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simple rule for finding maximum matchings. Letting |Aj = m and jB| = n, 

in this paper we describe an implementation of Glover's rule which runs 
in time O(mH-nloglogn) on a convex graph, and in time 0(m+n) on a doubly 
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EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHINGS IN

CONVEX BIPARTITE GRAPHS AND RELATED PROBLEMS 
W. Lipski, Jr. and F. P. Preparata

1. Introduction

Matching problems constitute a traditionally important topic in 

combinatorics and operations research [8 ] and have been the object of 

extensive investigation. Particularly interesting is the problem of finding 

a maximum matching in a bipartite graph, which is stated as follows: Let 

G = (A,B,E) be an undirected bipartite graph, where A and B are sets of 
vertices, and E is a set of edges of the form (a,b) with a 6 A and b £ B.

A subset M C E  is a matching if no two edges in M are incident to the same 

vertex; M is of maximum cardinality (or simply, maximum) if it contains the 

maximum number of edges. As noted by Hopcroft and Karp [7], this problem has 

many applications, such as the chain decomposition of a partially ordered 

set, the determination of coset representatives in groups, etc. Hopcroft and 
Karp have also developed the best known algorithm for this problem.

A special instance of the problem, with some industrial applications, 
was originally discussed by Glover [6] and referred to as matching in a 

convex bipartite graph. A bipartite graph G is convex on A if an ordering 
'*<" of the elements of A can be found so that for any b £ B and distinct 

a^ and a^ in A (with a^ < a ^ )

(a^,b) 6 E and (a^^) € E => (a,b) £ E for any a € A such that a^ < a < a^
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In other words, G is convex on A when there is an ordering on A such that 

for any b £ B the set of vertices of A connected to b forms an interval in 

this ordering. In such a bipartate graph we let BEG[b] and END[b] denote 

the "smallest" and "largest" elements in the interval of the elements 

of A connected to b. Naturally, if b € B is isolated, the set A(b) is empty 
and BEG[b] = END[b] = A, the empty symbol. In what follows we assume that 

there is no isolated vertex in B.

When this property holds, the maximum matching problem is considerably 

easier to solve. In fact Glover proved that the following simple procedure 

yields a maximum cardinality matching (we assume that both A and B be given 

as sequences of integers from 1 to |A| and |b | respectively; MATCH[i] denotes 

the element of B matched to i ( A):

1 begin
2
3
4
5
6
7
8 
9
10 end

Algorithm 0 

for i; = 1 to [A 1 do
begin U: = {k:(i,k) £ E and k has not been deleted from b } 

if U ^ 0 then (* find j £ u to be matched to i *) 
begin j: = element in U with minimum value of END 

~ MATCHC i] : = j 
Delete j from B

end
else MATCH[i]: = A (* i unmatched *)

end

In words, element i of A is matched to an available element j of B whose 

corresponding interval ends the closest to i. The most time consuming task 

of this algorithm is the formation of the set U and the associated determina

tion of an element j € U with the smallest value of END[j]: for any given 

i 6 A, it involves scanning all the elements of B connected to i. Thus the
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running time of this task is clearly 0(Je |), as pointed out by Lawler [8].
In this paper we shall describe a considerably more efficient 

implementation of Glover’s rule and investigate both specializations and 

generalizations of the original matching problem. Specifically, after 

considering (Section 2) the maximum matching problem in a convex bipartite 

graph, we shall analyze the further simplifications which are possible 

when the graph is doubly convex (Section 3), and the optimal time 

determination of the maximum set of independent vertices associated with a 

given maximum matching (Section 4). Finally (Section 5), we succinctly 

describe two generalizations of the convex matching problem and an extension 

of the techniques to weighted matching, which directly applies to the 
solution of a scheduling problem.
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2. Maximum matching in convex bipartite graphs: an efficient implementation 

of Glover's rule.

Let G = (A,B,E) be a bipartite graph convex on A, with JA| = m and

|B| = n. As before, A= {l,2,...,m} and B = {l,2,...,n}. For b € B,

A(b) c A denotes the set {a:(a,b) £ E}; similarly, for a £ A, B(a) c B 

denotes the set (b:(a,b) £ E]. Again, we assume that A is ordered so that, 
for each b 6 B, A(b) is the interval [BEG[b], END[b]]. Notice that if the

set A is not initially ordered so that the property of convexity is manifest,

the bipartite graph G can be tested for possession of this property - and, 

if so, rearranged - in time 0(|Ej+m + n) by means of the Booth-Lueker algorithm 

[ 2 ].

We begin by giving a generalization (and simpler proof) of Glover's rule. 
Lemma 1. If (a,b) £ E and A(b) C A(c), for any c £ B(a), then there is a 

maximum matching containing (a,b).

Proof. Suppose M is a maximum matching not containing (a,b). If a is 

unmatched then we may replace the edge of the matching incident to b with 

(a,b), similarly if b is unmatched. Suppose therefore that (a,c), (d,b) £ M 

for some c £ B, d £ A. Since d £ A(b) c A(c), it follows that (d,c) £ E, 

and we may replace (a,c),(d,b) by (a,b),(d,c) (see Figure 1).

Figure 1. To the proof of Lemma 1. Wiggly edges belong to the matching.



5

In order to prove that Algorithm 0 correctly finds a maximum matching, 

let us denote by the graph obtained from G by deleting l,...,i-l from A 

and MATCH[1],...,MATCH[i-1] from B, together with the edges incident to all 
these vertices. Let be the set of edges matched by Algorithm 0 to 
vertices l,...,i in A (we put MQ >» 0), and let A^b) and B^a) be defined 

for G^ in the same way as A(b) and B(a) were defined for G. We say that 

can be extended to a maximum matching of G if there is a maximum matching 

M of G containing M^; this means that M is the union of and of a maximum 
matching of G^+ .̂

Assume inductively that a < m and that M „ can be extended to aa-1
maximum matching of G. (This is trivially true for a=l, since MQ is empty
and Gn coincides with G.) We shall prove that M can also be extended to u a
a maximum matching of G. This is obviously true if Ba(a) = 0, so assume 

that B (a) £ 0, whence Algorithm 0 chooses MATCH[a] = b ^ A. It is then
a

sufficient to show that there is a maximum matching of G containing
cl

(a,b). But this is immediate, since for any c in B (a) we have
cl

A (c) = [a,END[c]]; by line 4 of Algorithm 0, we have END[b] < END[c] for
a

any c £ b in B (a), whence A (b) C A (c), and, by Lemma 1, the claim is
a  c i cl

established.

As noted earlier, efficiency can be achieved if for a given a 6 A 
the computation of j ( B (a) for which END[j] is minimum can be sped-up.

cl

We shall now show that, by some additional preprocessing and the use of 

appropriate data structures, this can be done in time which is sublogarithmic
in the size of B.
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The basic idea is to try to store the set B^(i) of unmatched vertices 

of B connected to a currently inspected vertex i € A on a priority queue, 

so that the element j 6 B to be matched to i can be found as the least element 

of the queue. This is indeed possible if the elements of B are relabelled 

so that END[l] < ... <  END[n] . Then the least element of the priority 
queue minimizes the value of END, as required by Glover's rule. In order 

to complete the description of our implementation, we should specify a 
method of updating the priority queue, so that its content is changed from 

B^(i) to Bi+^(i+l) as i is increased by one. It is easy to see that we 

should delete the least element from the queue (the vertex to be matched 

to i), then delete all vertices k 6 B with ENDTk] = i and finally insert all 

vertices k ( B with BEG[k] = i+1. Deleting vertices is easy, since the set 

of vertices k € B with END[k] = i appears as an interval in our ordering of 

B. Inserting vertices can be made easy too, if we precompute an array 

ORDBEG[l:n] containing the vertices of B sorted according to the 

parameter BEG, so that BEG[ORDBEG[1]] < ... < BEG[ORDBEG[n]]; then the set 
of vertices k ( B with BEG[k] = i is stored in an interval of consecutive 

positions of ORDBEG. Notice that both relabelling of vertices in B so 
that END[l] <  ... < END[n] and computing the array ORDBEG can be done in 

time 0(m4n) by standard bucket sorting (see e.g. [1 ]), since in both cases 

there are n items to be sorted by a key which may assume values from

integers 1,...,m.
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Next we may take advantage of the fact that the elements in the 

priority queue are integers in the range [l,n] and employ the priority 
queue structure developed by van Emde Boas [3 ,4], which allows each of the 

standard queue operations to be performed in time O(loglogn) and uses 

space 0(n).
We can now formally describe the matching algorithm, where:

QUEUE denotes the just mentioned priority queue £ La van Emde Boas (with 

associated operations MIN, DELETE, INSERT, EXTRACTMIN); MATCH[l:m] 
ORDBEG[l:n], BEG[l:n], and END[l:n] are arrays of integers, the integer 

variables nb and ne are counters referring to the arrays ORDBEG and END, 

respectively (nb-1 and ne-1 count respectively the number of beginnings 
and ends of intervals [BEG[k],END[k]] found so far.

Algorithm 1 (Finding maximum matching in convex bipartite graph)

Input: BEG[1:n], END[1:n], ORDBEG[l:n]

END[l] < ... <  END[n], BEG[ORDBEG[l]] <  ... <  BEG[ORDBEG[n]]
Output: MATCH[1:m]

(Algorithm on next page)
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1 begin QUEUE: = 0 , nb: = ne: = 1
2 for i: = 1 to m do
3 begin (*find vertex to be matched to i*)
4 while (nb < n) and (BEG[ 0RDBEG[nb"] ] = i) do
5 begin INSERT (0RDBEG[nbl )
6 nb: = nb + 1
7 end
8 if QUEUE =0 then MATCH!" i] : = A (*i unmatched*)
9 else begin MATCH[i] : = MIN
10 EXTRACTMIN
11 end
12 while (ne < n) and (END[ne] = i) do
13 begin DELETE(ne)
14 ne: = ne+1
15 end
16 end
17 end

From the viewpoint of performance, notice that each term of MATCH[l:m] 

is processed exactly once (lines 8 or 9), for a total work 0(m), while each 

term of B is inserted into the queue once (line 5) and extracted once 

(lines 10 or 13). So we conclude that the running time of Algorithm 1 is 
0 (m + nloglogn).
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3. Maximum matching in doubly convex bipartite graphs

As noted by Glover, the maximum matching problem becomes even simpler 

when the bipartite graph G is doubly convex, i.e., orderings of both A and B 

exist such that every A(b) is an interval of A and every B(a) is an interval 

of B.

As before, we assume that G be given as a bipartite graph convex on A, 
that is, as a set {< BEG[b],END[b] > : b € B] representing intervals of A.
A preliminary task is to test whether the set B can be reordered so that 

for each a € A the set B(a) be an interval of B.

Pictorially, we may display G by means of a set of segments (Figure 2a): 

specifically, in the plane (x,y), we let the segment y = b, BEG[b] < x <  END[b] 

represent the interval A(b) (in the sequel this will be briefly referred 

to as segment b). If we next join the extremes of adjacent segments, i.e., 
introduce in this diagram edges (BEG[i],BEG[i+l]) and (END[i],END[i+1]), 

for i = l,2,...,n-l, the set of segments is enveloped by two polygonal 

lines called the left and right boundaries. which together with the first 

and last segments of the given set form a simple polygon. In this 

representation, G is convex on B if the intercept of a vertical line with 

this polygon consists of a single segment: thus G is convex on B if and 

only if the segments can be rearranged so that both boundaries are bitomic, 
as shown in Figure 2d (that is, in the resulting relabelling of elements 

of B, for some 1 < r^ <  n, BEG[l] ^ ... ^ BEG[r^] and BEG[r^] < ... < BEG[n]; 

similarly for some 1 < < n, END[1] <  ... <  ENDCr^] and

END[r«] ^ ... ^ END[n]). We shall now describe a linear time - hence

optimal - algorithm which tests G for double convexity and, if this property 
holds, produces the desired ordering of B.
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left
boundary

Figure 2. Different polygons corresponding to the same set of segments.
(a) arbitrary order; (b),(c) ordered by nonincreasing BEG; 
(d) ordered to exhibit double convexity.

In the rest of this section we shall always assume that the convex 

bipartite graph G under consideration is connected. In fact, it is very 

easy to find connected components of a convex bipartite graph. It is 

sufficient to scan vertices i € A in increasing order and to count the 

number of beginnings and the number of endings of intervals found up to 

vertex i. Each time these two counts coincide, a new connected component 

is found. With the elements of B labelled so that END[l] < ... < END[n], 
and with the array ORDBEG as in Algorithm 1, the determination of connected 

components can be done in 0(m+n) time.
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Referring to Figure 2d, it is easy to see that the polygon displaying 

the double convexity of an arbitrary G consists - up to the reversal of the 
ordering of B - of three regions (not all simultaneously empty): a middle 

region, where both left and right boundaries are nondecreasing (i.e., 

both BEG[j] and END[j] are nondecreasing with increasing j, assuming that 
the labelling of elements of B coincides with the bottom to top ordering of 
segments in the given geometric representation); a top region where the left 

and right boundaries are nondecreasing and nonincreasing, respectively; a 

bottom region where the left and right boundaries are nonincreasing and 

nondecreasing, respectively. Moreover, all segments of the top region are 
nested, starting with the topmost segment of the middle region, similarly, 

all segments of the bottom region are nested, starting with the bottommost 

segment of the middle region.

It is easy to see that our description need not define the three regions 

uniquely, if there are different elements in B with the same value of BEG 
or END; to guarantee the uniqueness we require that all segments in the 

bottom region have BEG[j] > min^ < ^ < nBEG[k] , and all segments in the 
top region have END[j] < max^ < ^ < nEND[k] .

Suppose that we initially index the elements of B so that the pairs 

<BEG[j],END[j]>, j = l,...,n are in lexiographic ascending order; this can 
be done by bucket sorting these elements on the parameter BEG, and then 

(stably) bucket sorting the resulting sequence on the parameter END, all in 
time O(m-ki). Once this ordering of segments {A(b) :b 6 B} is available
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(see Figure 2b), we shall first extract from it the subsequence of segments 

to be assigned to the middle region. To complete the test, we must verify 

whether the remaining segments can be successfully assigned to either top 

or the bottom regions. Since for segments in these regions, the orderings 

BEG and END are contragradient, we must preliminarily alter the order of the 

segments not assigned to the middle region, so that for any two such 

consecutive segments j and j+l,(BEG[j] = BEG[j+l]) => (END[j] ^ END[j+l]): 
this can be obviously done in linear time by a straightforward use of a 

stack (Figure 2c). Next, we must test whether the resulting sequence can be 
partitioned into two subsequences, for each of which the parameter END is 

nonincreasing: if this is feasible, then the two subsequences of segments 

will respectively form the top and bottom regions. More exactly, we should 

do the partitioning in such a way, that the resulting subsequences of 

segments be nested as previously explained. We guarantee this by assigning 

the extremal segments of the middle region to the sequence to be partitioned.
The whole task is performed by the following algorithm, which computes 

for each segment j a parameter Y[j] denoting its order in the final 

arrangement. This algorithm also makes use of a special subroutine, which - 

if at all possible - partitions in linear time a sequence of integers into 

two nonincreasing subsequences; for example, (4,6,3,5,4) is partitioned 

into (4,3) and (6,5,4). This simple subroutine is described formally in an 

appendix. Its additional feature, which is important for the correctness 

of our algorithm, is that the first term of the sequence is assigned to 

the first subsequence.
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Algorithm 2 (Testing for double convexity of a connected convex 

bipartite graph)

Input; BEG[l:n] ,EM)[l:n]

The pairs <BEG[j],END[j]>, j = l,...,n are in lexicographic 

increasing ordering 

Output: Y[1:n]

Vertices j € B relabelled so that for 1 < j < n

BEG[j] < BEG[j+1], or BEG[j] = BEG[j+1] and END[j] £ END[ j+1]

1
2
3
4
5
6
7
8 
9
10
11

12

13

14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28

begin (* find last segment jm of middle region *) 
jm: = 1
for j: * 2 to n do

if END[j] ^ END[jm] then jm: = j 
(* extract segments not in internal part of middle region *) 
e : = END[l] , 1 : =* 0 
for j: = 1 to n do

if (ENE>[jT ̂  e) and (j^l) and (j^jm) then e: = END[j] 
else begin H : = l  + 1 

' SU] : = j
end

relabel the elements of B so that for 1 < j < n 
(BEG[ j] = BEG [j+1] ) =* (END[ j] £ END[ j+1] ) 

reorder ST1: j?J so that for 1 < P <
(BEG[S[ p]] = BEG[ S[ p+l]] ) => (END[S[p]] £ END[S[p+l]] ) 

partition S[l:jfc] into two subsequences SUBl[l:jg,l] and 
SUB2f 1:^2] , such that END[SUB1[1]] ^ ^ END[ SUBl[^l] ]
and END[SUB2[ 1]] ^ ^ END[SUB2[£2]]

kl: = k2: = k3: = 1
for j: = 1 to n d_o (* determine Y[j] *)

if SUBl[kl] =j then (* j belongs to bottom region *) 
begin Y[j]: « ¿1 - kl + 1 

kl: = kl + 1
end

else if SUB2[k2] = j then (* j belongs to top region *) 
begin Y[j] : = n - i2+k2 

k2: = k2+l
end

else (* j belongs to middle region *) 
begin Y[j]: = ^2+k3 

k3: = k3+l
end
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It is straightforward to conclude that Algorithm 2 runs in time 0(n).

We can now describe the maximum matching algorithm, which makes use 

of a DEQUE (doubly-ended-queue) as an auxiliary data structure; as is well- 
known, DEQUE has two distinguished elements, top and bottom, and the 

following repertoire of instructions: INSERTTOP, DELETETOP, INSERTBOTTQM, 

and DELETEBOTTOM.

Algorithm 3 (Finding maximum matching in doubly convex bipartite graph) 

Input: BEG[l:n], END[l:n], Y[l:n]

BEG[j] < BEG[j+l], or BEG[j] = BEG[j+l] and END[j] £ END[j+1] 

for 1 < j < n 

Output: MATCH[l:m]

1 begin
2
3
4
5
6
7
8 
9
10
11
12
13
14
15
16
17
18
19
20
21 end

DEQUE: = 0, j: = 1 
for i: = 1 to_ m do

begin (* find element in B to be matched to i ( A *) 
while (BEG[j] = i) and (j < n) do

begin (* insert j into deque *)
if (DEQUE =0) or (Y[j] > Y[top]) then INSERTTOP(j) 
else INSERTBOTTOM(j) 
j: = j+1

end
if (DEQUE = 0) then MATCH[ i] : = A (* i unmatched *) 
else if ENDftop] <”]END[bottom] then 

begin MATCH[i]: = top 
~ DELETETOP

end
else begin MATCH[i]: = bottom 

~ DELETEBOTTOM
end

while (DEQUE ^ 0) and (END[top] = i) do DELETETOP 
while (DEQUE ^ 0) and (END[bottom] = i) do DELETEBOTTOM

end
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Notice that each element of B is inserted into and deleted from the 

DEQUE exactly once, and that each of the standard deque operations can be 
executed in constant time; it follows that the entire matching can be

computed in time 0(m+n).
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4. Finding a maximum Independent set of vertices in a convex bipartite graph

Closely related to the maximum matching problem in bipartite graphs 

is the determination of a maximum independent set (of vertices), that is, 

of a maximum cardinality set of vertices of the bipartite graph G such that 

no two of them are connected. It is well-known (see, e.g. [10]) that a 

maximum independent set can be derived from a maximum matching M by 

standard alternating path techniques as follows (see Figure 4): (i) direct 

every edge e € M from A to B, and any e € E-M from B to A ; (ii) letting Bq 

denote the set of unmatched vertices in B, find the sets A^ c A and 

B1 ( B q  9  B]_ E B) of vertices reachable from BQ; (iii) construct the maximum 

independent set as I = B^ U (A-A^). Therefore the entire problem reduces

Illustration of the derivation of a maximum independent set from 
a maximum matching (wiggly edges are in the matching M): vertices 
in the independent set shown as # .

Figure 3.
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to finding all the vertices of G which are reachable from B . A most0
interesting fact we shall now show is that, when G is convex, this reachable 

set can be obtained in time O(n-hn) so that the determination of a maximum 

independent set runs in total time O(m-fnloglogn), or 0(m+n) if G is 

doubly convex, the computation of the maximum matching being the dominant 

task (notice that, once and are known, I is obtainable in time
O(n-fm) ).

As usual, the graph G is described by the two arrays BEG[l:n] and

END[l:n]; MATCH[l:n] gives for each i € A either A or the element of B

matched to it. We assume that the elements of B be ordered so that

BEG[i] < BEG[i+l], 1 <  i < n. Due to the property of convexity, for each

b € Bq the set A(b) of vertices reachable by a single edge from it form an
interval of A; from any matched vertex a in this interval we reach a single

vertex MATCH[a] G B, which in turn reaches another interval A(MATCH[a]) of
A. Notice thar A(b) and A(MATCH[a]) necessarily overlap, so by the

convexity of G their union is a single interval. Therefore, initially we

place in a queue all the elements of Bq in increasing order, and starting with
the smallest one j^, we determine a single extended interval A*(i^) D A(j^)
of A, which is the set of all elements of A which are reachable from -jJ 1
(A*(jcould be informally viewed as the "closure" of A(j^)). This 
extended interval is constructed by scanning A(j^) in decreasing order 

starting from END[j^] and currently updating the extremes of the reached 

interval; once the scanning reaches the lower extreme without further 

downward extension of the interval, then if the interval has been extended 

upward beyond END[j^], scanning is resumed in ascending order starting from
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END[j^] until the same terminating condition occurs, and this process 

is repeated until no further extension - either downward or upward - is 

possible. At this point the construction of interval A*(j^) has been 

completed. We then extract the next element j^ from the queue and begin 

the construction of Notice that if A*(j^) and A (j^) are disjoint

(Figure 4a), BEGCj^] must be larger than the upper extreme of A*(j^). Since 

by hypothesis, BEG[j^] < BEG[j2 ], it follows that only downward extensions

O
O

(b)

Figure 4. (a) Illustration of the case where A*(j^) and A(j^) are disjoint.
(b) Explanation of the meaning of variables "lower", "upper", 

i  and u.
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of A(j^) may meet previously scanned elements of A. To avoid any time-

consuming unnecessary repeated scanning, we must ensure than any previously

scanned interval be skipped in subsequent processing, so that each element
of A be scanned at most once. This objective is achieved by means of a

stack: as soon as the construction of A*(j), for some j € Bq , is completed,

its lower and upper extremes are inserted into the stack, whose content -

at a generic instant - is a sequence such that,
k

for 1 < p < k, eD + 1 < i [i^,ej is an interval of A, and U [i_,ejP P p=l P P-
is the set of all scanned elements of A. The reachability algorithm uses 

as auxiliary data structures a QUEUE, containing the elements of Bq ordered 

according to nondecreasing value of BEG, and a STACK, for storing the 

sequence of scanned intervals, as already noted. The intuitive significance 
of the program variables lower, upper, i , and u is as follows (see Figure 4b) 

lower and upper denote respectively the current boundaries of the extended 

interval being constructed; i  and u are pointers used in scanning, running 

downward and upward respectively.

Algorithm 4 (Finding the set of vertices in A reachable by 

alternating paths from the set of unmatched vertices in B in a convex 

bipartite graph)

Input: BEG[ 1:n] , END[l: n] , MATCH[ 1: m]

QUEUE containing the unmatched vertices b ( B in increasing order
BEG[l] < . .. < BEG[ n] 

k
Output: The set U [i ,e ] C  A of vertices reachable from unmatched

P=1 P P-

vertices b ( B, represented by a sequence -1,i^,e^,i2,e2,•••,i^,ek 
stored on STACK
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1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32

begin
STACK « -1
while QUEUE ^ 0 d£ (*' find vertices reachable from first(QUEUE)*) 

begin j « QUEUE
if END[j] > top(STACK) then (* new vertices to be scanned * )  
begin A: = END[j]+l, lower: = BEG[j], u: = upper: = END[j] 

repeat (* extend interval of vertices reached from j *) 
while A > lower do> (* scan downward *) 

begin A:  = ¿-1
if MATCH[jj] ^ A then (* A is matched *) 
begin lower: = min (lower, BEG[MATCH[^]]) 

upper: = max (upper, END[MATCH[^]])
end

if A < t0P(STACK)+l then (* skip interval *) 
begin A *  STACK 

A *  STACK
lower: = min (lower }A)

end
end

while u < upper do (* scan upward *) 
begin u: = u+1

if MATCH[u] ^ A then (* u is matched *) 
begin lower: = min(lower, BEG[MATCH[u]]) 

upper: = max(upper, ENDCMATCHCu]})
end

end
until (j^=lower) and (u=upper) (* extended interval completed *) 
STACK ̂  lower 
STACK <= upper

end
end

end

To analyze the performance of Algorithm 4, we note that each element

of A is scanned at most once (either by loop 8 or by loop 20); the extremes 

of extended intervals are pushed into (lines 28 and 29) and popped from 

STACK (lines 15 and 16) at most once, thereby allowing the conclusion that 
the algorithm runs in time O(m-hi).
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5. Generalizations and related problems

In this section we shall briefly describe two interesting generalizations 
of the notion of a convex bipartite graph to which Glover's rule, and hence 

the efficient algorithms previously described, are applicable, and an 
extension of the techniques to a weighted matching problem, which models 
a significant scheduling application.

5.1. Simple chessboards: a generalization of doubly convex bipartite graphs

Algorithm 3 can be applied to a class of convex bipartite graphs more 

general than that of doubly convex graphs. In order to describe this class 
we shall need some definitions. By a chessboard we shall mean any finite 

collection of unit squares with integer coordinates on a plane. Any such 
unit square will be denoted by coordinates <x,y> of its left lower corner.

A chessboard is simple if for any of its squares <x,yp-> <x,y2>, where 

y^ < y2, it contains all squares <x,y>, y^ < y < y2 (se,e Figure 5 ). Rows 
and columns of a chessboard are defined in the natural way as maximal 

horizontal and vertical sequences of adjacent squares, respectively. We may 

allow a simple chessboard to be cut vertically in some places to make 

some squares nonadjacent (such as <6,8> and <7,8> in Figure 5), provided the 

line along which we cut touches the boundary of the chessboard. Let A and B 

be the set of columns and rows of a simple chessboard, respectively, and 

let us consider the bipartite graph G = (A,B,E), where (a,b) 6 E iff column 
a and row b intersect (i.e., have a square in common). This graph is 

convex on A (but not necessarily doubly convex),the required ordering of 

A being given by the natural left-to-right ordering of columns. It is 

easily seen that any matching in G corresponds to a set of nonattacking
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throoks on this chessboard (see Figure 5). If the j row of a simple chessboard 

consists of squares <x,Y[j]>, BEG[j] < x <  END[j], then the maximum 

cardinality set of nonattaching rooks on this chessboard is found by 

Algorithm 3 in time linear in the number of rows and columns. The reason 

why Algorithm 3 works correctly is that similarly to the doubly convex 

case, the sequence of ends of rows "seen" from any column of a simple

chessboard is bitonic, whence the sequence of the values of END for

vertices j € B (rows of the chessboard) stored on the DEQUE is also 

bitonic, and we may find a vertex with the minimal value of END either at

the top or at the bottom of the DEQUE. We leave details to the reader.

0
0

0 o
0 0

0
0 0

0 o
0

0
o

Figure 5. A simple chessboard with a maximum set of nonattacking 
rooks found by Algorithm 3.
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5.2. Bipartite graphs convex on a tree-ordered set 

Glover's rule works correctly in a more general situation, where the 
sets A(b), b G B are (sets of vertices of) paths in a directed tree (for 

concreteness we shall assume that the tree is directed toward the root; 

families of sets of this type are of some importance in file organization, 

see [9]). The convex case is easily seen to correspond to a tree 

degenerating into a single path. Assume that a directed tree with vertex 

set A is represented by an array s[l:m] which gives the successor S[a] of 
any vertex a 6 A (S[a] = A if a is the root). Similarly as in the convex 

case, let A(b) be represented by the pair <BEG[b],END[b]>, meaning that A(b) 
is the set of vertices of the path in the tree, beginning at BEG[b] and 

ending at END[b]. From the array S we can easily produce, in 0(m) time, 

a topological ordering of A, i.e., a linear ordering of the elements of A, 

in which the distance to the root-, or the rank of a vertex, is nonincreasing. 
We may also assume that the predecessors of any vertex appear consecutively 

in this ordering, and that if a^ appears earlier than a^ then all predecessors 

of a^ appear earlier than all predecessors of a T h i s  is always the case if 

the ordering is found by a breadth-first search of the tree. The algorithm 
for finding a maximum matching in our bipartite graph processes the 
vertices of A according to the just described ordering and runs as follows. 

Instead of a single priority queue, we maintain a collection of priority 

queues; at any instant in the execution of the algorithm there are as many 

distinct queues as there are vertices of A with the same value of rank 

currently being processed. Each time we encounter a vertex i 6 A which is 
a leaf of the tree we initialize a new priority queue and insert into it all
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vertices j € B with BEG[j] = i; each time we have processed all predecessors 

of a vertex a, we merge the queues corresponding to them into one queue 

corresponding to a. All other details are the same as in Algorithm 1. The 

reason why our procedure works correctly is as follows. The priority queue 
Q corresponding to a vertex a contains all so far unmatched vertices b € B 

such that a 6 A(b). The paths starting at a and ending at vertices END[b], 

b in Q, are nested one in another, exactly as in the convex case, whence the 
same agrument based on Lemma 1 can be applied to prove that matching a to 

the vertex b in Q with the minimal value of END guarantees that the matching 

obtained will be of maximal cardinality.

If we apply the mergeable heap structure described by van Emde Boas [ 3 ] , 

which allows the priority queues to be efficiently merged, then we can 

achieve 0 (m + A(n)nloglogn) time complexity, where A(n) is the functional 
inverse, very slowly growing, of a function of Ackerman type (see Tarjan 

[11]).
Our algorithm can be used to find a maximum set of nonattacking rooks 

on a chessboard satisfying the following condition: any two squares <x,y^>
K X fY g * can be joined by a sequence <x,y^> = < x ^ \ y ^ ^ > , < x ^ ^  ,y^^>,... , < x ^  ,y(k)> 

<x,y2 > of adjacent (i.e., having an edge in common) squares with x^^ ^ x,

1 <  i <  k. In words, the chessboard does not branch as we go from left to 

right (see Figure 6 ). The tree-like ordering of the set A of columns of 
such a chessboard is defined so that a column containing square <x+l,y> 

is the successor of column containing square <x,y>.
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Figure 6. A chessboard and a maximum set of nonattacking rooks found by 
a modification of Algorithm 1.

^•3. Gale-optimal matchings and one-processor scheduling of independent tasks 

It is clear that Algorithm 4 can be modified so that it finds an 
alternating path in a convex bipartite graph - if there is one - in linear 

time. Using such a modified algorithm as a subroutine in the standard 

method of finding a maximum matching, based on repeatedly augmenting a 

matching along an alternating path (see, e.g. [8 ]), we can obtain an algorithm 
of complexity 0(n(m+n)). Of course, it is less efficient than the 
0 (m+nloglogn) Algorithm 1. However, there is a situation when the standard

alternating path algorithm is of interest.
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Suppose that there is a weight w(b) ^ 0 associated with every b € B, 

and that we are looking for a matching which maximizes the sum of weight of 

matched vertices in B. Since assignable subsets of B - i.e., subsets that 

can be covered by a matching - form a matroid, it follows that the matching 

we are looking for can be found by a matroid greedy algorithm (see Lawler [8] 

for the explanation of all notions related to matroids). More exactly, 

our matching can be obtained as follows: (i) order the vertices in B 

according to nonincreasing weight, (ii) starting with the empty matching, 

scan B in this order; for any b € B, augment the current matching along an 

alternating path starting at b and ending at an unmatched vertex in A, if 

such a path exists, or leave b unmatched otherwise. Notice that after the 
augmentation process in step (ii), vertices which were matched remain matched 

(probably to different vertices), and vertices which were left unmatched 
before, remain unmatched. It can be proved (Gale [5], see also [8]), that 

the matching M so obtained is Gale-optimal, i.e. optimal in the following 

strong sense: Let {b^,...,b^} c B, w(b^) ^ ... ^ w(b^) be tbe set °f 
vertices covered by M. Then for any other matching M ’, the set [c ,...,c ] C  B3 

w(c^) ^ ... ^ w (°g) °f vertices covered by M ’ satisfies the condition 
i  < k, w(b^) ^ w(c^),...,w(b^) ^ w(c^). (Notice that both the greedy 

algorithm and the notion of Gale-optimality depend only on the ordering of 

B according to the weights, and not on the actual values of the weights.)

It is obvious that a Gale-optimal matching of a convex bipartite graph 

can be obtained in 0(n(m+n)) time by the greedy algorithm, using a modification 
of Algorithm 4, as explained at the beginning of this subsection.
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There is an interesting relationship between Gale-optimal matchings 

in convex bipartite graphs and the problem of scheduling a set B of n 

independent (no precedence constrains) tasks on one processor, where each 

task takes one unit of processing time, there is a starting time BEG[j] 

and deadline END[j] for every task j, and a penalty p(j) which must be 

paid if this task is not executed in the time interval [BEG[j],END[j]]

(we assume that time is integer-valued). It is easy to see that any 

schedule minimizing the total penalty corresponds to a Gale-optimal matching 

in a convex bipartite graph defined by arrays BEG,END, and with w(j) = M-p(j)

(M > max^ < < np(j)): the vertex i matched to task j G B determines the

unit interval of time when j is to be executed (see Lawler [8], Chapter 7).

We conclude that an optimal schedule for this problem can be obtained in 

0(n(m+n)) time (m is the maximal deadline). Of course, if all penalties 

are equal, i.e., when we simply maximize the number of tasks executed, 

then the optimal schedule can be obtained in O(m-fnloglogn) time by Algorithm 1.
As a closing remark, we note that the maximum matching problem on a general

bipartite graph G corresponds to the situation where for any b G B the set

A(b) is a collection of t(b) intervals of A. It is an almost straightforward

extension of our discussions in Sections 2 and 4, to show that the standard

approach based on augmenting paths [ 8] can be implemented - both for the

maximum matching and for the Gale-optimal matching - in time O(n(m+tloglogn))

where t = £ t(b) is the total number of intervals in the given G.
b G B
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Appendix

Algorithm A (Partitioning a sequence of n integers into two non

increasing subsequences)

Input ; S[l:4] - the original sequence

Output; SUBl[1:41], SUB2[1:42] - two nonincreasing subsequences 

into which S[l:4] is partitioned S[l] = SUBl[l]

1 begin 41: = 42: =0, SUBl[0]: = SUB2[0]: = «
2 for i: = 1 to 4 do

3 ijf S[i] < SUBl [41] then (* add S[i] to first subsequence *)

4 begin 41: = 41 + 1

5 SUBl[XI]: = S[i]
6 end

7 else if S[i] < SUB2 [i,2] then (* add S[i] to second subsequence *)
8 begin 12 : = 12 +1

9 SUB2[^2]: = S[i]
10 end

11 else stop (* no partitioning possible *)
12 end

To prove the correctness of the algorithm, first notice that we always 

have SUBl[i,l] < SUB2[i2], the inequality being strict except for 11 = 12 = 0. 

If now, for some i, we reach the condition SUBl [ H I ]  <  SUB2[j&2] < S[i]

(line 11) it is clear that the original S[l:j£] contains an increasing sub

sequence of length 3, which makes impossible its partitioning into two 
nonincreasing subsequences.

One may note that the algorithm easily generalizes to an algorithm for 

partitioning an arbitrary sequence of length i  into the minimal possible
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number of nonincreasing subsequences, in time O(^logd), where d is this 

minimial number of subsequences, or - equivalently - the maximal length 

of an increasing subsequence in the given sequence.
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