
September 1990 UILU-ENG -90-2243
CRHC-90-10

Center for Reliable and High-Performance Computing

REPORT OF THE
IEEE WORKSHOP
ON MEASUREMENT
AND MODELING OF
COMPUTER DEPENDABILITY

Ravishankar K. Iyer
Daniel P. Siewiorek
Editors

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

flrfllrtïTY c l a s s if ic a riuN of rnis pao e

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-018B

U. REPORT sec u r it y c la ss if ic a t io n

Unclassified
1b. RESTRICTIVE MARKINGS

N o ne

2*. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION/ DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2243 CRHC-90-lO

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6«. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

___ N/A

7«. NAME OF MONITORING ORGANIZATION

NASA Langley Research Center
Hampton, VA 23665__________

6c AOORESS (City. S u e , and ZIP Cod*)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (City, S u e . and ZIP Cod*)

NASA Langley Research Center
Hampton, VA 23665

8«. NAME OF FUNDING /SPONSORING
ORGANIZATION

NASA

8b. OFFICE SYMBOL
(I f applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM8ER

NASA NAG-1-602 NASA NAG-1-613
8c ADDRESS (City, Stae, and ZIP Cod*)

NASA Langley Research Center
Hampton, VA 23665

10. SOURCE OF FUNOING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT TASK
NO. NO.

WORK UNIT

11. TITLE (Indud* S*<urity Classification)

Report of the IEEE Workshop on Measurement and Modeling of Computer Dependability
12. PERSONAL AUTHOR(S)

Edited by Ravishankar K. Iyer and Daniel P. Siewiorek
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month. Day) 15. PAGE COUNT

Technical FROM TO May 1 and 2, 1990 31
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on e v e n * if necessary and identify by block number)

FIELD GROUP SUB-GROUP dependability, hardware, software, modeling, measurement,
data collection, statistical analysis

19. ABSTRACT (Continue on everse if necessary and identify by block number)

A workshop was held at The Aerospace Corporation facility in El Segundo, California on
May 1 and 2, 1990. The purpose of the workshop was to promote interaction among modelers
and experimentalists. Participation was solicited to cover all aspects of experimentation
and analysis of computer dependability including, but not limited to 1) design of
experiments; 2) modeling and analysis; 3) instrumentation and data collection;
4) measurements of reliability and performance; 5) statistical analysis and interpre
tation; 6) software reliability and fault tolerance; 7) evaluation of experimental
systems; and 8) experimental methodology. Participants who made a presentation at this
conference submitted a position statement in advance of the workshop. This report contains
all the position statements submitted and a summary of key conclusions and recommendations
resulting from this workshop.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

CS UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Indud* Area Cod*) 22c. OFFICE SYMBOL

DD Form 1473. JUN 86 Previous editions ar* obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Report of the IEEE Workshop on Measurement and
Modeling of Computer Dependability

The Aerospace Corporation
El Segundo, California

Edited by:

Ravishankar K. Iyer
Center for Reliable and High Performance Computing

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Daniel P. Siewiorek
School of Computer Science
Carnegie Mellon University

May 1 and 2, 1990

IEEE W orkshop on M easurem ent and M odeling o f C om puter D ependability

The Aerospace Corporation
El Segundo, California, USA

W orkshop Chairs:

Ravishankar K. Iyer
Center for Reliable and High Performance Computing
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 West Springfield Avenue Urbana, IL 61801
Tel: (217) 333-9732
e-mail: iyer@crhc.uiuc.edu

Professor Daniel P. Siewiorek
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
(412) 268-2570
e-mail: dps@a.gp.cs.cmu.edu

Technical Program C om m ittee:

J. Arlat
LAAS du CNRS

France
G.M. Masson

Johns Hopkins University
K.S. Trivedi

Duke University

1

mailto:iyer@crhc.uiuc.edu
mailto:dps@a.gp.cs.cmu.edu

Contents
Table of Contents 3

Call for Participation 4

1 List of Position Statements for Workshop 5

2 Schedule 6

3 Position Statements 7
3.1 Errors in Operational Digital S y stem s.. 7
3.2 Validation of Real Time Fault Tolerant Computers via Measurements and M o d e lin g 7
3.3 Fault Injection, Testing, and Measurement Experiments on HARTS ... 8
3.4 Statistical M o d e lin g ... 8
3.5 Hardware-Based Fault Injection Systems... 8
3.6 Dependability Modeling and Evaluation of Software-Fault Tolerance A pp roach es................... 9
3.7 Interfaces Between Modeling and Measurements ... 9
3.8 Relating Software Defect Types to the Reliability Growth Experienced...................................... 10
3.9 Upset Evaluation of Fault-Tolerant Control System in Harsh Electromagnetic Environments . 10
3.10 Spaceborne Computing.. 11
3.11 Analysis and Prediction of System Reliability... 11
3.12 Trace Driven Evaluation of Fault-Tolerant Parallel Architectures... 12
3.13 Modeling Recovery Time Distributions in Ultra-Reliable Fault-Tolerant Systems 12
3.14 Conservative Reliability Predictions for Real-Time Software.. 12
3.15 Real Time Parallel Processing Systems for High-Reliability Military Applications................... 12
3.16 Simulating Markovian Models of Dependable S y stem s.. 13
3.17 Operational Failures in SPC Systems... 13
3.18 Fault Injection System for the Study of Transient Fault E ffe c ts .. 14
3.19 Experimental Validation of Two Fundamental Design Techniques for Fault-Tolerant Dis

tributed C om p u tin g ... 14
3.20 Modular and Dependable Multiprocessing System s.. 16
3.21 The Transformation Approach to the Modeling and Evaluation of the Reliability and Avail

ability Growth of Systems in O p era tion 16
3.22 Experimental M eth odology ... 16
3.23 Fault-Tolerance Evaluation and Design.. 17
3.24 Software Reliability Experiences at the Jet Propulsion Laboratory... 18
3.25 Predictive M ethodology ... 18
3.26 Intelligent Computational Systems for Space M ission s.. 19
3.27 Practical Issues in Modeling System A vailab ility ... 19
3.28 Discrete Event Hypercube Models used to Evaluate Performance Tradeoffs and Understand

Actual Performance A nom alies.. 19
3.29 Design of Integrity S2 Fault-Tolerant RISC Unix Minicomputer.. 20

4 Summary: On Measurement and Modeling of Computer Systems Dependability 21
4.1 Introduction.. 21
4.2 Measuring Computer Dependability ... 22

4.2.1 Fault In je ction .. 22
4.2.2 Analysis of Field D a ta .. 23
4.2.3 Simulation .. 24
4.2.4 Common Measurement Problem s... 24

4.3 Modeling Computer Dependability.. 24

2

4.3.1 Model Accessibility.. 25
4.3.2 Sophisticated M odels... 25

4.4 Bridging the G a p .. 26
4.5 Directions for Future W o r k ... 26

5 Acknowledgments 27

6 List of Attendees 28

3

CALL FOR PARTICIPATION

Workshop
on

Measurement and Modeling of Computer Dependability
May 1 and 2, 1990 - Los Angeles, California

This announcement is to solicit participation in a workshop on the evaluation of computer dependability,
from experimentation to analysis. Mathematicians have been modeling computer systems for over four
decades. Over the last two decades, data has been collected from operational computer systems. The
purpose of this workshop is to promote interaction between modelers and experimentalists. Questions we
might ask include: How should experiments be designed to collect data usable by modelers? How should
models be changed to reflect the realities of experimentation? Participation is solicited to cover all aspects
of experimentation and analysis of computer dependability including, but not limited to the following topics.

1. Design of Experiments

2. Modeling and Analysis

3. Instrumentation and Data Collection

4. Measurements of Reliability and Performance

5. Statistical Analysis and Interpretation

6. Software Reliability and Fault Tolerance

7. Evaluation of Experimental Systems

8. Experimental Methodology

Prospective participants should send a brief outline of their interest and position statement (no longer
than 200 words) to Professor Ravi K. Iyer at the address below, no later than March 1, 1990. It is expected
that the attendance to the workshop will be limited to about fifty participants. All position statements will
be reviewed by the technical program committee and the accepted participants will be notified by March 15,
1990.

Workshop Chairs

Professor Ravi K. Iyer Professor Daniel P. Siewiorek
Center for Reliable and High Performance Computing School of Computer Science
University of Illinois at Urbana-Champaign Carnegie-Mellon University
1101 West Springfield Avenue Urbana, IL 61801 Pittsburgh, PA 15213
Tel: (217) 333-9732 (412) 268-2570
e-mail: iyer@crhc.uiuc.edu e-mail: dps@a.gp.cs.cmu.edu

Technical Program Committee

J. Arlat LAAS France
G.M. Masson Johns Hopkins USA
K.S. Trivedi Duke University USA

4

mailto:iyer@crhc.uiuc.edu
mailto:dps@a.gp.cs.cmu.edu

1 List of Position Statements for Workshop
1. Gary Engel, UNISYS, “Analysis and prediction of system reliability.”

2. Ed Upchurch and John Peterson, JPL, “Discrete event hypercube models used to evaluate performance
trade-offs and understand actual performance anomalies.”

3. Dale Lomelino, Honeywell, “Fault tolerance evaluation and design.”

4. Celeste Belcastro, NASA-Langley, “Evaluation of fault-tolerant control systems in harsh electromag
netic environments.”

5. Johan Karlsson, Chalmers University, Sweden, “Fault injection system for the study of transient fault
effects.”

6. Bjarne E. Helvik, The University of Trondheim, Norway, “Operational failures in SPC systems.”

7. Nancy Leveson, “Experimental methodology.”

8. Israel Koren, University of Massachusetts, “Modular and dependable multiprocessing systems.”

9. Ann Patterson-Hine, Joanne Bechta Dugan and Jerry Yan, NASA-Ames, “Intelligent computational
systems for space missions.”

10. Gerald M. Masson, Johns Hopkins University, “Hardware-Based fault injection systems.”

11. Ambuj Goyal, IBM, “Simulating Markovian models of dependable systems.”

12. Ram Chillarege, IBM, “Relating software defect types to the reliability growth experienced.”

13. Laureen Brickley, IBM, “Spaceborne computing.”

14. J.C. Laprie, C. Beounes, M. Kaaniche and K. Kanoun, LAAS du CNRS, France, “The transforma
tion approach to the modeling and evaluation of the reliability and availability growth of systems in
operation.”

15. J. Arlat, K. Kanoun and J.C. Laprie, LAAS du CNRS, France, “Dependability modeling and evaluation
of software-fault tolerance approaches.”

16. K.H. Kim, B.J. Min and W.J. Guan, University of California-Irvine, “Experimental validation of two
fundamental design techniques for fault-tolerant distributed computing.”

17. Ed McCluskey, Stanford University, “Errors in operational digital systems.”

18. Robert Goan, SCI, “Real time parallel processing systems for high-reliability military applications.”

19. Doug Miller, George Mason University, “Statistical modeling.”

20. Kang Shin, University of Michigan, “Fault-injection, testing, and measurement experiments on HARTS.”

21. Kishor Trivedi, Duke University, “Interfaces between modeling and measurements.”

22. Robert Geist, Clemson University, “Modeling recovery time distributions in ultrareliable fault-tolerant
systems,” and “Conservative reliability predictions for real-time software.”

23. J.H. Lala, C.S. Draper Laboratories, “Validation of real time fault tolerant computers via measurements
and modeling.”

24. Dr. Michael R. Lyu, JPL, “Software reliability experiences at the Jet Propulsion Laboratory.”

5

25. William J. Watson, Tandem, “Design of Integrity S2\ A fault-tolerant RISC unix minicomputer.”

26. Oleg Panfilov, NCR, “Predictive methodology.”

27. M.C. Hsueh, DEC, “Failure data analysis.”

28. Andrew Reibman, AT&T, “Practical issues in modeling system availability.”

29. Dr. John Kelly, University of California-Santa Barbara, “Techniques for building dependable dis
tributed systems: Experimental evaluation.”

30. W. Kent Fuchs, University of Illinois at Urbana-Champaign, “Trace driven evaluation of fault-tolerant
parallel architectures.”

2 Schedule
Day 1

8:45 Panel Session on Measurements and Experiments
Panelists: E. McCluskey, J. Lala, K. Shin and D. Miller (Panel 1).

9:30 Break into discussion groups
Group A: E. McCluskey, J. Lala, K. Fuchs
Group B: K. Shin, D. Miller, R. Chillarege

12:15 Lunch
1:30 Panel Session on Modeling

Panelists: G. Masson, J. Arlat, K. Trivedi and R. Chillarege (Panel 2).
2:15 Break into discussion groups.

Group A: D. Masson, J. Arlat and J. Dugan.
Group B: K. Trivedi, R. Chillarege and A. Reibman.

4:45 Concluding Remarks for day

Day 2
8:30 Bridging the Gap between Modelling and Measurement
9:00 Summary/Highlights from Group Meetings

11:30 General Discussion and Wrap Up
12:00 Adjournment

6

3 Position Statements
3.1 Errors in Operational Digital Systems

Ed McCluskey
Stanford University

I would like to discuss the physical sources of errors in operational digital systems and the appropriate
techniques for relating these causes to the resulting errors. Of particular interest are the questions of
temporary failures and the use of the single-stuck fault model as a model for them. Some other questions
that I think are interesting and am prepared to discuss include the following: Are statistical techniques
useful for the reliability level of interest? Is design verification adequate with existing methodologies? Will
system failure events be caused by physical flaws more often than by design defects?

3.2 Validation of Real Tim e Fault Tolerant Computers via Measurements and
Modeling

Jaynarayan H. Lala
The Charles Stark Draper Laboratory, Inc.

The overall goal of the Fault Tolerant Systems Division at Draper is to design and build validated
computer systems for real time applications where human safety, the successful outcome of a mission and/or
a high value asset is critically dependent on the correct and timely functioning of a computer system. In this
context, it is necessary to validate the performance and reliability of the computer system. The validation
approach involves a judicious combination of analytical modeling, simulations and empirical measurements
of critical parameters on proof-of-concept and prototypical systems.

In particular, the requirement of extremely low system failure rates for these applications (typically
10"6¿ol0""10 per hour) precludes computer reliability validation exclusively by means of experimental eval
uation. Therefore, the overall system degradation from an initial fault-free state to the final system failed
state due to component failures and intermediate transitions due to repair actions are modeled analytically
using Markov processes and combinatorial methods. (It should be noted, however, that the state-of-the-art
still does not permit validation required for the ultra-low failure rates.) A set of Macintosh based tools has
been developed that allow the designer to quickly explore the effect of various architectural options, repair
strategies, etc. on the system reliability and availability. The models use a number of parameters whose
values depend on the system behavior under fault-free and faulted conditions. Examples include time to
detect, isolate and reconfigure (FDIR) around a fault. Empirical measurements on a proof-of-concept system
are used to refine the estimate of these parameters.

The requirement of hard dead-lines for certain response times in these real time applications makes the
use of statisical methods such as queueing theory unsuitable for performance validation. Many performance
characteristics such as transport lag and CPU utilization can be calculated using deterministic methods.
Other more complex characteristics such as interactions between CPU, I/O and buses need to be analyzed
using Monte Carlo simulations and empirical measurements. Various operating system overheads such as
scheduling and dispatching a task and redundancy management overheads such as the throughput devoted
to FDIR lend themselves to empirical measurements.

Finally, empirical evaluation of computer system performance in the presence of faults ties together and
validates the performance and fault tolerant characteristics of the system.

7

3.3 Fault Injection, Testing, and Measurement Experiments on H AR TS

Kang G. Shin
The University of Michigan

Due to their potential for high reliability and throughput via the multiplicity of components, distributed
computing systems are being increasingly used for reliability- and time- critical applications. However, the
probability of having one or more component faliures in a distributed system increases with the number
of components used. Thus, the ability of locating faulty components, isolating them, reconfiguring the
system, and resuming the computation is a key to the success in realizing the potential of any distributed
system. As part of our global goal of designing fault-tolerant distributed systems, we are currently developing
system-level fault diagnosis algorithms for large multiprocessor/multicomputer systems.

I will describe our plan of how to implement the diagnosis algorithms and measure their performance
on an experimental multicomputer system, called HARTS, which is currently being built at the Real-Time
Computing Laboratory (RTCL), The University of Michigan. Specifically, I will discuss planned methods
and tools (based on our past experiences with FTMP) for injecting faults, generating synthetic workloads,
applying tests, measuring fault coverage, and applying the diagnosis algorithms on HARTS.

3.4 Statistical Modeling

Doug Miller
George Mason University

Much of the statistical modeling of computer dependability falls into two categories. Some models describe
highly aggregated phenomena, ignoring much of the detail of the system, thereby under-utilizing data which
may be available, and consequently inferring less about system behavior; an example of this is most software
reliability growth models which don’t distinguish among classes of errors or don’t use additional information
that may become available during repair. Some other models are very detailed, but are based on parameters
(or assumptions such as stochastic independence) that are impossible to determine with sufficient accuracy in
order to use the model; some structural models of software failure behavior seem to fall in this category. (In
this case the modelers say that the models should be used qualitatively to gain conceptual understanding.)
To develop good quantitative models lying between these two extremes, I (as a statistical modeler) need
more interaction with computer and software engineers who understand the systems. One approach that
might be fruitful is to try to extend some univariate failure models to a multivariate context; for example,
multiple classes of software/hardware failures modelled as marked point processes.

3.5 Hardware-Based Fault Injection Systems

Gerald M. Masson
Johns Hopkins University

Fault injection systems provide for a unique experimental environment for accelerating the design,
verification and testing of highly reliable computer systems, as well as supporting the study of various
fault/error/upset models and fault monitoring/detection mechanisms. In a manner somewhat Different
from other systems, our fault injection system generates physical faults mainly by hardware insertion tech
niques. Currently, the target system is an MC-68000 based board, but we can easily apply our injection
techniques to other systems. Currently, our system provides for 224 kinds of intermittent/ transient faults
including single/ multiple faults of stuck/ bridging types with fault duration varying from 250ns to Q4/j,s.
Also, the number of fault types is extendable. The fault injection commands can be arbitrarily inserted
into a user’s program, so it is sufficiently flexible to create a wide variety of fault conditions. The injection
process is simple to control. Since the faults are generated by hardware, the effect of an injected fault in a
program may differ from one injection to the next. We believe that the faults generated by our system are

8

closer to the intermittent/ transient faults of the real environments. Numerous experiments have been run
and we have obtained experimental data relative to fault/upset coverage for faults injected in the data bus,
address bus and control bus of our testbed computer systems.

3.6 Dependability Modeling and Evaluation of Software-Fault Tolerance A p
proaches

Jean Arlat, Karama Kanoun and Jean-Claude Laprie
LAAS du CNRS

France

This work provides a unified modeling framework for the evaluation of the dependability of three
software-fault tolerance approaches, namely: recovery blocks (RB), N-version programming (NVP) and
N-self-checking programming (NSCP).

The study is based on the analysis of architectures (including variants and deciders as well) able to
tolerate a single fault:

• RB: two alternates and an acceptance test,

• NVP: three versions and a voter,

• NSCP: four versions and two comparators.

The main features of the presentation incorporate:

• The identification of the possible types of faults through the analysis of the software production process,
which lead to account for both independent faults in the variants or the deciders and related faults
between them;

• The construction of Markov models describing the operational behavior of the considered architectures:
in order to reflect most of the reported observations, it has been considered that related faults manifest
as similar errors and are thus prone to lead to common-mode failures, whereas we have assumed
that independent faults cause distinct errors that may lead to separate failures;

• The processing of the models enabling the investigation of safety and reliability issues;

• The identification and the analysis of the major parameters that condition the reliability improve
ment achieved by each architecture with respect to a non fault-tolerant software.

This work is a continuation of the investigation presented at FTCS-18 for RB and NVP: the NSCP
approach is included. This approach corresponds to the approach currently used in most real-life applications
of software-fault tolerance.

3.7 Interfaces Between Modeling and Measurements
Kishor S. Trivedi
Duke University

Measurements and modeling are two complementary activities that provide insights into computer system
behavior. By using a judicious combination of the two cost-effective methods of system evaluation can
be devised. Two interfaces between modeling and measurements, namely model calibration and model
validation, will be explored in this talk.

9

3.8 Relating Software Defect Types to the Reliability Growth Experienced
Ram Chillarege

IBM Thomas J. Watson Research Center

This talk presents an empirical study on software defects with a goal to gain understanding of defect types
and their influence on reliability growth. The study provides insight into possible differences in characteristics
among the different defect types. The finding demonstrates the usefulness of such analysis in impacting the
testing strategy and the development process. The study performed on a large software project shows that:

• The population of defects is separable into sub-populations demonstrating different reliability growth
characteristics.

• Initialization defects are found to be strongly related to defect sub-populations with very inflected
growth curves. Thus, impacting the testing strategy.

• Function and checking type defects contribute the largest cause of defects. However, improvements in
specification can reduce the incidence of these defects.

3.9 Upset Evaluation of Fault-Tolerant Control System in Harsh Electromag
netic Environments

Celeste M. Belcastro
NASA Langley Research Center

Control systems for advanced aircraft will have very high reliability specifications which must be met in
adverse as well as nominal operating conditions. Severe operating conditions can result from electromag
netic disturbances caused by lightning, High Energy Radio Frequency (HERF) transmitters, and Nuclear
Electromagnetic Pulses (NEMP). Perturbations to computer-based control systems that can be caused by
electromagnetic disturbances are functional error modes that involve no component damage. These error
modes are collectively known as “upset,” can occur simultaneously in all of the channels of a redundant
control system, and are software dependent. To date, there are not comprehensive guidelines or criteria
for detecting upset, designing upset recovery mechanisms, or performing upset tests or analyses on digital
control systems.

An upset test methodology is under development for fault-tolerant control systems. The laboratory test
method involves perturbing the controller under test with transient signals that are representative of induced
electromagnetic disturbances. The controller is interfaced to a simulation of the plant so that the closed-loop
dynamics of the system are represented. During tests, the controller is monitored for system-level errors such
as incorrect control law calculations and input/output errors as well as microprocessor errors such as invalid
memory access and illegal opcode execution. In addition, the operation of the plant is monitored during tests
so that cases can be flagged in which acceptable control is not maintained by the faulted controller. Issues for
consideration in the development of the methodology include upset detection, the generation and coupling
of analog signals that are representative of electromagnetic disturbances to a control system under test,
analog data acquisition, and digital data acquisition from fault-tolerant systems. In addition to developing
the methodology itself, other goals of the research are to develop on-line upset detection and correction
strategies, upset susceptibility measure and margins, and an upset reliability estimation procedure.

The upset test methodology under development will be demonstrated using an Electronic Engine Control
(EEC) unit as an experimental test-bed. The EEC is a control unit manufactured by the Hamilton Standard
Division of United Technologies, which provides electronic controls for Pratt & Whitney aircraft engines.
It is a full-authority controller and is a dual-channel system which operates with a primary/secondary
channel redundancy strategy. An engine simulation to provide closed-loop dynamic with the EEC has not
been obtained to date, but is included in future plans. Initial tests have been performed on the EEC to
characterize nominal open-loop performance. Multiple bursts of a damped sinusoidal waveform have been

10

coupled into the EEC on sensor input lines. Although a comprehensive assessment of the test results is
incomplete, initial results indicate that fault tolerance mechanisms in the EEC have been exercised as a
result of the induced transient signals.

3.10 Spaceborne Computing
Laureen Brickley

IBM

The long-term survivability of spaceborne computers based on VHSIC/VLSI technologies and advanced
computer architectures creates many challenges. A significant amount of modeling and testing of specific
failure modes and error mechanisms has been accomplished, but the models we have evaluated are not
sufficient for accurate prediction of long-term survivability under operational conditions. Very detailed failure
mode effects analysis needs to be performed for the Central Processing Unit (CPU), memory, Input/Output
(I/O), support functions, and power system. The statistical significance of each failure mode needs to be
quantified, and the hardware and software fault tolerance mechanisms must be designed to contain and
recover from all significant failures.

The sensitivity of space systems to transient errors or single events upsets (SEU) is important as systems
become more autonomous and is therefore a significant contributor in the survivability model. The composite
SEU rate depends on the radiation environment, the sensitivity of storage elements and the effective level of
shielding provided to each component in the sytem. A technique has been developed to provide a detailed
analysis of the single event error rate for a given system architecture. This analysis combined with out fault
tolerance design approach is the basis for quantifying the survivability of a spaceborne system.

Under IR&D, Laureen Brickley is attempting to quantify the survivability of space systems. Our approach
to date has been to evaluate the single event error rate at the system level. This involves evaluating the
given environement for the application, the types and quantities of components, the sensitivities of each
component, and the level of shielding. We have, from a customer’s definition of a fail or incident, quantified
the incident rate due to hard and soft failures for a given architecture. More in-depth study and expertise
is required in shielding effects (geometry vs. spot shielding) to optimize the protection while minimizing
weight. Laureen plans on investigating various models which might help her research.

She also plans on pursuing involvement with universities that are developing or using models to quantify
the survivability or viability of space systems. The approach is to come up with a cost effective, reliable
system approach to space systems and obtaining a method to verify the approach.

She could present at the workshop the evalution of “incident” rate for a spaceborne computer for hard
and soft faults. An incident can result in an erroneous write to memory, stopping the execution of operational
software or a machine error interrupt (based on a customer’s definition of an incident). The evaluation of
the single event error rate for the system might be of interest to others at the workshop.

3.11 Analysis and Prediction of System Reliability

Gary L. Engel
UNISYS Corporation

I am responsible for providing technical leadership in the development, application and interpretation
of reliability models (MIL-217, Fault Tree and Markov) and statistical analysis tools (Poisson and Weibull
pdf’s) to the prediction and monitoring of system RAS performance. I also provide counsel to the UNISYS
organizations, UNISYS vendors and UNISYS customers on difficult RAS issues. This includes the specifi
cation of field data collection and analysis systems. I often perform or participate in the RAS analysis of
installed computer systems. I have developed a suite of PC (personal computer) based hierarchical reliablity
models and statistical tools. These models and tools are based on Lotus 1-2-3 spreadsheet templates.

11

3.12 Trace Driven Evaluation of Fault-Tolerant Parallel Architectures

W. Kent Fuchs
University of Illinois

This talk will describe the collection and use of parallel computer address traces for evaluation of fault-
tolerant multiprocessor systems. Recent results concerning collection of virtual address traces for distributed
memory hypercube multicomputers and also shared memory multiprocessor systems will presented. Appli
cation of these address traces to evaluating recovery techniques will be described.

3.13 M odeling Recovery Tim e Distributions in Ultra-Reliable Fault-Tolerant
Systems

Robert Geist
Clemson University

The accuracy of reliability prediction models depends critically upon the representation of fault recovery
procedures, and hence upon the distribution of system recovery times. A technique for fitting distributions to
empirical recovery time data that focuses on those components that dominate system reliability prediction is
proposed. The technique uses Goldfarb’s conjugate gradient descent search to minimize the L2 norm of the
error projected in the Laplace transform domain. A new parametric family of distributions is also suggested
and is seen to provide uniformly better predictions of system reliability than the standard distributions used
for this purpose, i.e. gamma, Weibull, and lognormal. Applications to several sets of real recovery time data
are provided.

3.14 Conservative Reliability Predictions for Real-Tim e Software
Robert Geist

Clemson University

A method for obtaining time-dependent numerical estimates of the reliability of real-time software is
proposed. An extended stochastic Petri net is used to represent the synchronization structure of N versions
of the software, where dependencies among versions are modeled through correlated sampling of module
execution times. The distributions of execution times are derived through an automated generation of test
cases that is based on mutation analysis. This allows for results from software testing to be directly incor
porated into the reliability measure. Since these test cases are designed to reveal software errors, including
timing constraint violations, the associated execution times provide a worst case scenario. Applications to
NASA’s planetary lander control software are provided.

3.15 Real Tim e Parallel Processing Systems for High-Reliability M ilitary A p
plications

Robert L. Goan
SCI Technology, Inc.

A major concern in the design and development of real-time processing systems for survivable military
applications is the evaluation of fault tolerance design features. This is particularly difficult in parallel
processing systems in which not only hardware but software faults can potentially propagate throughout the
system if not controlled and isolated with levels of fault containment boundaries. The sophistication of Very
High Speed Integrated Circuits (VHSIC) used in these advanced space systems precludes a reliance on more
classical fault detection methods. Rather newer methods which enable real-time detection and isolation must
be developed and verified to allow mission critical systems to operate in stressing scenarios and environments.

12

These methods require an in-depth method of models and simulations, live fault injection, and real-time
measurement to ascertain their ability to successfully detect and isolate faults in a complex system. Critical
technologies must also be evaluated for technology-driven fault types which may go undetected in laboratory
fault injection tests.

Several innovative design techniques have been developed and implemented by SCI Technology, Inc.,
for specific use in strategic systems, to provide real-time fault detection and isolation for embedded parallel
processing systems. These have been complemented by a fault tolerant operating system design which allows
for the management of the system during a fault condition through proper recovery.

In addition, SCI is currently developing a high fidelity system model which not only allows the simulation
of the system’s performance, but which will allow the simulated injection of system faults under various
system operating conditions.

SCI’s main interest therefore lies in the development, modeling, implementation, and evaluation of real
time parallel processing systems for high-reliability military applications. This includes the development of
advanced tools and techniques for evaluating the design.

3.16 Simulating Markovian M odels of Dependable Systems
Ambuj Goyal

IBM

We present a unified framework for simulating Markovian models of highly dependable systems. Since
the failure event is a rare event, the estimation of system dependability measures using standard simulation
requires very long simulation runs. We show that a variance reduction technique called Importance Sampling,
can be used to speed up the simulation by many orders of magnitude over standard simulation. This technique
can be combined very effectively with regenerative simulation to estimate measures, such as steady-state
availability and mean time to failure. Moreover, it can be combined with conditional Monte Carlo methods to
quickly estimate transient measures, such as reliability, expected interval availability, and the distribution of
interval availability. We show the effectiveness of these methods by using them to simulate large dependability
models. We also discuss how these methods can be implemented in a software package to compute both
transient and steady-state measures simultaneously from the same sample run.

3.17 Operational Failures in SPC Systems

Bjarne E. Helvik
Dr. techn. ELAB-RUNIT and

Division of Computer Systems and Telematics
The Norwegian Institute of Technology

The University of Trondheim
Norway

Analysis of operational failure data from SPC systems since 1983 has shown us that the failure pattern,
etc. in a system deviates from what is commonly assumed in dependability modelling, for instance:

• failures occur in bursts, *.e., it is no Poisson process;

• propagation of errors between physical “separate” units. Very much effort has been directed towards
a mathematically precise analysis of computer system models and, in my opinion, a too small effort
toward establishing models which reflect the true behaviour of computing systems.

This opinion is reflected in our current activities, where we have concentrated on the effects of software
faults on the dependability of distributed systems, i.e.:

13

1. Error propagation experiment.
The objectives are a better understanding of error propagation in a large distributed system as a basis
for modelling, input to system level models and validation of system error handling capabilities.

• Investigation of the types of errors due to software faults found in mature operational systems.
(Finished)

• Planning of an error-seeding and -propagation experiment; contact with potential partner. (On
going)

2. Error propagation modelling.
The objective is to be able to predict the error propagation from one process (or one processing unit)
to another. A preliminary model is established. (Further work awaits outcome of the experiment.)

3. System level modelling and tools.

• System level model to account for above-mentioned effects. (Finished)
• Use of transient/dynamic dependability measure in practical system assessment. (Further work

awaits outcome of sub-activity below.)
• Development of a modelling methodology and a tool for evaluation of systems with error propa

gation and other types of dependencies between subsystems. (On-going)

4. Design of systems robust to error propagation. (Currently no funding.)

3.18 Fault Injection System for the Study of Transient Fault Effects

Johan Karlsson
Chalmers University of Technology

Sweden

I have participated in the development of a system named FIST (Fault Injection System for study of
Transient fault effects), which is aimed at experimental evaluation of dependable computing system. In
this project, different methods for injection of transient faults into ICs have been studied, including the use
of heavy-ion radiation, and power supply disturbances. The FIST system also facilitates fault injection in
software simulation models of ICs. Several error detection mechanisms have been evaluated experimentally
by the use of these fault injection methods. My work has involved, among other things, estimation of
coverage and latency. Another way to use a fault injection system is to experimentally verify or disprove
analytical models of a dependable computing system. So far, we have not done any work in this area at
Chalmers, but it is an area of research I am personally interested in. Thus, as the theme of the workshop
is almost exactly in line with my current work and interest I would be grateful if you would grant me the
opportunity to participate.

3.19 Experimental Validation of Two Fundamental Design Techniques for Fault-
Tolerant Distributed Computing

K.H. (Kane) Kim
B.J. Min

W.J. Guan
University of Califomia-Irvine

In the UCI DREAM Lab, testbed-based evaluation of promising schemes for system-level real-time fault
tolerance (tolerance of both hardware and software faults without missing the processing deadlines) has
been one of the main activities for several years. Testbed-based evaluation of fault-tolerant distributed

14

computing schemes is based on experimental incorporation of the schemes into real-time computer network
testbeds equipped with high-fidelity simulators of nontrivial real-time applications. The main objectives of
our experiments have been as follows:

1. To study how the operational principles of promising but abstract fault tolerance schemes are translated
into practical distributed fault detection and recovery logic effective in various real-time applications;

2. To validate implementation techniques and derive efficient OS primitives and protocols, and;

3. To measure and collect data to determine the execution overhead and logical complexity of various
distributed fault tolerance schemes.

Recently, we conducted two different experimental validations by use of a testbed established. The
testbed used was built around a tightly coupled network, called the Crossbar Multi-microcomputer System
(CMS). It consists of 7 Zilog Z8001-based single-board microcomputers and shared memories. The shared
memory modules are connected to the microcomputers via a crossbar interconnection network. A CMS kernel
has been developed to support distributed cooperating application processes running on separate nodes. It
provides system initialization, process synchronization mechanisms, message communication facilities, and
interrupt handling, as well as special functions such as a global real-time clock and inter-microcomputer
interrupt facilities. In order to obtain highly accurate validation results, a high fidelity simulation of a
real-time application was developed to run on the CMS. The simulator provides generic on-board processor
functions as well as a dynamic model of the application environment (sky) and sensor and actuator devices.

One experiment conducted dealt with the Distributed Recovery Block (DRB) scheme which is essentially
an active redundancy scheme where multiple processors concurrently execute multiple versions of a software
component and the same acceptance test. Past experiments involved applications of the DRB scheme to
only one computing station. In the recent experiment, the DRB scheme was incorporated into two adjacent
computing stations in order to further study implementation techniques and to obtain more accurate perfor
mance data as well as additional evidences of the real-time forward recovery capability of the scheme. The
performance of the DRB scheme in terms of overhead and recovery time was measured. New understanding
of efficient techniques for implementation of the scheme has been obtained, and the results demonstrate the
fast forward recovery capability and logical soundness of the DRB scheme in the system in which efficient
internode connection media are used.

The other experiment dealt with a scheme for handling temporary blackouts (TB ’s) which are extensive
external electrical and electromagnetic disturbances that disrupt normal operation of electronic components
and erase the contents of registers and RAMs. Such a blackout may be caused by unreliable power sources
or high energy events. In a sense, the TB handling deals with global faults of a distributed system. It
is indispensible in many aerospace applications where such global faults are non-negligible. In real-time
distributed systems, processes must establish their recovery points in a coordinated manner so that the
system can restore itself to a consistent state. As a part of the experiment of TB handling, efficient schemes
of checkpointing and forward recovery have been designed. The performance of the TB handling implemented
is currently being measured.

In addition to presenting a summary of the experiment results, major parts of our experimentation
approaches, including the approaches adopted for fault injection and measurement of overhead and recovery
time, will be critically reviewed in the presentation. The schemes experimented with are considered to be
fundamental in nature in the sense that they are applicable to a broad range of application environments.
The mechanisms implemented provide reference models for use by developers of systems for real applications.

15

3.20 Modular and Dependable Multiprocessing Systems
Israel Koren

University of Massachusetts at Amherst

We concentrate on modular architectures of dependable multiprocessing systems. The major advantage
of these systems is the ability to incorporate support for graceful degradation so that the system can function
in the presence of faulty components, at a lower level of performance. Another obvious advantage of modular
design is easy expandability. Modular architectures for dependable multiprocessors should also attempt to
avoid having single points of failures or apply some redundancy techniques to the hardcore portion of the
architecture. An example of such an architecture has been described and analyzed in [Deshmukh 90] *.

For systems like the above, the traditional measures for dependability may be insufficient. These include
measures such as reliability, availability, computational availability, performability and alike. In the above
systems the network interconnecting all the system components is of utmost importance and measures
concerning the connectivity of this network have to be considered in addition to the more conventional
dependability measures. One such measure accessibility is defined as follows: A component is said to be
accessible if it is fault-free and is connected to at least another fault-free component. This measure has been
analyzed in 2 for a very specialized type of interconnecting network.

There is a need to study connectivity measures that are appropriate in the general case of modular
multiprocessor architectures, devise procedures for their calculation and then combine them with other
dependability measures.

3.21 The Transformation Approach to the Modeling and Evaluation of the Re
liability and Availability Growth of Systems in Operation

J.C. Laprie, C. Beounes, M. Kaaniche, K. Kanoun
LAAS du CNRS

France

When dealing with the assessment of dependability the users of computing systems are interested in
obtaining figures resulting from modeling and evaluation of systems, composed of hardware and software,
with respect to both physical and design faults. Faced with these user requirements, hardware-and-software
evaluations are far from being current practice. In order to fill the current gaps, we have defined an approach
based on the hyperexponential model developed at LAAS which enables both reliability and availability of
hardware and/or software systems to be evaluated, from the knowledge of the reliability growth of their
components. This model is first shown to be satisfactory when applied to real data (reliability and availability
of a switching system in operation); it is then shown how its markovian interpretation enables modeling of
multi-component system through the transformation of stable reliability models into models incorporating
reliability growth. This presentation relates to a paper accepted for FTCS-20.

3.22 Experimental M ethodology

Nancy Leveson

I am interested in experimentation and have conducted several experiments on fault tolerance and fault
elimination. Experiments should be conducted to establish the validity of the assumptions underlying our
models. Unfortunately, too many experiments are used merely for sales-the conclusions rarely claim anything
but “success” and are often not based on statistical analysis of the data. What is not needed is more

S. Deshmukh and I. Koren, “A Modular, Highly Integrated Fault-Tolerant Multiple Bus Multiprocessor System,” submitted
for publication.

21. Koren and Z. Koren, “On Gracefully Degrading Multiprocessors with Multistage Interconnection Networks,” IEEE Trans,
on Reliability, Special Issue on Reliability of Parallel and Distributed Computing Networks, Vol. 38, pp. 82-89, April 1989.

16

“experiments” that show how wonderful the researcher’s new technique works. Instead, there is a need to
use experimentation to determine what does not work and what needs to be improved. There is also a
need to compare alternative techniques to provide information for decision-making. Again, this does not
mean comparing our own techniques to some other, inherently inferior technique to try to enhance our own
reputation. One of the problems with conducting experiments in software engineering is that there is little
foundation to build upon. Without such foundation, it is difficult to know what variables have to be held
constant and to define very specific experiments. However, exploratory experiments can be used to identify
critical variables and promising hypotheses to be tested in more carefully defined experiments. Finally, there
is a need to teach more about experimental design in our Ph.D. programs and to use experts in experimental
design to help with our experiments. Too often, the design of the experiments and the data analysis violate
basic principles and invalidate any possible conclusions that are drawn. More sophistication in basic design
will allow us to increase the amount we can learn from experimentation and increase the pace of progress in
our field.

3.23 Fault-Tolerance Evaluation and Design
Dale L. Lomelino
Honeywell, Inc.

Evaluation of fault tolerant computer architectures begins early in the design cycle (e.g., System Design
Review or Preliminary Design Review), allowing the evaluation results to impact the design without adversely
affecting the development schedule. Lacking a detailed design, evaluation of the baseline flight design consists
of analysis, simulation, and experimentation; each technique bringing unique capabilities to the total effort.
A Fault Tolerance Evaluation Plan (FTEP) defines the methodology; describing the flight fault tolerance
techniques, and coordinating each of the evaluation efforts.

Analysis of the flight design includes reliability modeling using state-of-the-art modeling tools (e.g.,
HARP and SURE), formal Failure Modes Effects and Criticality Analysis (FMECA), and other mathe
matical analysis. Reliability modeling utilizing multiple tools avoids dependency on any individual tool’s
assumptions. Analysis estimates the flight design’s fault tolerance performance against the specified “basic”
fault set. The FMECA expands on the basic fault set, developing a “derived” fault set specifically for the
flight design. Finally, analysis identifies the data from simulation and experimentation needed to validate
(e.g., error generation rate, error detection latencies, recovery latencies, and coverage).

Simulation is performed at each hierarchical level for both the flight and experimental systems. Starting
with architectural-level and instructional-level simulations, the analysis results are validated and the flight
performance is predicted. Moreover, these high level simulations can also show the impact on mission perfor
mance of each of the fault tolerance techniques under consideration, for a variety of fault conditions. Eval
uation continues with more detailed RTL-level and gate-level simulations as the detailed design progresses.
Modifications to the simulation to represent the development hardware and software provide validation of
the experimental results. Ultimately, simulation bridges the gap between analysis and experimentation, ac
curately scaling the results obtained from the experimental system to the expected performance of the flight
system.

Experimentation is performed with breadboard hardware and preliminary versions of the software for
the critical fault tolerance techniques identified by analysis. Experimentation provides the greatest degree of
confidence that appropriate fault tolerance techniques have been selected. Correct operation of the technique
is demonstrated and preliminary performance results are obtained. Accelerated life testing is performed on
key parts and technologies, validating the failure rates used in the reliability modeling. Rapid prototyping
allows system integration to begin; exercising the hardware-software interfaces. To facilitate testing, error
injection and data collection mechanisms are incorporated into both hardware and software; minimizing the
need for expensive and intrusive external fault injection equipment. These mechanisms remain in the flight
design to aid qualification testing, and in-operation testing and diagnostics. Experimentation validates the
simulation results, and provides data that may be scaled to the expected flight system performance.

17

In conclusion, fault tolerance performance is predicted by analysis. Experimental data are collected
on breadboard hardware and preliminary software. Simulations scale the experimental results to yield the
expected flight performance; validating the fault tolerance computer architecture.

3.24 Software Reliability Experiences at the Jet Propulsion Laboratory
Dr. Michael R. Lyu

Jet Propulsion Laboratory

Outline of Interest:

• Software reliability engineering, including defining, modeling, measuring and analyzing the reliability
of software and the factors that affect it.

• Fault-tolerant software, including design methodologies, experimentations and implementations, relia
bility and performance measurements, and quantitative assessments and evaluations.

Position Statement:
Software reliability has been recently identified as one of the most important factors for JPL software

quality, since it quantitatively measures against software failures-the most unwanted event that disqualifies
the software. The impact of software reliability to system reliability is tremendous. A recent software
reliability study for a JPL project has dramatically reduced the predicted mean-time-between-failure of the
system (including hardware and software) from 125.8 hours (without considering software failures) to 12
minutes (by considering software failures).

A list of investigations has been conducted for measuring software reliability for JPL flight and ground
systems, including: Voyager, Magellan, Galileo, Deep Space Network (DSN) and Alaska SAR. These activities
have provided us with critical feasibility studies of software reliability in the JPL environment. Nevertheless,
such efforts have been minimal up to date. For most projects, no quantitative software reliability requirement
is imposed. The widely-used JPL failure accounting system can at best provide rough software reliability
measurements. The execution times between failures need to be elaborated. Moreover, the embedded nature
of the software systems makes it difficult to analyze the cause of certain failures for software reliability
measurement. A more active investigation into this area is launched now and will be fruitful for ensuring
mission success on on-going and future JPL projects.

3.25 Predictive Methodology

Oleg A. Panfilov
NCR Corporation

The problem of selecting a subsystem mean time between failures (MTBF) to provide a required level of
system availability is an unseparable part of a system design. The configuration of the future system in a
great degree depends on it. If system availability requirements can not be met by a nonredundant system,
different levels of HW redundancy and SW recovery procedures from system faults have to be used to meet the
design objectives. Fault tolerant systems comprised from modules of different reliability as well as diversity
of such modules in large multiprocessor systems complicate the issue of dependability evaluation. To make
things worse, the fault tolerant systems can not be adequately characterized by only mean time between
failures as well as such parameter as system availability. In general, a system after a reconfiguration may be
available while a specific application will not be available. So, for such systems we have to introduce such
metric as the application availability along with a classical system availability. It is important at the early
stage of system design to have a methodology to specify availability requirements for different subsystems
for the range of workloads of interest. This is important since different workloads generate different service
demands for different subsystems and correspondingly produce different failure rates for the same systems.
There is no known completed methodology to answer these questions now although some progress is done.
It is important to verify any predictive methods of dependability estimates with the measured results.

18

3.26 Intelligent Computational Systems for Space Missions
Ann Patterson-Hine

NASA Ames Research Center

Joanne Bechta Dugan
Duke University/Research Triangle Institute

Jerry Yan
NASA Ames Research Center

The design and operation of intelligent computational systems for Space Station Freedom and future
space missions is an evolutionary process which must include integrated approaches to system modeling,
simulation, and experimental verification of both performance and dependability. System models used in
design must be capable of evolving as the system is more completely defined and implemented, and as model
parameters are more accurately measured. The approach we are taking involves the development of a new
analytical technique which combines the object-oriented representation of reliability fault trees with methods
for bounded approximate solution of dynamic combinatorial models. An object-oriented modeling environ
ment enhances the storage and retrieval of a hierarchical model structure and also enhances the ability of the
solution algorithm to detect modules in that structure. A dynamic combinatorial model is a combinatorial
model that can capture dynamic system behavior such as sequence dependencies and fault recovery behavior.
The hierarchical approach will allow multiple solution techniques and will select the best or most appropri
ate solution technique for the subsystem being modeled. Model parameters will first be approximated using
AXE, an integrated environment for computation model specification, multiprocessor architecture specifica
tion, simulation, and data collection. Experiments on the Advanced Architecture Testbed at Ames Research
Center will later provide experimental determination of model parameters as well as measures of system
performance. Integration of the knowledge gained by modeling, simulating, and operating these systems
will be used in the development of intelligent fault management strategies optimizing the performance and
reliability of onboard computational systems.

3.27 Practical Issues in Modeling System Availability
Andrew Reibman

AT&T Bell Laboratories

There is a wide gap between commonly used system reliability models (e.g., Markov chains) and “real”
system failure and repair time data. For example, although many analyses assume deterministic repair times
of a constant repair rate, system repair times are often highly variable. In this talk we discuss some' of the
properties of “real” system availability data. We describe some techniques and software tools for analyzing
life data. We then consider how the information obtained from this type of analysis can be used in system
modeling and design.

3.28 Discrete Event Hypercube Models used to Evaluate Performance Tradeoffs
and Understand Actual Performance Anomalies

E. Upchurch and J. Peterson
Jet Propulsion Laboratories

California Institute of Technology

We have developed detailed discrete event models of the Mark III and Hyperswitch (adaptive routing)
Communications Network (HCN). These models have allowed us to evaluate and compare the performance
of the two architectures under a variety of application workloads and architecture tradeoff's. For example,

19

we can evaluate: fixed vs. adaptive routing; increases in processor speeds; effect of faults on performance;
bus bandwidths; architecture scalability.

Since the Mark III is an existing machine with up to 128 nodes, we have been able to modify and
validate our Mark III model against actual performance. The HCN is currently being built and HCN model
validation will soon follow. Validation has proven to be critical in this modeling work and we have been
able to understand some performance anomalies by comparing actual Mark III program performance with
detailed model statistics under a comparable workload. For example, a problem in scalability to 128 nodes
was understood for a space communications flooding algorithm by model simulation and analysis.

We have found modeling a valuable aid for evaluation of design tradeoffs in early system development
stages and an equally important tool for understanding actual system performance when the chosen design
is implemented.

3.29 Design of Integrity S2 Fault-Tolerant RISC Unix Minicomputer

William J. Watson
Tandem Computers

Keep in mind that I will be able to speak about the methods we use, but not the results of our analyses
or the specifics of which tools proved most useful on which products.

I am interested in discussing the design of the ’’ Integrity S2” fault-tolerant RISC Unix minicomputer
we have designed here in Austin. I will be prepared to answer questions on its architecture, including
such aspects as the loosely synchronized TMR CPUs, replicated fail-fast voters and I/O system, power
system, customer serviceability features, reconfiguration software, diagnostic analyzer, and operating system
robustness enhancements.

I also can speak about some of the tools used by Tandem for the design and analysis of our fault-tolerant
machines. These include our scan design tools, our manual and automated fault injections tools and analysis
techniques, and ’’ Hot Plug” and power cycling tests.

The topics I am interested in are primarily those involved with evaluating the dependability of a computer
system, beyond simple models that treat boards as ’’ black boxes” with constant failure and repair rates. I
am also interested in tools and techniques of fault injection, from selection of nodes at which to inject faults,
through tools used, to evaluation of the results of the testing.

20

4 Summary: On Measurement and Modeling of Computer Sys
tems Dependability

Joanne Bechta Dugan
Duke University,
W. Kent Fuchs

Ravi K. Iyer
University of Illinois at Urbana-Champaign,

Ram Chillarege
IBM T.J. Watson Research Center

and
Daniel P. Siewiorek

Carnegie Mellon University

A workshop on Measurement and Modeling of Computer Dependability was held at the Aerospace Cor
poration Facility on May 1 and 2, 1990. The workshop was organized by Ravi Iyer (University of Illinois)
and Dan Siewiorek (Carnegie Mellon University) and the technical program committee included Jean Arlat
(LAAS), Gerald Masson (Johns Hopkins) and Kishor Trivedi (Duke). The workshop was attended by a se
lect group of researchers, allied scientists and academics involved in the discipline of computer dependability
measurement and modeling.

The workshop objectives were to:

• Determine the state of the art in the dual areas of measurement and modeling of computer systems
dependability;

• Identify the open issues at the boundaries of the two areas;

• Explore ways in which measurement and modeling can work in synergy to affect computer system
design.

Since the essence of the papers in this special issue and the essence of the workshop are both consistent
with measurement and modeling of computer system dependability, this paper is a relevant complement to
the special issue in summarizing the presentations of the workshop panelists and the ensuing discussions
among the experts participating in the workshop.

4.1 Introduction

Computer systems that are used in life-critical applications such as flight control, nuclear power plant
monitoring, and space missions as well as those used in economic-critical applications such as banking and
telecommunications are designed to be tolerant of faults or errors that may occur. Dependability measures,
such as reliability and availability, quantify the degree of fault tolerance in a system. As the dependability
criteria become more stringent, the system designs become more complex, and it becomes difficult if not
impossible to accurately determine if a system design can meet these criteria. In order to assure that a
proposed system meets the design goals, analysts and designers use various tools such as logical proofs of
correctness, analytical models and experimental testing. Measurements are made on operational systems
to obtain data on how systems behave in a naturally occurring environment. The complexity of highly
dependable systems stresses currently available techniques in analytical modeling and experimental analysis.

There are at least three different types of fault tolerant systems of interest. Commercial general purpose
systems and on-line transaction processing systems are designed to achieve high levels of availability, but
the latter are additionally concerned with application integrity. Mission-critical fault tolerant systems are
expected to achieve ultra^high levels of reliability, and are generally not repairable while on-line. Such
systems are custom designs, and usually only one version is ever built, while there are typically very many

21

more copies of commercial systems from which to gather data. Analysis of fault tolerant systems can be
done at the hardware level, the software level or at the system level. The purpose of the analysis can be for
design improvements or validation. Research areas in measurement and modeling of computer dependability
fall in one or more areas defined by the intersection of the three dimensions (purpose, level of analysis, target
application).

Research groups in the areas of measurement and modeling of computer systems dependability have been
studying these areas, but have worked together infrequently to address common problems. On May 1 and
2, 1990, a workshop on Measurement and Modeling of Computer Dependability was held at the Aerospace
Corporation to assess the current successes and limitations in these areas, and to facilitate interactions
between the two groups. The workshop consisted of two panel sessions on the first day, each followed
by smaller group discussions. The second day (a half-day session) included summary presentations of the
previous day’s group meetings, and discussions about bridging the gap between modeling and measurement.
In this report, we summarize the workshop group discussions and panel presentations.

This report is organized as follows. First we review the state of the art in measurement and modeling of
computer dependability, describing the current abilities and limitations, after which the problems associated
with bridging the gap between measurement and modeling is discussed. The final section of this report
summarizes the points raised concerning directions for future work.

4.2 Measuring Computer Dependability
In the discussions of measuring computer dependability, several different subareas were delineated, these
being broadly classified as fault injection, analysis of field data, and simulation. Simulation is generally done
during the design development, fault injection is performed on a prototype and measurements are taken in
the field. The points that were raised as to the state of the art in each of these subareas, as well as the major
problems remaining to be addressed will be discussed in the following paragraphs.

4.2.1 Fault Injection

Fault injection is the process of deliberately inserting erroneous data or control signals in a portion of logic.
Some members of the set of possible faults are not injectable, and, in typical fault injection experiments, only
a portion of injectable faults are actually considered. The complexity of current VLSI systems has caused
the set of injectable faults to increase to the point of intractability. However, the experimental space can be
reduced by the use of sampling techniques, and models of fault manifestations based on system design.

Data concerning whether an injected fault is detected, whether recovery is successful, and how long
detection and recovery take can be gathered during a fault injection experiment. From this data, some
inferences can often be drawn about the overall detectability and/or latency of faults in the system being
analyzed. Fault injection techniques are applicable to software as well as hardware, but fault injection has
not been used as extensively in software as it has in hardware. Typical hardware injected faults include
changing values at pins and in memory. Software injections include changing operators, incrementing or
decrementing variables and removing statements entirely.

Fault injection can be used as part of a validation design process for hardware and software. For example,
for validation of a computer interlock subsystem for a railway control application, fault injection was used
in conjunction with axiomatic, empirical and physical models (LAAS).

Software fault injection performed in the laboratory on a commercial transaction processing system
enhanced understanding of large system failures by revealing potential hazards that do not affect short term
availability but which can cause catastrophic failure following a change in operational state (CMU, IBM).

Fault injection experiments in software helps shorten latency. Consideration of multiple variables in
software reliability models (rather than only considering time in test) results in more accurate assessment of
growth patterns (George Mason).

Fault injection used in a digital avionic system demonstrated that fault latency is independent of both
length and instruction mix of a program, and injections based on device, gate and pin-level models showed

22

significant differences in fault coverage (Illinois, NASA Langley).
The current shortcomings of the fault injection method are the large space of possible faults and insertion

times, and the difficulty in injecting in a controlled manner faults that are caused by environmental conditions
such as voltage or temperature fluctuations, electromagnetic effects, electrostatic discharge, and radiation.
Also, it is uncertain how to relate the effects of injected faults to faults that occur naturally in use.

4.2.2 Analysis of Field Data

Data on errors in operational systems has been gathered and studied by many researchers, in order to provide
practical insight into failure characteristics and to facilitate diagnosis. Field data has been used to study
the effects of workload on error production, to differentiate between permanent, transient and intermittent
faults, and to assist in failure diagnosis.

Collection of data on hard failures in the Cm* system was used to determine distributional fit and compare
with predicted rates from MIL 217D. Data from four timesharing systems, and experimental multiprocessor
and an experimental fault tolerant system was used to study transient errors. Automated monitoring and
diagnosis techniques can enhance system availability by detecting trends, making fault predictions and
diagnosing failures (CMU).

Analysis of field data was used to show strong correlation between the manifestation of permanent failures
and the level an type of workload prior to the failure. Several measurement-based analysis techniques aided
in this analysis, including smeared averaging of the workload data, clustering of like failures, match merging
of workload and failures and a joint analysis of workload and failures (Illinois, CMU).

Memory data analysis was used to study fault latency, and fault latency distributions were generated.
Results showed that the mean latency of a stuck-at-0 fault was significantly longer than that of a stuck-at-1
fault, and large variations in fault latency were found for different regions of memory (Illinois).

Data concerning detected software defects can be used to parameterize a reliability growth model. Further
analysis of this data can help determine possible causes of defects and feedback into the development process.
The defect can be separated by type (for example functional, initialization, checking or assignment) to
parameterize several different reliability growth curves (IBM).

Despite these successes, there were several problems mentioned that were associated with the collection
and analysis of field data, most notable being the lack of controlled experiments. Repeatability is a problem
that manifests itself in two different ways. First, there are a large number of faulted components that are
diagnosed as having failed in the field, but for which no problem is found when diagnostics are run off line
or in the lab. Second, even in the field, there is no control over workload or naturally controlling errors.
Further, it is time and space intensive to record every state change in the system, field data records are thus
inherently incomplete. It is difficult to determine the level of detail that is appropriate for data collection as
no standards exist. It is more difficult to relate workload characteristics to error production in a distributed
workstation environment than in a mainframe configuration.

An important issue associated with field data, which merits investigation, is the fact the systems are
changing rapidly. For a given commercial system, there are many different versions/configurations currently
in the field, which makes it difficult to correlate data collected at various installations. The quick pace of
updates causes another related problem. By the time enough data is collected to carefully analyze a system
in the field, it is frequently ready to be replaced by a new generation system. Thus, the question arises as
how models based on data collected from current systems can be extended to the next generation systems.

Some researchers felt that field data has limited predictive power, in that once a failure cause is deter
mined, it is remedied, thus rendering the data useless. Several examples were given where some external
environmental problem was causing repeated failures. Once the problem was isolated, it was fixed, making
the data gathered during diagnosis useless in analyzing different systems.

The final set of issues raised was the proprietary nature of commercial data. Vendor cooperation is
essential obtain information about failure behavior. Frequently, they are reluctant to provide the detailed
information necessary to analyze data.

23

4.2.3 Simulation

Simulation of systems and circuits have been used to gather a variety of data related to computer depend
ability. At the transistor level, simulation of physical failure mechanisms, such as electromigration and
hot-carrier stress, has been used to predict the life-time reliability of small circuits. At the gate and switch
level, simulation has been used to study the effectiveness of error detection and correction techniques, fault
coverage for testing and diagnosis, and the performance impact of designs for fault-tolerance. Behavioral
level simulation has been used to study a variety of issues related to dependable computers, including ef
fectiveness of error propagation, error confinement and error recovery, and validation of system tolerance of
specific simulated failures.

Simulation can be viewed as bridging the gap between measurements and modeling. For example, simu
lated fault injection through software provides a flexible alternative to physical fault injection. Measurements
are obtained on the simulated experiments, however the simulation is based on a model of the implemented
system.

Areas of active research in simulation of computer dependability include the accuracy, performance
(tractability and speed), and accessibility of the simulation. The accuracy is dependent on both the level of
simulation as well as the accuracy of the system description and stimuli input. Performance is dependent on
the length of the simulation required for meaningful output data, the detail of the system description, and
the size of the system to be simulated. Accessibility includes the common issues of visualization of simulated
results, obtaining and manipulating standardized formats of system description, and obtaining accurate
stimuli input. Research work in this area described at the workshop included simulated fault injection of
circuits and computers from VHDL descriptions (Stanford), Monte Carlo simulation of rare failure events in
computers (IBM), validation of specific fault tolerance features (CMU, Illinois), and hierarchical simulation
for VLSI circuit reliability (Illinois).

4.2.4 Common Measurement Problems

Several problems were reported that were common to fault injection, field data analysis and simulation. The
first was the difficulty associated with correlating the results of the various experimental methods. How can
the fault manifestations seen in the laboratory be related to the error symptoms observed in the field?

Experimental analysis of an existing system, either by detailed simulation, field data or fault injection is
basically a case study of a particular system. Methodologies for generalizing results from these case studies
to develop principles that are applicable to future designs are needed so as to gain maximum benefits from
current analysis.

4.3 Modeling Computer Dependability

Models that assess the dependability of a computer system are used in various phases of the design and
development process. Models are used to compare design alternatives, to analyze dependability/performance
tradeoffs, and to optimize designs. Models are also used to study sensitivity issues of hypothetical systems,
to help devise general guidelines for facilitating design.

Research work in the area of computer dependability modeling generally falls in two related areas, both
of which are interested in developing more useful and accurate models. For lack of better terms, we refer
to these two areas as Model Accessibility and Sophisticated Models. By model accessibility we mean the
development of tools and techniques to make accurate (calibrated) models usable, particularly by designers.
The development of more sophisticated modeling techniques is needed to keep pace with the increasing
complexity of dependable systems. In both areas, researchers have been concerned with improving techniques
for the construction of correct models and with techniques for solving the models once they are created.

24

4.3.1 Model Accessibility

In order for dependability to be fully integrated into the design, compact concise models of the most important
aspects of a design (early life failures, coverage, software failures, reconfiguration, repair, etc.) must be
derived and analyzed. Markov and semi-Markov models are capable of modeling a large variety of behaviors,
but correct and complete Markov models are difficult to construct and understand. Techniques exist for the
automatic generation of Markov models from alternative descriptions such as fault trees, petri nets or other
descriptive languages (Duke, Michigan). These alternative languages are generally more concise and easier
to understand, and capture system behavior at a less abstract level. The use of an alternative language for
the specification of Markov models simplifies the construction of a correct model, but frequently has the
unfortunate effect of generating extremely large models.

Several techniques have been developed that provide approximate solution of the large models (frequently
with error bounds). Methods for decomposition of the overall model into independent submodels, based on
structural or temporal considerations have also been proven useful in addressing the large model problem
(Draper, Duke, IBM, NASA, Michigan)

Hybrid and hierarchical techniques are useful for avoiding the construction of large models. These
techniques allow the specification of the system model in terms of smaller models of subsystems, which
are solved (nearly) separately and whose solution are combined to form the solution for the overall model.
Such modeling techniques have been used successfully to model flight control systems, high integrity process
control systems, commercial systems, and fault tolerant parallel processing systems (Duke, NASA, Draper,
RTI).

The major problem to be addressed with respect to model accessibility is technology transfer. If designers
do not understand or do not believe the models or if the modeling tools are too cumbersome, then they will
not use them. Understanding enhances validation. Several suggestions for improving technology transfer
were made, including the integration of modeling and design work efforts, offering or sponsoring workshops
and short courses on individual tools and techniques. Interaction between modelers and designers may be
facilitated by summer employment for graduate students and summer or sabbatical leaves for faculty at
industrial labs, and extended visits to university labs by industrial personnel.

4.3.2 Sophisticated Models

Research in computer dependability modeling is geared toward developing more sophisticated techniques
for analyzing increasingly complex systems. Markov models are flexible enough to capture many complex
behaviors, but are limited in their ability to model general distributions. More sophisticated models such as
non-homogeneous Markov models and semi-markov models partially address this shortcoming. Markov and
semi-Markov reward models have been used to analyze combined models of performance and dependability.

A major need for more sophisticated modeling techniques is the analysis of interaction effects. Typically
separate models are derived for such system aspects as hardware and software or performance and depend
ability, while the interaction between these models is frequently ignored. Including interaction effects such
as the effect of hardware failures on software (and vice versa), or the effects of checkpointing and failure
on performance has been done (Michigan, IBM, Duke) but only for rather small models. More complex
models are needed to include these effects, and once the modeling techniques are derived, they must be
made understandable to non-modelers.

Another problem associated with modeling complex interactions is that doing so often produces models
for which current numerical solution techniques are inadequate. An example of such a problem is called
model stiffness. A stiff model is one in which there are many orders of magnitude difference in parameter
values. Such systems require special numerical techniques or approximations. Determining bounds on
these approximations can be particularly difficult. Further complications arise when the values of the input
parameters are known imprecisely; errors in input parameters may outweigh numerical errors.

25

4.4 Bridging the Gap
Improved interactions between measurements and models can improve both areas in several ways. Mea
surements can supply input parameters to models and design. Sensitivity analysis on models can suggest
which parameters should be measured more accurately. Model validation requires measurements to test
the accuracy of the assumptions made. Models can be used to gain an understanding of field data or fault
injection results.

As an example, a measurement-based performability model was based on error and resource usage data
collected on a multiprocessor system. Model development proceeded from the collection of raw data to the
estimation of the expected reward, and both normal and error behavior of the system were characterized
(Illinois, Duke).

A typical set of inputs to both the model and the design of a dependable computer system includes infor
mation on failure rates, coverage values, repair information and sometimes performance metrics (rewards).
These inputs can come from various sources, including other models, but at some point system measure
ments can be used to calibrate these models. Methods for bounding the estimate of the dependability of the
system, given bounds on the estimates of the input parameters have been developed (IBM, Duke).

Analysis of the sensitivity of model results to input parameters can suggest which types of measurements
should be considered more closely. A classic example is the coverage parameter, for which estimates of
error detectability, recoverability, and timing are needed. Models have shown that the dependability of a
system is extremely sensitive to this elusive parameter, while measurements to parameterize the models are
still difficult to obtain. Another example given at the workshop is that of correlated failures in redundant
components. Correlation can arise from design errors or environmental interference, and has been shown to
have a significant impact on dependability estimates, but such a parameter is difficult to measure.

A model can be used as an input into an experiment, in that it can be used to define which parameters
are being measured, or to determine stopping conditions for gathering data. Models (and other automated
tools) are necessary for gaining an understanding of field or fault injection data, or for distinguishing bet ween
intermittent and transient faults from error characteristics, for example.

A balanced approach is the goal. Models need to reflect the reality of measurements, including nonstation-
ary processes, missing data, incomplete observability. In addition to calling for much needed measurements,
such as the case of coverage, perhaps more primitive measurements can be used to calculate coverage. De
termination of the key parameters that can be measured and that are important to the models can be
determined only by cooperative efforts between measurers and modelers.

4.5 Directions for Future W ork
In addition to the issues cited in the previous sections, the following areas of investigation were identified.

1. Investigate the use of measurement data for validating models.

2. Use of measurement-based models for diagnosis.

3. Development of measurement-based or validated models for predicting impact of technology and con
figuration changes.

4. Coverage measurement.

5. Generation of a national data bank.

6. Operational software reliability vs. the manufacture of reliable software.

7. The establishment of fault tolerance/availability benchmarks (to be used in much the same way as
standard performance benchmarks).

26

A follow-up workshop or series of similar workshops to be held to continually assess the current state
of research and to further encourage cooperation between modelers, experimentalists and designers was
recommended. This cooperation is clearly a multidisciplinary effort that must be supported by various levels
of infrastructure, including computer corporations, granting agencies and research groups.

5 Acknowledgments
The workshop on which this report is based was sponsored by the IEEE Computer Society. Professor Iyer’s
work was supported by NASA grants NAG-1-613 and NAG-1-602. Professor Siewiorek’s work was supported
under his ONR contract number N00014-85-K-0008. Thanks are due to The Aerospace Corporation, in
particular George Gilley and Mark Joseph for hosting the workshop and making all the necessary local
arrangements. The editors thank the participants and the panelists for their contributions. Special thanks
are also due to Laura Forsyth and Jayne Chase Loseke for their assistance in the organization of the workshop
and in the generation of this report.

27

6 List of Attendees
1. Professor Jacob Abraham

University of Texas at Austin
2201 Donley Drive, Suite 395
Austin, TX 78758

2. Dr. Jean Arlat
LAAS-CNRS
7 Av. du Colonel Roche
31077 Toulouse, Cedex
FRANCE

3. Professor Joanne Bechta Dugan
Computer Science Department
Duke University
Durham, NC 27706

4. Celeste M. Beicastro
Mail Stop 130
NASA Langley Research Center
Hampton, VA 23665

5. Laureen Brickley-400/041
IBM
9500 Godwin Drive
Manassas, VA 22110

6. Savio Chau-MS 198-231
CIT-Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

7. Dr. Ram Chillarege
IBM
T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

8. Jeffrey Clark
Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA 01003

9. Gary L. Engel
UNYSIS
P.O. Box 64962
St. Paul, MN 55264-0942

10. Professor W. Kent Fuchs
Coordinated Science Laboratory
1101 West Springfield Avenue
University of Illinois
Urbana, IL 61801

28

11. Dr. George Gilley
The Aerospace Corporation
P.0. Box 92957
Los Angeles, CA 90009-2957

12. Charles T. Hoskinson-MB/220
The Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 90009-2957

13. Dr. Mei-Chen (Sandy) Hsueh
Digital Equipment Coporation
MR02-3/5E
Marlboro, MA 01752

14. Professor Ravi Iyer
Coordinated Science Laboratory
University of Illinois
1101 West Springfield Avenue
Urbana, IL 61801

15. Mr. Mohamed Kaaniche
LAAS-CNRS-TSF
7 Av. du Colonel Roche
31077 Toulouse, Cedex
FRANCE

16. Johan Karlsson
Chalmers University of Technology
S-41296 Goteborg
Sweden

17. Professor K.M. (Kane) Kim
Computer Engineering Program
Department of Electrical Engineering
University of California
Irvine, CA 92717

18. Dr. Gary M. Koob
Office of Naval Research, Code 1133
800 North Quincy Street
Arlington, VA 22217-5000

19. Professor Israel Koren
Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA 01003

20. Dr. Jaynarayan Lala
Charles Stark Draper Laboratory
555 Technology Square
Cambridge, MA 02139

29

21. Don Lee-M8/166
The Aerospace Corporation
2350 East El Segundo Boulevard
El Segundo, CA 90245

22. Professor Ting-Ting Y. Lin
Electrical and Computer Engineering Department
Mail Code R-007
University of California, San Diego
La Jolla, CA 92093-0407

23. Dale Lomelino
Honeywell
13350 U.S. Highway 19 So.
Clearwater, FL 34624

24. Dr. Michael R. Lyu-M/S 125-233
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

25. Professor Gerald M. Masson
Department of Computer Science
The Johns Hopkins University
3400 North Charles Street
Baltimore, MD 21218

26. Professor Edward J. McCluskey
Center for Reliable Computing
ERL 460
Stanford University
Stanford, CA 94305-4055

27. Professor Douglas Miller
George Mason University
ORAS, Site
Fairfax, VA 22030

28. Dr. Ann Patterson-Hine
NASA Ames Research Center
MS 244-4
Moffett Field, CA 94035-1000

29. John C. Peterson-MS 198-231
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

30. Dr. Andrew Reibman
AT&T Bell Laboratories
Room 2L-528
Holmdel, NJ 07733

30

31. Dr. Thad Regulinski
IEEE Transactions on Reliability
P.O. Box 31113
Tucson, AZ 85751-9998

32. Professor Daniel P. Siewiorek
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

33. Raphael (Rafi) Some
Raytheon Equipment Division
528 Boston Post Road
Sudbury, MA 01776

34. Professor Kang G. Shin
Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, MI 48109

35. Professor Kishor S. Tri vedi
Department of Computer Science
240 North Building
Duke University
Durham, NC 27706

36. Dr. Edwin Upchurch-MS 198-231
CIT-Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

37. William J. Watson
Tandem Computers
14231 Tandem Boulevard
Austin, TX 78728

38. Dr. Jerry Yan
NASA Ames Research Center
MS 244-4
Moffett Field, CA 94035

31

