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lo Introduction

Many physical systems are described by ordinary differential equations
whose solutions contain time constants differing greatly in magnitude,,
Such equations are called stiff. When a classical numerical integration
procedure is applied to a stiff system of equations, the step size is
generally determined by the component of the solution with the largest
decay rate, while the region of integration is determined by the component
with the smallest rate. After the initial transient, the rapidly decaying
components are insignificant, but the step size must remain small to
prevent numerical instability. As a result, the time required to integrate
a highly stiff system can become excessive.

A-stable methods are often used to overcome this problem because the
step size of an A-stable method is governed only by the allowable dis-
cretization error. The step size for A-stable linear multistep methods
must remain small, however, because the order of such methods cannot
exceed two. Implicit one-step methods are free from this restriction
on order, and several classes of A-stable implicit one-step methods of
arbitrary order exist. Unfortunately, these implicit methods are
relatively inefficient. Their efficiency can be improved, however, by
obtaining a block of new values simultaneously. These block implicit
one-step methods have been studied by Rosser [73 and Shampine and
Watts [8]. We present in this paper a new class of block implicit

methods possessing desirable stability properties.



We shall restrict our discussion to a single equation for simplicity
The generalization to systems of equations will be obvious. We first
describe general block implicit methods and our new class of methods.
We then present a convergence theorem for general block implicit methods

Finally we discuss the stability of our methods.

2. Block Implicit Methods

We wish to approximate the solution of

y' = f(x,y(x)), y(a) =a, (1)

on the interval [a,b3. Rather than make specific differentiability
assumptions, we shall assume y has continuous derivatives on [a,b3 of
any order required.

Let - a+ nh for n =0, 1, ... and h > 0. W wish to generate
a sequence {yn3 which approximates the sequence of exact values {y(x )}.
bet y» - a. An s-block method generates a block of s additional terms
simultaneously and ultimately produces values for all n € Ih. where

lh = {n: 0 £ n£ ms} and m= C(b-a)/sh], Each block of values

T
0 ~ (yn+t I’ **" 'yn+ts™ J wlere n = satisfies equations of the form

n+i =Y. + hS@.(x . yn+s'hs 0 ¢ L s (2)

The increment functions qoj are determined by f and are functions of x
yn' eee» yn+s>and h only. We shall assume they are defined in the

region R of (x,~z,h) space defined by x € [a,b-sh3, z € (-ccd”

tv



k 0, s, and h € [0,~3, where < (b-a)/s. The local discretiza-

tion errors are defined by

di(V h> = hepi (xn,y(xn),...,y(xn+s)>h) - (y(xn+.) -yix "™ .p),
i~ 1» Sj (3)
r such

and the order of the method is defined to be the largest integer

that

dix>ml = o™, 0= 1, s, (4)

in the region S of (x,h) space defined by x € [a,b-sh] and h € [0,hQ].
We propose s-block methods where each increment function is an

interpolatory quadrature formula employing function values and possibly

derivatives at nodes in the interval []Xn’xn+s]’ and values of }( at nonmesh

points are obtained from the Hermite interpolation polynomial interpolat-
ing the first pi - 1 derivatives of y at xn+i for i = 0, s. Each
such method can be written in the form
n+i =Y +[i_ W : i = 1, (5)
where 9(j,k) € [0,s], and
_ oy @) 5
yn+6 = i_g =0 tj(e)ynix (6)

If each increment function has a degree of precision at least q - 1, then

the method has order r = min[p,q], where p =1l p#.



3. Convergence
The following theorem gives sufficient conditions for the convergence
of an s-block method and indicates the order of the accumulated discreti-
zation error. Our methods satisfy these conditions and hence are convergent.
THEOREM. Let there exist positive constants L, M, and r such that

9

o (x,£,h) - o (x,r*,h)] S L2 |z - z*], 1=1, s, (7)
J=0 J J

for (x”~jh) and (x,~z*,h) € R, and
ldi (x,h)] £ Mhr+1, i =1, ., S, (8)
for (x,h) € S. Then for any h < min[hQ,2/s(s+1)1], the difference

equations (2) have a unique solution {yn), defined on I’n' and there is a

constant N such that

lyn - y(xn)l * Nhr, n<€ih.
Proof. Suppose a partial solution satisfying the difference equations

(2) has been found on the set {o,l,...,n}, where n =is andi < m.

Equations (2) can be written in the form ~ = \|]/("), where

For arbitrary ~ and the Lipschitz condition (7) implies that



W -Ae>li £J1NH 1 =

where X = s(s+l1)hL/2 < 1. Hence ™ is a contraction mapping. Since j

is defined for all™y, it follows that equations (2) have a unique

solution . Thus the partial solution can be continued uniquely through
out the set I, .
h

A standard argument [5, p. 12] shows that the errors e = ly - V(X )

n n Jvon

satisfy

r+1

eis+i S eis + ihLEfoe>ls+i + Wh I 1, e==} sj1 0, .e=»j m-1

These relations can be written in the form ~A_gz ££>Z for 2z =0 . m1

where _A and ~bZ have elements

aij "~ "L, i, j 1, S,

b. - (I+ihL)eis + iMn™™L, i = 1,

The inverse matrix A 1 has the elements

cij " ((I-s(s+1)hL/2)6ij + ihL)/(l-s(s+1)hL/2), i, J =1, ..., s.
-1
Since A ' * 0, it follows that £Z £ A_1b_ for ~ = 0, m-1. Defmpe
Z
-L
~Z ~A fer A~ “ 0O» eee> m-1, and set 6g = 0. The s form a non-

decreasing sequence and

r+1
(i+1)s * (1+shL*)e”~s + M*h , A =20, ..., m-1,



for certain constants L* and M*. Another standard argument [5, p. 12]

shows

eis * (M*hr/sL*) (eLc™~a™ - 1), A =0, ..., m

Since en £ for n € 17, the desired result follows.

4. Stability

We shall examine the stability of our methods by applying them to the
differential equation y' = Xy, where X is a complex constant with Re(X) < 0.
The method (5) can be interpreted as an implicit one-step method with step

size sh. Substituting y' = Xy in equations (5) and (6), we obtain

yn+s = R<shX>V («)

where R(]i) is a rational approximation to e~. Since R is a function of
only the degrees of precision of the increment functions and the orders
of collocation p”~ of the Hermite interpolation polynomial, the stability
of entire classes of methods can be analyzed simultaneously. Let

(P(j* ===>PS) denote the class of methods of the form (5) whose increment
functions have degrees of precision at least 2p, - 1, We shall character-

ize the stability of such classes in terms of the following concepts.

Definition. The class (P(,...,p ) is A-stable if |Jr(™)] < 1 for
Re (fi) < 0.
Definition. The class (Pq,...,p ) is stiffly stable if JR@GIJI< 1 in

the regions {jii: Re(p,) £ d} and {(i: D < Re(™) < a, [Im"i)] < 9}.



Definition. The class (pu_,...,ps) is strongly A- or strongly stiffly
stable if it is A- or stiffly stable and jR(jl) | “¢ 0 as Re(]i) -*

We first consider the class (p,q) of 1-block methods employing higher
derivatives.

THEOREM. Let E”™(jj,) denote the (i,j) entry in the Pade table for e”.
Then R(Ji) = E~(]j,) for the class (p,q).

Proof. A simple calculation shows that

R(p.) = pp(M)/Qq (M) s

where PpO-O and Qq(p*) are polynomials of order p and g in \i. Since R(]i)
must be an approximation to e of order p + g, it follows that R(]jl) must
be the (p,q) entry in the Pade table for e”.

COROLLARY. Class (p,p) is A-stable and classes (p,p+l) and (p,p+2)
are strongly A-stable for p ~ 1.

Proof. le_(iO]< 1 for Re(p,) < 0 for i = j~O0T([I], i =j-U O,
and i - j-2 ~ 0 [4]. Finally, it is obvious that iE.Aj(ji)| -+ 0 as
Re(]i) » -B for i < j.

There are implicit one-step methods possessing similar stability

properties. These include the method of Hermite [6]

+ 2 Bia ayi) —2 hee 10
2 TR i (10)
where ini and qu are the ith coefficients in the numerator and denominator

of E , and the implicit Runge-Kutta processes developed by Butcher [2],

Ehle [4], and Chipman [3]. However, the methods in the class (p,q) enjoy



certain advantages. They attain the same order of accuracy as the scheme
(10) while employing derivatives of lower order, and, unlike the Runge-
Kutta processes, they require the solution of only one nonlinear equation
at each time step.

We turn now to 2- and 3-block methods. Consider the class (p,p.p).

It can be shown that

rM =~ p "~ [/~ p

where P2p(p,) is a polynomial of order 2p in (i. It follows that |R(Gil>) ] =1
for v € (w0o,c0) and |R(li)( - 1 as |1l » ® for all p ~ 1. Using the Routh-
Hurwitz conditions, we have verified that R(jj,) is regular for Re(M-) < 0
and hence that (p,p,p) is A-stable for p = 1, 2, and 3. We conjecture
that this is true for all p ™ 1.

There are strongly A-stable and strongly stiffly stable 2- and
3-block methods. For example, the class (1,1,2) is strongly A-stable, and
the classes (1,1,3), (1,2,2), (1,2,3), (2,2,3), (1,1,1,2), and (1,1,2,2)
are strongly stiffly stable. Figure 1 shows the loci in the hX plane
where jR] — 1 for these classes of methods. Since the loci are symmetric
with respect to the real axis, only half of each locus is plotted. The
regions of stability lie to the left of the loci. The regions of instabil-
ity in the left half-plane are remarkably small. The corresponding
regions for Gear s £53 stiffly stable linear multistep methods are larger

by several orders of magnitude.



5. Concluding Remarks

We have presented a new class of block implicit one-step methods
possessing desirable stability properties. Since they are implicit, their
implementation is nontrivial and requires the development of effective
and convergent iterative procedures and practical error estimation schemes.

These problems are being studied and will be discussed elsewhere.
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