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1. Introduction

If the distribution function, F, is a linear combination of
I

two Maxwellians with distinct temperatures, densities, average velocities, 

and masses, both the gain and loss terms of the collision integral in 

the Boltzmann equation can be evaluated analytically. A gas with such 

a bimodal distribution function is referred to here as a Mott-Smith gas. 

(Mott-Smith (1951) was the first to use this form of the distribution 

function to analyze the shock wave structure.)

Desphande (1969a) obtained the following closed form expression 

of the collision integral for a rigid sphere Mott-Smith gas:

where J the collision integral for the two Maxwellian distribution

(1)

functions F^ and F. respectively,
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and

—► 1/2 —̂ —►
c j “ V  (v' V ’

c. = b .1/2 (y -u .),

m.
R = 1
i 2kT. *l

In the above expressions T is the temperature; k the Boltzmann constant; U is 

the average velocity; n is the number density; B is the inverse square of the 

most probably thermal speed; a is the average of the rigid sphere collision 

diameters; denotes a confluent hypergeometric function; and the sub

scripts i and j refer to the two different Maxwellian gases. In equation (1) , 

the first two terms give the gain term G ^ ,  and the last term is the loss

te rm F . L ..
1 J

In this report, __ the results of Deshpande (1968, 1969a,b) and 

Narasimha (1968) are generalized to binary gas mixtures. Also, certain limita

tions on their analysis are examined. Section 1.2 presents a method by which 

this analysis may also be extended to electron (or ion)-neutral mixtures. The 

neutrals are considered to be Maxwellian and the electrons (or ions) are 

assumed to possess "Maxwellian type" distribution functions.

.. Evaluation of the Collision Integral for a Binary Gas Mixture

The generalization of Deshpande (1969a) to include a mixture of 

gases involves a reformulation of almost every step in the analysis. The 

necessary mathematical steps for mixtures are presented in Table !.. below.,The 

integration formulas and identities necessary for the evaluation of the 

collision integral were obtained from Erdelyi (1954a,b; 1955a,b,c); Slater 

(1960); Rainville (1960); Whittaker (1963); and Abramowitz (1965).
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The Boltzmann collision integral for any two distribution functions, 

and F^ may be written in terms of the gain and loss terms as

JCF^F ) = G(F ,F ) - F L(F )
J J J (2)

where G(F±,F j) = G ij ■ gain term = J V ^ ^ F  (W1 )gbdbdeDW, (3)

and L(F^ - L̂ . = loss term = |*F (W)gbdbdeDW. (4)

In these equations,

and

—4
V = velocity at which the integrals are being evaluated,

W = velocity of the collision partner (j is the target molecule),
—* —4 —4
g = V-W = relative velocity,

b = impact parameter,

e = azimuth angle,
—*
DW = volume element in W space.

The prime values (') denote conditions after a collision and F denotes a 

Maxwellian distribution function.

The subscripts i and j refer to different components of a gas 

mixture. (They could just as well refer to different terms in an expansion 

of any distribution function into a series oi Maxwellians for a single_gas.)

The loss term for a Maxwellian F.., from equation (4) becomes

. ̂ 3/2 ,
Lj = J n J  exp Q-Bj(W-Uj) JgbdbdeDW. (5) •
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Now, since V is held constant with respect to the integration over 

W, W is replaced by V-g, and integrating over de from 0 to 2n, equation (2-5) 

becomes

, 3/2
L . = n, [■— 1)j Vtt J B.l

f» C  2 -* -* 2 N  -4J e x p ^ - B ^ C g  -2g«c/fc^)Jgbdb Dg ( 6)

where

_ B .
c . = V-U . and B .. = ,
J J B j,

and all velocity terms have been nondimensionalized with respect to B
i *

consistent with Deshpande (1969a). (In Appendix B another form of non- 

dimensionalization is considered.)

The next step is to transform g to a spherical polar coordinate 

system (g,0,0) with c^ as the axis and write (Chapman (1964))

-» 2
Dg = g dg sin9d0 d0. (7)

Thus, after integrating over d0 from 0 to 2tt and evaluating the 

integral over d9 in terms of the hyperbolic sine function, equation (6) 

becomes

L . 
J

exp(-B..c.) p 2
— g J Jexp(-B g )sinh(2b . .gc )g odbdg, 

ji j J J J
(8)

So far, a general collision cross section is being considered, i.e.,

bdb = b(f,g)-^ di|r
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where 2\|f is the angle between the asymptotes of the relative velocity vectors 

before and after a collision. At this point, before integration over g, a 

collision interaction model must be specified since bdb may be a function of 

g. A rigid elastic sphere interaction model is assumed where

b = asinijf

and bdb = cr s in\|r co sty dty .

Thus, integrating over dijj from 0 to tt/2 and expressing the sinh in terms of 

exponential functions, equation (2-8) becomes,

=n.(-ì)J j vrr J

2 2 2 B ̂  3/2 g tt exp(-B . .c .)
1Ì ______  J 1 J | f

B2B . .c . 
a- Ji J

0
exp(-B . .g + 2B . .gc .) 

Ji J i J

2 \  2 - exp(-B g - 2B gc ) g dg. 
J JL J s (9)-

The integration over g is performed using D 3 , a parabolic cylinder 

function (from Erdelyi (1955b)), and equation (9) becomes

2 2

L . 
J

^Bi.3/2 tt g exp(-B..c.) _ (V2B . . c .)

-,(-¡0 . ] 1 J C - — ^B .B . .c .
a- ja. J V 2B

-B . .c2

ji B Ji

-B . .c2
exp

^ D -, (a/2bTT C . ) .a,   x

c-t-o - z - 1' 1
//2B .. B . ja. Ji

(10)

Then, expressing D 3 in terms of error functions (erf) by Erdelyi (1955b),

the loss term becomes
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,B . n 3/2 2 2 , 1+2C . N

L j = n j C ^ )  +  (T 7 - l ) e r £  c j )  (1 1)B . J
J

where C. = a/b .. c..
J j

Equation '(IX)/ is identical to that given by Chapman~(1964) or Deshpande 

(1969a). The; calculation of the loss term is now complete, the gain term 

remains to be determined; its expression is

Gi j  = J*Fi (V, )F (W')gbdbdeDW. ( 12)

The evaluation of the gain term is considerably more involved than 

the evaluation of the loss term. The procedure by which the gain term is 

determined is shown in Table 1. and the computational details are given in 

Appendix A. From Appendix A, the gain term, loss term, and collision inte

gral are respectively,

2 2_ 
tt a F .F .

G ij B.B .2ARJ [lF l(1;2;Al+R)"lF l(1;2;Ar R)] ’ 
i J

F.L. = F.F. 11 ^ -  F (2;|;C2),
1 j 1 j b 2 1 1 2  y  

j

and J(F . ,F .) = G 
i J

where

2 2 2 
R = X + L2,

C
O

iC
M

r<¿

IIC
M

<
3

A 1  ^ 1  "





8

B.. = B./B.,
Ji J 1*

m.

Bi = 2kT. 5 Bj

m .
—  J
2k T . » 

J

V = velocity of particle j, the velocity at which the integrals 
are being evaluated,

Ih = gas velocity of particle i,

— *

U.
J

= gas velocity of particle j,

F.l n .l exp (-Cp y

F.
J nj("i) exP('cj>y

n and T are the number density and temperature respectively of 
particles i or j, depending on the subscript used,

k = .'.j the Boltzmann constant, and 

cr̂ -hj .
cr = 7r~̂ ~ the collision diameter.

It is noted that

c^sin2i|j

2B . ,c .sincy 
Ji J

< 1,

where c^ - ac,*bB c is required. With m . , or the jth particle taken as
J J J

the heavy species, this inequality is satisfied for all cases of interest.

In Appendix B these analytical results for the collision integral 

are modified to allow direct comparison with Monte Carlo calculations.
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TABLE 1 ...

CALCULATION PROCEDURE FOR THE ANALYTICAL EVALUATION OF THE COLLISION INTEGRAL 
FOR A RIGID SPHERE MOLECULAR MODEL AND A MOTT-SMITH BINARY GAS MIXTURE.

LOSS TERM



GAIN TERM
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Rewrite the loss term in 
hypergeometric functions

terms of confluent 
for consistency

___ 3f
Write the closed form expression 

for the collision integral

3,:. Analytical Evaluation of the Collision Integral for Electron-Neutral 
Mixtures

In this section, the analysis is generalized to include the mixture 

of electrons (or ions) and neutrals. The distribution function of the 

neutrals is assumed to be Maxwellian. The electron distribution function 

is taken to be of the same general form as a Maxwellian gas. Chapman (1964) 

and Margenau (1946) employ a similar approach by considering the electron 

distribution function to be Maxwellian with a "temperature" considerably 

higher than that of the neutrals. Also, Comisar (1961); Krook (1959);

Jukes (1957); and Tidman (1958) applied the Mott-Smith Ansatz to electron 

(or ion) — neutral mixtures. Specifically, the electron (or ion) -neutral 

distribution functions were taken to be a linear combination of two "modified" 

Maxwellian distribution functions.

Appendix C lists several theoretical electron distribution 

functions. Some distribution functions are appropriate for use in the 

analytical evaluation of the collision integral. Certain other electron 

distribution functions may be used in Monte Carlo calculations to check their 

validity, i.e., to see if they are solutions of the Boltzmann equation.

From Appendix C, an electron distribution function of the form

; (i3)
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in terms of the parameters A and B, is considered. A and B are taken to be 

constants. This form of f^ is selected as being more general than

which is also analytically feasible.

Using equation ’'.C-1.3X as representative of the electron distribu

tion function, it remains to determine the parameters A and B. Since the 

parameters usually considered in electron-neutral studies are the number 

density and the mean energy, e.g., Allis (1956), Margenau (1948c), Morse (1935), 

Davydov (1935), and Chapman (1964), the following definitions of the electron 

number density and electron mean energy

are used to determine A and B. In this case, m is the electron mass, t the 

electron temperature and v is the electron velocity. Calculating A and B

fg = A exp[-Bv^]

and

2 3kT = -  J‘f  v 2dvn J ev = —  m

from the assumed f yields

v
and

v

v v

or
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Alternately, the definition of the mean velocity,

could..be used with that of the number density to determine A and B. How

ever, A and B determined by either method differ only by numerical constants. 

The distribution functions of Druyvesteyn and Margenau, (given in Appendix C) 

are of the same form as equation (14).. . Also, Chapman (1964) gives results 

consistent with this equation.

These observations justify the choice of equation ' (14), to repre

sent the electron distribution function. Of course, mathematical compli

cations in the analytical evaluation of the collision integral precludes the 

use of all the proposed electron distribution functions given in Appendix C.

Mathematically, equation ’(14), is still of the same general form 

as a Maxwellian. The coefficient of the exponential term is constant and 

can be factored out of the integration. Redefining the constant B^ in the 

exponential then converts the results of Appendix A to an electron-neutral

mixture. The gain and loss terms given in Appendix A apply to an electron-

3
neutral mixture with F. replaced by f and B. = — tt .l r J e i -22v

4, Significance of the Analytical Calculations

The analytical evaluation of the collision integral for a Mott- 

Smith binary gas mixture is significant in two respects.

First, since Monte Carlo methods have statistical errors, comparison 

with analytical results are essential in establishing their accuracy. For 

the case of a monatomic gas such comparison has been made.
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Secondly, solutions of the Boltzmann transport equation on the 

basis of the Mott-Smith Ansatz have been found to yield accurately certain 

properties for strong shockwaves in monatomic gases (Mott-Smith (1951, 1954); 

Narasimha (1969); Yen (1972c).), . JXheref.ore,. use of „this Ansatz has been 

proposed to study rarefied gas flow problems in gas mixtures (Martikan 

(1966)).

The advantage of Mott-Smith shocks is the simplicity in their 

description, the validity of which can readily be studied, e.g., by using 

the Monte Carlo method (Hicks (1963a, 1967c, 1969a, 1970); Yen (1972)).;;.

In such studies, the detailed comparison of the collision integrals may be

necessary.
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APPENDIX A

EVALUATION OF THE GAIN TERM FOR A BINARY MIXTURE

The gain term is evaluated from equation ('12) by the procedure 

outlined in Table l . The gain term is

G i . = jFi(V,)F (W')gbdbdeDW.
J  J

First, the velocities after collision are related to the velocities before 

collision from Chapman (1964), where

V'-V = -2M.(g‘k)k,

and

with

W'-W = 2Mj(g*k)k,

nu m .
M . = — ——  and M . = --l m.+m. j m.+m.

1 J i j

Now, since g=V-W and g*k = gcost|r , where k is the apse vector or 

the unit vector bisecting the angle between the asymptotes of g and g' (thé 

angle between g and k or g' and k is \|f ), the velocities after the collision 

become :

and

V 1 - V-2MJcgcos\|r 

W' = V-g+2Mjkgcosty.

The coordinate system for the gain term is shown in Figure A-l. 

The vector ^  corresponds to the C of Deshpande (1969a), and the components
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of k, kj| and k^ , represent components parallel and perpendicular to g, 

respectively.

The product F^(V1)F .(W'), (with all velocities nondimensionalized
1/2

by ) becomes

Fi<V')Fj(W') - F 1(V)F ̂ (W)exp(2gcos\(f (2k) •

where

and

(M.c.-M.B . .c .) + 2B . .c . 
1 a- J J1 J Ji J

2 2- 4M .B . .cos \lr + 4M .B 
J Ji Y J

- 2 ., 2 2 ,•g-g (4M .cos \|r

. .cos ilr + B ..) ) 
Ji Ji »

B .
= _J

B. *L

(A-l)

Equation (A-l) is valid for a mixture of gases i and j.

In order to continue with the evaluation of G. ., a new velocity
■4
c^ is defined as

2M.c .l l 2M .B . .c .. 
J J3L J (A-2)

Next, in the integration over de, e appears only in the term k * ^  of 

equation (A-l), (Margenau (1964), Jeans (1940)). When k and c^ are resolved 

into components parallel and normal to g, denoted by the subscripts || and j_ , 

respectively, only the term k^*c^ involves 6 in the form of a linear combina

tion of sine and cose. Then, in the integration over de,
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Fig. A-1 Coordinate System and Vector Geometry.
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J deexp(k*c. (2gcos\|r)) = exp(C, 2gcos2ty)2ttI (gC, sin2t]/)
0 II ° i

where Iq is a modified Bessel function of the first kind and order zero 

(Abramowitz (1965)). In this integral

■4 —4
k*c^ = cos\|/ + c^ sin\|/cos(e+e )II l

where i|r is defined in Figure A-l and e is a constant.
o

In the integration over DW, W is replaced by the relative velocity 

and spherical coordinates are used with c^ as an axis, so

-> 2
Dg = g sin£d|d0dg

(see Figure A-l).

The angle 0 appears only in the term exp(2Bj.c •g) of the ga m

term and

cosa'gcos^ + c s im1 s in§ cos (0+0 o j*

after resolving c^ and g into components parallel and perpendicular to c . 

Here, 0^ is a constant and a is the polar angle of c.. Then as done in the 

integration over de ,

I
2tt
| d0 exp(2B^ic^»g) = exp(2BjigCjCosacos^)2rT Io (2B^ic.^.gsir^sinf) .
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Now, the integration over de and d0 is complete. Rewriting the 

product of the two modified Bessel functions in terms of the hypergeometric 

function (2^ ) »  (from Erdelyi (1955b)) the gain term, equation (2-14), 

becomes

G. . 
i-J

2 (Tr co (-l)n(B..c gsin?sin*)2n 
4tt F.FJ i £ --------

(n! ) 2

2 2 
c^sin 2i|r

-n,-n;1; 2 2 . 2
2 1 4B ..c .sin a

J

3 f 2/ 2 2 2 2  2 \ I
g bdbdgexp^-g (^WLcos i|f-4MjB^cos i|/+4FLB ̂ cos Jjexp(2gc1cos§

2
COS t|f)

exp(2B ̂ g c  ̂ cosa-cos?) sin§d?J (A-3)

Next, the integration over d? is considered and

r" 2
J d|exp(c1cos52gcos i|r+2B . .gc .cosacos?) • 
0 J J

(sin?) 2n+l

= n! 2(gX)-n ln (2gX) = n! ^  (gX) ' n' 1/2 I„+ 1/2(2gX).

where

In+1/2 ~ a m°di-fi-ed Bessel function,

i = a ra°di-fied spherical Bessel function, and
2

X - c.cos \lr + B..c.cosa,
1 JL J

(see Abramowitz (1965)).

Using this result, and completing the nondimensionalization of 

3 ,g dg, equation (A-3) becomes
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8rr2F .F . 
____ L_J

B21

f{dgdbdexp(-g2y 2) £
J L n=0

(-l)n (B .c sina)2n
- - ■  ̂ JL 

n! Xn

2F 1(-n,-n,l;'l,)ln (2gX)gn+3} (A-4)

where

Y =
2 2 2 2 2 

4M.cos \lf - 4M.B..cos to + 4M.B..cos to + B . 
1 J Ji J Ji ! ji

and

Y =

2 2 c^sin 2\|/

2 2 2 ~  4B ..c . s in a 
Ji J

Next, for rigid elastic spheres,

bdb = a 2sin\|f costjrdty

and equation (A-4) becomes

/ 5/2_ „ 24tt f .F .a 
_______J- J

B21
Ksin\|f cosi|fd\ji S 

n=0

(-1)n(B . .c ,sira)2n 
_ 1  J1 J
n! Xn+1/2

2F 1 ( - n , - n ; l ; Y ) e Xp ( - g 2Y2) I n + 1 / 2 (2gX)gn+5/2dg}.  . (A-5)

From Erdelyi (1955b),

J In+i/2 (28X)exP("V2g2)gn+5/2dS =

V~2n" 4r ( n + 2 ) x n+1/2
2T (n+3/2) 1F 1(n+2 ;n+3/2 ;-
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where T( ) denotes a gamma function. In equation (A-5), the confluent 

hypergeometrie function is replaced by

2n
J* d 0 ( l + 2 Y 1 / 2 co s e + Y ) n ,

Erdelyi (1955a), where

c^sin2\|/

2b . .c .sin* 
J

<  1

is required.

A similar restriction exists in the analysis by Deshpande (1969a) 

for nu — m^; however, it was not mentioned in his paper. Now equation (A-5) 

becomes

G. .
TT3^2F.F.a2 „2ir
______L-L

B21 1d0
rTT/2 „ (B c Silt*)2"

d\|f s in\|r cos\|f E — ^ ----------- (1-+Y
0 n=0 n! y 4

1/22cos9+Y)n

x2
r (n+2) 1F 1(n+2;n+3/2;^)

r/ 2nr (n+2) y
(A-6)

Replacing ^F^ by the summation formula of Slater (1960) and Rainville (I960),

2ttF .F .a a2tt «tt/2
1 J. P

B2L

I de
0

d*sin*cos* _ 3 X 2+ (B2ic2sin2a ) (l+2ï1/2COse+Y)
4 1F 1(2 ;2 ; --- 2-----------------  )y y

(A-7)

Next, X, y , and Y are replaced by their full expressions; c^ is replaced 

by c^ and c^ and the necessary angles resulting from the vector geometry; 

and \|r is transformed to a new variable Q
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where

and

c -i = 1 + ! i i tan2t

A = a2 - 2bB .. + b2B .. + B .., 
J1 Ji Ji

a = 2M .,

b = 2M .,
J

2 2 2 
Y = Acos \|r + B^sin \|r.

Then equation (A-7) becomes

2 2tt
TO f .F . «1

G. . = 
3-J AB.B 2 .n dG J lF l[2 ;2 ;̂ CiA ' + ^CjB 'L J U U J

+ B.iCj-D,C|c1-cj|+C1/2 ( l - 0 1/2E'cose|c.xc |] (A-8)

where A', Br, D', and E' are constants involving B., B. and the masses and
J

are defined below.

At this point it is noted that for equal masses G = G or the
ji

gain term is symmetric. However, for a mixture of gases when m # m , the
i j

gain term is not symmetric. This may be shown by interchanging the roles

of i and j and nondimensionalizing with respect to a/bT instead of .
J i

Next, a new velocity is introduced with

c. = V i T  (v-u.) «^/b T c .
J j j j j

or

—¥ y ■■ ■
C . = y B . . c .,
J J
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when Cj is returned to dimensional form. Thus, since all velocities are 

already nondimensional,

C . = a/bT  c . and C . = a/bT c .
J J J i 1 1

are the new velocities. Now, equation (A-8) becomes

G. . =
2TTCT F .F . r»TT 

1 J
ij B .B .Al j 0

d6 dC ,f J 2;|;CA"C2 + £b "C2 + C2/B. 
0 1 1L 2 i J J i

- D ,,c|ci*cj| + c 1/2 ( i - o 1/2E"cose[cixcj|

TTC F .F .
____ LJ.
B.B .A 
i 3

8ij

where

and

A'
A" « #- -

B i (a2-2bB ..+b2B . .+B ,.)B.
Ji JL Ji 3-

_ B' _ ^ i ^ " 1) 2________________ 1_ f

Bj (a2-2bB . .+b2B . .+B ..) B . Bi 
J Ji Ji Ji' j

D" =
D ' _ 2(b-1)Biif

a/b .B . a/b .B .(a -2bB . ,+b B . .+B ..) 
i J i 3 J3- Ji ji'

E" = E' 2a 1 L
1/2

— , a o 9 /
a/B.B. 7 b .B . 'a -2bB..+b B . ,+B 
V 1 J V 1 J Ji Ji ji

TT 1
g = 2j de/dC F [ 2 ; | ; C A " C ^ B " C ^ / B  -D"C|C -C | + 

+ C 1/2( l - O 1/2E ,,cos0lc.xC4|
i J'-J

(A-9)

(A-10)



29

Next, another substitution is made where

and for

- 2.T. 1+COST
C = cos ( j )  = — ^--->

C2A” + B"C2 + 2C2/B.
X = ----------------- J----------- L _ J :
1 2

X2

2 2CTA" + C .B"
_±______] 

2

. D" i -* “♦ |
X3 " T “lCi’Cjl ’

. E".-» -» |
X = ■=— C .xC . ,2 1 l  j 1

A1 H " 3̂*
and a2 X2 - X3,

equation (A-10) becomes:

-r -
,TT

s inT dT ^ F ^ 2 ;-|;A.̂ +A2cosT+XsinTcos0j . (A

Next, take R - X + A2 and define an angle Oi ̂  such that cos =
R and

s i n  a  = —. Thus 1 K

A2c°st + XsinrcosG = Rcoscy^cosT + Rsino1 ̂ cosG sinT = Rcos©

cos© = cos oncost +  s in *  ^cos0 sinT ,

- 11)

whe re
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and equation (A-11) becomes,

tt n

g ^  = fd0 J jF 2 ; A ̂ +Rco s©J s inT dT (A-12)

From Erdelyi (1955a) the confluent hypergeometric function ^F^ is replaced 

by a contour integral and equation (A-12) becomes

.3.

■ij 2niV(2) J

% .»tt
dt d6

n 10

iTT r
sinTdTexpj^(A^+Rcos@) t j. t(t-l) -3/2 (A-13)

where i is an imaginary number and t  is a contour in the form of a loop 

starting and ending at t = 0 and encircling one once in the positive sense. 

Then, from Erdelyi (1955a,b)

exp(Rtcod©) = S (2n+l)P (cos©)i (Rt)_r\ n nn=0

where P ( ) is a Legendre polynomial. Also,

.TT r»TT
sinT dT

0
exp(Rtcos©)d0 = ttJ s inTdT iQ (Rt) ,

since cos© = cosc^cosT + sin* ̂ cos0 sinr , and from Erdelyi (1955b),

TT

hexp(Rtcos©)d9 = TTi (Rt) + tt E (2n+l) l (Rt)P (coscOP (c o s t) i ' n v ' n v ly n v \n=l

rnJ P^(cost ) s inT dT = 0.

and
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Now, using the above results for the integration over t and 9 in equation 

(A-13), and replacing i by exponential functions (Abramowitz (1965)), 

equation (A-13) becomes

= nf__2
r(|)r(|).r

ij R\2ni.r (2)
' -3/2dt exp(tA, ) (t-1) exp(Rt) -
f 1

dt exp(tA^) (t-1) ^^exp(-Rt)

(A-14)

Previously, the confluent hypergeometrie function was replaced by 

the contour integral over 0. Now the contour integral in equation (A-14) 

is rewritten In terms of a confluent hypergeometric function (Erdelyi 

1955a)) and equation (A-14) becomes,

Sij 2r[ 1F 1( 1 ;i 1+R) ' 1F 1( 1:1 ;A l'R)] > (A-15)

and from equation (A-9),

2 2 
tt a F .F

Gij BiBj2ARJ[lF l(lî2;Al+R:)'lF l(lî2îAl"R)] (A-16)

Also G ^  f  G jj, except for the special case where the masses of the 

two gases of equal. In either case f  so the loss term is never

symmetric.

Equation (A-16) is the final closed form expression for the gain 

term. Now equation ( (11)‘ for the loss term will be converted into a form 

similar to the gain term. From equation (11), using the expression for 

Fj, the loss term becomes,



3 2

F i L j  _ F i F j (¥ T )2cr2[ 1 +  (~^— 1) e r fc  e xp e T ]. ( A -17)
J j  J ^

From Erdelyi (1955a,b), the exponential and error functions may be expressed 

in terms of confluent hypergeometric functions, in which case equation (A-17) 

becomes

iLj = V j^ V i* 2̂ 2) (A-18)

The collision integral, J, is

JCF^Fj)

2 2 
TT CT F .F .*

G ij~F iLj " T ^ ^ - 2Ar[ iF 1(1;2 ;A1+R)"1F 1(1;2 ;A1"R)}

2b . ' 

B
(A-19)

from equations (A-16) and (A-18). ‘Recall that

required, where c, = 2M.c. - 2M.B..C . 
....  1 1 1  J 3

,cisin2+ I < is
2B ..c.sinaji j I
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APPENDIX B

COMPARISON OF THE COLLISION INTEGRALS FOR A BINARY GAS MIXTURE

An analytical expression for the collision integral for a Mott- 

Smith gas mixture and a rigid elastic sphere collision model has been 

derived in section 1 and Appendix A. In this appendix, a means by which 

the analytical values of the collision integral may be compared with 

Monte Carlo calculations is given.

From equation (A-19), the confluent hypergeometrie functions 

appearing in the collision integral, may be expanded by Rummer's series,

aZ1F 1(a;b;Z) = 1 + -g +
(a) £Z

b (b)22 !
+

(b)nn !

where (a)n = a(a+l)(a+2)...(a+n-1),

and (a) = 1.v '  o

The function ^F^ represents one independent solution of

2
d W dW

Z Z 2 + (b-Z)dl - aW " °>dZ

and the series for ^F^ is convergent for all finite Z when b is neither 

zero nor a negative integer. (See Abramowitz (1965); Whittaker (1963); 

and Rainville (I960)).

Next, to compare the analytical values of the collision integral 

with the Monte Carlo calculations, it is first necessary to establish a 

consistent set of nondimensionalization parameters. Toward this end, the 

analytical collision integral is converted into Hicks units, following
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Hicks (1963b); Nordsieck (1966), and Reilly (1969), where (denoting non- 

dimensional terms by a bar) Hicks defines:

y  _ X/ 2
x 1 ,

c

and 1 , the reference mean free path is

c J l  nn. a 2

n. is a reference density (on the cold side of a shock wave), and 
c

V. = V.i i\2rrkT

m . N 1/ 2 
i x

V. = V.j j\2nkT

m . N 1/2 
l

T.l T. = T
J c Jc

F .l

F. /ZrrkT x 3/2 I f  cN
n \ m. c . 1l

F . 
J

F . /2TTkT x3/2
_±(  cx
n \ m. c . 1

J

c . 
J

n .l

T .

T * c
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c

m .
and O' = — 3,

m.1

where i.j = 1,2 .

Then converting the loss term from equation (A-18) to Hicks units yields

T 1/2
-2

1+2C -2
-TTC,

F i£ j = { “ jCeT1) (e*P(-C2 )+(— C2)} {5i(Ti)'3/2eXp(— 5)} (B-l)
T.l

where

m i \ 1/2
2rrkT / c c .

J

Similarly, the gain term (equation (A-16)) in Hicks units becomes

and
L .

T = _J
Lj -2a n

2-  -  

TT F .F
___ L J
2ARB [iFi( i  ;_i ;A i+R) -  L ( i  j.-R )3 (B-2)

where





37

and

2m  .tt

a - ~ ±  ,
T .l

b = 2M.,l*

2

A A *

B 2 2
B" = f-(b-l) -B,

„ = 2 (b-1) aB 
A

E" = 2(|)1/2a .

The collision integral becomes,

J ( F . , F j )  = G .  . -  F . L . (B-3)

Utilization of Hicks units allows direct comparison with the 

binary mixture Monte Carlo program recently developed by Yen (1972b).



38

APPENDIX C

ELECTRON DISTRIBUTION FUNCTIONS

For electrons diffusing through a neutral gas, several distribution 

functions have been proposed and compared with available experimental data.

In this appendix, the proposed electron distribution functions are reviewed 

for their suitability for theoretical treatment.

For the purpose of discussion, the electron distribution functions 

are grouped as follows:

1) Druyvesteyn distribution: (from Druyvesteyn (1936); Allis (1956); 

Loeb (i960); and Chapman (1964)). The Boltzmann equation is considered in 

the form,

òf-» e
F „ • — — - J = collision integral

0C0

where F 0 - the constant external force =
e^E

m„

e = the electron charge,

m - the electron mass,

E - the external electric field,

f ~ the electron distribution function,

and C = the velocity.

The subscript 1 refers to neutrals and the subscript 2 designates electrons. 

An approximate solution of this equation yields
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<N
a

n.2C2dC

0
H» I

kT+ —
1f 2V

and

( 1) _/m 2C2^
_ 2 .. 2 

9 m F 9 X
kTC^ + — -----

3C,

\f(0)
e (C-l)

(see Chapman (1964)). In e q u ation  (C-l),

X = the electron mean free path,

T = the gas temperature or the temperature of the electron-neutral 
mixture,

k = the Boltzmann c o n s t a n t ,

and A = a constant dependent on the number density of the electrons.

S ince

0°
n = 4tt P f v dv,

o e

A can be determined in terms of n with f given by equation (C-l). In 

equation (C-l), the superscript 0 represents a zeroth order approximation and 

the superscript 1 represents the first order approximation and

fe +  f 2 - c2 f(i)

becomes the f i n a l  e l e c t r o n  d i s t r i b u t i o n  f u n c t io n .

H ere, s e v e r a l  assumptions have been made; some terms of o rd er  m^/m^ 

have been d is c a r d e d ;  and i t  i s  assumed t h a t
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^2 ^2 g*

C2-C2 = C2 (l-cos\|;)

where a prime denotes velocity after a collision* 

g = the relative velocity, 

and \jj = the deflection angle.

Consider three special cases of equation (C-l):

Case 1: When F 2 is small, f^ approximates the Lorentz expression for a

slightly ionized gas (Chapman (1964)), and f ^  is Maxwellian.

Case 2: For F 2 large, when the mean energy of an electron is large compared
3

with 2 ^T, equation (C-l) may be approximated by

fg0  ̂ = A exp [-J
C2 311̂ 2^ 2- 

2 2
0

and (1) 3m2C2 (0)
e „ 2, e ’

m1F2X
(C-2)

2 2

for kT «  in the range of C0 for which f i s  appreciable.
3C2 2 6

Since m2C2 > 3kT when this is true, this condition implies that

6 2E m? i/o
the mean value of e2E\ (where F 2 = ~— ) must be large compared to 3kT(— )

2 “‘1 
Case 3: If the molecules are rigid elastic spheres, so that the mean free

path is independent of C2> equation (C-2) becomes
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(0) .
e A exp

r3m„C
(1) _ 2 2
e

mjF2 K

3m2C2

2 2
4 1 ^  \

(0 ) (03)

which is Druyvesteyn's result (1936). It indicates that the number of 

electrons with energies large compared with the mean energy is much smaller 

than in a Maxwellian distribution with the same mean energy. Using this 

result, it follows that A is connected with the number density n2 by the 

relation

4m F?X2v 3/4 ~

n~ =TTAl-k H

and the mean energy of an electron is

1 2 1/2 
2m2C2 = 0 .4 2 7 ^ ^ )  zF 2X

2) Distribution functions proposed by Margenau and associates : 

Case 1: Consider the Boltzmann equation in the form (Margenau (1958))

e E df òf 2 __e ___ e
m0 dv dt2 x

(04)

fe
e2E -»

v)=fn (v) H---- v f.(v)0 ' m2 x l v/

with
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where the frequency o f  the £ f i e l d  i s  assumed z e r o ,  ( d . c .  c a s e ) ,  v is  the  

e l e c t r o n  v e l o c i t y  (v^ i s  i t s  x  component), t  i s  the time and E = Eq , a 

c o n s t a n t .  A lso ,

r - / m s3/2 . mv N
f0 (2rrkT) exp(“ 2 k P  ’

and f^  i s  d efin ed  below.

Case 2 :  Margenau (1 9 4 6 )  a ls o  ob tain ed

In fA ~ -I
2 / ^  , 2 v (y-)dv

0 kT +
6 v2

(C -5)

where y = V o
m2 ’

For small y, fQ is Maxwellian. For small kT, f is Druyvesteyn

(se e  eq u ation  ( C - 3 ) ) .

In g e n e r a l ,  from eq u ation  (C -5)

£o - A exp(- ^ ) [ 1
Oi

(C -6)

where e =
m^v

= eE \ , o *

and
m , e 9 2

Oi =  ---------------  ( — —12m2 W  *

A is determined from



(C—7 )_ w 2kT. 
n2 ‘

3/2 » a-x „ , x.
e (1 + r )

0
Vf or

1/ 2 ,x dx,
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where x = e/kT.

Expanding the term in brackets in equation (C-6), f becomes a Druyvesteyn 

distribution, when only the dominant term is considered. For the alternating 

current (a.c.) case, the dominant term becomes Maxwellian with a "tempera

ture"

T' = T ( 1 + a 2kT .
2, 2)n^w A

(Margenau (1946)), where w is the frequency of the E field. Also,

m 3/2 (x+x..-ta)ot- 1
- X  1/2 e x

C^-ta)
(C-8)

and

fe <v ) = f0 (v> + Y vx f !(v)

m2 (wX )
where x, = — rrrr—  and w is zero for the d.c. case.1 2kT

Case 3: Both a.c. and d.c. electric fields were considered by Margenau

(1948a). For the d.c. case,

f <°> + a f (1)

f^^ = the Maxwellian distribution,

a x

and f(0) = A exp
-3m9v N

---- T i ) '
4mlY X

(C-9)
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The a.c. case is not considered here, since the time dependent 

distribution functions are not of interest. In all the cases given above 

the initial velocity was related to the final velocity by

v . 1
m

a  + ^ ) vfm^ t

The neutral gas molecules were assumed to be at rest and the cosine 

of the deflection angle was taken much less than one. Also, distinct electron 

and neutral temperatures were not considered.

3) Distribution functions of the Druyvesteyn form :

Morse (1935), Holstein (1946), and Bowe (1963) all obtained forms 

similar to the Druyvesteyn distribution although different assumptions were 

made by each author (see Loeb (I960)),

4) Distribution functions proposed by Davydov :

Davydov (1935) assumed

f = f0 (v) + f1 (v)cosi|r (C-10)

where \jr is the deflection angle, and considered two cases:

Case 1: For e2EX «  kT,

and

1 m2 ,e2EXN2 2
f _ 3 m.^ kT /“m2V .f — v 1 exp( ---- ) .
o 2kT;’

e EX
fi = —ThT" f • 1 kT o (C-ll)
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Case 2:

and

For e^EX »  kT,

_ f 3 ra2/m2V \2\ 
f0 - exp r  4 ! *

2

fx = 3^f 2
*1 62E^  ®

f.. (C-12)

5) Other theoretical distribution functions :

Theoretical distribution functions were given by Morrone (1967, 

1968a,b); Johnston (1960,1966) and Carpenter (1961). The distribution 

function was expanded in terms of Legendre Polynomials where

f(v,9,0) = S Z f^ ,n(v)P^(cos0 )ein^ ,
X =0 n= - 1 Z

0 and 0 being polar angles of v. Zero speed neutrals were assumed and the 

collision cross section was taken to be kv11, k, n being constants. To the 

first order, a Maxwellian f was obtained for n=0 and Druyvesteyrfs distribu

tion was obtained for n=l.

Some of the proposed electron distribution functions given above 

are either Maxwellian or of the Maxwellian form. For example, Margenau, 

Davydov (case 1), and Morrone give distribution functions of this typa.

In general, these electron distributions may be written as

fe = A exp(-BC2),

fe

2-m-CpB
= A exp(— i-)

(C-13)

or
2kr (C-14)
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where Tis the electron temperature, and A and B are constants to be determined 

from the moments of f , i.e., from the number density, n; the average 

velocity, C2 > or the mean energy ^nC . Two moment equations are needed to 

determine the two constants, A and B.

Equations (C-13) and (C-14) represent electron distribution 

functions- whose collision integrals can be evaluated analytically by the 

methods given in this report.

Any of the distribution functions proposed in this appendix may be 

used to evaluate the collision integral by the Monte Carlo method. Also the 

molecular collision is not limited to that of rigid spheres.
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