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1. Introduction

The solution of systems of linear equations is a central problem in numerical mathematics with a number of 

extremely significant applications. Algorithms for this important problem are generally classified as either direct 

(e.g., Gauss-Jordan elimination, LU  decomposition, and Cramer’s rule) or iterative (e.g., Jacobi’s method, the 

Gauss-Seidel method, and simultaneous overrelaxation). These algorithms can be further classified according to 

their suitability for solving systems with multiple right-hand sides (known vectors). In particular, algorithms that 

attempt to invert the system matrix can be used to solve systems with multiple known vectors, but they are often less 

efficient than those algorithms that exploit the specific case of a solitary known vector.

Newton’s method for solving systems of linear equations iteratively computes an approximate inverse of the 

system matrix in a manner analogous to the Newton-Raphson iteration for computing the inverse of a scalar. The 

history of this quadratically convergent iterative method is a long one. First proposed by Schulz [Sc33] in 1933, this 

approach was later studied by Ben-Israel and Cohen [BC66] who found an appropriate initial approximation of the 

inverse and showed that the method can be used to compute pseudo-inverses (generalized inverses) too. Isaacson 

and Keller [IK66] also discussed the method but dismissed it as less attractive for sequential computation than the 

linearly convergent iterative methods (e.g., Jacobi’s method, the Gauss-Seidel method, and simultaneous overrelax

ation) that use only matrix-vector multiplication instead of the more complex matrix-matrix multiplication.

Newton’s method was recendy resurrected by Bojanczyk [B84] and Pan and Reif [PR85] in the context of 

parallel computation models. They realized that no time penalty is paid for using the quadratically convergent 

Newton’s method since, in most models of parallel computation, the time complexity of matrix-matrix multiplica

tion is of the same order as that of matrix-vector multiplication. Thus, for a well-conditioned n x n  matrix A (i.e., 

k(A), the condition number of A, is polynomial in n) the PRAM algorithm of Pan and Reif (which uses an initial 

approximate inverse slighdy different from that of [BC66] and that of [IK66]) obtains an accurate solution in time 

0  (log^n) with M (n) processors, where M (n) is the number of processors needed to multiply two n x n  matrices in 

0  (logn) time. Prior to [B84] and [PR85] the only known polylog-time algorithm was that of Csanky [C76] (and the 

modified form of [PS78]), which is based on the Cayley-Hamilton theorem and Leverrier’s method; however, bar

ring arbitrarily accurate arithmetic, this method is numerically unstable [W65]. Newton’s method, on the other 

hand, is suited to the real-world environment of finite precision [SS74].
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Nevertheless, exclusive reference to the condition number in the upper bounds of [B84] and [PR85] seems 

excessively pessimistic. Indeed, even a system with a singular matrix A is solvable exactly if the known vector is in 

the range space of A. This elementary observation suggests that the attainability of an approximate solution rests 

not on a property of the matrix alone, but, rather, on joint properties of the matrix and the known vector.

Informally, an ill-conditioned matrix distorts the unit sphere into an ellipsoid with axes of markedly different 

lengths. Suppose, to aid intuition, that the ellipsoid axes can be broadly categorized as either "long" or "short". If 

the known vector projects mainly on the subspace spanned by the long axes, we would expect that an accurate solu

tion is attainable with moderate effort. In this case, we say that the known vector is attuned to the matrix.

Formally, the major contribution of this paper is the introduction of the notion of attunement number 

a (A, by e) of a vector b to a matrix A for relative error e , which is the number of Newton iterations needed to reduce 

the relative error to e. Well-attuned vectors b are those for which a (A, b, e) is logarithmic in n. For any fixed 

number l of iterations, the set of l-attuned vectors (i.e., those vectors for which satisfactory convergence is attained 

in / iterations) is a cone centered at the origin and containing in a suitably defined interior the ellipsoid axes 

corresponding to the largest singular values of A. Our main results are: (i) Newton’s method converges in 0  (log«) 

iterations for a much broader class of linear systems than those for which A is well-conditioned; (ii) For a well- 

attuned by the effects of roundoff errors only lengthen the duration of the process by constant factors.

2. Our Algorithm

In order to exploit the attunement of a given known vector, clearly we must not insist upon attaining an accu

rate approximation of A -1 , a least not when A is ill-conditioned. Instead, we terminate the iteration when Axt is an 

accurate approximation of b, where x\ is the current approximant of x. Therefore, our algorithm is just a simple 

modification of the basic Newton’s method as discussed in [BC66], [B84], and [PR85]. It takes as input the m x  n 

matrix A, the m x  1 vector b, and the error criterion e; it produces as output the n x  1 vector x such that the relative 

error in the solution of the linear system (as opposed to the error in the pseudo-inverse) is no larger than the error 

criterion. In the event that such an x cannot be found (up to the precision used), the algorithm halts and indicates 

failure. It is given concisely in pidgin Algol as follows:
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SOLVE (A, x , b, e) 
begin

B :=A tA\
1

Y a ^ o A 1*-, 
l := 0 ;  
repeat

yi+1 := 2Yt -  YtAYt;
/ := / + 1;
Xi := Ytb\

II b -A xi II2 

61 := ;
until (e* < e or et-i - e t<0) 
x
if (et < e) then

SOLVE := success; 
else

end.
SOLVE := failure;

( 1)

(2)

(3)

(4)

This algorithm is essentially the same as previous algorithms for computing the pseudo-inverse,1 but it exploits the 

fact that the pseudo-inverse of A need not be computed to full accuracy in order to solve Ax = b. This idea is 

expounded upon in the next two sections, which analyze the operation and performance of this algorithm.

We also note that, in most models of parallel computation, the complexity of SOLVE is dominated by the two 

matrix multiplications that occur in each Newton iteration.2 For such models, the overall time complexity is (on the 

order of) just the product of the number of iterations and the time required for a matrix multiplication. Although we 

will not dwell on issues of parallel complexity in this paper, this consideration motivates our study of the conver

gence of Newton’s method.

3. Analysis of Newton Iteration Applied to A

In this section, we will derive a closed-form expression for the matrix Yt and investigate the convergence pro

perties of the sequence xt. In order to facilitate this discussion, we first review the definition of the singular value 

decomposition (SVD) of the matrix A. The SVD of a matrix A e  IRmxn is the representation of the matrix as the 

product of three matrices (A = UI.VT), where U = [uu  • • •, w j  e R mxm and V = [vx, • • •, v j  e  R " xn (and both 

are unitary) and Z = diagC^, • • •, crp] e R mxn (p = min{m, n) and CTi > a 2 > • • • > c p > 0). The a,- are called the

'W e have chosen the form of a  given in [B C 66], a =  IIA TA  I I A n  alternative form is a =  [tr(Ar A )]_1 [IK66] or a  =  [HA II„11A I I J -1 
[PR85]. The reduction in the required number of iterations achieved by using the scaling factor of [BC 66] instead of that of [IK66] or [PR85] 
more than compensates for the expense of the additional matrix multiplication.

2A variant of this algorithm reduces the number of matrix multiplications per iteration from two to one, which results in a constant factor 
improvement in the parallel complexity, but this variant is not the most appropriate for finite-precision computation.
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singular values of A, and the vectors u, and v,- are, respectively, the i-th left singular vector and the i-th right singu

lar vector of A [GV83]. We can express the pseudo-inverse of A in terms of the SVD of A. Observing that 

ar > Gr+1 = • • • = CTp = 0, where r = rank(A), we define I f  e R nxw as diagfaf1, • • •, c ~l , 0, • • •, 0]. The matrix 

A + = V lf  UT is referred to as the pseudo-inverse of A [GV83].

While Newton’s method does not explicitly compute the SVD of A, this tool is useful in the method’s 

analysis; in the following lemma, we apply it, to derive a closed-form expression for Yh

Lem m a 1: Yt = VA¡UT, where A; is a diagonal matrix given by

0> i n * ; ' ,
Si? = (Ai)ij =< a ”1 [1 - ( 1  -  a a ? ) 2'], if i = j  andi < r, 

0, if i = ;  and i > r.
(5)

Proof (by induction on 1):

Basis (1 = 0): Y0 = ctAT and Aq = VTY0U = aVTV ITUTU = a lf .  Now, for i < r, otcr,- = a " 1 [1 -  (1 -  a a ? )]  = 5i?>, 

and for i > r, acf; = 0 = 8i?\

Inductive Step: Assume that the lemma holds for / = k. We now prove that it also holds for l = k + 1. By Equation 

(2) and the inductive hypothesis,

Yk+l=2Yk- Y kAYk

= 2VAkUT -  (VAkUT)(U IV T)(VAkUT) 

= V[2Ak - A kIAt]UT.

= VAm Ut ,

where the diagonal matrix A*+1 = 2Ak -  AkIAk. Notice that the recurrence for A; is precisely the Newton iteration 

for computing the inverse of X, if it exists. Since I  is diagonal, the equations are decoupled, and it immediately fol

lows from the initial conditions that 6ij+1) = 0  for i *  ; ,  and, for i = ; ,

S r ) = 2 5 ? - Ô ? a i-6Î!) =
G ;1 [1 -  (1 -  CCG?)-+1 ], if Gj *  0 (i < r),

0, if G,- = 0  (i > r). □

As Schulz noted [Sc33], Newton iteration for the inverse of a matrix converges only if all of the eigenvalues 

of Y0A lie within the unit circle with origin 1 + 0 -V-T in the complex plane. In the case of SOLVE, all of the
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eigenvalues of a ATA = V (a E r E)V7 must be in the interval (0 ,2) to satisfy this condition (i.e., for all i, act? e (0 ,2), 

the necessity of which can be observed also from (5)). Strict inequality in the lower bound is not required for com

puting the pseudo-inverse, but the upper bound is guaranteed by our choice of the scaling factor a . Therefore, as 

/ ©o, A; converges to E 4", and Yt converges to A+ [BC66,SS74]. Furthermore, since xt = Y{b, xt converges to A+b,

the minimum-Euclidean-norm, least-squared-error solution of Ax = b [FM67].

4. Analysis of the Set of " Attuned" Vectors

While the above analysis guarantees the convergence of xh it gives no indication as to the number of itera

tions necessary to achieve a specified relative error in the solution of Axt = b. In this section, we derive an expres

sion relating the error measure et to the number of iterations. From this expression, we first determine the number 

of iterations necessary to achieve the specified relative error in the worst case. Then, with a more careful analysis, 

we show that, for a known vector b which is "attuned" to the matrix A, an accurate solution can be obtained much 

more rapidly than in the pessimistic worst case. Finally, we derive an algebraic and geometric characterization of 

the vectors that are "attuned" to A, i.e., those b's such that < e for fixed / and £. The notion of "attuned" vectors 

represents the principal contribution of this paper; prior to this, the convergence of Newton’s method for solving a 

linear system has been related only to the condition number of the matrix.

In order to find an expression for et as a function of the number of iterations, let us define p = UTb, i.e., 

P = [pi, P2» * * •» Pm]7* is the representation of b in the basis of the left singular vectors of A. From Equation (3) 

and Lemma 1,

Axi = AYfi

= (U IV T)(V AtUT)U$ 

= C/EA/P.

Manipulating Equation (4), we obtain:

\\b-Axt\\2
i b ¥ 2

IIC/p -  i/EA/P ll2 11(7 -  EA/)P II2

nc/p ii 2 _  i p ; (6)

Let us define ¡Q, = /  -  EA* = diag[o)P, co^, • • •, coff] e IRmxm, where
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co,'(0 =.
( l - c t a ? ) 2',  i f / < r>

1. if i > r, (7)

to obtain the desired expression:

e i -
1 10$  II;

HPH2

1=1

I P ?
,=1

Vi

(8)

With this expression for the relative error, we will determine the worst-case number of iterations necessary to 

achieve a specified relative error. To begin with, we restrict our attention to known vectors b in the range space 

R (A) of A. Since the ct, ’s form a nonincreasing sequence, the co^’s form a nondecreasing sequence. Therefore, the 

relative error is maximized if (3r = II b II2 and pf = 0 for i *  r. In this case,

€, = © ?  = ( l - a o f y ,2\2? (9)

which exhibits the quadratic convergence typical of Newton’s method.

With Equation (9) for the worst-case relative error, we can proceed to upper bound the required number of 

iterations by a function of k(A) and s.

* * 
Theorem 1: For all b e R (A), there exists an / = 0(logn + log(K(A)) + loglog(l/e)) such that et < e for all l >1 .

Proof: We divide the iteration process into two regimes: the first / x iterations for which the relative error e, > lA 

(i < 11) and the next l2 iterations for which the relative error Vi > e,- > e ( / x < / < / ! +  / 2). By upper bounding and 

12 independently, we can upper bound the sum l such that ei < e if / > / .

For the first iteration regime, we consider the recurrence relation eM = ej, which describes the quadratic con

vergence of the relative error in Equation (9). Let us define at= l -  et\et > lh  implies at < Vi, whence

= ej

l - a /+1 = ( l - a / ) 2

= 1 — 2ci[ + aj 

1 ~ al+i < 1 -  (3/2)tf/

<3/+1 ^ (3/2)ai.

Thus, in the first regime, et < 1 -  Oil)laQ. This bound is used until 1 -  (3/2)la0 < Vi, i.e.,
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/>/1 = -logtfo -  1 lo g (l/a0) -  1
log(3/2) log(3/2) ( 1 0 )

at which point et < Vi, and we enter the second iteration regime. From Equation (9), we can see that a0 = a a 2, and,

1by our choice of a  (see, e.g. [St73]), a0 >
a ?

. Therefore,
V na2 V)T(k(A))2

Vilogn + 21og(ic(A))
h  < log(3/2) ( 1 1 )

For the second iteration regime, the recurrence remains the same, but now we may assume that e0 < xh .

Thus, et < (V4)2 and ei<  8 if

l > l 2 = Lloglog(l/e)|. ( 1 2 )

$
Adding the number of iterations from these two regimes, we verify that l =0(logn  + log(K(A)) + loglog(l/s)) 

iterations suffice to achieve the specified relative error. □

The preceding discussion of the convergence of the relative error was predicated on the restriction that 

b g R (A). Of course, if we eliminate this restriction, then the relative error is maximized if b e R (A)c  (i.e., b is in 

the orthogonal complement of the range space of A), which yields e, = 1 for all /. Whenever b £R (A), though, it is 

impossible to achieve an arbitrarily small specified relative error. In such cases, it may be more reasonable to con

sider the relative error

\\bA -A x t II2 

\\b\\2 (13)

where bA is the projection of b on R(A). If we consider this error measure instead, the conclusion of Theorem 1 

holds without the restriction that b e  R (A).

Theorem 1 is essentially a generalized version of the result of Pan and Reif [PR85]. They considered only

nonsingular matrices r = m = n with k(A) polynomial in n and assumed an e of the form 2-nC, where c is a constant.
*

Their result follows as a corollary of Theorem 1, which indicates that l = O(logn) in such cases.

Newton’s method is, however, more powerful than this worst-case analysis would indicate. Informally, a 

known vector b is "attuned" to A if (3 = UTb has most of its weight in its low-indexed components, i.e., those 

corresponding to large singular values of A. More formally, et < e is equivalent, by Equation (8), to
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Z l e M o W l P ’ ïO , (14)
i= 1

and we may quantify this notion by defining the attunement number a (A, b, e) of b to A for a given e as

a (A, b, e) = min{/ : — (coJ0 )2]J3? > 0 } .  (15)
i=i

In other words, a {A, b, e) is just the number of iterations necessary to reduce the relative error to 8. Since the coP ’s 

form a nondecreasing sequence, e2 -  (© P )2 > e2 -  (© P )2 > • • • > e2 -  (© P )2 > e2 -  (© P^)2 = • • • = 

e2 -  (coP)2 = e2 -  1, and the sequence of coefficients in (14) and (15) has at most one sign change. In particular, the 

zth coefficient changes from negative to positive when

© P  = e 

(1 -  a  a 2)2* = e

2l = loge
log(l -  a o f )

1 = log
loge

log(l -  a a f )

Theorem 1 dictates that, in the worst case, a (A, b, e) = 0(logn + log(K(A)) + loglog(l/e)), but, as we will show in 

Theorem 2, if b is "attuned" to A, then a (A, b, e) may be 0  (logn) even if k(A) is not polynomial in n.

Equation (15) provides a concise algebraic definition of attunement number; geometric insight, however, is 

best attained by means of an example.

Example:

Consider the matrix

A =
8 2 20'  

19 - 1 4  10 
-2  -2  1

with SVD

3/5 -4 /5  0 30 0 0 2/3 -1 /3 2/3
U1VT = 4/5 3/5 0 0 15 0 1/3 -2 /3 -2 /3

0  0 1 0 0 3 -2 /3  -2 /3 1/3

Then
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b = a ta  =
429 -2 4 6  348 

-2 4 6  204 -1 0 2  , 
348 -1 0 2  501

which yields a  = (429 + 246 + 348)"1 = 0.0009775.

Note that the matrix A has condition number k (A) = 10, and, therefore, the unit sphere is mapped into a flat 

ellipsoid by the transformation A r (see Figure 1). By applying Equation (14) for m - n - r -  3, 

a (A, b, e) < / if

[e2 -  (coi°)2]p? + [e2 -  (co ?)2]p| + [e2 -  (co^)2] ^  > 0. (16)

Let us assume e = .0001 and see how the set of /-attuned known vectors evolves as we increase /.

Case 0 (/ < log loge
log(l -  a a 2)

= 3): All of the coefficients in (16) are negative, so the only /-attuned p

is the zero vector.

If we allow Newton’s method to proceed, we reach

Case 1 (3 = log logg
log(l -  eta2)

< /  < log logg = 6): The first coefficient in (16) has
log(l -  a cl)

become positive, but the other two remain negative, so the set of /-attuned p’s forms the interior of an ellip

tic cone about the pi axis (see Figure 1).

Continuing further, we next reach

Case 2 (6 = log
Joge_

log(l -  aa| )
< /  < log logg = 11): Now the second coefficient in (16)

log(l -  a a 2)

has also become positive, (although the third remains negative), so the set of /-attuned p’s now forms the 

exterior of an elliptic cone about the p3 axis (see Figure 1).

Continuing even further, we finally reach

Case 3 (/ > log logg
log(l -  a a f )

= 11): Now all coefficients in (16) are positive, so all p’s are /-attuned,

i.e., / > / , as defined in Theorem 1.
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Figure 1. Image of the unit sphere under the linear transformation Ax 
and the set of /-attuned vectors for Case 1 (interior of cone 1) 

and Case 2 (exterior of cone 2)

Since b = C/p is a simple rotation, the set of /-attuned b's has the same shape and size as the set of P ’s in each of the 

above cases. For spaces of dimension greater than three, the algebraic and geometric description of this set of vec

tors easily generalizes, although it is impossible to visualize the elliptic hypercones that bound the set. Also, 

observe that the process becomes "stuck" in Case r if matrix A has rank r < m. In such situations, SOLVE eventu

ally terminates because et̂  < 0  (with finite-precision arithmetic).
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Now that we have formally defined the attunement number, we show how this concept can be used to make 

statements regarding the asymptotic complexity of solving linear systems. The underlying intuition is that if the 

known vector does not project too much on the "unattuned" subspace of R (A) and R (A)c , then it should not be very 

difficult to solve the linear system. This intuition is substantiated by the following theorem.

Theorem 2: Let CA(n) be a class of |i(n) x  n matrices with ai/cr;(n) polynomial in n, where ji and r are positive 

integer functions and r(n) < min{n, p (/i)}. Let Cb(n) be a class of |i(n) x  1 vectors, and let q(n) be the smallest 

value such that

Kn) H-(n) H(n)
£  (ujb)2 = X  P N ( e 2- e 2i(n)X I^ H 2)2 = (e2- e 2i(n)) Z P ?

i=r(n)+l i=r(n)+l *= 1
(17)

for all A e  CA(n) and all b g Cb(n). Then, if A e  CA{n)t b e Cb(n), and q(n ) is at most polynomial in n, 

a (A, b, e) = 0(logn  + loglog(l/e)).

Proof: We divide the square of the relative error into two terms: one contributed by the projection of b on the 

"attuned" subspace of R (A) and the other contributed by the projection of b (spanned by the first r(n) coordinates) 

on the "unattuned" subspace of R (A) and R (A)c (collectively spanned by the remaining coordinates). From Equa

tion (8),

e }<

r ( n )  | l ( n )

L (® i° f t> 2 + £  (coi°Pi)2
1=1_____________ i=r(w)+l____________

H<*> .
Z P .?
¿=1

If we define

r (n )

»=1

Z P ?
i= l

(18)

and recall from Equation (7) that I co^ I < 1, then we can write

n<«)
£  P?

2 - ^ 2  i'=r(n)+l

Z P ?
i=l
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Then, by Equation (17) of the hypothesis,

(19)

so ei < e if et < e9(n). This is analogous to the situation in Theorem 1, with replaced by eh k (A) replaced by 

Gi /ap(n) , and e replaced by £?(n). Consequently,

a (A, b, e) = 0(\ogn + log(a1/CT;(n)) + loglog(l/£<?('°))

= <9(logw + l o g ^ /a ;^ ) )  + log(<? (n)) + loglog(l/£)).

By hypothesis, and q (n) are at most polynomial in n. Therefore, a (A, b, z) = 0(logn + loglog(l/£)). □

This theorem shows that Newton’s method can accurately solve a much broader class of linear systems with 

0  (logn) iterations than was previously realized; in particular, A does not need to be well-conditioned, and b does 

not even need to lie entirely in the "attuned" subspace of R (A).

5. Analysis of the Effect of Roundoff E rro r

Until now, we have assumed that all computations were carried out with infinite precision. In this section, we 

will examine the effect of the roundoff errors induced by computing with finite precision. Henceforth, we assume 

that fixed-point numbers with g bits to the left of the radix point, h bits to the right of it, and one sign bit are used in 

all computations. Thus, we can represent numbers in the range [-2g+2~h,2g-2~h] with a precision of 2~h. We also 

assume that the original entries of A are expressed with g bits to the left of the radix point, i.e., they are bounded in 

absolute value by y= 2*.

As Söderström and Stewart observed [SS74], the stability of Newton’s method for computing the pseudo

inverse of a matrix cannot be verified simply by asserting a self-correction property, as is often done in the analysis 

of the scalar Newton’s method. Instead, we must undertake a thorough study of how the roundoff error accumu

lates. Our analysis differs from that of [SS74] in two aspects: first, we use a fixed-point model of computation, and 

second (and more important), we obtain precision requirements that depend on a (A, b, £) instead of k (A).

We will compute the same quantities that were computed in the preceding sections, accounting now for 

roundoff error, as indicated by tilde. The new equation for the Newton iteration on A is:

Yl+l=2Yl - Y lAYl + Eh (20)
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where Et is the error matrix, the generic entry est of which is bounded in absolute value by Tj = 2~(A+1). In the diago

nal domain,

A/+1 = 2Ai -  AlIAl + VTElU. (21)

For an individual entry 5-j+1) of the matrix A/+1, we have

5,-y —25 ¡j ^§¿¿^¿5^ + ^ ^ v siestutj. (22)
*=1 j=li=l

Let us consider the last term of this equation. To obtain upper and lower bounds on 5^+1), we must determine 

the maximum and minimum values for this summation, which we do in the following lemma.

Lemma 2: -TjVmn < 'E ^ tvsiestUtj -  r[^mn •
j=ir=i

Proof:

21 — 21 ( v *
j=it=i î =i i=i

Taking the absolute value:

n m

I Z ( V« Z ^ « iy )l
j *  1 r=l

n m

z  2 K Iv* 11
i=i f=i

s Ê ( lv » l£ l e „ l lK ,y l )
J=1 f=l

^ Z ( lv« l £ Tl l«r;l)
s=1 i=l

j=i t=]

n n m

Since 2 1 1v« 12 = 1, 21 * V«‘ ' -  and, similarly, 2 1 1 1 ^ V/n. Therefore,
J=1 J=1 f=l

n m
-r\rmn < 2 1 2 X * i t “f/ -  ■ □

j= lr= l

It is also useful to establish the following lemma, the proof of which is omitted here for brevity, due to its similarity 

to that of Lemma 2.
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Lemma 3: For 1 < i < p, a , < y'¡mn.

Equation (22) and Lemma 2 yield the following recurrence relation:

2o»y -  £ 5 *  <**5# -  iW»m < 5 lV < 28 iy -  £ 5 ; *  0*8#  + pVmn.
*=i *=i

(23)

Based on this recurrence relation, the following lemma specifies a bound on the deviation of the /th finite-precision 

iterate from its exact value, i.e., its value if infinite precision were used.

Lemma 4: If h > (log3)-/ + g + logr + logm + log/*, then

„ f ~ l)m»w*. ^  <*i > 1»
15v "  5v 1 - 1 (3*-!)^Vwn, if a, < 1.

Proof: (see Appendix A)

The following theorem, in turn, makes use of this result to obtain an upper bound eh the relative error after / finite- 

precision iterations.

Theorem 3: If h > (log3)•/ + g + logr + logm + logn, then et < ef + (3,- l)y r j(mn)2'2.

Proof: If we define Q.(=I -  IA h then, analogous to Equation (8), we have

ei
IIQfPlI;

HP II 2
(24)

By the properties of the Euclidean norm II • II2 and Equation (24),

«/ =
ll[flf + ( f l i -f l /)]pil2

llpll2

IIQ/PII2 + II Z(A/ -  A/)P II2
¡ p -

IISCAy-AOp ll2
< et +

Up II;

<et+ III(A,-Ai)ll2.

Lemma 4 indicates that each entry in row i of A/ -  A; has absolute value no greater than for <j; > 1

and no greater than (3l-l)r\Smn for a , < 1, so each entry of I ( A /- A ,)  has absolute value no greater than
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( 3 - 1  )yr\mn. Thus, II^Aj -  A/) IL < ^ -ljY n n ^ n , and ll£(A/ -  A/) II x < (3 ‘-ljy q /n n 2, 

so

II 2(A i -  At) II2 < [ II Z(A! -  At) II« IIKAi -  At) II j ] *  < (3l-l)yr\(mn)2'2. 

and the theorem follows. □

Theorem 3 shows that et does not depart significandy from et if sufficient precision is used. In the following 

theorem, we show further that this additional error can be eliminated easily provided that b is "attuned" to A.

Theorem 4: If A e  CA(n) and b e  Cb(n) (as defined in Theorem 2), then there exists an integer

h = 0 (g  + logp.(n) + logn + q (n)log(l/e)) such that a(A, b, e) = 0  (logn + loglog(l/€)).

Proof: From Theorem 3 (replacing m with ji(n)) and Equation (19),

¿,S e, + (3'-l)7n(H(n)n)M

< [ef + e2 -  e2,(" )]i/‘ + 3V|(n(/i)n)12.

Therefore, et < e if

e] + e2 -  e2̂  < [e -  3/Yn(l-i('*)'l)3/2]2 

ef < e2?(n) -  [2e -  3'Yn(ji(n)n)3/2][3/Yri(lJ-(/1)/I)3/23 

< e2i(«) _  2e[3zyrj(jJ.(n)n)3/2].

Let us assume that / = 0  (logn + loglog(l/e)); then, recalling that q = 2_(A+1), some integer 

/i = 0 ( g  + log}i(n) + logn + <7 (n)log(l/e)) can be chosen so that 2e[3V|0J.(/i)/i)3/2] ^ e 4<7(n). Therefore, we only 

require that

ef < e2i(n) -  e4q(n)

e ] < z^ n)

e i < t ^ n).

As in Theorem 2,1 = 0  (logn + loglog(l/e)) is sufficient to ensure that et < e2̂ .  This justifies our assumption and

verifies the theorem. □
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The theorem above shows that the notion of attunement number remains valid in the presence of roundoff 

errors regardless of the condition number of the matrix, provided there are sufficiently many bits to the right of the 

radix point. W e must also determine the number, g, of bits needed to the left of the radix point, an equally impor

tant, but somewhat simpler question.

Theorem 5: If h > (log3)-/ + g + 3/21ogm + 3/21ogn + 1, then g = / is sufficient to represent Yt.

Proof: For an individual element yfj of the matrix Yl = VA ¡UT, we have

n) n m ~(i)
W i  = i 2 Z v X « > , i .

i=n=i

Using an approach similar to that used in Lemma 2, along with the bounds obtained in Lemma 4 (which can be 

applied since r <m  and r < n), the Cauchy-Schwarz inequality, and the fact that U and V are unitary, we obtain:

. - (0 ,  , * *  5(0 , ^ n) 5(0
Y ij Z  Z  ^is^st Mjt 2  ^is^ss Hjs 

s=lt=l,t*s s=l

, min(m,n)
< ( 3 - l ) y n ( ^ ) 3/2 + { max [cT1 [ l - C l - a a 2)2 ] + (3l-l)yr\mn} V  I 1 I  v*

k<l, 0<a<avi J=1 js

< (3z- 1 ) tti( m n f 2 + [a ’/22 z + (3l-l)yr\mn] S lv« |2Z lw
ì =i i=i

■JS

Vi

< a '/22 , + 2 (3 ,-l)Y n  (" in f2

By our choice of h, q is small enough that taking the integer part of this expression leaves only

We can assume without loss of generality that A *  0 and that A is scaled so that a  < 1. Therefore, g = l bits suffice

-(0 _  to represent . □
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Appendix A

Proof of Lem m a 4 (by induction on [): First, we decompose the lemma into ten different inequalities, each of 

which will be proven separately:

For Ci > 1: a “1 [ l - C l - a a 2)2* -  (37—l)yr|mn] < 8^  < a " 1 [ l - ( l - a c r 2)2Z + (3l-l)yr\mn ]

For 0 < <7{- < 1: a “1 [ l - ( l - a a 2)2Z] -  (3l-l)r\^mn < S^f < a f 1 [ l - ( l - a a 2)2/] + (3z-l)t|Vm/z 

For a , = 0: -(3 l-l)r\^lmn < 8^  < (3l-l)r\^mn

Forc,- > 1 and i * j : - a " 1 (3 -l)y n m n  < 5 ^  < a " 1 (3z-l)Y n "**

For a,- < 1 and i * j : - (3 l-l)r\^mn < 8y < (3z-l)T|Vmn

As a basis, we note that the initial condition Aq = Aq = aZ 7 satisfies these inequalities. Inductively, we now assume 

that the theorem holds for 8\lf .  We will show that it also must hold for 5ij+1).

s(J+i)To prove the upper bound for 8U , a , > 1:

5<t+i) =(/) =(/) ~(i) ~co ,—
8U < 8u (2 -  8a a,-) -  £ § ,*  <7*8*,- + r\̂ !mn;

k*i

by the inductive hypothesis and since y'Jmn:

S/i+1)  ̂erf1 [l-Cl-aa?)27 + {3l-\)f(\mn]{2 -  [l-Cl-aa?)2* + (3l-iyfr\mn ]} + £  a “1 [(3l-l)yr[mn ]2 + qVmw
k*i, k<r

= a"1 { ¡ - ( l - a a 2)2̂ 1 + 2 (l-a a 2)2i(3/-l)yr|/nn -  [(3z-l)yrjmn]2 + (r-l)[(3z-l)yrim/i]2} + qVwn"; 

since aar2 > 0:

5 - +1) < c j l { l - ( l - a a ? ) 2**’1 + 2(3z- l ) y n ^  + r [ (3 -l)ynw n ]2 + a^Vm/T}; 

by Lemma 3 and our hypothesis on h:

8 -+1) ^ o j1 [ l - ( l - a o 2)2,+l + 3(3l-\)yr\mn + yi\mn] < o r 1[ l- ( l - a a f )2,+1 + (3z+1-l)ynm/i].

s(i+i>To prove the lower bound for 8U , a , > 1:

5«  ̂5« (2 -  On a,) -  £8,* a k8 ti -  qVmn;
k*i

by the inductive hypothesis and since ysmn > 1:

» r l> 2<J71[l-(l-a o f)2'-(3 '-l)Y n m n ]{2-[l-(l-aar?)2,-(3'-l)7n/w i]) -  £  err1 [<3'-l)Ynmn ]2
k*i, k<r



18

= a,-1 {l-(l-cca?)2/+1 -  2 (l-aa?)2/(3/-l)YTVwz -  [(3-l)ynmn]2 -  (r—1)[(3/—l)Yn^^]2} -  'nVw/i; 

since a  a 2 > 0:

Bi ) > a " 1{ l - ( l - a a ? ) 2,+1 -  2(3l-l)yr\mn -  r[(3l-l)w m n ]2 -  Gftylmn)] 

by Lemma 3 and our hypothesis on h:

5 i +1) ^ crr1[l-(l-aC T ?)2/+1 -  3 ( 3 l)yr[mn -  yip««] > a71[ l - ( l - a a 2)2,+1 -  (3m -l)yr|mfl]. .

To prove the upper bound for Bf+1), 0 < a, < 1:

Sii ^ 5«i (2 -  5a Gi) -  £ 5 ik <3*5* + pVm/i
k*i

5 i+1) < {a"1 [l-C l-aa2)2*] + (3 -l)riVmn} {2 -  [ l - ( l -a a 2)2/] -G i(3l-l)T\^rnn}

+ X  [(3i-l)T|Vmn"][(3i-l)ynmn]+ T|VwwT
i*», k<j-

Bi+1) < c f 1 [l-(l-a a ? )2'Tl] + 2(l-aa?)2/(3-l)TiVmn - at[ ( 3 ] 2 + [@l-l)^'Imn][(r-l)(3l-l)yr[mn] + pVm/T

Bi ) < a f1 [ l - ( l -a a 2)~+1 ] + 2(3l-l)r[^mn + r [(3l-l)yqmn][(3l-l)r\^lmn] + T|V/n/T

s i  15 ^ g J 1 [ l - ( l - a a 2)2i+1 ] + 3(3MynVmn + tiyfmn < a f 1 [ l - ( l - a a 2)2/+1 ] + (3Z+1—l)r|Vm/T

To prove the lower bound for B--+1), 0 < a, < 1:

x (i+1) ^ s (/) \ ^5<0 ?(0 /—Sa ^ Sa- (2 -  5* a ,) -  £ 5 t* a*5* -  tjVmn
k*i

s i +1)  ̂ {af1 [l-(l-aa?)^ ] -  (31'-l)nVm/i} {2 — [1—(1—cxcjf)2̂ ] + < (̂3l-l)T\y[mn}

-  X  [(3i-l)ilV m ^J[(3,- l )y n '” '»]-TjVmn

B i+1) > GJ1 [ l - ( l -a a ? )2/+1 ] -  2 (l-a a ? )2/(3,- l )n V ^ ' -  a,[(3,-l)'n V ^ ‘]2 -  [(3M )tW ^  ][(r-l)(3'-l)Yn*m  1 -  tW™

Bi 5 ^ a 7 1[ l - ( l - a a 2)2,+1] - 2 ( 3 i- l ) ,nVmn -r\yjmn

* ? "  > a71[ l - ( l - a a 2)2,+1] -  -  Tp/m/i > a~1[ l - ( l - a a 2)2/"1] -  (3,+1-l)TtVm/T

-(*+1)
To prove the upper bound for 5 t< , a,- = 0:

2 {,+1)^oS<0 x-5(0 5(0 ,-----0« ^ 2o„ -JjOik^kO/d + T[\mn
k*i

B i+1' <2[(3/-l)TjVm/i] + £ [(3 /-l)'nVmn][(3,-l)Yrj/n/i] + rjvmn
k<s

Bi } <2[(3/-l)'nVm/i] + + pV/nn

B i+1) < 3[(32-l)'nVmn] +t|Vmn < (3,+1- l )r\^mn



19

sfl+D
To prove the lower bound for 5,-,- , c,- = 0:

8 r ^ 2 8 i r - £ 8 ; M - v ^ rk*i

5*+1) > 2[-(3/-l)T]Vm)T] -  %[(3l-l)^'Imn][(3l-l)yr\mn] - r j4mn
k<s

S**"5 > 2 [ - (3 ,-l)T}Vm/z] -  [(3,-l)T|\/m /i][r(3 -l)Y 0 m /i] -TjVmn 

5 * +1) > 3 [ - (3 ,-l)'nVmn] -T|V/wT > - ( 3 /+1-l)riVm/T

To prove the upper bound for 5-j+1), a,- > 1 and i *  j:

5<,+1>^5<0 ,o =(0 5d\ „ 5 (0  5(0 ,—8ij < 8ij (2 -  (7,5* -  GjSjj) -  X  § *  <7*5*; + TiVmn
k*i,j

?(/+!)
5 , /  < a r 1(3i- l ) y n m n {2 -  [ l - ( l - a a ? ) 2/ - ( 3 - l ) y n ^ ]  -  [ l - C l - a a 2)2* - ( 3^— ]}

+ X  err1 [(3z-l)Yr|m/i ]2 + TjVmn
**»,/, ifc£r

BiJ+1) < a r ^ - l ^ ^ K l - O f f ? ) 2* + (3z-l)YT|tfw + (l-aCT2)2/ + (3l-l)yv\mn + (r-2)(3l-l)yr\mn] + r\vnm 

8/j+1) < a jl(3l-l)yr[mn[2 + r(3 l-V)yr\mn] + r|'[mn 

5-j+1) < 3[err1(3i-l)Y n "wl] +T|Vm/j < a~l (3l+1-l)yr\mn

To prove the lower bound for

5(,+1>^5<0,~ 5(0
8 ij — 8 j ;  (2 < 7/8*

/; , cr, > 1 and z *  7:

5(On V- 5<b 5(0 /------ G j b j j ) -  X  5/* <7*5*; -  TiVm/z
*#/,/

8 ¡j+1) Z-aTl(3l-l)yr\mn [ 2 - [ l - i l - a c f )*  -  (3 - l )Y n w i]  -  [ l - ( l - a c r 2)2/ -  ( 3 - 1 ) 7 0 ^ ] }

-  X  a r 1 f ( 3 - i ) y n ^ ] 2 - TiVm/T
**«,7, *£r

5ij+1) > -err1 (3^—l>ynm ^[(l-acr2)2* + (3 l-l)yr\mn + (1 -a cr2)2* + (3z-l)yr|mn + (r-2)(3l-l)yr\mn] - 7 ] V/wT 

8 /j ^ > - c J l(3l-l)yr\mn[2 + r(3 l-iyfr\mn] - r\̂ lmn

8 !) > 3 [ - a r 1(3/-l)yr|^ '1] - tjV/wz > -err1(3z+1-l)'yrjw l

?(/+!)To prove the upper bound for 5y , cr, < 1 and i *  j :

5«+i) . 5(0 5(0 5(0. „  5(0 5(0 /—
5/; ^ §/; (2 -  a, 5* - C j8 j j )~  X  5/* <7*5*; + pVw/i

k*i,j

5/;+1) < (3z-l)TiVm/i {2  -  [l-(l-aC T ?)2; -  c , ( 3 ] -  [ l - { l - a a 2)2/ -  (3/- l ) y n ^  ]}

+ X  [ ( 3 -l)T|^/wi][(3,-l)Y n ^ 3+ T ]V m n
**/,y, *Sr

8ij+1) < (3,-l)r|Vmn [(1-aCT2)2̂  + (3Z- 1  )r\vmn + ( l -a c r 2)2* + (3Z- 1  Yf(\mn + (r-2)(3l-l)yr\mn] + T]Vmn



5/j+1) < (3l-l)r\^mn [2 + r (3 z- l ) Y n ^ ]  + TjVm/i 

6|y+1) < 3[(3z-l)r|V^m] + ryitrm < (3/+1- l ) t |'Imn

20

= (/+!)
To prove the lower bound for 6 ¡j , cr, < 1 and i *  j:

;(/+D x(t) =(/) „  o(0 s(0 „  ,—
5»/ ^ Oij (2 -  0 ,0 *  -  GjOjj) -  X  $«* a*o*; -  TiVwn

k*ij

5[J+1) > -(3 z-l)'n%/mn { 2 -  [ l - ( l -a a 2)2i - -  [ l - ( l -a a 2)2i - (3z-l)7nmn]}

+ £  [(3z-l)TiVm/i][(3z-l)Y T j^ ]-T iV ffin
A:«,/, ¿<r

6i)+1) ^ -(3z-l)TiVmn [ ( l-a c 2)^ + (3z-l)-nVmn + (l-aCT2)2/ + (3 -l)7T|wn + (r-2 )(3 l-l)yr\mn ] -  r\ Jmn 

5-j+1) > -(3 /-l)r|Vm/z [2 + r (3Z-1 )yr\mn ] -  rj^mn 

5-j+1) > 3[-(3z-l)rjVmn] -T|y]mn > -(3,+1-1)t|Vmn

This concludes the inductive step and verifies the lemma. □
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