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Abstract

In this report, an improved decoding algorithm for Euclidean Geometry 

codes is presented. It will be shown that this class of codes can be orthogonal- 

ized in less than or equal to 3 steps. That is, it requires no more than 3 steps 

of majority logic in decoding these codes. This result greatly reduces the 

decoding complexity without reducing the error-correcting capabilities of the 

codes.

The proposed decoding algorithm is a general one. In fact, it is 

applicable for all codes that are constructed from finite geometries. The 

application to Projective Geometry codes will be presented in a separate report.
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1. Introduction

Majority-logic decoding^”̂  has been of interest to coding theorists and 

engineers for two important reasons. First, majority-logic decoding can be very 

simply implemented. That is, it is attractive from a practical point of view. 

Next, majority-logic decoding inherently does not perform bounded-distance 

decoding. Thus it can automatically correct more error patterns than those 

guaranteed by the decoding algorithm itself without additional cost.

The finite geometry codes, namely, the Euclidean Geometry^^ and 
[3 g gl

Projective Geometry * * codes, form an important subclass of the cyclic codes 

that are majority-logic decodable. Although these codes seem to be somewhat less 

powerful than the well-known BCH codes,^ these two types of codes are com-

tetitive in many situations. The reason for this is that the finite geometry 

codes can be simply implemented.

The decoding complexity of the finite geometry codes grows exponentially 

with L,̂ *  ̂ the number of levels (or steps) of majority logic required. It is

desirable, therefore, to decode these codes in as few steps as possible. Un

fortunately, the existing algorithms for this class of codes often require that 

L be large.

In this report, an improved decoding algorithm for Euclidean Geometry

(EG) codes is presented. It will be shown that EG codes can be orthogonalized 

in no more than 3 steps. That is, EG codes can be majority-logic decoded in 

less than or equal to 3 steps. The results greatly reduce the decoding com

plexity of EG codes without reducing the error-correcting capability of the 

codes. Thus they should make EG codes very attractive for practical use on 

error-control systems.
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The concept behind the improved decoding algorithm for EG codes is 

applicable for the decoding of Projective Geometry (PG) codes. The results on 

the decoding of PG codes are presented in a separate report.

In Section 2 of this report, some of the properties of EG codes and 

the existing decoding algorithms for the codes are briefly reviewed. An improved 

decoding algorithm is presented in Section 3. Using this improved decoding 

algorithm, it will be shown in Section 4 that EG codes can be majority-logic 

decoded in less than or equal to 3 steps. Finally, a conclusion is made in 

Section 5.

In the following sections the reader will be assumed to be familiar

with the concept of orthogonality^’^  in major ity-logic decoding and the
[ 2]structure of Euclidean geometries. Where possible the notation and con

ventions employed in Reference 6 will be used.

2. Euclidean Geometry Codes

In this section, we will first briefly review some of the properties
r n

of EG codes. Then we will discuss the Reed decoding algorithm1 and the 

Weldon's modified decoding algor ithms^ * for these codes.
sFor a prime p, an m-dimensional Euclidean geometry over GF(p ) is 

s msdenoted by EG(m,p ). Each of the p points of this geometry can be uniquely
ms.associated with a field element of the finite:field GF(p ). Thus, a point of

the geometry can be represented as some power of a, where a is a primitive
mselement of GF(p ). The point at the origin corresponds to the element 0 in

GF(p ). A point is also called a 0-flat. A line or 1-flat through the point 
eo s iOi consists of the p points a J such that

e . eJ o , Q1 1
Cc — a  +  ß a



el ewhere Oi is a point different from a , 3 is a primitive element of GF(pS), 

and (31 take on all possible elements of GF(pS). In general the set of prs 

points linearly dependent on (r+1) points not in an (r-l)-flat forms an r-flat.

It is convenient to consider each of the non-zero elements of GF(pms)
msas a location number of a cyclic code of length p -1 over GF(p). An r-flat can 

then be associated with a polynomial that has coefficient 1 in positions cor-
IT Sresponding to the p points of the flat and zero elsewhere. This polynomial

ms ^
will be represented as a polynomial in the algebra of polynomials modulo xP -1 

over GF (p) .
msNow, an r-th order EG code of length p -1 with symbols from GF(p) 

has the property that its null space contains all (r+1)-flats of EG(m,pS) which 

do not pass through the or igin ^

From the geometric structure of the EG codes, it has been shown that 

the Reed algorithm^" can be used for decoding these c o d e s . ^ ^ ^  The central 

idea is that the (parity) check sums corresponding to all (r+1)-flats inter

secting on a given r-flat are orthogonal on the check sum corresponding to the 

given r-flat. The number of (r+1)-flats (excluding the one that passes through 

the origin) that intersect on a given r-flat is equal t o ^ * ^

J =
(m-r)s -

P z l
s .P -1

( 1)

Since the check sums corresponding to all (r+1)-flats are known to the decoder, 

the check sum corresponding to all r-flats can be correctly determined by a
p J«»

majority voting provided that L^J or fewer errors occurred.

A check sum corresponding to an r-flat is the inner product of the received 
vector (or noise vector) and the vector corresponding to the r-flat.

" P "1LxJ is equal to the largest integer less than or equal to x.
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Note that the number in Eq.(l) increases as r decreases» It is 

possible to find at least as many as J check sums corresponding to some r-flats 

that are orthogonal on the check sum corresponding to a given (r-l)-flat. Thus, 

the check sums corresponding to all (r-l)-flats can also be correctly determined 

by majority-logic decision provided that [-j] or fewer errors occurred» This 

decoding process can be repeated until the error digits corresponding to all 

0-flats are determined. It requires (r+1) levels or steps of majority logic 

to finish the decoding.

The complexity of the decoding of EG codes grows exponentially with 

the number of decoding steps employed» It is important, therefore, to try to

cut down the number of decoding steps. In this regard Weldon^*^  has proposed

two modified decoding algorithms. Both of the algorithms can correct as many 

guaranteed errors as the original algorithm.

The first of the Weldon's modified algorithms applies only for the 

case that ms is a composite number. The decoding proceeds in the same way as the 

original algorithm until the c-flats are determined, where g.c»d»(c,m) = f f  1. 

Then all (-| -1) flats of EG(^,pS )̂ instead of (c-l)-flats of EG(m,pb) are 

determined. This trick may be used again and again to reduce the number of 

decoding steps. The application of this improved algorithm is rather limited, 

however, because the codes that can be applied deteriorate rapidly as their 

length increases.^" *  ̂ In addition, it still requires a large number of decod

ing steps if r is large.

The second modified algorithm by Weldon requires only two steps in

decoding. In the first step, all r-flats are determined in exactly the same way

as the original algorithm. In the second step, the 0-flats are determined from

these r-flats using the idea of non-orthogonal check sums due to Rudolph [8]
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Though this algorithm reduces the number of decoding steps to two, the decoder 

may not cost less than the decoder using the original algorithm» The reason is 

that a single majority gate with a very large number of inputs has to be used»

3» An Improved Decoding Algorithm

In this section we propose an improved decoding algorithm which is also 

a modification of the Reed algorithm» This decoding algorithm can also apply to 

Projective Geometry codes»

In the first step of the improved decoding algorithm, r-flats are 

determined from the sets of (r+1)-flats in exactly the same way as in the 

original Reed algorithm» Let k be the smallest number such that a set of at 

least J r-flats that are orthogonal on a given k-flat can be constructed. 

Obviously, k is less than or equal to (r-1). Then, in the second step of 

decoding, each of the k-flats is determined from the set of r-flats that are 

orthogonal on the given k-flat. This process can be repeated until all noise 

digits or 0-flats are determined.

For an example, consider the (31,16) code over GF(2). This code 

contains all the 3-flats of EG(5,2) in its null space. The first of the modified 

decoding algorithm by Weldon does not apply to this code. The Reed algorithm 

for this code requires 3 decoding steps. The number J is equal to 6. Using the 

improved decoding algorithm, it is possible to decode this code in 2 steps.

First, 2-flats are determined from the sets of 3-flats that are orthogonal on 

the given 2-flats. Next, error-digits corresponding to all 0-flats are deter

mined from the sets of 2 flats that are orthogonal on the given 0-flats. It can 

be shown by actual construction that at least 9 2-flats that are orthogonal on 

a given 0-flat can be formed. Thus, the improved algorithm can correct the same 

number of guaranteed errors in 2 steps.
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In general the problem of finding the smallest k such that a set of at 

least J r-flats orthogonal on a given k-flat can be constructed has not been 

solved» Thus the number of decoding steps that can be reduced by the improved 

algorithm can not be expressed explicitly. However, utilizing the concept 

behind the new algorithm, it can be shown in the next section that EG codes are 

orthogonalizable in less than or equal to 3 steps.

4. Further Applications and Important Results

The basic idea of the improved decoding algorithm introduced in the 

last section can be utilized to prove that EG codes can be majority-logic 

decoded in no more than 3 steps. In order to prove this, we need a series of 

lemmas,

sLemma 1. In EG(m,p ), if it is possible to construct I r-flats that are orthog

onal on any given k-flat which passes through the origin, then it is possible 

to construct at least (1-1) r-flats that are orthogonal on a given k-flat,

e
Proof: A k-flat that passes through a point on 0 consists of the points on̂  of

the form

= on + 3 on 1 12 e2 + P on +
i, e, q k k+ p on

e e e.q ^ mswhere on , on , , ,,, on are elements of GF (p ) and are linearly independent, 
i i ik

P , P » • P take on all possible combinations of values in GF(pS), This 

k-flat can be considered the coset of the k-flat that passes through the origin
61 6a 6i 6

with on , on , , =,, on as basis elements and with on ° as the coset leader. Thus, 

a k-flat that passes through the origin can be transformed into a k-flat that
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e e
passes through a given point ot . If a is on the original k-flat, then the 

transformed k-flat is the same as the original k-flat. Therefore, a set of J 

r-flats that are orthogonal on a given k-flat which passes through the origin 

can be transformed into a set of (J-l) or J r-flats that are orthogonal on a 

k-flat which passes through a particular point, depending on whether the 

particular point is on one of the J original r-flats or not.

QoE.Do

Xms ^
Lemma 2. It is possible to construct I = ----- -1') m~flats that are orthoeonal-------  ms , 0P “1s ron a given point in EG(4m,p ),

Proof : Let Oi be a primitive element of GF(p^mS), and

ß = a 1+1

2 ms-2then 0, 1, P, P , . .., P^ are elements of GF(pmS). Furthermore, they form
san m-flat of EG(im,p") which passes through the origin. Now any two of the 

following 1+1 m-flats

. ms 0 )iQP -2iF. = {0, a 1, o ’?, a V  ' z]

i = 0, 1, I

( 2)

1̂ 1̂ 2̂ 2̂contain no other common element besides the origin. If a P = a P , and
. > . 1l"12 R V J1
11 ^ 12 ’ then a  = ° . This is impossible because 0 £ i^-i ^ ^

Thus the 1+1 m-flats in Eq.(2) are orthogonal on the point of origin. By
Xms_1

Lemma 1, a set of I = --- - -1 m-flats that are orthogonal on a given point
P™ -1

can be constructed from the set of m-flats in Eq.(2).

Q.E.D.
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From Lemma 2 it can be shown that an m-th order EG code associated 
swith EG(j£m,p ) can be orthogonalized in two steps* At the first step of decod

ing, m-flats are determined from the sets of J (nri-1)-flats that are orthogonal
U -l)ms_1

on the given m-flats, where J = ^-------—  -1. Since the value of J is not
pS-l

greater than that of I in Lemma 2, at the second step of decoding, all 0-flats

can be determined from the. sets of at least J m-flats that are orthogonal on
*the given 0-flats* Thus we have the next lemma.

Lemma 3 An m-th order EG code associated with EG(i»m,p ) is 2-step orthogonalizable.

, Z ms
Lemma 4 If r > m, then it is possible to construct I = — \ ^  ------— s r (r-m) -1

r-flats that are orthogonal on a given (r-m)-flat in EG(4m,p )
s , ms ,. (P “I)

( ic m 1 sProof? Let F be the given (r-m)-flat* Then F consists of p " points* If 

F and an m-flat F^ in Eq*(2) contain no common point besides 0, then F and this 

particular F^ form an r-flat. If there is another m-flat in Eq*(2) that does 

not have any point (except the 0 point) in common with the r-flat thus formed, 

then the second r-flat can be formed from this m-flat and F* Since the m-flats 

in Eq.(2) are orthogonal on the origin, the two r-flats thus formed are orthogonal 

on F* This construction process can be repeated to construct more r-flats 

orthogonal on F. The number of such r-flats that can be formed is lower 

bounded by I.

Q*E*D*

Now consider an r-th order EG code with the associated geometry 
sEG(2m,p ), where r > m. The number J is equal to

r n]This result has been obtained by Weldon from a different approach when he 
presented his first modified decoding algorithm*
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(2m-r)s ..
j = 2------- =1 _!

PS-1

This code can be orthogonalized in 3 steps» At the first step, r-flats are 

determined from (r+l)-flats in the conventional way» At the second step,

(r-m)-flats are determined from r-flats» From Lemma 4, it is possible to 

construct I1 = — r—— — ---  -1 r-flats that are orthogonal on a givenpir"m;s(,pms_1^
(r-m)-flat» Notice that 1^ is not less than J» At the last step, all 0-flats

are determined from (r-m)-flats» From Lemma 2, it is possible to construct 
2ms ^

*2 = m---“1 = P m-flats that are orthogonal on a given 0-flat» Since
p -1

r-m < m, at least (r-m)-flats that are orthogonal on a given 0-flat can be

constructed» Notice again that is not less than J, Therefore, we have the 

following Lemma»

Lemma 5 If r > m, an r-th order EG code with the associated geometry EG(2m,pS) 

can be 3-step orthogonalizable»

Lemma 6 If it is possible to construct I r-flats that are orthogonal on a 

given k-flat in EG(m,p ), then it is also possible to construct I (r+l)-flats 

that are orthogonal on a given (k+l)-flat in EG(m+l,pS), and vice versa»

Proof: Let it be assumed first that all flats pass through the origin» It is

well known that GF(p ) associated with EG(m,ps) can be considered an m-dimensional 

vector space over GF(p )» A k-flat of EG(m,pS) can be considered a k-dimensional 

subspace of GF(pmS)» Let {c^, c*2 , »»», c*k} be the basis of the k-flat, and 

A = ak+ls ° ° ° * ttm̂  be tbe set of ottier basis elements of GF(pmS)» Then,

without loss of generality, an r-flat that contains the k-flat can be constructed 

by taking a linear combination of the k-flat and some other (r-k) basis elements 

formed from the set A»



On the other hand, let {T|̂ , T]̂ , . T] be the basis of a (k+l)~flat

of EG(nh-1 ,pS) , and B = l \ +2»• • • i3 he the set of other basis elements of 
(mI X s sGF(p *) that are not on the (k+l)-flat. Then an (r+l)-flat that contains 

the (k+l)-flat can be constructed by a linear combination of the (k+l)-flat 

and some other (r-k) basis elements formed from the set B.

Notice that the number of elements in A is equal to that of elements 

in B. An element in A can be uniquely associated with an element in B. Thus 

an r-flat that contains a given k-flat in EG(m,pS) can be uniquely associated 

with an (r+l)-flat that contains a given (k+l)-flat in EG(m+l,pS). Therefore, 

the lemma is true for all flats that pass through the origin. By the same 

argument as in the proof of Lemma 1, the lemma is true in general.

Q.E.D.

A direct consequence of Lemma 6 is Lemma 7.

Lemma 7 If r  > then an r-th order EG code associated with EG(m,pS) can be 

orthogonalized in 3 steps.

Proof: By Lemma 5, the lemma is true for even value of m. Thus we only have

to consider the case that m is odd. Let m = 2m + 1. Then m < r < 2m. The 

number J is equal to

(2m-r+l)s ,
J = ^—   — — —^ -1.

s iP -1

By Lemma 6 and Lemma 4, it is possible to construct
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r-flats that are orthogonal on a given (r-m)-flat in EG(2mfl,pS). Also, by 

Lemma 6 and Lemma 2, it is possible to construct at least

_ — g
(r-m)-flats that are orthogonal on a given 0-flat in EG(2m+l,p ). Since both 

Ij and are not less than J, the lemma is proved«

Q «E oD „

m sLemma 8 If r £ an r-th order EG code associated with EG(m,p ) can be

orthogonalized in 1 or 2 steps.

Proof: If r is equal to zero, then an r-th order EG code is one step orthogonal-

izable. If m is divisible by r, the code is orthogonalizable in 2 steps by

Lemma 2. If m is not divisible by r, let k be the smallest number such that

m+k is divisible by r, that is, m+k = 4®r for some integer 4. By Lemma 4, it
irs ^

is possible to construct I = --- -1 (r+k)-flats that are orthogonal on a
p s(prs-i)

given k-flat in EG(4r,p ). In addition, by Lemma 6, it is possible to construct

I r-flats that are orthogonal on a given 0-flat in EG(m,pS). Since the number I
(m-r)_1 (4r-k-r)s_1

is not less than the number J = ------- -1 =

lemma is proved.
s 1 P “I s 1 p -1

-1 of the code, the

Q.E.D.

Combining Lemma 7 and Lemma 8, we have our theorem on decoding EG

codes.

Theorem An r-th order EG code can be orthogonalized in less than or equal to

3 steps.
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In summary, the decoding of an r-th order EG code can be described as 

follows. At the first step of decoding, r-flats are determined from (r+1)-flats. 

If r = 0, then this is the end of decoding. At the second step of decoding, all 

0-flats are determined from the sets of r-flats if r ^ m/2, otherwise 

(r-[^])-flats are determined from the sets of r-flats. In the case r £ m/2, 

no more steps have to be taken. If r > m/2, all 0-flats are determined from 

the sets of (r-[-^])-flats in the third or last step of decoding. This decoding 

procedure is depicted as follows:

a . r = 0 1 ---> 0 (1 step)

b. 0 < r £ | (r+1) ---> r ---> 0 (2 steps)

c . r > 2 (r+1) > r > r-[^] ---> 0 (3 steps)

5. Conclusion

In this report we have proposed a general improved majority logic 

decoding algorithm for codes that are constructed from finite geometries. The 

application to Euclidean Geometry codes has been further discussed. In par

ticular, we have shown that EG codes can be orthogonalized in less than or equal 

to 3 steps. That is, these codes can be majority-logic decoded in no more 

than 3 steps.

The proposed improvement is a real one. The decoding complexity of 

EG codes can be reduced enormously in most cases by the improved decoding 

algorithm. This should make EG codes very attractive for practical use on 

error-control systems.
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