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Abstract

The convex hulls of planar and spatial sets of n points can be 

determined with 0(n lg n) operations. The presented algorithms use 

the "divide and conquer" technique and recursively apply a merge procedure 

for two nonintersecting convex hulls. It is also shown that any convex 

hull algorithm requires at least 0(n lg n) operations, so that the time 
complexity of the proposed algorithms is optimal within a multiplicative 

constant.
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1. Introduction

The determination of the convex hull of a finite set of points is 

relevant to several problems in computer graphics, design atuomation, pattern 

recognition and operation research: references [1 ][2] [3 ]--just to cite a
few--discuss some interesting applications in these areas which require 

convex hull determination.

Two relatively recent papers [4] [5] have considered the problem of 

determining the convex hull of a finite set of n points in the plane. R. L. 

Graham [4] described an algorithm based on representing the points in polar 

coordinates and sorting them according to their azimuth; the corresponding 

number of operations was shown to be at most n lg n + C n ^ \  for some constant 

C determined by the cartesian-to-polar coordinate conversion. Subsequently 

R. A. Jarvis [5] presented an alternative algorithm, which avoids coordinate 

conversions but has a running time 0(nm), where m is the number of points in 

the convex hull, claiming the superiority of his algorithm for small m.

In this paper we show that the convex hull of a planar set of points can 

be determined with at most 0(n lg n) operations without resorting to 
coordinate conversions. We shall also show that the technique is generalizable 

to spatial sets of points, still maintaining the same order of complexity.

Since the methods are based on the fact that the number of edges of the 

convex hull of n points is at most linear in n, its generalization does not 

seem possible beyond three dimensions. In fact when the number of dimensions

0)
"lg" denotes log^.
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is no smaller than 4, it is known that there exist convex polyhedra with n
2vertices whose numbers of edges are 0(n ) (see [6] , p. 193).

Our algorithms are based on the well-known technique called "divide

and conquer". Specifically let V be a d-dimensional Euclidean space (here,

d = 2, 3) and let the set S = {a.. , ..., a la. £ V} be given. By x.(a) wen J 1
denote the i-th coordinate of a € V, for i = 1, ..., d. Here and hereafter 

we assume that for any two points u and v in V we have x^(u) 4 x^iv), for 

i = 1, ..., d. This simplification helps bring out the basic ideas of the 

algorithms to be described, while the modifications required for the 

unrestricted case are straightforward.

As a preliminary step we sort the elements of S according to the 

coordinate x^, and relabel tjiem if necessary so that we may assume 

Xl(ai> xi/aj) ^ i < j* We can now give the following algorithm:

Algorithm CH

Input: A set S = {a^, ..., a j  , where â. € V and x^(a^) < x^(a^)

» i < j for i, j = 1, ..., n.

Output: The convex hull CH(S) of S.

CHI. Subdivides into Sx = {a^. and S2= faLn/2J+1> •••> an5 •
CH2. Apply recursively Algorithm CH to and S£ to obtain C H ^ )  and C H ^ ) .  

CH3. Apply a merge algorithm to CH(S^) and CH(S0) to obtain CH(S) and halt.

The initial sorting of the elements of S requires 0(n lg n) operations. 

Notice that, because of this sorting, the sets CH(S^) and CH(S9) will define 

two nonintersecting convex domains. Now, if the merging of two convex hulls 

with at most n d-dimensional extreme points in total requires at most
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P^(n) operations, an upper-bound to the number C^(n) of operations required 

by Algorithm CH is given by the equation

Cd (n) = 2Cd (n/2) + Pd (n).

(Notice that we have assumed that n be even for simplicity, but practically 

without loss of generality). Thus, if we can show that P^(n) is 0(n), 

we shall obtain that C^(n) is 0(n lg n), and, taking into account the 

initial sorting pass, an overall complexity 0(n lg n) results for the 
convex hull determination.

In Sections 3 and 4 we shall show that merging algorithms 

with number of operations 0(n) can be designed for d = 2, 3. In the next 

section we shall establish a lower-bound to the number of operations 

performed by any algorithm for finding the convex hull of a set of n points. 

Since this computational work is a least of the same order as that of an 

algorithm for sorting n numbers, i.e., it is 0(n lg n), we reach the 
interesting conclusion that the proposed convex hull algorithms for planar 

and spatial sets are optimal on their order of complexity, within a multi­

plicative constant.
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2. A lower-bound.

The arguments presented in this section are similar to those developed 

in connection with finding the maxima of a set of vectors (see [7], Section 

2), which is a problem only superficially related to the one being presently 
investigated. We begin with the following simple observation.

Lemma 1. cd_^(n) Cd(n) for d ^ 3.

Proof: Let be a set of n (d - l)-dimensional points for d ^ 3,

and let A^ be the set of d-dimensional points obtained by extending each 

point v € with the same component vd* Let CH(Ad) and CH(Ad be the

convex hulls of Ad and Ad Clearly the projection of CH(Ad) on the 

coordinates x^, ..., xd_^ is CH(Ad_^). Thus to find CH(Ad ^), it suffices 

to find CH(Ad), whence Cd ^(n) £ Cd (n).

Lemma 2. C2(n) ^ 0(n lg n) for n ^ 3.

Proof: Let A = {a^, a^} be a planar set of points, and assume

that CH(A) = A: this means that the points a^, aR are the vertices

of a convex polygon and may be thought of as forming a circuit. There are 

four points in A, a , a. , a. , and a. such that x„ (a. ) = max xrt(a.),
Jo J1 J2 J3 2 Jo i 2 1

x,(a. ) = max x., (a. ) , x_(a. ) = min xn(a.) and x.(a. ) = min x- (a.)
1 Jx i 1 1 2 J2 i  2 1 1 J3 i 1 i

(see figure 1). Considering these four points as a cyclic sequence, there
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FP-4402

Figure 1. Illustration for the proof of Lemma 2.

is one pair of consecutive elements in this sequence which comprises at 

least (l~n/4l - 2) points of A. Without loss of generality, let this pair 

be (a. , a. ), and let a. = a-I , a', ... , a ' = a . be the sequence of
Jo h  J0 1 2 s J1

vertices comprised between a. and a. , with s ^ l~n/4] . For any three points,
J0 h

a, b, and c in the plane we define Mg(a,b,c), M 2(a,b,c), and M^CajbjC) as 

follows:

X2 (M3 (a ,b,c)) = maximum {x2(a), x2 (b), x2(c)} 
x2 (M2 (a >b ,c)) = median fx2(a), x2(b), x2(c)} 

x2(M1(a,b,c)) = minimum fx2(a), x2(b), x2(c)).

Consider now any algorithm for finding the convex hull of a planar set.

For any triplet (a!, a'., a'), with i, j, and k in the range [l,s], the1 j k
algorithm must be able to decide whether or not the following convexity 

condition holds (where = M^(a^, ay  a^) , for X = 1, 2, 3)
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X1 ^ V  " X2^V^ * xiCMi) + (x2(M1) - x2(M2)) • xx (M3)] /(x2(M1) - 2̂  (M^)) •

This implies that the algorithm must also be able to decide, for any three

points a!, a 1., and a/, the relative ordering of their x0 coordinates, which

is equivalent to saying that the ordering of the coordinates x2(ap, x2(a2),

..., x9(a') must be known. As is well-known, this requires a number of z s
operations equivalent to at least Tig s f| comparisons. Recalling that 

s £ n/4, we have Tig s fl 2: ClgCnM)!! ^  ^ lg — - 0(n), whence 

C2(n) ^ 0(n lg n).

We obtain the following conclusion:

Theorem. C,(n) ^ C. ,(n) 2: ... ^ C„(n) 2: 0(n lg n).1 " '' a d-1 z
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3. A merge algorithm for planar sets.

Let A = (a^, ..., a^) and B = (b^, ..., b^) be two planar convex polygons, 

where (a^, a^) is the (clockwise) sequence of the vertices in the

perimeter oi A, and similarly is (b-, ..., b ) for B. We assume that1 q
xl(ai> < xi(bj) f°r * = • ••» P and j = ..., q> so that A and B
are nonintersecting.

By merging A and B we mean the determination of the convex hull CH(A,B)

of A and B. The convex polygon CH(A,B) is obtained by tracing the two

tangents common to A and B and by eliminating the points of A and B which

become internal to the resulting polygon (see figure 2).

We let and r^ be two points of A such that x £ ^ a  ̂ = m*'n X2^aî  an<̂
i

x0(r.) = max x0(a.)j similarly H and r are defined in B. For easy 
Z A . Z 1 Jd B1

reference, we shall call the two tangents to A and B as left and right

tangent. It is easily realized that the determination of, say, the right

tangent depends upon the relative ordering of anc  ̂x2^rB^’ tbe same
can be said for the left tangent in relation to xn (ji  k) and x«(j£„). Therefore

2 A 2 B

in the sequel we shall consider only one case, specifically the determination 

of the right tangent under the hypothesis

Xl<rA ) < Xl(rB) and < x ^ ) ;

the other case, as well as the determination of the left tangent, are treated

in an analogous manner. Without loss of generality, we shall also assume

that r = an and r_ = b.. . Indices of vertices of A and B are assumed to be A 1 B 1
taken mod p and mod q, respectively.
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Given two points u and v in the plane, (u,v) and (ii,v) denote respectively

the line containing u and v and the segment deliminted by u and v. The slope

sl(u,v) is given by sl(u,v) = (x^u) - x̂  ̂(v))/(x2 (u) - x2(v)).

We must now determine the two vertices a., of A and b of B which arej*
the extremes of the right tangent, where 1 £ i* £ index[f, ] and 

1 £ j* £ index[j£ ] . We begin by defining the slopes:

“ i.i+l ■ Sl(ai’al+l)’ Bj,j+1 " sl(bj,j+l)’ v ij ■ sl(ai ’V

Figure 2. Illustration of the planar merge procedure.

Notice that in the ranges 1 «£ i < indexf^.] and 1<£ j < index[£ ] , due toA BJ
convexity, the sequences (o^, q^ ,  ... ) and (p12> 323, ... ) are strictly

monotone decreasing. Thus, the extremes a ^  and b^v of the right tangent are 

characterized by the following properties:
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r
i* > 1 ̂  Œi*,i*+1 < ^i*j* ^ ai*-l,i** j* ^ 1 ̂  ßj*}j*+i ^ ̂ i*j* < ^j*-l,j*

( X ) ^
a12< Vij* ; j* = 1 => 012 ^ Vi*!Ji* = 1

We claim that the following algorithm uniquely determines a ^  and b.^.

Algorithm RT (right tangent)

Input: Coordinates of (a^ a2> and (b1, ..., £ ), and

slopes (a12, 0̂23» ... ) and (312> 323, ... ).

Output: i*, j*, the indices of the extremes of the right tangent

segment.

RTl. Set i ♦“ 1, j «- 1.
RT2. Compute y . . «- (x, ij 1(a.) ' Xl(bj))/(X2! (ai> •• x2 (bj)).
RT3. If Oi. . ! 1,1+1 S yi r set i *- i + I and go to RT2.

RT4. If ß . . t J,J+1 > Y ij> set j «- j + 1 and go to RT2.

RT5. Set i* «- i, j* *" j, and halt.

We now prove the validity of Algorithm RT. The algorithm halts when the

conditions o'. . < V. . ■, and 3. . £ y . . occur for the first time. ThusTJ>J+1 J jJ+1 TiJ
all we have to show is that before executing step RT3 we always have 

y.. <. Oi. j and y . . < 3 - i We distinguish two cases: (1) i is 

incremented or (2) i is incremented.

(1) The index j is incremented when the condition a. . , < V. . < B . ,i,i+l Tij Kj,j+1
occurs. Assuming inductively that y.. £ q'._1 . we have (see figure 3a)i J i”l> i
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Y ijj+x * Vij and V i}j+1 < after incrementing j, these
conditions become y . . £ or. .. • an<* Y. . < B . , ., as desired.

Ti j  i - l , i  1 i j  J - 1 , J

(a) (b)

Figure 3. Illustrations for the validity of Algorithm RT.

(2) The index i is incremented when y .. £ oi . . .. Notice at first thatij i,i+l
we cannot have p . . . i y. . indeed p. , . £ y. , . impliesj-l»j i+l»J J-1,J Ti+l,J
or. . > y. . whence, by the formulation of step RT3, the vertex b. cannot1,i+ i, J - j
have been reached (see figure 3b) yet by the algorithm; thus we have

Y-f.i ; < ^  i Next, we notice that when y . . £ o'. . we also have
1+ i >J J _ i >J Ti j  i , i + l

y_. i 4 * a t 4 4 i • The two conditions y. . . < p . - . and y. , . < a . . i+i,J i >1+1 Yi+l,J Yi+l,J i,i+l
become y.. < p . and y . . ^ a . ■, . after incrementing the index i, thus ■*-J J”i,J ij i“i,i
proving our original claim and the validity of the algorithm. It is 

clear that the number of operations performed by Algorithm RT is 0(i* + j*).
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A procedure analogous to Algorithm RT is required for the determination 

of the other tangent to A and B (left tangent); clearly, the overall number 

of operations necessary for determining the two tangents is at most of order 

(P + q)* Finally, we recall that the data structure describing a convex 

polygon is simply a list giving the circular sequence of its vertices. Thus 

it is easily realized that the construction of the data structure describing 

CH(A,B) from the analogous data structures of A and B can be accomplished by 

modifying a fixed number (two) of pointers. Thus, the overall running time 

P2(n) of the merge algorithm of planar sets is at most linear in the total
number n of.vertices.
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4. A merge algorithm for spatial sets.

The merge algorithm for planar sets described in the preceding section 

can be viewed as constructing a two-dimensional cylinder tangent to two 

given convex polygons. This idea is the basis for the three-dimensional 

procedure, which we shall now informally describe.

Let A and B be two convex polyhedra with p and q vertices, respectively. 

Again, we assume that for any points a^ of A and b^ of B we have 

x^a.) < x^(bj), so that A and B are nonintersecting.

It is a crucial observation that the sets of vertices and edges of 

either A or B form a planar graph: specifically, barring degeneracies, we

may assume they form a triangulation. Thus we know that the numbers of edges 

of A and B are at most (3p - 6) and (3q - 6), respectively, by Euler's theorem 

(see, e.g., [6] , p. 189).

The convex hull CH(A,B) of A and B may be obtained by the following 

operations (see figure 4 for an intuitive illustration):

1) Construction of a "cylindrical" triangulation J"> which is tangent 

to A and B along two circuits and E^, respectively.

2) Removal both from A and from B of the respective portions which 

have been "obscured" by 3~.

Here, the terms "cylindrical" and "obscured" have not been formally defined; 

rather, they have been used in their intuitive connotations, as suggested by 

figure 4.
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We begin by discussing the construction of the triangulation J . The 

initial step is the determination of one edge of J .  This is easily done 

by projecting the polyhedra A and B on the plane (x^, (see figure 4):

Figure 4. Merging two convex hulls. Construction of

let A' and B* be the projections on (x^, x^) of A and B, respectively 

(obviously A' and B' are nonintersecting). We now apply the merge algorithm 

for planar sets, described in Section 2, to A' and B'. This operation yields 

one segment tangent to A' and B|, whose extreme points are the projections of 

the extreme points of an edge of J .  Thus an edge of J  has been determined and

the construction can be started.
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We shall now describe the advancing mechanism of the procedure, which 

determines at each step a new vertex of J", thereby adding a new face to J .

In our illustration (figure 4), a2 and (a b^, a^) are, respectively, the 

vertex and the face of J  construetured in the previous step. The advancing 

mechanism makes reference to the most recently constructed face of J .  To 

initialize the procedure, the reference face is chosen as one of the half 

planes parallel to the x^ axis, containing the initially determined edge and 

delimited by it. Let (a^, b^, a^) be the reference face for the current 

step. We must now select a vertex a, connected to a s u c h  that the face 

(a2, b2>a) forms the largest convex angle with (a ^ 9 b^, a^) among the faces 

(a^s b^, v) , for all v 4- a^ connected to a^; similarly we select B among 

the vertices connected to b^. For reasons to become apparent later, we call 

these comparisons of type 1.

Next, once the "winners" (a^, b^, a) and (a^s b9, b) have been selected, 

we have a run-off comparison, called of type 2. If (a^» b^, a) forms with 

(a2 > ^2’ a^) a larger convex angle than (a2S b2, b), then a is added to J  

(B is added in the opposite case) and the step is complete. Practically, 

the triangulation J  is entirely specified by the circular sequence E of 

the vertices which are successively acquired by the advancing mechanism just 

illustrated. In fact, this sequence E is some interleaving of the two 

sequences of vertices of E^ and E^; the interleaving exactly specifies the

edges of J  not belonging to E or E (see figure 5).A B
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Figure 5. A fragment of J  described by the string ai ^ i ^ 2 a2a3a^ 3  *

To efficiently implement the outlined step, we make the following 

considerations. First we describe a criterion for uniquely ordering the 

edges incident on any vertex of A or B. For any a in A (b in B) the edges 

incident on a (on b) are numbered in ascending order so that they form a 

counterclockwise (clockwise in B) sequence for an external observer. For 

concreteness of illustration, suppose now that b and (b, a) are the most 

recently added vertex and edge of *̂, respectively, and let (b^, b) be the 

edge of E reaching b (see figure 5). Without loss of generality, we may 

assume that the numbering of the edges incident on b and of their terminals 

b,, b0, b, be as shown in figure 6, where k = 7. Let (b , b, a) be the

face which forms the smallest convex angle with (b^, b, a) among the faces 

(b^, b, a) for i = 2, ..., k (in our case, s = 4). It is clear that any b^ 

for 1 < i < s is an internal point of the final hull CH(A,B) and need not be

further considered.



16

b7

FP -4 3 9 8

Figure 6.

Thus, we can easily upper-bound the number of comparisons of angles

between pairs of planes required by the construction of J First of all,
*

we notice that each type-1 comparison definitively eliminates one edge of 

either A or B from those considered by the procedure which constructs J ,  

Since the numbers of edges of A and B are at most (3p - 6) and (3q - 6), 

respectively, the number of type-1 comparisons is bounded by
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[ (3p - 6) - 1 + (3q - 6) - 1] = 3 (p + q) - 14. Next, each type-2 comparison

adds a new vertex to either E. or E„: since the numbers of vertices of EA B A
and Eg are at most p and q, respectively, the number of type-2 comparisons

is bounded by (p + q - 1). We conclude that the number of angle comparison

grows no faster than linearly in the total number of vertices of A and B.

Notice that this result rests crucially on the property that the numbers of 

edges of A and B are linear in their respective numbers of vertices.

It is now worth considering the implementation of the operation of

comparing two angles, which is central to the outlined algorithm. We first 

notice that, due to convexity, all angles to be considered belong to the range 

[ 0 , tt] . Referring now to figure 7, consider the convex angle formed by the face 

QST with the face QRS, lying in plane ex • Let 3 be a plane orthogonal to RS 

and T' be the projection of T on p: ( t t  - T^SU) is the angle between QST

and QRS. Since the function cotangent: [ 0 , tt] -*[-», +»] is an order- 

reversing mapping, we shall replace the comparison of two angles with the 

comparison of their cotangents, thereby avoiding costly computations of inverse

We shall use vector notation and let " x "  and "o" denote "outer" and "inner" 

products of 3-dimensional vectors, respectively; also, we let QS = s_, and 

SU = _t. Referring to figure 5, it is obvious that SU = K _t o ((r x <s) x s.)

trigonometric functions. Thus we must compute

1‘--- -1 i 2and T'U = -K^t o (r X s.), where = |rj • |sj sin 0
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Figure 7. Illustration of the cotangent calculation.

and K 1 = |r| • |sj sin 0, 0 being the angle between x_ and _s. It follows 

that SU/T'U = -t o  ((r * js) X .s)/|sj • .t o (r x s.)» If, as is the case with 

our algorithm, the vector _s is the same for all planes whose angles are to 

be compared, we may replace the comparison of cotangents with that of 

cotangents multiplied by |£|. It is then straightforward to show that the 

computation of |sj • SU/T'U requires four multiplications, four additions, 
and one division.

Once the construction of the triangulation J  has been completed, i.e., 

the interleaving of and E^ has been obtained, we must remove those 

portions of A and B which have become internal to CH(A,B). Concretely, this
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is done by constructing the data structure describing CH(A,B) from and

from the data structures describing A and B. The data structure describing

a spatial set C may be realized as a collection of lists fL(c)], each list

L(c) corresponding to a vertex c of C and giving the sequence of the edges

incident on c, ordered according to the previously described criterion. By

means of a vector of pointers, each list is accessible in fixed time.

We consider the lists of vertices in E4 and E . Let E = a. , aA B A 1  ̂ i2 ’
..., a. and E = b , b , ..., b. . Suppose we are currently updating 

r 0 h  J 2 J s
the list L(a. ): typically, E contains the substring va. b. b. ... b a.

"k AB xk Jh Jh+1 Jt V l
where b ...b is possibly empty and Y is either a. or b . . Then we

Jk Jt \ - l  xh-l
will remove from L(a. ) the edges comprised between (a , a ) and

k xk k-1
(a , a ), and insert the sequence (a. , v)(a. , b. ), ..., (a. , b. ): 

k k+1 1lc Xk ^h Xk ~*t
this effects the updating of L(a. ). In this manner we shall update the

1k
lists of all vertices in E^ and Eg: these are the only lists which need

revision, since all other lists are either left unaltered or deleted

altogether from the data structure.

The deletion of lists can be accomplished by a procedure very similar

to topological sorting. We shall illustrate it by referring concretely to

the polyhedron A. With each vertex a of A we associate a marker p(a)

which is initially set to 0. Next, for each vertex a € E we set p (a) = 1,

and set p(a') = 2 for each vertex a' such that the edge (a, a ') has been

deleted when updating L(a); we also form a set V. of all vertices which haveA
received the marker p = 2 during the current step. At the subsequent step,

9
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for each a € V^, we shall set p (a ' ) = 2 for each a ’ such that the edge (a, a') 

exists and p (a') = 0, and form in the usual manner. The marking terminates 

at the step for which = 0, and the procedure is completed by deleting from 

the data structure each list L(a) for which p(a) = 2.

The number of operations required by the updating procedure is proportional 

to the number of edges which are to be added when reconstructing the lists of 

the vertices in and E^, and to the number of edges that have to be 

inspected when deleting the lists. In the latter operation, each edge is 

inspected at most twice. Thus the total number of operation is proportional 

to the total number of edges of A and B, thereby yielding the conclusion 

that the number of operations is at most 0(p + q).

Therefore, since both the construction of the triangulation ,T and the 

deletion of obscured portions of A and B are procedures which require a 

number of operations at most linear in the number of vertices of A and B, 

this property holds for the merging algorithm as a whole, that is,

P-3(n) = 0(n).
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