their MMU organization is different from RP3's.

3.0 M M U Organization

Each PME of the RP3 has a MMU. This MMU uses a l KByte direct-mapped translation 
look-aside buffer (TLB). The TLB is organized as 2 sets with 64 entries each, where each entry is 
8 bytes. A random replacement policy is used for the TLB. The TLB can be managed either by 
software or via the hardware reload logic of the MMU. Besides doing the virtual-to-real translation, 
the MMU also checks the access protection and cacheability of the memory reference. The mem
ory interleaving factor is also provided by the MMU.

The M M U is physically organized as shown in Figure 3. The M M U unit is a byte-sliced de
sign, which consists of four copies of a MMU chip. Each copy of this chip operates on its own 
byte of data. Special I/O lines have been defined on this chip to coordinate the MMU TLB 
look-up and control between the four chips. Each chip is informed about the byte it controls 
during processor initialization time. All busses shown in Figure 3 are 32-bit wide and have parity 
checking/generation on each byte.

i
Chip 0

1
Chip 1 .

Processor
i

Chip 2 . Un i t
!

Chip 3

Busses: 32 data bits plus k parity bits

Figure 3. MMU Organization

The layout of the TLB entries for sets 0 and 1 is shown in Figure 4 on page 5. Each entry is 
two words wide. The contents of the TLB entries are described by the legend of Figure 4 on page 
5. Each entry points to a 16K Byte page in memory. Software has full access to the TLB entry 
words, just like main storage. This direct TLB addressing is used for software management of the 
TLB.
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TLB Set 0 
Wor d 0

Q 13 1̂  15 16 31

TLB Set 0 
Word 1

0 17 18 19 21 22 23 24 27 28 31

TLB Set 1 
Word 0

0 15 16 29 3Q 31

TLB Set 1 
Word 1

0 17 18 19 21 22 23 24 27 28 31

Translated Real Page R/W/E
Address R Prot DC MD Res 1 nt 1 v

V i rtua 1
Reserved Address V PS

Translated Real Page R/W/E
Address R Prot DC MD R 1 nt 1 v

Virtual
Address V PS Reserved

Legend:
DC
I nt 1 v 
MD 
PS 
R
Res
R/W/E
TLB
V

— Data cacheability bit
— Interleave amount for the page
— Marked data b i t
— Problem/Supervisor State
— Reserved
— Reserved
— Read/write/execute protection information
— Translation Look-aside Buffer
— Page table valid bit

Figure 4. Format of a Translation Look-aside Buffer (TLB) Entry

The MMU has two modes of operation:
1. The translated mode uses the TLB to map virtual addresses into real addresses. In this mode, 

the real addresses can be interleaved and hashed across the main memory modules of the sys
tem.

2. The untranslated mode allows the processor to access the storage directly. In order to allow 
a PME to directly address the memory attached to it (see Figure 2 on page 3), the MMU 
exclusive-ORs this address with the processor's network address. This allows the PME's NI 
to direct the memory requests correctly. The resulting lower-order addresses are mapped to 
the memory attached to the processor.

An overview of these memory translation operations is given in Figure 5 on page 6.
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Effective Address 
Generated by Processor

To Memory

Legend:
PN - Processor Number 

Figure 5. Overview of Memory Translation

During the translation of a virtual address, the MMU uses the protection information in the 
TLB entry to determine if the type of access requested is allowed for the virtual page. If the page 
is protected against this type of request, then an exception is raised. An exception is also raised 
when the MMU detects that a virtual address is mapped to both the sets of the TLB entry. These 
exceptions are serviced by software.

if a TLB hit takes place and the virtual address translation is done without any exceptions being 
generated, then the MMU passes the appropriate information to the cache unit. This information 
includes the Real Page Address, PS, DC, MD and INTLV fields in the TLB entry. If a TLB miss 
occurs, then a required TLB entry is selected, initialized appropriately and then the processor's re
quest is tried again. This TLB management can be done by either software or MMU hardware.

If reloading is enabled and a TLB miss has occurred, then the MMU selects the TLB set to be 
used. If both sets are used or available, a random policy is used to select the set. The virtual 
memory tables in the main memory arc then accessed to initialize the selected TLB entry. After 
the TLB entry is reloaded, the processor's request is retried and normal address translation is con-
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tinued. An overview of this table access is shown in Figure 6 on page 7 More detailed information 
is given in [RP3P88].

Virtual
Address

Segment Index Page Index Offset

10 18 31

STO + (8*SI)

-PT0+(1f*P I )■

Page Table

PTE

•Offset+Rea1 Page Addr---- ► Real Address

Legend:
STD - Segment Table Descriptor 
STO - Segment Table Origin 
STE - Segment Table Entry 
SI —  Segment Index

PTO - Page Table Origin 
PTE - Page Table Entry 
PI —  Page Index

Figure 6. Virtual Memory Table access during TLB Hardware Reload

4.0 TLB Array Topology

The TLBs are implemented using 16x18 bit static embedded RAM arrays on the MMU chips. 
Six embedded RAM arrays per chip are used. Each 16x18 RAM array is physically addressed as 
two 16x9 RAMs. In this paper, we refer to these RAM portions as upper and lower. Each word 
in these RAMs contain 8 bits of data and a parity bit. The layout of the TLB using these RAMs 
is shown in Eigure 7 on page 8. It should be noted that only half of TI ,B word-0 is useable, 
therefore RAM locations to store only these bits are provided.
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Word 0 Word 1

TLB Set 0 
64 entries

16x9 
RAM #1 
chip 0 
Upper

16x9 
RAM #1 
chip 1 
Upper

16x9 
RAM #3 
chip 0 
Upper

16x9 
RAM #3 
chip 1 
Upper

16x9 
RAM #3 
chip 2 
Upper

16x9 
RAM #3 
chip 3 
Upper

16x9 
RAM #1 
chip 0 
Lower

16x9 
RAM #1 
chip 1 
Lower

16x9 
RAM #4 
chip 0 
Upper

16x9 
RAM #4 
chip 1 
Upper

16x9 
RAM #4 
chip 2 
Upper

16x9 
RAM #4 
chip 3 
Upper

16x9 
RAM #2 
ch ip 0 
Upper

16x9 
RAM #2 
chip 1 
Upper

16x9 
RAM #5 
ch ip 0 
Upper

16x9 
RAM #5 
chip 1 
Upper

16x9 
RAM #5 
chip 2 
Upper

16x9 
RAM #5 
chip 3 
Upper

16x9 
RAM #2 
ch ip 0 
Lower

16x9 
RAM #2 
chip 1 
Lower

16x9 
RAM #6 
chip 0 
Upper

16x9 
RAM #6 
chip 1 
Upper

16x9 
RAM #6 
chip 2 
Upper

16x9 
RAM #6 
chip 3 
Upper

Word 0 Word 1

TLB Set 1 
64 entries

16x9 
RAM #1 
chip 2 
Upper

16x9 
RAM #1 
chip 3 
Upper

16x9 
RAM #3 
chip 0 
Lower

16x9 
RAM #3 
chip 1 
Lower

16x9 
RAM #3 
chip 2 
Lower

16x9 
RAM #3 
chip 3 
Lower

16x9 
RAM #1 
chip 2 
Lower

16x9 
RAM #1 
chip 3 
Lower

16x9 
RAM #4 
chip 0 
Lower

16x9 
RAM #4 
chip 1 
Lower

16x9 
RAM #4 
chip 2 
Lower

16x9 
RAM #4 
chip 3 
Lower

16x9 
RAM #2 
chip 2 
Upper

16x9 
RAM #2 
chip 3 
Upper

16x9 
RAM #5 
chip 0 
Lower

16x9 
RAM #5 
chip 1 
Lower

16x9 
RAM #5 
chip 2 
Lower

16x9 
RAM #5 
chip 3 
Lower

16x9 
RAM #2 
chip 2 
Lower

16x9 
r am n

chip 3 
Lower

16x9 
RAM #6
chip 0 
Lower

16x9 
RAM #6
chip 1 
Lower

16x9 
RAM #6 
chip 2 
Lower

16x9 
RAM #6 
chip 3 
Lower

Figure 7. TLB Array Layout

5.0 Overview of M M U Diagnostic Methodology

Using the FDM test approach, the M MlJ's functions were partitioned into smaller functional 
blocks. Separate tests were developed for each of these functional blocks. F,ach test concentrates 
on only testing its particular functional block and assumes that all other functional blocks are fault 
free. Dividing the module's functions also tends to divide the hardware into individually testable 
blocks. This reduces the test complexity. In order to generate the tests, a block's function and fault 
model is defined, the test patterns are derived and, finally, the instruction sequence needed to test 
the function is identified. The tests are then combined into a diagnostics program.

The MMU's functions were partitioned as shown in Figure 8 on page 9. Tests were derived 
for each of these functional blocks. It should be noted that no separate block was defined for the 
interleave logic. This is because the MMU only stores the interleave factor, the actual interleave

g



function is executed by the PME's NI. This interleave factor is sent to the NI along with the 
translated address. Therefore, interleaving was tested by the NI diagnostics.

Data/Address 
Bus to 
Processor

TLB
RAM

3

TLB Select 
Logic

TLB Reload 
Logic

Address 
Translat ion 
Logic

Control And 
Status Registers

Protection 
Check i ng 
Logic

Cache Control 
Logic

Exception 
Detect ion 
Logic

Data/Address 
nBus to Cache 
and Memory

Figure 8. RP3 MMU Functional Overview

The test patterns used by the tests are shown in Figure 9 on page 10. These patterns can detect 
stuck-at and coupling faults within a byte and across bytes of a word [THAT79]. Since each byte 
of the TLB is stored in a different embedded RAM, we only need to use the first set of test patterns. 
In order to test the word wide data/address busses of the MMU, both the test pattern sets were 
used. To test the parity bits/lines the parity test patterns were derived. The execution order of these 
test patterns (shown in Figure 9 on page 10) detects transition faults in the memory arrays.

These patterns can be derived as follows: start with a byte or word pattern of all zeros. This 
is the first pattern. Next, divide the bits in half, set the upper bits to zero and the lower bits to one. 
This gives the next pattern. To generate the third pattern, divide the bits into fourths, setting each 
alternating group of bits to zeros and ones. Continue this subdividing of bits until the alternating 
zero and one bit pattern is derived. Then, for each of these patterns compute their complementary 
pattern to complete this procedure.

9



QQQO 0000
FFFF FFFF 
0F0F 0F0F

Data Patterns (Even Parity)

F0F0 F0F0

007F 7F00 
7F00 007F

Parity Patterns (Odd Parity)

3333 3333
CCCC CCCC 
5555 5555 
AAAA AAAA

Data Patterns (Even Parity)

a) Test Patterns for intra—byte coup 1ing

0000 FFFF 
FFFF 0000

Data Patterns (Even Parity)

7F0O 0000
007F 0000 
0000 7F00 
0000 007F

Parity Patterns (Odd Parity)

00FF 00FF 
FF00 FF00

Data Patterns (Even Parity)

b) Test Patterns for inter—byte coupling

Figure 9. Test Patterns

6.0 Fault Model and Test Generation

While generating the tests, our aim was to detect permanent

1. Stuck-at faults
2. Pair-wise coupling faults
3. Transition faults
4. Functional faults

Due to the limited ability to control or observe at the instruction level, some tests were unable to 
detect some of these faults. In the following sections, test generation for each of the MMIJ func
tional blocks is discussed and where appropriate limitations on using this test strategy is identified. 
In the discussion below, it is assumed that caching, interleaving, hashing and MMU hardware re
load are turned OFF, unless explicitly stated otherwise.

6.1 TLB Arrays

Since the TLB entries can be accessed directly by the processors, we can test the memory arrays 
as simple RAMs, ignoring the information they store. The TLB entries are mapped to the 
processor's I/O address space [RP3P88]. Therefore, they can be accessed using the IOR and IOW 
instructions of the ROMP [ROMP86].

It has been shown by [NAIR78] that any failure in a RAM is equivalent to failures in the 
memory cell array. This significantly reduces the RAM fault model. Several methods have been 
defined to test RAMs [ABAD83] and can be classified as those that detect stuck-at faults and those 
that detect coupling faults. We prefer the methods defined in [NAIR79] and [NAIR78] because 
they can be used for any RAM design. This is important for the functional diagnostics approach 
suggested here. The complexity of these RAM tests are:
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• 5N-2 for the MATS + [NAIR79] test, where "N" is the number of words in the RAM. Only 
stuck-at faults can be detected.

• 30n for the [NAIR78] test, where "n" is the number of bits in the RAM. Both stuck-at and 
coupling faults can be detected.

We selected the second method to test the RP3 TLB arrays because it provides more fault 
coverage. The basic algorithm is shown in Figure 10. We modified it to use the test patterns de
fined in Figure 9 on page 10. The algorithm is executed with each pair of test patterns.

Nurrtr a u * n c *  3 StfQuanc* t*

, ; 0 xr r Rt R R? Rt
2 0 R* * r : r R* R R: R
i 0 R* .* r : R R

R R Rt R:
s-l 0 R* R Rt R «' * R: R
* 0 R* Rl »• * Rt R

• r S * c u « n c . J S«*au*nc* 7

i

R* t R 
R*. R 

R * :

R
Rt i R 

R*t

R* •
R * : R

.* R

Rt:
R-! R 

Rt: R

l
l
l

l
l

Rl* ft
R . ? R 

R. *

R
Rt t R

R;*

Rl t
R f  R

. * R

r :?
Rt* R

R;* ft

L«Y«nd: •: forctd cranstcion iron 0 u  l; ;; forced cransicion iron l to 0;
R: r««d cell. 0: sac call co 0; l: sac call Co l.

Figure 10. NTA Algorithm [NAIR78]

6.2 Address/Data Busses

The MMU is connected via a set of 32-bit address/data busses, as shown in Figure 3 on page 
4. In this test we check the bus connecting the TLB arrays to the processor and the cache unit. 
Although the TLB array test uses this bus, it does not fully test it, because of the test patterns it 
uses. In order to completely test this bus the inter-byte coupling test patterns are used. This test 
selects a TLB word and writes these patterns to it. After each write the TLB word is read. If it 
does not match the test pattern, then an error is flagged. The bus that is used to communicate data 
from the processor to the cache and memory is tested by our main memory diagnostics.

6.3 Translation Logic

The untranslated mode is checked by executing some writes and reads to the memory of the 
processor. If these operations cannot be executed, an error is flagged. This only tests the 
exclusive-OR operation (see Figure 5 on page 6) needed to address the memory attached to the
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processor. In order to verify that the other memory modules of the system can be accessed, similar 
memory accesses are made to them in our network diagnostics.

In order to test the translation mode, the test patterns shown in Figure 9 on page 10 were used 
as virtual addresses. These patterns help check the TLB hit detecting logic. TLB set-0 was chosen 
and the entries, corresponding to the virtual pages of these virtual addresses, were initialized to map 
them to real pages residing in the PME's memory. The protection bits were set to allow read and 
write access. Test patterns were then written to these virtual pages. The results were verified by 
reading these locations in translated and untranslated modes. If the patterns written did not match 
the patterns read, an error was flagged. A similar test was executed using TLB set-1. In order to 
test the TLB hit detecting logic, these tests were done in both supervisor and problem (user) modes.

6.4 Hardware TLB Reload

This test checks to see if the TLBs can be loaded by the MMU hardware when a TLB miss 
occurs. In order to test the full function of this logic, reloading is checked under the following 
conditions: (1) the entries in both the sets are invalid; (2) only one set's entry is invalid and the 
other is allocated to another virtual page; and (3) the entries of both sets are allocated to other 
virtual pages. In addition, the reload function is checked when a valid TLB entry exists for the 
virtual page being referenced. This test checks if the hardware is executing unnecessary reloads.

The test patterns shown in Figure 9 on page 10 are used as the virtual addresses for this test. 
The virtual memory page table entries corresponding to the virtual memory pages for these ad
dresses are appropriately set. They are mapped to real pages residing within the PME's memory. 
The TLB hardware is also initialized and hardware reloading is enabled. Then the TLB entries 
corresponding to these virtual pages are set according to the condition (mentioned above) being 
tested. A translated write to these virtual pages is then executed. After each write, the targeted 
main memory word is read, using the untranslated mode, to verify this write. The TLB entries are 
also read to verify that they are valid and are initialized with the correct information. A mismatch 
in either of these two verification operations is flagged as an error.

In order to determine if the hardware is executing unnecessary reloads, a virtual page is selected 
and its corresponding TLB entry is initialized to translate this page. Then the virtual memory page 
table entry for this virtual page is modified to point to a different real page than that pointed to by 
the TLB entry. TLB reloading is enabled and a translated write to this virtual page is executed. 
To verify this write, the word in the real page indicated by the TLB entry is read, using the un
translated mode. The TLB entry is also read to see if its contents have changed. If either of these 
verification operations indicates a mismatch, then an error is flagged.

6.5 TLB Replacement Policy

This replacement policy is used by the TLB reload hardware. A random policy is used by the 
MMU. In order to diagnose this policy, a test to verify that the MMU docs not always select the 
same set is executed. If it does, then an error is flagged. This test can be done during the hardware 
reload testing and was integrated with it.

6.6 Protection Logic

This logic verifies if the memory operation requested by the processor is allowed for the virtual 
page. To test this logic, a virtual page is selected and its TLB entry is initialized to map this page 
to a real page in the PME's memory. First, the read, write and execution protection bits are set to 
zero. The real page in memory is then initialized using untranslated mode addressing. A translated 
mode reference of each of these types is then executed. If an exception is not generated for all three 
of these references, an error is flagged. Next the read protection bit is set and similar translated
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accesses are executed. Only the read access should not generate an exception. Frrors are flagged 
if an exception is generated for the read request and not generated for the other two requests. An 
error is also flagged if an unexpected pattern is read by this read operation. Tests for the other 
combinations of protection bits are executed similarly. These tests were executed under both 
supervisor and problem modes.

During TLB hardware reloads, the protection bits for the virtual page's entry in the Segment 
table and the Page table are ANDcd together to produce the protection bits for the TLB entry. 
This operation also needs to be tested. Since these bits are stored, accessed and used in parallel, 
we test them for stuck-at faults and coupling faults between these bits. The 8 protection bit settings 
shown in Figure 11 are used to set these bits in the Segment and Page table entries. These test 
patterns are the minimal set of patterns needed to detect pair-wise coupling faults [TIIAT79]. If 
all possible bit combinations for these pair of protection bits were used, then we would have had 
64 test patterns. This test is executed in a similar fashion as the hardware TLB reload test.

Segment entry: R-0, W-0, E-0
Page entry: R-0, W-0, E-0
Expected results: R-0, W-0, E-0

Segment entry: R-1, W-l , E-l
Page entry: R-1, W-l , E= 1
Expected results: R-1, W-l, E-l

Segment entry: R-0, W-l, E-l
Page entry: R-0, W-l, E-l
Expected results: R-0, W-l , E-l

Segment entry: R-1, W-0, E-0
Page entry: R-1, W-0, E-0
Expected results: R-1, W-0, E-0

Segment entry: R-1, W-0, E-l
Page entry: R-1, W-0, E-l
Expected results: R-1, W-0, E-l

Segment entry: R-0, W-l , E-0
Page entry: R-0, W-l , E-0
Expected results: R-0, W-l , E-0

Segment entry: R-0, W-0, E-0
Page entry: R-1, W-l, E-l
Expected results: R-0, W-0, E-0

Segment entry: R-1, W-l , E-l
Page entry: R-0, W-0, E-0
Expected results: R-0, W-0, E-0

Figure 11. Protect Bit test cases

6.7 Cacheability Control

The information on the cacheability of a page is stored in the MMU's TLBs. T he MMU passes 
this information to the cache with every translated address. The test to verify if this MMU infor
mation controls caching is part of the cache unit diagnostics [KUND88]. Therefore, we only test 
the setting of the cacheability bit during hardware TLB reload. Similar to the protection bits, the 
AND of the segment and page table data cacheability bit is used to set the bit in the TLB. The test 
for this function is similar to the write protection logic test. The difference here is that this test 
requires checking if the data was actually cached or not cached. All settings of the cacheability bits 
in the segment and page table entries were used as test patterns (i.c. 4 test patterns).



6.8 Control and Status Registers

If registers can be read and written directly, then they can be tested as memory locations using 
both sets of patterns shown in Figure 9 on page 10. But the RP3 MMU does not provide this 
symmetric read-write access to its control and status registers. Writing some of these test patterns 
to the control registers would place the machine into unusual states. Some of the desired bit com
binations were illegal. Similarly, the status registers restricted the bit patterns they could hold.

Therefore, instead of a complete test, we exercised the MMU in each of the states that the 
control registers allowed. We insured that each bit had the desired affect. For status registers, the 
condition which set a status bit was forced and the register read and verified. However, some 
conditions can only appear if the hardware fails. Since no test support hardware was provided, 
these conditions could not be tested. Only those conditions that had not been checked in another 
test were tested here.

6.9 Exception Detection

The MMU detects a number of functional error conditions and reports them to the processor 
through a program check. A number of hardware error conditions are also detected and reported 
as program checks. In this test, each MMU functional error was asserted. If the program check 
occurred, then the test passed. If a program check did not occur, an error was flagged. The func
tional errors tested were:

• TLB double mapping errors - that is, a virtual address is mapped to both the sets of the TLB 
entry,

• TLB miss, and
• Protection violations.

For testing efficiency, other functional errors, which had been tested in another test, were not du
plicated here. The hardware error conditions could not be tested due to lack of test support logic.

7.0 Experiences

Our goals, when we started this work, were to develop a set of diagnostics which could verify 
the function of the RP3 system. These diagnostics were supposed to be executed each time the 
machine was powered on and during periodic maintenance check points. A simple GO/NOGO 
answer at the end of their execution and some indication of which subsystem failed was considered 
to be acceptable. But as we defined the diagnostics strategy for the system, we found that we could 
detect and isolate the faults within the subsystems. Therefore, we aimed our efforts to diagnose 
faults at the module level.

During the diagnostics development, an attempt was made to derive the tests using only the 
functional information. For example, information given in the Principles of Operations (POPs) 
manual of the system. But we found that some hardware organization information was essential 
to define some of the tests. For example, the layout of the RAMs and information on the type of 
error checking method used by the hardware was needed.

These diagnostics have been used to debug the MMU in the lab and when integrated into the 
system. They have also been used to qualify the MMU cards on a volume basis. They helped 
detect design errors, hardware faults, and errors in the documentation in the POPs manual. They 
have also detected all known timing problems in the PMF design. An interesting design problem 
that was detected was that the LRU policy designed for TLB replacement was incorrect. The di
agnostics showed that the MMU logic actually used a "somewhat random" policy. The diagnostics 
also discovered a discrepancy between the hardware and the POPs manual, concerning the setting 
of the cacheability information during hardware reload.

14



During our hardware debug experience in the lab we found that it was important to use patterns 
that asserted the parity bits and lines. Such errors and some of the pattern sensitive timing errors 
were identified in the lab while executing system and application programs. The diagnostics had 
to be upgraded to detect them, after the underlying conditions to assert these errors were under
stood. The diagnostics were easy to upgrade due to the modular test development approach used.

It took about 4 man-months to design, develop and debug the MMU diagnostics. The diag
nostics were written in ROMP assembly. They were debugged using the RP3 instruction level 
simulator on an IBM 3084 system.

8.0 Summary and Conclusions

Our experience shows that very effective diagnostics can be developed using the system's in
struction set. Using the FDM  approach discussed in the paper, such diagnostics can be developed 
rapidly using a small number of people. They can be used to test, at system speed, the hardware 
in the lab and when integrated into the system. Only one set of diagnostics needs to be developed. 
These diagnostics are portable across technology upgrades of the system.
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