
June 1988 UILU-ENG-88-2228CSG-87

COORDINATED SCIENCE LABORATORY
College of Engineering

DEFINITION OF AN AUXILIARY PROCESSOR DEDICATED TO RE AL-TIME OPERATING SYSTEM KERNELS

Wolfgang A. Halang

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. D istribution U nlim ited.

security <?i^ssiFiOkrlo»rgA7 îj AÄgT

1 Unclassi f led_____
I 2a. SECURITY CLASSIFICATION AUTHORITY

I 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

1 «. rtKrORMING ORGANIZATION REPORT NUMBSR(S)
I (CSG- 8 7) UILU-ENG-88-2228
I 6M. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

Coordinated Science Lab (If »ppiksbh)
University of Illinois N/A

I 6 c ADORESS (Gty, Ststo, *n ti ZifiCodt)

1101 W. Springfield Avenue
Urbana, IL 61801

I 8a n a m e o f f u n o in g / s po n s o r in g 8b. OFFICE SYMBOLI ORGANIZATION NASA (If MfifitiCMbk)
N/A

I 8 c ADORESS (Gty, State, *nd ¿JPCodt)

I Washington, DC 20546

1 11. TITLE (Includo Socunty CUsvfksaon)

" "
f

1b. RESTRICTIVE MARKINGS
None ________

3 . DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution unlimited

5. MONITORING ORGAN HA DON REPORT NUMBERS)
None

7*7name of monitoring organization
NASA

7b. ADDRESS (City, Ststw, snd ZlfiCoàt)

Washington, DC 20546

NASA Grant Number NAG-1-613
10. SOURCE OF F UNDING NUMBERS

PROJECTNO. TASKNO. WORK UNIT
ACCESSION NO.

Desvstem°Kernels Auxiliary Processor Dedicated to Real-Time Operating

Halang, Wolfgang A.
Ua type of report

T̂echnical
16* SUPPLEMENTARY NOTATION

|13b. TIME COVERED
FROM TO 114. DATE OF REPORT (Tims, Month, toy) Its. PAGE COUNT19 88 June | 74

18. SUBJECT TERMS (Contint* on n iv to « i f N C N w y *nd identify by bJock numbmri ™ "real-time,mult iprocessor architecture, auxiliary
processor, operating systems

In order to increase the efficiency of process control data processing
it is necessary to enhance the productivity of real-time high-level languages
and to automate the task administration, because presently 60% or more of the
applications are still programmed in assembly languages. This may be achieved
by migrating apt functions for the support of process control oriented
anguages into the hardware, i.e., by new architectures. Whereas numerous

high-level language machines have already been defined or realised, there are
no- investigations yet on hardware assisted implementations of real-time features.

This research commences with summarising the requirements to be fulfilled
by languages and operating systems in hard real-time environments. A
comparison of the most prominent languages, viz. Ada, HAL/S, LTR Pearl as
well as the real-time extensions ~̂

UNCLASSIFIED

unclassified

to enable the development of reliable software with predictable program
behavior, thus making possible to carry out a technical safety approval.

With reservations, it can be stated that Pearl represents the closest
match to the mentioned requirements. Therefore, extensions of this
language are proposed to express the time behaviour, the surveillance of
events and problem oriented synchronisation. Furthermore, statements are
introduced to control the desirable operating system services and software
verification features.

Taking the objectives of feasible processor scheduling, inherent
deadlock prevention, minimisation of context-switching operations and
guaranteed reaction times as a basis, then it is investigated which multi
processor structures yield the best performance. Single processor systems
that cooperate with devices specialised in carrying through operating
system nuclei turn out to have advantages over classical von Neumann and
symmetrical multiprocessor structures. A further result of these considera
tions is that nearly optimal look-ahead algorithms for the virtual storage
administration, employing the code of entire tasks as paging element, are
closely related to deadline driven scheduling.

An auxiliary processor dedicated to real-time operating system nuclei
is defined. First, the design of the unit is outlined, and its concept is
discussed in relation to comparable ones found in the literature. The *
services to be provided by the device are compiled and assigned to three
different reaction levels. The basic level consists of special hardware
features for timing and event recognition. These are driven by the primary
reaction level, which handles the occurring events and manages the time
schedules. It finally communicates the activities to be executed to the
secondary reaction level, which controls the whole system and supports the
application programs. . The three reaction levels are constructively described
by detailing their functional units, internal data structures, and control algorithms.

Finally, the proposed architecture is qualitatively evaluated, especiall\
in comparison with the conventional one. Its feasibility is verified by
showing, that the extended Pearl can be implemented on the considered
architecture. In this context the special compiler activities and run-time
features to be incorporated into the application programs are of particular interest.

UNC -sifif^

Definition of an Auxiliary Processor Dedicated to
Real-Time Operating System Kernels

Wolfgang A. Halang
Computer Systems Group

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1101 West Springfield Avenue
Urbana, IL 61801, USA

Contents

0. Abstract
1. Introduction
1.1. Motivation
1.2. Intuitive Concept of an Architecture
1.3. Overview of the Contents

2. High-Level Language Real-Time Features
2.1. Review of Existing Languages
2.2. Proposal for an Extension of Pearl
3. Derivation of a Suitable Multiprocessor Architecture
3.1. Implications of Deadline Driven Scheduling
3.2. Task Oriented Virtual Storage Management
3.3. Implications of the Layer Structure of Real-Time Operating Systems
3.4. Outline of the Architecture
3.5. Comparison with other Architectures

4. Design of an Auxiliary Processor
4.1. Description of the Hardware Composition
4.2. Primary Event Reaction
4.3. Secondary Event Reaction
5. Evaluation of the Architecture
5.1. Implementation of an Extended Pearl
5.2. Qualitative Evaluation
5.3. Outlook

References

&

This research was supported, in part, by NASA under NASA Grant Number NAG-1-613.

- 2 -

0. Abstract
In order to increase the efficiency of process control data processing, it is necessary to enhance the

productivity of real-time high-level languages and to automate die task administration, because presently
60% or more of the applications are still programmed in assembly languages. This may be achieved by
migrating apt functions for the support of process control oriented languages into the hardware, i.e. by new
architectures. Whereas numerous high-level language machines have already been defined or realised,
there are no investigations yet on hardware assisted implementations of real-time features.

This research commences with summarising the requirements to be fulfilled by languages and
operating systems in hard real-time environments. A comparison of the most prominent languages, viz.
Ada, HAL/S, LTR, Pearl, as well as the real-time extensions of Fortran and PL/1, reveals how existing
languages meet these demands and which features still need to be incorporated to enable the development
of reliable software with predictable program behaviour, thus making possible to carry out a technical
safety approval.

With reservations, it can be stated that Pearl represents the closest match to the mentioned require
ments. Therefore, extensions of this language are proposed to express the time behaviour, the surveillance
of events and problem oriented synchronisation. Furthermore, statements are introduced to control the
desirable operating system services and software verification features.

Taking the objectives of feasible processor scheduling, inherent deadlock prevention, minimisation
of context-switching operations and guaranteed reaction times as a basis, then it is investigated which mul
tiprocessor structures yield the best performance. Single processor systems that cooperate with devices
specialised in carrying through operating system nuclei turn out to have advantages over classical von Neu
mann and symmetrical multiprocessor structures. A further result of these considerations is that nearly
optimal look-ahead algorithms for the virtual storage administration, employing the code of entire tasks as
paging element, are closely related to deadline driven scheduling.

An auxiliary processor dedicated to real-time operating system nuclei is defined. First, the design of
the unit is outlined, and its concept is discussed in relation to comparable ones found in the literature. The
services to be provided by the device are compiled and assigned to three different reaction levels. The basic
level consists of special hardware features for timing and event recognition. These are driven by the pri
mary reaction level, which handles the occurring events and manages the time schedules. It finally com
municates the activities to be executed to the secondary reaction level, which controls the whole system
and supports the application programs. The three reaction levels are constructively described by detailing
their functional units, internal data structures, and control algorithms.

Finally, the proposed architecture is qualitatively evaluated, especially in comparison with the con
ventional one. Its feasibility is verified by showing, that the extended Pearl can be implemented on the con
sidered architecture. In this context the special compiler activities and run-time features to be incorporated
into the application programs are of particular interest

- 3 -

1. Introduction
1.1. Motivation

The purpose of this paper is to define a computer architecture suitable of solving some reliability and
performance problems of embedded systems encountered in hard real-time environments. With the latter
term industrial, scientific, and military areas of application are meant, which are characterised by strict time
conditions, that must not be violated under any circumstances. In contrast to this, commercial systems, e.g.
for automatic banking and airline reservations, only need to fulfill soft real-time requirements, i.e. although
they are designed with the objective of fast response time, the user may expect the completion of his tran
sactions.

When employing the conventional von Neumann architecture and contemporary real-time operating
systems, one has the problem that it is not known in advance, when a program activity scheduled for a cer
tain point in time will actually be carried out. Since the security of men and material is at stake, it is not
acceptable any longer to trust only in the speed of the process control computer. Hence, it is the aim of this
paper to introduce an architecture providing qualitative improvements by guaranteeing reliable program
execution. Besides the strict observation of timing and security constraints, this also implies the a priori
verifiability of software and the predictability of its execution.

In order to characterise the state-of-the-art, we now indicate some of its shortcomings. So, tasks are
generally scheduled on the basis of fixed priorities, although it was shown [35,24,25], that the observation
of strict deadlines typical for hard real-time environments cannot be guaranteed by this procedure. It seems
that the implementation of a more appropriate scheduling algorithm, such as the deadline driven one, has
not yet been realised, because of lacking hardware support and since the expense of updating the tasks’
remaining run-times appeared to be too high. Not all problems can be solved if the application program
mer has the possibility to change the priorities dynamically. Only his software becomes more complicated,
because it has to perform functions that ought to be part of the operating system. Per definitionem [16],
real-time operation requires the availability of results within a given time span after the arrival of the input
data. In addition to the above mentioned reasons, this can generally not be secured, since the multitasking
procedures seem to assume that a calling task requesting a resource can wait until that resource is available.
The last statement was given in [37] with respect to Ada (TM), but it is certainly also true for others
languages and associated real-time operating systems. The contemporary real-time systems do not provide
accurate timing. This is due to the low resolution hardware timers applied and the unpredictable operating
system overhead that may supersede the timer routines. Furthermore, as a consequence of the "semantic
gap" between the requirements of hard real-time applications and the capabilities of available processors,
only a part of the features requisite for efficient problem solving and for easy formulation of reliable
software has already been realised in existing process control languages. Hence, extensive usage of assem
bly language programming is still prevailing when realising time-critical applications.

From the above-mentioned further goals of our development become evident The architecture
should support the real-time features of process control languages in such a way that error-prone and
difficult to verify assembly language programming can be renounced. The implementation of necessary
language and operating system features should not fail due to deficiencies of the hardware. Finally, a techn
ical safety approval of the software packages to be utilised is to be enabled under special consideration of
their time behaviour.

By describing an apt architecture, i.e. in a constructive way, it will be shown in the present paper,
that these goals can be achieved with available technology. The main measure in this respect is to imple
ment a feasible processor scheduling algorithm. Here the term "feasible" means, that under the condition,
that this is actually possible, the algorithm orders at any point in time the tasks pending for execution in
such a way, that they can be processed under observation of their deadlines. From the known algorithms,
we select the deadline driven one, because it minimises the number of induced processor pre-emptions.
Furthermore, as a by-product, it allows the early detection and hence the handling of a future processor
overload situation. These features and the operating system’s time management will be supported by an
elaborate hardware module, which provides accurate time readings and eliminates all superfluous servic
ings of the clock. The mentioned device is also the basis of two further functions that will be implemented
in order to achieve the goals we have set. Thus, the waiting times and the execution times of tasks and

- 4 -

certain operations will be supervised and the exactly timed start of instructions will be made possible. The
latter feature has never been realised [44], although it is needed for many applications, e.g. for direct digital
control, for the supervision whether parameters vary within gliding limits, and for the fast acquisition of
measurement data. To the end of verifying the software behaviour, a separate interrupt generation module
will be provided, which allows an application oriented simulation, takes the operating system overhead into
account, and yields exact results.

The computer structure we are proposing here is essentially an asymmetrical two processor architec
ture. It consists of a conventional general processor for executing the application tasks and the functions of
the operating system shell, and of an auxiliary processor as carrier of the operating system kernel. This
device comprises the above mentioned hardware elements and provides the features stated there in addition
to those of customary real-time operating systems. Hence, we are considering an orthogonal extension of a
classical von Neumann architecture by migrating "outboard" into appropriate hardware and firmware suit
able operating system functions, which are able [21] to support process control oriented high-level
languages. It will be shown that this architecture can guarantee predefined time frames for its reaction to
external events and that it reduces the complexity of the operating system.

According to the pertinent literature [4,11,23,28,53], various approaches have already been made to
support operating system concepts by architectural measures. As far as real-time features are concerned, it
can be concluded that only some of those have been migrated, which were known from previous operating
systems. No attempt, however, has been made to utilise hardware and firmware facilities for the implemen
tation of typical hard real-time support features that cannot otherwise be realised. Although architectures
were developed to meet some language constructs, especially of Ada, there was no integral effort yet to
build a system according to the special requirements of a process control language suited for the applica
tion engineer and of a corresponding operating system [13]. That is the motivation for the attempt aiming
into this direction, which is to be worked out in this paper.

1.2. Intuitive Concept of an Architecture
How should a process control computer system be organised internally? Supposedly, this question

was not asked in the beginning of real-time data processing. It was already a big achievement to employ for
the control of technical processes computers with the proven von Neumann architecture, that were only
adapted to their application area by the provision of process peripherals and externally available interrupt
lines. All other real-time requirements were met by software, viz. by operating systems as well as by usu
ally very specific application programming. The problems mentioned above, however, could not be solved
in a general way.

As common in engineering, there are always many possible designs for a system fulfilling a given set
of demands - provided the problem is solvable with the available technology. That this can be done in our
case is the objective of the present paper. In order to derive an appropriate processor architecture, we now
consider some analogies from other fields where systems coping with real-time conditions were already
developed earlier.

The first example is the system composed of a manager and his secretary. The duties of the secretary
are the reception of mail and telephone calls, the elimination of unimportant things, and minimising the
interruptions of the manager’s work by visitors and callers. Furthermore, she schedules her chiefs work by
arranging the files in the sequence in which they are to be treated and by the administration of his meeting
dates. Thus, the manager’s work becomes less hectic - i.e. its "real-time conditions" are eased - and more
productive, because he can perform his tasks with less frequent interruptions in a more sequential and
organised manner.

Similar organisational structures have been developed in various areas in order to prepare and to
schedule the work of either highly qualified and paid persons or of expensive resources. As examples the
reception room of a doctor’s surgery or the reception desk of an automobile repair workshop as well as the
operations room of a batch-processing oriented computer centre are to be mentioned here. In these offices
the tasks to be carried out by both single or multiple - usually specialised - resources or persons are organ
ised, supported, and arranged in an appropriate order.

- 5 -

As final analogy we consider the human brain, which consists of cerebrum, midbrain, diencephalon,
cerebellum, and extended spinal cord. The signals to and from various parts of the body are transmitted via
the spinal marrow, which has some similarities with a computer bus. The nerves of the spinal marrow end
at the side of the brain in the extended spinal cord, that is closely connected with the midbrain, the dien
cephalon, and the cerebellum. The four last mentioned organs have non-arbitrary and routine reflex func
tions. Thus, they control the metabolism, the bodies’ position, heat, and water content, and regulate
respiration and blood circulation. The organs are an important switching site between the nerves of the
body and those of the brain. Furthermore, the immediate reflex centre is located here. In contrast to this, the
other information processing functions of higher complexity, such as the evaluation of sensual impressions,
the control of arbitrary actions, and all intellectual tasks are performed by the cerebrum.

By taking pattern from these models, we now define the structure of an apt real-time computer. The
concept is displayed in Figure 1. The system, we are introducing here, basically consists of two dissimilar
processors. One of them is a classical von Neumann processor. Its function is the execution of the users’
tasks and of those operating system processes, which are not intrinsically different from the former. These
are mainly services of the supervisor shell, such as data exchange with peripherals and file management,
that are provided in the form of independent tasks or subroutines called by the users’ tasks. From this outer
layer of the software running on process control computers, the operating system kernel is clearly, i.e. phy
sically, separated by migrating it to the second, the auxiliary processor. Generally speaking, it will be the
carrier of the system functions event, time, and task management, communication, and synchronisation.

1.3. Overview of the Contents
In distinct contrast to the customary procedure of basing process control systems on hardware with

(almost) minimum capabilities, we want to proceed from the special requirements of hard real-time
environments and to make use of an integral view when developing apt computer systems. The objective
of such a top-down approach is the definition of a hardware architecture as closely adapted to these appli
cations and supporting specific operating system features as the state-of-the-art in hardware technology
allows. As a prerequisite for carrying through this task, a synopsis is required of the elements which need
to be implemented in order to meet our goals. Therefore, we shall commence our considerations in the next
section by discussing the conditions imposed by industrial environments on real-time data processing sys
tems. From this follow fundamental demands for process control systems and especially languages required
to derive the specification of the single features. Then, we shall make an inventory of the real-time ele
ments as provided by the main languages for this area of application, viz. Ada, Fortran, HAL/S, LTR,
Pearl, and PL/1. Subsequently, it will be discussed how these languages fulfill our fundamental demands,
giving rise to a synopsis of important but not yet or only seldom realised real-time features. With its
emphasis on real-time features, the present investigation differs from the more general language com
parison [45], where besides Ada and Pearl also languages were considered having no multiprogramming
and process I/O facilities.

With reservations, it can be stated that Pearl represents the closest match to the mentioned require
ments. But, to increase the efficiency of real-time data processing, it is necessary to enhance the produc
tivity of the employed languages [34], Therefore, extensions of this language are proposed to express the
time behaviour, the surveillance of events and problem oriented synchronisation. Furthermore, statements
are introduced to control desirable operating system services and software verification features.

In order to derive an appropriate architecture, we shall consider different computer structures and
compare their suitability for, and performance in, process control applications. The starting-point of these
considerations will be the use of a feasible processor scheduling method, guaranteeing the observation of
task due dates. We shall see that, by employing the deadline algorithm, the occurrence of deadlocks is
inherently prevented. The asymmetrical multiprocessor structure outlined in the sequel aims at executing
the tasks with the minimum of outside influence. Thus, the handling of events of all kinds is transferred to
separate specialised devices, relieving the universal processors of frequent context-switching operations.
Our views will show that, if serious restrictions cannot be accepted, the requirements of hard real-time data
processing may be met when the operating system nuclei are run on specific hardware.

- 6 -

The use of deadline driven task scheduling suggests as a by-product a method for virtual storage
management, representing an implementation of the working set model typical for real-time applications.
We shall state two algorithms essentially assigning storage according to the ordered list of ready tasks pro
vided by the processor scheduling. The algorithms page storage on the basis of tasks, and are optimal as far
as paging demands depend upon internally foreseeable events.

On the basis of the preceding considerations, the structure of the system and of the auxiliary proces
sor is defined. This includes the assignment of functions to the various subsystems and the description of
data exchange and control flow between them. The proposed architecture is then shortly discussed in com
parison with other non-conventional ones found in the literature. After that the three levels of the auxiliary
processor are detailed. Its basic one is composed of various hardware elements which support all time
dependent features and the event recognition. These hardware modules are controlled on the next higher
level by the primary event reaction processor. In order to guarantee predefined time frames for event recog
nition and servicing, its operation is similarly organised as that of a programmable control device. The
algorithms for the time and event management performed on this level and the corresponding data struc
tures are described. After that, the same is done for the secondary event reaction processor, which forms
the highest of the three levels. Its duties are to carry out the specified routines which represent a real-time
operating system kernel and to control the execution of the users’ tasks in the general processor.

Finally, the proposed architecture is qualitatively evaluated, especially in comparison with the con
ventional one. Its feasibility is verified by showing, that the extended Pearl can be implemented on the con
sidered architecture. In this context, the special compiler activities and run-time features to be incorporated
into the application programs are of particular interest

- 7 -

2. High-Level Language Real-Time Features
2.1. Review of Existing Languages
2.1.1. Selection of Reviewed Languages

Within the scope of this paper it is naturally impossible to consider all languages aiming at applica
tions in real-time processing. The selection of the languages to be reviewed here is determined by their dis
semination and their suitability in industrial environments. So most developments are either designed for
special purposes or have been only implemented on a single computer model and did not find widespread
usage or were even discontinued in an experimental stage. In [43] Algol 68 was considered in a com
parison of real-time languages. Although it allows parallel processing, we shall omit it here since it does
not provide real-time features. The older British developments Coral 66 and RTL/2 are designated as pro
cess control languages. But the actual languages only comprise algorithmic elements and, as far as real
time features, synchronisation, and I/O are concerned, they totally rely on operating system calls. There
fore, we shall not consider them here as well as Concurrent Pascal and Modula. The latter are operating
system implementation languages and process control oriented elements are lacking. Particularly, Modula
is not suited for industrial applications, since no I/O and timing facilities are incorporated and since it does
not provide as language constructs the features necessary to model a set of tasks upon a technical process
and to control this task set accordingly. Instead, Modula allows to write machine dependent peripheral
driver routines and the users' own timing, synchronisation, and resource sharing mechanisms. Formulating
real-time application programs in Modula would therefore require a considerable amount of non-problem-
oriented work and would yield non-portable software. The above statements on real-time facilities hold
even more for Modula-2 [60], especially with respect to tasking, since only the coroutine concept is imple
mented to express concurrency. There are many dialects of Basic available incorporating a minimum of
real-time features aimed at scientific, not heavily used applications, where the control and evaluation of
experimerits is to be quickly programmed. Hence, these Basic derivatives are also outside of our scope.

2.1.2. Demands of Hard Real-Time Applications
The main objective for the employment of process control computers in industrial environments is to

increase productivity. To this end the operation costs are to be lowered, especially by automating routine
work, and participating resources are to be utilised most efficiently. The latter may not be confounded with
computer internal or operating system resources - here, instead, men, machines, material, and energy are
meant. In pursuing these goals, certain boundary conditions are to be observed. First, the security of the
working people and of the capital invested into the process needs to be guaranteed. Then, the processing is
subject to timing constraints with only small tolerances; and last but by no means least, reliable system
operation characterised by high availability and low maintenance expense is expected.

In scientific applications slightly different requirements come to the fore. Here process control com
puters are mainly utilised for the acquisition and evaluation of measuring data originating in directly con
nected experimental set-ups. Thence, efficiency aspects become less important whereas tighter timing con
straints are to be observed. The reasons for this are that the exact instances of monitoring operations are
prescribed by the evaluation algorithms and that data may be received with very high frequencies.

Finally, for military use of real-time systems, emphasis is shifted towards security and reliability
aspects, since personnel and extremely expensive equipment depend on their faultless functioning. The
design of such systems has to provide enough capacity reserves and redundancy in order to be able to cope
with extraordinary requisitions.

From the above mentioned we shall now derive fundamental demands for real-time languages and
systems.

Whereas hardware prices have drastically dropped in the past, the costs for developing software have
considerably risen. Therefore, the latter need to be lowered in order to enable an overall cost advantage
when utilising automatic process control. As commonly known, one means of achieving this is to replace
assembly by high-level language programming. Such languages must reflect the users’ way of thinking,

- 8 -

and the users generally are engineers and technicians - but not computer scientists. So the language features
should be easily conceivable, safe to handle, and application oriented. Furthermore, wide use of dynamic
language elements seems questionable and, also for security reasons, it must be possible to completely
relinquish their employment. In the past concessions have been made when designing real-time languages
to enable their implementation under already existing operating systems. This contradicts a feasible
proceeding, because operating systems ought to support the language features in an inconspicuous manner
and to bridge the gap between language requirements and hardware capabilities. Hence, the development
of a process control system should commence with the definition of a suitable language. Then the hardware
architecture is to be designed, enabling the implementation of the language as easily and efficiently as pos
sible and thus keeping the operating system and its overhead relatively small. In the case where the men
tioned implementation and operating efficiency of a real-time system conflicts with the efficiency and the
safety of the process to be controlled, the latter has naturally to be estimated higher.

In many applications where the security of personnel has to be guaranteed, real-time computers are
working in parallel with hard-wired logic controlling, safety measures for the industrial processes. The rea
son for this is that procedures for the technical safety approval have been developed for such devices and
laid down as obligatory directions, which are widely used by the competent authorities. Unfortunately,
corresponding methods for licensing computer systems are not available yet The difficulties encountered
when trying to define such proceedings mainly concern the software, since hardware set-ups could be han
dled quite similarly to other electronic equipment The first measure to overcome these problems is replac
ing assembly by high-level language programming. To enhance the software verifiability, real-time
languages should enforce simple program formulation in easy to survey modules with clear interfaces and
as little side-effects as possible. But not only the software correctness in the sense of mathematical map
pings as in batch processing environments has to be proved, also its intended behaviour in the time dimen
sion and the interaction of concurrently active tasks need verification. To this end, language features for the
specification of maximum task run-times, of updated residual run-times required by tasks before their com
pletion, and of timing constraints for certain operations, as well as for enabling the determination of
module run-times by the compiler are necessary. Furthermore, resource claim capabilities have to be pro
vided that allow the deadlock preventing scheduling of tasks. The latter should be based on algorithms
guaranteeing the observation of the tasks’ due dates, provided that this is possible. If, finally, the time
frame for the operating system overhead is known, then the program behaviour as independent from exter
nal events becomes foreseeable. When the above mentioned features are given, an off-line simulation of
the software to be approved can be carried through, not only simplifying the verification process, but also
allowing the inclusion of randomly occurring external events into the consideration. In order to facilitate
real-time systems to cope with worst-case conditions these events ought to be generated accordingly for
simulation purposes. This test procedure oriented at hard real-time environments would yield exact infor
mation, if time constraints can be observed and whether due dates can be granted, distinctively contrasting
to the prevailing practice of assuming that "computers are so fast that they will easily master the given
workload".

2.13 . Synopsis and Discussion of Real-Time Features Realised in Available Languages
The availability of, and partly further specifications on, the real-time features of the six languages

under consideration have been compiled in Table 1. The information used in the course of this was
obtained from the references [1,2,5,9,29,30,36,40,43,48].

- 9 -

Table 1
Survey on Real-Time Language Elements in Ada, Industrial Real-Time Fortran, HAL/S, LTR, Pearl, and Real-Time PL/1

Category Feature ADA FORTRAN HAL/S LTR PEARL PL/1

Conventional Bit processing (n) (1) y y y y y
elements Reentrant procedures V n y y y y

File handling y y y y y y
Process I/O V y n y y y

Tasking Declaration of tasks y y y V y y
Hierarchy of tasks y n y n y n
Stati of tasks available 2 n n n n 3
Controllability of tasks poor complete limited limited complete poor
Exception handling in tasks y n y n V y
Task scheduling y y y y y y
Implied scheduling strategy Prio.,FiFo - Prio. Preemp. prio. Prio. Prio.,OS-dep.
Usage of priorities y n y y y y

Synchro-

Changebility of priorities

Synch, mechanisms

y (2) n y n y y

nization available y Y y y y y
Semaphors y (2) y n y y n
Further means of synch. Rendezvous

Signal (2)
Shared varia.

Resourcemark Compool
Lock

Blockstruct. Bolt
Blockstruct.

Implicitly

Shared obj.
Lock

Resource reservation y y y y y y
Stati of resources available
Resource allocation

y y n y n y
strategy
Deadlock prevention

FiFo OS-dep. Prio. Prio. Prio.,OS-dep. Prio.

supported n n n n n y,*
Events Event mechanisms available y y y y y y

Interrupt handling y (1) y <y> y y V
Enable/disable interrupt n (1) y (y) (n) y y

Timing Date/time available
Cumulative run-time

y y y (y) y y
available y (2) n (y) n n n
Forms of time scheduling

Timing control of

Delay various various Delay
Cycl.

various Delay
Fixed date

synch, op.s y n n n n y
Verification Aids for testing Raise except. Set eventmark

Call interr.
entries

Simulation
Run-time det.

Trace

Mapping
Trace

Flag display

Induce event
Trigger int.

n

(1) Only indirectly possible in the final Ada version [3].
(2) Not any longer available in the final Ada version [3].

-1 0 -

The first category of features listed in Table 1 comprises elements required in process control appli
cations but of a conventional character. This may cause contradiction as far as process input/output is con
cerned. Apart from their time scheduling, however, these operations are carried through by corresponding
driver routines of the operating system in a manner similar to standard I/O.

In all languages considered, parallel processing is organised on the basis of tasks. These can be
hierarchically ordered as in Ada, HAL/S, and Pearl. Each language has as a foundation a different model of
task states. But it is not possible to interrogate as to which state a task is presently in. Only Ada and PL/1
allow a determination of whether a task is active or already terminated. To control the execution of tasks
and their inter-status transfer, tasking operations are provided as language features. In this respect Pearl
and Fortran offer a wide range of capabilities that may even be scheduled in Pearl. In Ada and PL/1 it is
only possible to activate and abort tasks, whereas additionally a wait operation may be requested in HAL/S
and LTR. Furthermore, the last two allow task activations to be scheduled for the occurrence of simple tim
ing and other events. After the schedules for their initiation are met, the tasks compete for resources, espe
cially for processors. All languages except Fortran imply that the appropriate dispatching decisions are then
made on the_basis of task priorities that may be dynamically changed, however not in LTR. According to
[1], an operating system underlying Ada programs may also utilise the first-in-first-out strategy.

All languages considered provide means for the synchronisation of task executions and for the reser
vation of resources to be used exclusively. The most common synchronisation feature is the semaphore. In
addition, various other concepts are realised in the different languages. The availability of resources can be
checked in Ada, Fortran, LTR, and PL/1. The employed resource allocation schemes are either priority
based or operating system dependent Only Ada systems work according to the first-in-first-out strategy.
Deadlock prevention as objective of the language has only been found in PL/1.

Tasks may communicate with each other in all six languages via single bit messages called events.
The handling of interrupts is also a common feature. However, they cannot be enabled or disabled in an
Ada program.

As we shall see in section 2.1.4, all languages are lacking in important timing features. The cumula
tive run-time of a task which must be known to perform deadline driven scheduling is available in Ada. For
simulation purposes this information is given by HAL/S measured in machine cycles. Whereas the capabil
ities of Ada, PL/1, and LTR for the time scheduling of task executions and operations are very limited, the
former two languages allow a supervision of whether synchronisation operations are completed within
predefined time frames. The other languages offer a wide range of time scheduling features.

Only HAL/S provides run-time determination and simulation facilities to aid the verification of real
time software. For this purpose in three other languages one has only the possibility of generating events
under program control.

When comparing the version [2] of Ada with its preliminary specification [1], one finds that its feasi
bility for real-time programming has been impaired by abolishing several significant features. Thus, the ini
tiate statement was deleted. Tasks are immediately activated when their declarations have been elaborated.
The once assigned priorities may not be dynamically changed. Semaphores and signals as predefined syn
chronisation mechanisms have been relinquished; and finally, the cumulative processing time of tasks is not
available any longer.

As far as actual implementations are concerned, the situation is quite different for the six languages
considered here. As summarised in [12], there is a vast number of Ada compilers already available or
presendy under development. The target systems include all major microcomputers. Various dialects of
Fortran and PL/1 with a broad range of different real-time capabilities are on the market Suitable for con
sideration in a language comparison, however, are only the corresponding proposals for standardisation
[9,30] comprising the experience with former realisations and providing the widest spectra of features. Of
the subroutine package constituting Industrial Real-Time Fortran only subsets have experimentally been
implemented yet. For extended PL/1, unfortunately, no implementations could be ascertained. HAL/S com
pilers exist for IBM/360 and /370 systems and LTR can be employed on SEMS’ line of Mitra computers. A
survey of the available Pearl systems as communicated by [46] is given in Table 2.

- 11-

Table 2. Target Computers of Available Pearl Systems
AEG 80-20 Intel 8086 Siemens R10
ATM 80-05HD Litef LRI432 Siemens R20
ATM 80-10 LSI 11 Siemens R30
ATM 80-30 Micronova Siemens R40
DP 1000 Motorola 68000 Siemens 310
DP 1500 Mudas 432 Siemens 330
EPR 1300 Mulby 3 Siemens 404/3
EPR 1500 Nord 10 Siemens 7000 Series
SDR 1300 Nord 100 VAX-11 Series
MPR 1300 PCS CADMUS 9000 Z 80
HP 1000 F PDP 11 Series Z 8000
HP 3000 RDC System PC-AT Compatibles

2.1.4. Synopsis and Discussion of Further Real-Time Features to be Implemented
When comparing the requirements for real-time languages and systems that were outlined in section

2.1.1 with the capabilities of existing languages, it becomes obvious that various elements especially
important for the production of reliable software are still missing or are only rudimentarily present in avail
able languages. We shall discuss these elements and give arguments for their necessity in the sequel. To
provide an easy survey, they are also listed in Table 3.

_____________ Table 3. Desirable Real-Time Features______________
- Application oriented synchronisation constructions
- Surveillance of the occurrences of events within time windows
- Surveillance of the sequences in which events occur
- Time-out of synchronisation operations
- Time-out of resource claims
- Availability of current task and resource stati_______________________
- Inherent prevention of deadlocks
- Feasible scheduling algorithms
- Early detection and handling of overload
- Determination of entire and residual task run-times
- Task oriented look-ahead virtual storage management
- Accurate real-time
- Exact timing of operations______________________________________
- Application oriented simulation regarding the operating system overhead
- Interrupt simulation and recording
- Event recording
- Tracing
- Usage of only static features if necessary__________________________

They can be divided into three groups, the first of which comprises constructions both easing the for
mulation of frequent applications or serving to supervise the stati of tasks and resources as well as the dura
tion of synchronisation and resource claim operations. The second group consists of desirable operating
system services that should be provided for the purpose of reliable and foreseeable software performance.
To be able to control these features several language elements need to be introduced. Finally, software
verification measures are collected in the third group of features. Their utilisation only requires a few

-1 2 -

control statements.
Despite their fundamental significance in real-time applications, none of the languages considered

allows to specify completion deadlines for task executions. But, as already stressed in section 2.1.2, proces
sors ought to be scheduled using algorithms capable of guaranteeing the observation of the tasks’ dead
lines. This goal can generally not be achieved by priority schemes under control of the programmer as sup
ported by most languages and operating systems. Such scheduling algorithms also allow early detection of
whether it will be possible to process a task set in time. Otherwise, parts of the workload have to be
removed. In order to carry this through in an orderly and predictable manner, it is desirable that the
language allows a specification of which tasks could be terminated or at least be replaced by ones with
shorter run-times when required by an emergency or an overload situation. The implementation of due
dates observing scheduling algorithms must be supported by hardware and language elements for the deter
mination of the tasks’ run-times or upper bounds for them and for the updating of residual run-times neces
sary before the tasks’ final completion. In this connection the stealing of memory cycles by direct memory
access devices becomes a problem. But, in [22] it was shown that it can be solved in order to provide task
scheduling schemes meeting the requirements of a reliable and foreseeable software behaviour in hard
real-time environments.

To provide information about date and time, existing operating systems and thus also real-time
languages completely rely on interval timers under control of a corresponding interrupt servicing routine.
Since the processor load by the latter must be kept reasonably small, the resolution of the time information
remains rather poor. The unpredictable operating system overhead introduces further inaccuracies which
become more intolerable the longer systems run after restarts. Therefore, highly accurate real-time clocks
should be provided as hardware components. The attention of the supervising software will be initiated by
an interrupt to be generated when the actual time equals the next critical moment that has been loaded into
a comparison register. Thus, the requirements of scientific and military applications also with regard to
very short time intervals can be met. Provisions should be made in the language to put tasks in a wait state
just before performing certain operations, e.g. inputs. When the clock’s interrupt signal can be directly util
ised to resume the execution of tasks waiting in such a manner, the accurate timing of single operations is
made possible. In this way, for example, measurements can be carried out at precisely equidistant or Gaus
sian points.

Based on this timing hardware, several time related surveillance features should be able to be
expressed within a language that otherwise would have had to be explicitly programmed. So in control
applications it needs to be guaranteed that events occur within given time frames or in predefined
sequences. As can be seen in Table 1, Ada and PL/1 already provide a time-out feature for synchronisation
operations. More than that, the process of claiming resources and assigning them to tasks must be super
vised in a real-time environment. In this respect in [37] the statement, which is also true for other
languages, is found that Ada multitasking seems to assume that a calling task requesting a resource can
wait until that resource is available.

Now, a series of features for supporting the verification of software and the predictability of its exe
cution shall be discussed. A step towards enabling a technical safety approval of real-time programs is to
create the possibility for application oriented simulation. This would also allow to determine the adequate
computer capacity needed for a certain application. In contrast to the language specification [30], which
reads that state transitions (of tasks) are performed "instantly", i.e. in zero time, the processing time for the
operating system overhead has to be taken into consideration in the course of a simulation. In the test phase
interrupts must also be simulated and protocoled to check whether a task set can cope with the require
ments of a hard real-time environment. On the other hand, all events occurring during the execution of such
a task set are to be recorded for the subsequent error analysis. This feature is also useful in the later routine
application of a software package where it can ease the post mortem error search. To guarantee a predict
able program execution, every task should be fully expressible in terms of static language elements wher
ever necessary. It has already been mentioned that requested resources must be granted within predefined
time frames. To give urgent tasks the possibility to elude busy resources or to initiate alternative actions,
the present stati of resources must be available for questioning. Finally, it is to be stressed once more that a
real-time language ought to make the occurrence of deadlocks impossible by an a priori prevention
scheme.

-1 3 -

2.2. Proposal for an Extension of Pearl
The comparison of real-time languages, which was carried out in the preceding section, revealed that

Pearl meets best the demand pattern as established there. However, a number of problem oriented language
constructions especially with regard to expressing the programs’ exact time behaviour appear to be miss
ing. The purpose of this section is therefore to take remedial measures by defining here appropriate exten
sions of Pearl. The leading idea behind all the proposals, that will be outlined, is to facilitate reliable and
predictable program execution, this being a prerequisite for the safety approval of software in hard real
time environments. The elements that seem to be missing or only rudimentarily present in Pearl were
already discussed in section 2.1, where their necessity was also substantiated.

2.2.1. Proposal of Additional Language Elements for Pearl
2.2.1.1. Protection of Resources and Temporal Surveillance of Synchronisation Operations

For the purpose of securing data integrity when several tasks access the same resource, Pearl only
provides the basic means of semaphores and bolts. Applying them for the locking of resources veils the
nature of the operation to be performed, since there is no obvious and verifiable relation between resource
and synchroniser. Furthermore, programming errors become possible by not releasing requested resources,
that cannot be detected by the compiler due to the missing syntactical connection between the mutually
inverse synchronisation operations.

The access to shared objects, i.e. to shared variables and dations, can be protected with the help of
implicit, "invisible" bolts to be generated by the compiler. For instructing it to do so in the case of shared
basic objects, arrays, and structures, we introduce the optional attribute

SHARED
as part of the pertaining declaration syntax. This feature has been taken over from the dataway synchroni
sation providing such a control upon opening. Since synchronisers are constituents of shared objects, the
prevailing rules need to be observed. So they must be declared on module level. As data types of shared
variables, array elements, and structure components, respectively, only basic ones are admitted, because
sharing others either leads to difficulties or is meaningless. For encapsulating the access to protected
resources and to enforce the release of synchronisers, we introduce a LOCK statement similar to the one
described in [9] and having a time-out clause that was also proposed in [6] in a different context:

LOCK synchronisation-clause-list [NONPREEMPTIVELY]
[timeout-clause] [exectime-clause]

PERFORM statement-string
UNLOCK;
with
timeout-clause: :=

TIMEOUT {IN duration-expression 1 AT clock-expression}
OUTTIME statement-string FIN ,

exectime-clause::=
EXECTIMEBOUND duration-expression,

synchronisation-clause: :=
semaphore-expression-list I
EXCLUSIVE(sync-object-expression-list) I
SHARED(sync-object-expression-list)

and

-1 4 -

sync-object::=bolt I shared-variable I dation
The task executing a LOCK statement waits until the listed shared objects can be requested in the specified
way. By providing a TIMEOUT attribute, the waiting time can be limited. If the lock cannot be carried
through before the time limit is exceeded, the statements of the OUTTIME clause will be executed. Other
wise control passes to the statement sequence of the PERFORM clause as soon as the implied request
operations become possible. The corresponding releases will be automatically performed upon reaching
UNLOCK, or when terminating the construction with the help of the

QUIT;
statement. In order to free seized resources on behalf of increasing the program efficiency as early as possi
ble, the instruction

UNLOCK semaphore-expression-list I sync-object-expression-list;
can be applied already before dynamically reaching the end of the surrounding LOCK statement, where the
remaining releases will be carried through. The optional EXECTIME clause is introduced to enhance the
predictability and safety of real-time systems. It limits die time, during which a task is in a critical region.
Thus, it is prevented that programming errors resulting in infinite loops can cause a blockage of the whole
system. In order to handle a violation of a loop’s execution time bound, a system signal must be introduced.
The optional attribute NONPREEMPTIVELY serves for the improvement of performance. By specifying
it, the operating system is instructed not to pre-empt the execution of the LOCK statement due to reasons of
the applied processor scheduling strategy. Thus, superfluous and time-consuming context-switching opera
tions can be saved in the case where a more urgent task requesting one of the locked resources commences
execution before termination of the LOCK statement. For shared objects of type dation, their reference in a
synchronisation clause of a LOCK statement shall be equivalent to executing an OPEN-CLOSE statement
pair with a corresponding dataway synchronisation control. Except for their appearance in synchronisation
clauses, shared objects may only be referenced within the framework of LOCK statements. They must be
locked for exclusive access if the reference is used in any assignment context or if they are passed as
parameters to procedures with the identical mechanism.

The above described LOCK feature should replace Pearl’s six unstructured synchronisation state
ments. Only the USING clause of the ACTIVATE tasking operation complies with structured program
ming, since it implies the release of the seized semaphore upon termination of the activated task. However,
like the LOCK statement, the USING clause must be endowed with an optional time-out clause specifying
an alternative action, because in hard real-time environments it is not always possible to wait indefinitely
until a corresponding activation operation is permitted to be performed:

USING expression
[TIMEOUT [IN duration-expression I AT clock-expression}
OUTTIME statement-string FIN]

2.2.I.2. Additional Monadic Operators
In this section we shall define several intrinsic functions providing status information on tasks and

synchronisers. All functions yield results of type fixed. Given a certain model of task states together with
an appropriate numbering of the latter, the

TSTATE task-identifier
operator returns the number of the parameter’s actual status. The current value of a semaphore is to be
made available by applying the operator

SVALUE sema-identifier.

- 15-

In order to interrogate the stati of bolt synchronisers, we introduce the function
BVALUE bolt-identifier

returning the values 0 or -1 in the unreserved or exclusive access states, respectively, or the number of
tasks having shared reading access. With this function also the stati of implicit bolts can be questioned,
when applying it in conjunction with the operator

SYNC shared-object
referencing its argument’s implicit bolt.

2.2.I.3. Surveillance of the Occurrence of Events
For the surveillance whether and in which sequence events occur we shall propose in this section a

new language feature. In this context we use a wider notion of events to summarise

- interrupts,
- signals, *■
- time events, i.
- status transfers of synchronisers and tasks, and -W- ar
- the assumption of certain relations of shared variables to given values. m.a»- ...

These events may be stated according to the following syntax rules:
event: :=

WHEN interrupt-expression 1 . '¡L
ON signal-expression 1 - JF i A,
AT clock-expression 1 \ jr
AFTER duration-expression 1 ■ iT
status-function-call relational-operator expression 1
shared-variable-reference relational-operator expression I
bit-type-shared-variable-reference

where status-functions are the ones introduced in the previous section. In case of the last three of the above
alternatives the events are raised when the corresponding Boolean expressions turn true. Now the new
language element is defined by

EXPECT alternative-string FIN;
with
alternative: :=AW AIT event-list DO statement-string.

When the program flow of a task monitoring events reaches an EXPECT block, the expressions contained
in the event specifications are evaluated and the results stored, and then the task is put into a wait state until
any one of the events mentioned in the AWAIT clauses occurs. Then the statement string following the
associated DO keyword will be executed. In case several events listed in different AWAIT clauses occur
together, the corresponding DO clauses will be performed in the sequence they are written down. When the
operations responding to the just occurred events) are executed, the task is again put into the wait state
expecting further events. In order to leave the described construction after finishing a surveillance function
and to transfer control behind the block end FIN, the

QUIT;
statement has to be applied. When this has been done or when it has been left otherwise, there will be no

-1 6 -

further reaction to the events mentioned in the EXPECT feature. Nesting RESUME statements, ON reac
tions, or other EXPECTs into the alternatives is not meaningful, since routines in which this appears to be
necessary can also be formulated employing one EXPECT structure only. The applications for which a
scheduled RELEASE statement has been required elsewhere [20,44] can be programmed using the element
described above.

2.2.2. Additional Operating System Features to be Supported by Pearl
2.2.2.I. Inherent Prevention of Deadlocks

Employing the LOCK language element introduced earlier for claiming resources, it already
becomes possible for the compiler to verify the correct application of two well-known deadlock prevention
schemes, which may be requested by stating a corresponding pragma. According to the resource releasing
procedure, all required shared resources must be reserved en bloc before entering the critical region where
they are used. This can easily be accomplished by mentioning them in the synchronisation-clause-lists of
the LOCK statement The compiler has only to examine now if no further resource requests appear in the
PERFORM clause to ensure a deadlock free operation. In order to apply the resource hierarchical method,
an ordering of the shared objects needs to be declared. An appropriate facility for use on the module level,
when this deadlock prevention scheme shall be applied, is introduced as

RESOURCE HIERARCHY sync-objectl hierarchy-clause-string;
with
sync-objectl ::=semaphore I bolt I shared-object
and
hierarchy-clause::= >sync-objectl .

Nesting of LOCK statements can then be allowed as long as the sequence in which the resources are
claimed complies with the predefined hierarchical ordering.

2.2.2.2. Exact Timing of Operations
Although Pearl allows to specify time schedules for tasking operations, one cannot be sure when they

actually take place. Since this situation is unacceptable in many applications, a language element appears to
be necessary to request the punctual execution of tasking operations, i.e. the critical moments need to be
actively awaited. For that purpose an optional

EXACTLY
attribute to be placed in time schedules will be used.

2.2.2.3. Application of Feasible Scheduling Algorithms
It has already been stressed before that processors ought to be scheduled employing procedures capa

ble of guaranteeing the observation of strict deadlines usually set for the execution of tasks in hard real
time environments. This goal, however, can generally not be achieved by priority schemes under control
of the programmer as supported by most operating systems and languages such as Pearl. The implementa
tion of feasible scheduling algorithms, like the deadline driven one optimal for single processor systems,
needs to be accompanied by language elements for specifying the due dates and for determining total and

-1 7 -

residual run-times, or at least upper bounds thereof, required by tasks to reach their completion. Further
more, such scheduling algorithms allow the early detection of the possibility for processing a task set in
time. Otherwise, parts of the workload have to be discharged. In order to carry this through in an orderly
and predictable manner, it should be possible to state in the source program which tasks could be ter
minated or at least be replaced by ones with shorter run-times when required by an emergency or an over
load situation. The above mentioned outlines the objectives of this section.

We begin with replacing the PRIORITY clause by an optional deadline of the form
DUE AFTER duration-expression

in task declarations and in the ACTIVATE, CONTINUE, and RESUME statements. When the condition
for a task’s (re-) activation is fulfilled, this duration is added to the actual time yielding the task’s due date.
As additional parameter the deadline driven algorithm requires the task’s (residual) run-time which is
stated in its declaration in the form

RUNTIME duration-expression I SYSTEM.
In general, the given duration can only be an upper bound for the required processing time. If the latter is
not known, by inserting the keyword SYSTEM here, the compiler is instructed to supply it according to the
method outlined below. For use by the scheduling algorithm three variables have to be allocated for each
task, whose task control block may be denoted here by T. The due date will be stored in

T.DUE,
an object of type clock. The two further variables have the type duration and must be continuously updated
while the task is being executed:

T.TIME
is initially set to zero and contains the accumulated execution time, whereas

T.RES
initialised with the RUNTIME parameter is decremented to provide the residual time interval to complete
the task properly. When the due dates and execution times of tasks are a priori available, a feasible
scheduling algorithm is able to detect whether a task set given at a certain moment can be executed meet
ing the specified deadlines. Otherwise an overload situation must be handled. In order to carry this through
in an orderly and foreseeable manner, all interrupts will be masked and all tasks will be terminated and
schedules for further activations of them deleted whose declarations do not contain the

KEEP
attribute, that needs to be introduced as an option. Then the remaining tasks together with the emergency
tasks scheduled for the event of an overload condition will be processed.

Now the determination of a task’s overall execution time requires more attention. As long as the pro
gram flow is strictly sequential, there is no problem, since only the processing times of the single instruc
tions need to be summed up. In all other cases one has to carry out an appropriate estimation. As far as IF
and CASE statements and procedure calls are concerned, the execution time of the maximum length path
through these constructions will be feasible. The number of rimes the instructions in a REPEAT statement
are performed generally depends on the values of variables and is therefore a priori not determined. In
order to enable the run-rime estimation also for this feature, we augment its syntax by the following clause
already demanded in [18]:

MAXLOOP fixed-literal.

-18-

If the number of iterations exceeds the limit set with this clause, a system signal should be raised to be
treated by an appropriate ON statement. At first, this restriction seems to be a serious drawback. But, on the
other hand, it enhances the reliability being essential for real-time software, because faulty programming
cannot lead to infinite loops and thereby to system hang-ups. The span between the times a synchronisa
tion operation requesting resources is reached and finally carried through is generally undetermined. By
extending the statements of this kind with TIMEOUT clauses also these language features become subject
to run-time estimations. Since the execution of ON statements is not part of the normal program flow, they
cannot be regarded in the course of run-time calculations. However, for these purposes ON elements can be
considered as independent tasks activated by interrupts that immediately suspend the tasks in which they
are defined and continue the latter as soon as they terminate. Thus, it becomes possible to estimate the
workload requirements for handling ON statements with the methods of worst-case simulation to be dis
cussed in the subsequent section. A similar argument applies for treating EXPECT blocks. At first, the ini
tial part of the task surrounding an EXPECT feature is performed finishing with activating all alternative
actions of the latter as separate tasks scheduled for the occurrence of the events specified in the respective
WHEN clauses. Here also actions can be specified to be performed in case certain time limits are exceeded.
Then, the given time conditions can be utilised for the run-time estimation. Finally, the task’s continuation
will be scheduled for the end of the EXPECT element From the viewpoint of run-time determination,
most concern is caused by the GOTO statement that is added to its harmfulness resulting from the fact that
its unrestricted use may produce difficult to survey and hence error-prone programs. This has been per
ceived at an early stage and has given rise to the development of structured programming. Since this discip
line has revealed that in the majority of cases the application of jumps can be avoided provided appropriate
structured language elements are available - such as in Pearl - we can confine the usage of GOTO state
ments to the purpose of leaving loops, blocks, and other constructions when some code is to be skipped.
Thus, both the software reliability is enhanced and the run-time estimation is enabled, because jumps can
be simply disregarded. The above discussion has shown that an exact calculation of a task’s run-time will
be an exceptional case. Hence, we have to content ourselves with estimations. But, it will often be possible
to improve the estimation of a task’s residual run-time in the course of its execution, e.g. when control
reaches a point where two alternative program sequences of different length join again. To this end the
statement

UPDATE task-identifier.RES: =duration-expression;
is introduced for setting the residual run-time to a new and lower value.

2.2.2.4. Support of Task Oriented Virtual Storage Management
The task oriented virtual storage management scheme, which will be discussed in detail in section

3.2, requires one language feature for its support. To enable the determination of future task (re-) activa
tions in the case of interrupt driven schedules, the user must supply an average occurrence frequency for
each of them. This can be achieved by augmenting the interrupt definition in the system division with a
corresponding optional attribute:

INTERVAL duration-literal.

2.2.3. Software Verification Features
2.2.3.1. Tracing and Event Recording

For the purpose of controlling whether a real-time software package works in the intended way, it is
necessary to record intermediate results and the occurrence of events influencing the single activities. The
first feature to be provided in this context is tracing being not typical for process control systems. Hence,
we can refer here to other languages like Fortran and LTR where statements were defined instructing the

- 19 -

compiler to generate additional code for writing specified traces into certain files. Comparable statements
need to be introduced into Pearl. In order to avoid frequent changes in the source code, a compiler option
appears helpful that selects whether the tracing control statements are to be considered or to be treated as
comments. When the behaviour of a real-time system is to be understood, it must be known when the
events determining the state transfers of tasks have occurred. The kind of events to be considered here are:

a) interrupts, signals, and changes of masking states,
b) state transfers of tasks and synchronisation variables,
c) reaching and actual execution of tasking and synchronisation operations.

These events or specified subsets thereof should be recorded on a mass storage device also during routine
operation to enable the post mortem analysis of software malfunctions. As we shall see later on, when
simulations are carried out in the test phase such files represent the corresponding output requiring no
further specification. The aim of the source code oriented debugging system described in [38] is more to
support the error removal process than the approval of a finished software package. Its services are
requested outside the language interactively or in a test plan. Besides the above mentioned features, it also
provides the usage of breakpoints as well as the possibility to change data and to execute certain statements
interactively.

2.23 .2. Restriction to Static Language Features
In hard real-time environments the application of dynamic language elements appears questionable,

since it introduces unpredictability with respect to capacity and time requirements making the work of a
scheduling algorithm impossible. Thence, for the sake of reliability, the usage of variable array dimensions
and of recursive procedure calls should - at least optionally - be suppressed.

2.23 .3. Application Oriented Simulation
Given the possibilities for event recording and tracing as outlined above, no additional features need

to be introduced in Pearl to facilitate the simulation of application software, because the language already
contains the statements necessary to generate external and internal events, viz. TRIGGER and INDUCE.
A program simulation would now be carried out as follows. The formal description of the requirements or
of a benchmark test for a program is laid down by writing a test routine generating according to worst-case
conditions the events the software package is acting upon. If need be, appropriate test data are provided as
inputs. In case these data cannot be read in from the original devices, they could be made available by
especially written interfaces. Then, the test program and the software to be verified are jointly processed
under control of the operating system that is also to be applied in a routine environment. When tracing and
event recording were specified, all the results a simulation is expected to yield are automatically provided.
Since the described simulation method takes place under very realistic conditions, it should thus fulfill the
requirements of a technical safety approval. In general, the time consumption of a simulation will be
greater or equal to the one of the actual process. Hence, it is necessary to stop the system clock always
when the test routines are being executed. The overall time requirements, however, can even be reduced
setting the system time to the next scheduled critical moment when the processor turns idle. These are the
only additional functions a simulation monitor could provide. Naturally, also a faster processor of the same
kind may be applied instead of the target system.

2.2.4. Synopsis of the Proposed Pearl Extensions
In order to give a complete survey on the various language extensions and alterations proposed

above in a mainly informal manner, their exact production rules are collected in the sequel. The syntax
description uses the symbols I and [] to denote alternatives and optional parts, respectively. For reasons of
easier readability the following two suffixes are employed:

-20-

-list indicates one or more elements of appropriate type separated by commas and
-string indicates repetition of elements of appropriate type.

Not defined non-terminal symbols are either known from the original Pearl syntax or their meaning is evi
dent from the previous informal description. Where for simplicity reasons the non-terminal "expression" is
mentioned, its correct type has to be respected.

Monadic operators:
BVALUE
SVALUE
SYNC
TSTATE

basic-type-declare-clause [SHARED]
array-declare-clause [SHARED]
structure-declare-clause [SHARED]
task-declaration: :=

task-identifiers:T ASK
[DUE AFTER duration-expression RUNTIME [duration-expression I SYSTEM]]
[GLOBAL] [RESIDENT] [KEEP];
[definitions]
[statement-string]
END;

repeat-statement::=
[FOR identifier]
[FROM expression]
[BY expression]
[TO expression]
[WHILE expression]
REPEAT MAXLOOP fixed-literal [;]
[declaration-string]
[statement-string]
END;

quit-statement::=QUIT;
schedule: :=

AT expression [interval [duration]] [EXACTLY] I
[WHEN expression] [AFTER expression] [ALL expression [duration]] [EXACTLY]

interval: :=EVERY expression I ALL expression
duration: :=UNTIL expression I DURING expression
timeout-clause: :=

TIMEOUT [IN duration-expression I AT clock-expression] OUTTIME statement-string FIN
due-clause: :=DUE AFTER duration-expression
expect-statement::=EXPECT alternative-string FIN;
alternative: :=AW AIT event-list DO statement-string
event: :=

WHEN interrupt-expression I
ON signal-expression I
AT clock-expression I
AFTER duration-expression I

- 21 -

status-function-call relational-operator expression I
shared-variable-reference relational-operator expression I
bit-type-shared-variable-reference

activate-statement :=
[schedule-list] ACTIVATE task-identifierl [due-clause]
[USING expression [TIMEOUT [IN duration-expression I AT clock-expression)
OUTTIME task-identifiei2]];

continue-statement: :=
[schedule-list] CONTINUE [task-identifier] [due-clause];

resume-statement::=schedule-list RESUME [due-clause];
update-statement::=

UPDATE task-identifier .RES :=duration-expression;
lock-statement: :=

LOCK synchronisation-clause-list [NONPREEMPTIVELY]
[timeout-clause] [exectime-clause]

PERFORM statement-string
UNLOCK;

synchronisation-clause: :=
semaphore-expression-list I
EXCLUSIVE(sync-object-expression-list) I
SHARED(sync-object-expression-list)

sync-object:=bolt I shared-variable I dation
exectime-clause:: =E XECTIMEB OUND duration-expression
unlock-statement :=

UNLOCK semaphore-expression-list I sync-object-expression-list
resource-hierarchy-definition::=

RESOURCE HIERARCHY sync-objectl hierarchy-clause-string;
sync-objectl::=semaphore I bolt I shared-object
hierarchy-clause: := >sync-objectl
frequency-attribute: :=INTER V AL duration-literal

-22-

3. Derivation of a Suitable Multiprocessor Architecture
3.1. Implications of Deadline Driven Scheduling

The fundamental condition that a process control system employed in a hard real-time environment
is expected to fulfill is to carry out all tasks within predefined time frames, provided this is actually possi
ble. Algorithms generating appropriate schedules for all task sets executable under observation of the given
due dates are called feasible, and several have been identified in the literature [24,25,27,31,32]. A few of
them deal with task sets whose elements can all be started immediately, whereas others operate on task sets
for which precedence relations are given. The latter may even observe certain conditions being too restric
tive for offering universal applicability. But it is also unrealistic to expect the existence of partial orders
between the members of the task sets in any case, since they cannot explicitly be specified by available pro
cess control languages, and tasks may be activated by external events. Thus, the situation generally prevail
ing in real-time data processing is that at any time there is a number of runnable tasks competing for the
assignment of a processor. This task state is entered by explicit activation, continuation, or after releasing
synchronisers. For scheduling such "free” task sets the response time driven and the minimum slack time
algorithms for single processor systems as well as a modification of the former strategy for multiprocessors
are mentioned in [25], where their feasibility is shown. It is characteristic for the state-of-the-art to note
that both presently employed scheduling methods based on either fixed, or on user modifiable priorities, are
not feasible. Unfortunately, the minimum slack time algorithm is only of theoretical interest, since it is
pre-emptive and requires processor sharing when several tasks have the same slack time. The latter can, for
instance, be accomplished by time slicing with a very small time constant. Both properties imply frequent
context-switching operations degrading the system performance by unproductive overhead. Furthermore,
the processor sharing may cause synchronisation difficulties with regard to the resources requested by the
single tasks. In contrast to this, the deadline driven algorithm is non-pre-emptive, at least as long as no
further task becomes runnable. If the number of pre-emptions enforced by a scheduling procedure is con
sidered as a selection criterion, this algorithm turns out to be optimal [24]. Even when further tasks turn
runnable during the execution of a free task set to which they are added, this assignment scheme maintains
its properties and then generates optimal pre-emptive schedules [31,32]. Transferred to multiprocessors,
however, it is not even feasible any more. An extension of the algorithm, namely the one first stated in [27]
and modified in [25], achieves the feasibility, but by sacrificing the non-pre-emptivity and at the cost of
much higher complexity. This fact does not suggest utilising symmetric multiprocessor systems. In order to
obtain, for structural decisions, a better understanding of the schedules that the algorithms generate, we
should consider the following example.

Let a set T of six tasks be given at t=0, each of which is characterised by the tupel (Deadline,
Required execution time), to be processed on a symmetric 3-processor system:

T=[T1=(5,4), T2=(6,3), T3=(7,4), T4=(12,8), T5=(13,8), T6=(15,12)} •
The schedule provided by the considered strategy is displayed in Figure 2 in form of a Gantt diagram. This
example reveals that the scheduling process required 5 pre-emptions and corresponding context-switching
operations, that may even result in repeated program loading, if the different processors do not use com
mon memories. The diagram also shows that two processors are idle for 6 time units before the task set is
completely executed. Since several processors cannot simultaneously work on one task, it is impossible to
level the load and to reduce the task set’s overall response time. When scheduling the same task set accord
ing to increasing deadlines for a single processor system three times faster, we obtain the Gantt diagram
given in Figure 3. Here one task is uninterruptedly executed after the other. Thus, time consuming
context-switchings are saved and at any time, essentially, there needs to be only one program in main
storage. Furthermore, the handling of the entire task set is finished earlier than in the case of the compar
able multiprocessor. Since in theoretical considerations the overhead is usually - but unrealistically -
neglected, the overall execution time proportion is further shifted in favour of the single processor struc
ture. Hence, the factor for speeding up a 1-processor system in order to become equivalent to an m-
processor as far as performance is concerned will generally be considerably less than m. Another advan
tage of strictly sequential task execution is that synchronisation conflicts which may give rise to waiting
and processor idle times are prevented.

- 23 -

An important part of a feasible scheduling algorithm is the examination whether a given free task set
will be executable within the prescribed time frames. For any time / , 0<i« » , and any task T with deadline
tz>t , let

a (t)=tz- t be its response time,
/(f) the (residual) execution time required before completion, and
s (t)=a (t)-l (t) its slack-time (margin).

Then, necessary and sufficient conditions [24,27] that a task set, indexed according to increasing response
times of its n elements, can be carried through meeting all deadlines are,
for/n=l:

(1)

and form>l :
ak ^ ^ [^ i+ ,^ rn a x (()^ k -S i)] , 1, (2)

(3) ^ ■
/

F or£= l,...,m -l eq. (2) must be valid, except if there are j tasks with «¿>5, for k<i<n and j+k<m then

a k Z j^ [$ ^ i+ ^ r n a x (0 # k-Si)] (4)

must be fulfilled.
Comparing (1) with the set (2,3,4) of inequalities, it is quite obvious that the complexity of perform

ing the processability examination is higher by far for the case m>l. The like also holds with regard to the
actual processor assignment scheme, since for m=l the task with the shortest response time is always being
executed. In contrast to this, the relations of task margins to the response times of other tasks already
assigned to processors need to be observed, and the algorithm has also to be called when a non-running
task loses its margin. Hence, the procedure must keep track of the time events when the margins of non-
assigned tasks vanish, or when a task’s margin becomes equal to the response time of another executing
one. This feature adds considerably to the already high complexity of the algorithm.

According to the above arguments, it proves to be favourable to structure real-time computer systems
essentially in the form of single processors. This concept also covers a set of interconnected uniprocessors,
each of which is dedicated to a certain partial application within the entire process to be controlled. Then,
in the ideal case that no further task becomes runnable before the presently executed free task set is com
pleted, the whole processing is done in a fully sequential manner, one task after another. Thus, unproduc
tive context-switching operations are saved and deadlocks are impossible, and hence do not need to be han
dled. Unfortunately, such a situation is not realistic; it points, however, to the direction the development of
new structures should follow. The goal ought to be to maintain the strictly sequential handling of task sets
imposed by the deadline driven scheduling algorithm as far as possible. For this purpose the processor(s)
need(s) to be relieved from the frequent interruptions of the normal program flow caused by external and
internal events that need to be handled, although they only seldom lead to an immediate (re-)activation of a
task.

ak> 1__n-k+ l max (0, ak-Si) -
i=n—m+1

a,], k=n-m+2,.../i

- 24 -

3.2. Task Oriented Virtual Storage Management
The deadline driven scheduling algorithm orders the elements of free task sets according to increas

ing response times. Since the tasks are processed in this sequence, the latter also implies an ordering of the
corresponding storage accesses to program code and data by increasing forward distance. This observation
suggests that one should base a virtual storage administration scheme on task objects as paging elements.
Compared with customary paging schemes, this approach better reflects the software structure, because the
task is the basic unit of program flow and related data in real-time environments. Owing to the require
ments of typical process control applications, one can assume that the storage demands of tasks are com
paratively small. Without restriction of generality this storage size can be bounded, since auxiliary tasks
may be defined to cope with the rare cases of larger storage needs. By reason of the fast reaction time to be
provided and the generally short execution times of tasks, it is feasible to load the entire task code into
main storage each time it is needed. Thus, parts of the available storage will temporarily remain unused,
but this is justified by the advantages the method offers and by the still dropping prices for storage blocks.

In the sequel the details of a task oriented virtual storage administration procedure and of an
enhanced algorithm will now be described.

The main storage is divided into an area for the supervisor, or only resident parts thereof, and for
shared data structures not subject to paging, and into K >2 page frames. The size of the latter corresponds
to the maximum storage allowance for tasks. Since the identity of the used frames is irrelevant when
changing pages, the assignment problem does not arise.

Let now R, :-{T \ , . . . , Tn } be the list of tasks ready for execution at the time t , which was ordered
according to increasing response times by the deadline driven scheduling algorithm. Then, loading the sub
set B :=[Ti \i=\,...jnin(K jit)} of Rt into main storage represents the solution of the moving-in problem.
When a currently storage-resident task leaves the ready state, its page frame becomes available again.
Upon termination it is simply released. Otherwise the page needs to be written back to mass storage. We
shall see later, that such a page might remain in main storage when a refined algorithm is employed. A free
frame is occupied by the first task in the ready list not yet loaded into main storage. In accordance with the
scheduling algorithm, the task T i is always being processed. If the initial subset B of Rt varies differently
as by termination of T i when it is completely carried through, i. e. if an element of B is superseded by
another newly arrived one with shorter response time, the replacement problem must be solved. If the car
dinality of B before the arrival of the new element was K, this is achieved by removing its final task. The
latter possesses the longest forward access distance of all tasks in B . Hence, the replacement algorithm is
optimal. Only in rare cases does the processor have to wait for the completion of a page replacement pro
cess, because in general there are tasks with tighter deadlines to be executed first. The two above-stated
methods for solving the moving-in and the replacement problems, respectively, are look-ahead algorithms
representing an application oriented realisation of working sets given in the form of task objects.

Selecting the value 2 for the parameter K may already be quite reasonable, since T \ is executed
essentially without interruptions, in accordance with deadline driven scheduling, and during its processing
time the next task T2 could be paged in. Ideally, the code of T2 should be available upon completion of T \ .
The actual choice of K depends on several factors:

the number of I/O channels available for paging,
the transfer time,
the average execution time of tasks, and
the frequency of suspension of the running task due to I/O and synchronisation with the possibility to
utilise waiting times for the processing of other tasks.

For any given hardware configuration and any task system, an appropriate value for the parameter K can
be determined by simulation, taking the minimisation of the waiting time for loading required pages as
optimality criterion.

The above-outlined storage administration scheme only takes the ready tasks into account, and in
relation to them the replacement algorithm’s optimality is to be understood. But for utilisation in a more
sophisticated look-ahead algorithm, information is available in process control systems specifying when
presendy non-ready tasks will be (re-)activated. When the latter event occurs, these tasks may supersede

-25-

others, that became runnable earlier, from front positions in the ready list implying a change in the ele
ments of the subset B . Hence, storage is assigned to the first K tasks in a list ordered with regard to ascend
ing deadlines comprising

- ready tasks,
- buffered task activations, and
- the next scheduled activations and continuations of tasks.

The deadlines required for comparison purposes are already known in the two former cases. For cyclically
scheduled (re-)activations, they can be calculated from the next critical moments specified by the schedules
and the relative time conditions assigned to the pertaining tasks. To facilitate a similar determination of a
future task (re-)activation in case of interrupt driven schedules, the user must supply an average occurrence
frequency for each of them. Assuming this information to be given, we shall now state the refined look
ahead algorithm for task oriented virtual storage management in the form of a procedure. We commence
with describing the data structures involved.

Let for any task known within a real-time application a task control block TCB[I], 1=1,...JN, be
given. The TCB entries relevant to virtual storage management are the following. The Boolean variable
RES indicates whether a task is permanently held in main storage due to a corresponding programmer’s
request The task’s segment resides in the block with the number PAGE on mass storage, and if it is loaded,
the number of the used page frame is stored in FRA. The latter variable contains the value -1 otherwise.
Furthermore, in any TCB there are three items of type clock: TCOND, TACT, and TCONT. The first of
them states the deadline in case the task is ready. The two others give the task’s time conditions relative to
the next - not yet buffered - activation and to the forthcoming continuation if the task is suspended. In
Table 4 the circumstances are detailed under which these three variables are updated.

Table 4. Updating of the Various Task Deadlines
Event Assignments

Initial state TCOND: =TACT: =TCONT: = <*>
Activation buffering buffer T+TR as TB[*]
Transfer to ready state TCOND:= first buffered TB[*]
Task termination TCOND:= first buffered TB[*] or <»
Annihilation of schedules TACT:=TCONT:= ~
Task suspension TCOND: = oo
Task continuation TCOND:=T+TR, TCONT:= «,
Setting up and fulfillment
of activation schedules:
- start of cyclic schedule TACT:= start time + TR
- prolongation of eye. sch. TACT:=T +interval+ TR
- exhaustion of eye. sch. TACT:= oo
- interrupt driven schedule TACT:=T + INT + delay + TR
Setting up and fulfillment
of continuation schedules:
- temporal schedule TCONT:= start time + TR
- interrupt driven schedule TCONT:=T + INT + delay + TR

In the given expressions T stands for the actual time and TR for the relative response time contained in the
corresponding activation or continuation statements, respectively. Finally, in the case of interrupt driven
schedules, INT stands for the average time interval between the interrupt occurrences, calculated as

- 26 -

[^(jnean time between occurrences o f i-th interrupt)-1]-1l
where the summation is extented over all interrupts mentioned in a schedule. Upon setting up such a
schedule, only 0.5*INT is to be entered into the corresponding expressions.

After these preparations we can now formulate the virtual storage management scheme as a pro
cedure.

proc([l:K] bool) VS ADMIN = ([1:K] bool FOC):
co The entries of the Boolean array FOC[l:K] indicate whether

a page frame is occupied and are initialised with false.
Declaration of auxiliary variables: co;

int IJ,L,R,S, [1:N] int FI, clock A,Z, [1:N] clock FZ;
L:=R:=S:=0; A:=INF; co Let INF be a very large constant co;
for I from 1 by 1 to N do
if TCB[I].RES then R:=R+1 else
if TCB[I].TCOND<A then A:=TCB[I].TCOND; L:=I fi;
Z:=min(TCB [I] ,TCOND,TCB [I] .TACT,TCB [I] .TCONT);
J:=S; S:=S+1;
while J>0 and Z<FZ[J] do
FI[J+1]:=FI[J]; FZ[J+1]:=FZ[J]; J:=J-1
od;
FI[J+1]:=I; FZ[J+1]:=Z
fi

od;
J:=min(S,K-R); S:=S+1; R:=l;
if L>0 and J<S then co The ready task with the next deadline is joined with the subset B. co;
I:= l;
while I<J and FI[I]*L do I:=I+1 od;
if I>J then FI[J]:=L fi

fi;
for I from 1 by 1 to J do
if TCB[FI[I]].FRA=-1 then
while R<K and FOC[R] do R:=R+1 od;
if R<K then FOC[R]:=true; TCB[FI[I]].FRA:=R

else S;=S-1;
while TCB[FI[S]].FRA=-1 do S:=S-1 od;
save(TCB[FI[S]]PRA,TCB[FI[S]].PAGE);
co Write task segment back to mass storage co;
TCB[FI[I]].FRA:=TCB[FI[S]].FRA;
TCB[FI[S]].FRA:=-1

fi;
load(TCB [FI[I]] .FRA,TCB[FI[I]] .PAGE);
co Load task segment from mass storage into page frame co
fi

od

Some features of high-level process control programming languages such as Pearl can be used to
provide directives for the storage management System data and shared objects with GLOBAL scope
should be placed together with the supervisor in the non-paged storage area. The task attribute RESIDENT
is to be translated into setting the variable RES of the corresponding TCB. If this attribute is available in a
language, the compiler must ensure that the number of simultaneously resident tasks will not exceed a cer
tain fraction of K . The MODULE concept in connection with permanent residency can be employed to
gather shared variables and procedures as well as heavily used small tasks in one page. The only feature of

- 27 -

the here proposed virtual storage administration scheme not supported by a construct in any available
high-level language is the indication of average occurrence intervals for interrupts. But this can easily be
achieved by augmenting the interrupt declaration syntax with the optional attribute INTERVAL, which was
introduced in section 2.2.

3.3. Implications of the Layer Structure of Real-Time Operating Systems
In this section we want to compare the features of the auxiliary processor oudined above with the

general structure of a process control computer operating system as described in [10]. The real-time typical
constituents of such a supervisor are interrupt handling, task management, communication, and synchroni
sation, as well as time administration, input/output routines, and an operator interface. One distinguishes
between the nucleus and the shell of a supervisor comprising operating system processes of the first and
second kind, respectively. The latter programs are handled in the same way as user tasks under control of
the task management, whereas the former are activated by interrupts.

The auxiliary processor introduced here will be dedicated to the execution of these processes of the
first kind. Hence, it will be the carrier of the system functions event, time, and task management, commun
ication, and synchronisation. In certain application areas it may be necessary to perform some user event
reactions with the same speed as processes of the first kind. These could then be implemented in the unit’s
secondary level in microprogrammed form. Since in real-time environments there is no intrinsic difference
between user and system processes of the second kind, the functions of the supervisor shell, viz. data
exchange with peripherals and file management, will be provided in the form of tasks or subroutines run
ning on the (a) general processor. Thus, with regard to [10], the approach proposed in this paper constitutes
a physical implementation of the layer model for real-time operating systems, and represents a clear -
because physical - separation between nucleus and shell of the program package implemented on a process
control computer.

This separation yields a number of improvements as against conventional processor structures. By
providing a special device for the handling of all events, unnecessary context-switchings can be avoided
and the normal program flow will only be interrupted when required by the scheduling algorithm.
Nevertheless, the event servicing tasks will be processed under observation of their due dates, but in a way
disturbing the currently active tasks as little as possible. Therefore, the tasks will mostly be executed in a
sequential manner, reducing the number of occasions when tasks are hindered to become running due to
the observation of deadlock prevention measures. Besides being reduced, the operating system overhead
becomes predictable, and an upper bound independent of the actual workload for the time required to react
upon events can be guaranteed. In general, the transfer of the functions of the nucleus to specialised
hardware will contribute to enhancing reliability and efficiency essential in real-time applications.

3.4. Outline of the Architecture
In the preceding chapters and sections, with an integral view of real-time computers’ application

profiles in mind, it was investigated how the underlying hardware had to be structured. Single processor
systems cooperating with devices specialised in carrying through operating system nuclei turned out to be
the most advantageous approach. Hence, the concept represents an "orthogonal extension" [15] of the clas
sical von Neumann-structure predominantly employed for process control applications. A better term, how
ever, for characterising the proposed alterations is "outboard migration" of operating system support func
tions, to be carried out reliably, efficiently, and inconspicuously, into specialised hardware and firmware
set-ups. Such a migration of functions is feasible, as was shown in [52], since it leaves invariant the execu
tion sequence of a task set imposed by a given synchronisation scheme.

It is the purpose of this section to outline the structure and the functions of such an auxiliary proces
sor. After compiling the services to be provided by the unit, they are assigned to three different reaction
levels. These vary with regard to implementation, speed, and complexity. The working methods of the
three functional levels are subsequently sketched. The detailed description of the unit’s hardware modules

- 28 -

and of the algorithms employed, however, will be the topic of the following chapter.
The asymmetric multiprocessor architecture, which is to be introduced here, can either be employed

as a stand-alone device or as a node in a distributed system. It consists of one auxiliary processor each and
one or more general task processors. It is assumed that the latter cannot be interchanged, because process
control computers are usually connected to a specific part of a technical process. Hence, their functions
depend on these subprocesses and cannot be moved to another computer. From the viewpoint of a task
scheduling algorithm, the different general processors can then be treated as a set of unrelated uniproces
sors. The input/output devices of the system are connected to the task processors, whereas all interrupt lines
are wired to the auxiliary processor.

Real-time data processing systems are expected to recognise and to react to occurring events as soon
as possible, that means instantaneously in the ideal case. With presently available hardware, this can only
be accomplished by interrupting the running task, determining the source of the event, and switching to a
response program. Note that the running task is pre-empted, although it is most likely independent on the
just arriving interrupt. Furthermore, another task will not necessarily be executed before the current one,
after the interrupt has been identified and acknowledged. Owing to this inherent independence, the possibil
ity to apply parallel processing is given here. In order to preserve data integrity, in the conventional archi
tecture tasks may prohibit their interruptibility during the execution of critical regions. Hence, there is a
considerable delay between the occurrence of an event and its recognition, and an upper bound for it can
not be guaranteed. This situation is further impaired, when several events occur at (almost) the same time,
resulting in the mutual interruption of their service tasks and postponement of the low priority reactions.

Table 5. Requirements and Function Assignment for an Auxiliary Processor
1. Hardware level
- Accurate real-time management based on a high resolution clock
- Exact timing of operations as an option
- Separate programmable interrupt generator for software simulation purposes
- Event representation by storage element, latch for time of occurrence,

and counter of lost arrivals
- Synchroniser representation
- Shared variable representation__
2. Level of primary reaction
- Recognition of events, i.e. of interrupts, signals, time events,

status transfers of synchronisers, and value changes of shared variables
- Commencement of secondary reactions
- Recording of events for error tracking purposes
- Management of time schedules and critical moments________
3. Level of secondary reaction
- Response time driven processor scheduling with overload handling
- Task oriented virtual storage management
- Execution of (secondary) event reactions, especially of tasking operations
- Synchroniser management
- Shared variable management
- Acceptance of requests
- Initiation of processor activities_______________________________________

According to the above argument, an auxiliary processor should fulfill the requirements of providing
a separate, independently working event recognition mechanism capable of commencing a primary reac
tion to an event within a predefined, guaranteed short time frame. A means for achieving this is to

- 29 -

structure the features of an auxiliary processor, to be described in the sequel, into three levels. The func
tions the single levels are to provide are compiled in Table 5. In general, it can be said that the unit will
execute the nucleus of an operating system developed according to the special needs of the real-time pro
gramming language Pearl.

The unit’s basic level comprises various specific hardware elements required to fulfill the demands
for accuracy, predictability, and speed. All time dependent features rely on an accurate real-time clock. In
order to keep the quantisation error and the number of time events to be processed as low as possible, a sig
nal will only be raised when a moment is reached for which a certain action is scheduled. To generate this
signal, a register is compared with the actual state of the clock. Additional hardware connected to the clock
will facilitate the accurate timing of certain operations and the continuous updating of running tasks’ accu
mulated execution times as well as the residual time spans required to reach their final completion. In the
software verification phase external entities entering a program execution need to be simulated. Beside test
data, that can be provided on input devices, interrupts have to be generated. By charging this task and other
testing features to a separate unit, which can be programmed to produce various external conditions includ
ing interrupt patterns and to perform surveillance functions, a simulation process will deliver exact data on
the system’s time requirements. Since such a device is only needed temporarily, it could be designed as a
removable hardware extension. Likewise for verification purposes, but also for the tracking of malfunctions
in routine operation, there will be an elaborate hardware module for each event. This comprises a single bit
latch for the signal itself and another one for the time of its occurrence and, a counter to record the number
of signal arrivals before it is serviced. For the implementation of synchronisers, i.e. of semaphores and
bolts, and of variables shared amongst several tasks, the unit will provide dedicated storage space. Con
nected to each such memory location is a corresponding event module, since the release of synchronisers
and the value change of shared variables are also events whose occurrence reactions are scheduled.

The purpose of the auxiliary processor’s second level is the servicing of the various events in form of
a primary reaction. From the above discussion it already becomes evident what the notion event comprises:
interrupts from external sources and from the clock comparator, signals, and the synchroniser and shared
variable state transfers. In order to guarantee an upper bound for the reaction time, the recognition of these
events is carried through by continuous cyclic interrogation of the corresponding storage elements. This
method is similar to the one employed in Programmable Logic Control (PLC) devices, and was already
used in the method of synchronous programming [33,37] for the timely recognition of external events. The
cyclic interrogation process has to be carried through with a high frequency, if the recognition time is to be
kept short This implies that the complexity of the functions to be performed by the primary reaction level
must be kept low. In the course of the polling process, the arrival time latches and the counters are read out
and these data are saved for future reference. Then, the whole module will be reset. The occurrence of a
time signal requires more service than that of other events. So, time schedules need to be handled by calcu
lating the next critical moments and by checking if they have been exhausted. After determining the
minimum of all these critical points in time, it will be loaded into the clock’s comparison register. Upon
completion of each interrogation cycle, information is passed over to the unit’s level designed for secon
dary reaction. These data specify the set of schedules actually being fulfilled.

It is obvious from the above that the primary reaction level does not perform all event servicing func
tions. Instead, only fast event recognition and closely connected operations are carried out here. The rea
son, why the scheduled event reactions are not immediately initiated, is that these tasks still need to be sub
mitted to a feasible processor assignment scheme. Thus, the complexity requirements for the processor
working on this level are quite moderate. Since it also does not need to be freely programmable, it can be
realised as a rather simple, fully microprogrammed device guaranteeing a high speed of operation. The
separation of the operating system kernel functions into a set of rather simple ones, requiring fast reaction,
and another set, whose elements have higher complexity, corresponds to the layer structure of a nucleus as
discussed in [10]. Therefore, these functions are assigned to a fast, but simple primary reaction device and
a more complex secondary reaction processor.

It has already been stated that fulfilled schedules are notified to the auxiliary processor’s highest
level. Here those tasks and other operations associated with them will be determined. Subsequently, the
operating system’s internal event reactions, especially tasking operations, will be executed. In the course of
task activations and continuations, the response time driven scheduling algorithm will be called to

-3 0 -

determine if the new free task set can be processed, meeting all given deadlines, and to also define the
sequence of processor assignments. In case an overload situation is recognised, correspondingly marked
tasks will be terminated and other ones coping with this event will be activated. In connection with the
processor scheduling, a task oriented virtual storage administration scheme as described above is carried
through. Furthermore, the secondary level manages synchronisers and shared variables. So, it concurs with
synchronisation requests when they cannot be granted immediately. Then resumption schedules for the
suspended tasks need to be handled. When a new value has been written into a shared variable, the unit
checks whether it now fulfills a given relation to a prescribed one, in which case scheduled operations are
initiated. Finally, on the secondary level all communications with the remaining system elements of higher
complexity than event recognition are processed. Parameters describing requests are accepted and inserted
into the corresponding internal data structures. As a result of executing requested operations, processor
activities may be terminated and others activated.

There are many possibilities to realise the data exchange between the general processor(s) and the
auxiliary processor as well as within the latter. In order to prevent excessive overhead connected with
writer/reader synchronisations, it appears most feasible to send operation parameters via first-in-first-out
memories from the general processor(s) and the primary level to the secondary level. The processing of the
data read out of the second one has the precedence to guarantee the system’s reaction time. For the storage
of system and internal data, e.g. task control blocks, and shared variables the unit provides a common
memory area directly accessible by the different system components. The shared objects’ integrity is pro
tected by associated synchronisers located in the unit, and the access rights are being surveyed by an
appropriate hardware mechanism. In case the device works in a single processor environment, the common
storage could be implemented as a two-port memory or as a certain block of main storage dedicated to
communication purposes. Then the auxiliary processor itself had to be realised with an DMA interface.
When in cooperation with a multiprocessor system, which may also be locally distributed, it should best be
integrated into the message switching unit. Generally, the leading idea for selecting a certain means of data
exchange with the auxiliary processor must be to achieve high speed combined with simplicity in order not
to produce new bottle-necks. The diagram given in Figure 4 specifies the general set-up of the here pro
posed architecture and all connecting lines used to transfer data, control information, and signals.

3.5. Comparison with other Architectures
Now, for comparison purposes, we shall consider some different approaches, which were found in

the literature and which are aiming into similar directions as the here proposed design, viz. Honeywell
series 60 level 64 computer, IBM System /38 and SWARD, Bellmac-32, Mesa, Intel iAPX-432 and iAPX-
86/88, Control Data Corporation 6000, 7600, and Cyber series, Cray-1, Texas Instruments ASC, Symbol
processor, Bell Laboratories’ Signaling and Scheduling Processor, and the supplementary processor for
operating system functions described in [51,53]. These examples can be subdivided into two groups, either
providing operating system support as architectural features or even possessing separate processors to
accommodate the operating system or essential parts thereof. In these structures similar objectives have
been realised. It is investigated to what extent they match the here proposed design.

An early representative of the former group is Honeywell’s series 60 level 64 computer [8]. Here the
machine supports the notion of processes with special instructions and by performing the context-switching
operation when the processor is assigned to a different process. Furthermore, a semaphore mechanism is
available for synchronisation purposes. Specialised on data base applications, the IBM System /38 [49]
manages tasks according to priorities by corresponding hardware features and microcode. Communication
and synchronisation between tasks is accomplished by a queuing structure.

Two more recent developments, the Bellmac-32 [11] and the Mesa [28] processors, also exhibit pro
cess oriented architectures. To organise the synchronisation of concurrent processes and of shared
resources,}! monitors and condition variables are implemented in the latter. The processor is dispatched to
the ready processes according to priorities. The instruction set contains elements for moving the process
state blocks between various queues maintained in the system and associated with monitors, condition vari
ables, and the ready state. An interrupt mechanism and a process switching support is also found in the

-3 1 -

Bellmac-32. Furthermore, this approach provides hardware support for task rendezvous and assists excep
tion handling. The scheduling, however, is carried through by the software level of the operating system.

The developments SWARD of IBM and iAPX-432 [39] of Intel are two further examples for sup
porting operating system features architecturally. For the former these are process management, synchroni
sation, communication, storage administration, and dispatching. Process interaction in the form of the Ada
language’s rendezvous is realised by port objects. In general, however, the architecture is neither oriented
towards a certain language nor to real-time applications as is obvious by the lack of interrupt facilities. The
concept of the iAPX-432 shows many resemblances with the one of SWARD, but strongly supports Ada
language constructs such as expecting one of several messages by a process. Furthermore, this design
integrates several real-time features. So objects can be locked and there are indivisible storage access
operations. Communication is accomplished by send/receive queues managed according to the first-in-
first-out, priority, or deadline policies. The low-level process scheduling is performed by hardware and
firmware. Here the deadline algorithm can be employed, too. The timing facility relying on a hardware
support for delays is not very accurate. Interrupts are indirectly handled using the message mechanism.

As final representatives of this group we consider Intel’s iAPX-86/88 systems [23], where the func
tions of a real-time operating system nucleus are implemented in hardware and in a separate Operating
System Firmware component, that also contains the interrupt logic and simple timing facilities. For syn
chronisation purposes the mailbox and semaphore concepts are realised. The system supports multitasking
applications and schedules the task processing according to priorities. The architecture of the two micro
computers was developed aiming towards embedded systems.

We now turn to the second group of approaches where operating system functions have been
migrated to separate processors. An early example for this is Control Data Corporation’s 6000 series of
computer systems [49]. A very fast central processor unit is supported by ten independent peripheral pro
cessor units (PPU’s) mainly dedicated to perform I/O operations. One PPU, however, accommodates the
operating system and thus controls the entire system. The leading idea for this approach was the optimal
utilisation of the CPU for arithmetic purposes in a multiprogramming batch environment The succeeding
models of the 7600 and Cyber series and descendants like the Cray-1 or Texas Instruments’ ASC have
comparable architectures [49].

Another approach providing no support for real-time facilities is the Symbol computer [39] being
controlled by a system supervisor. This is an interrupt driven master processor performing work queue
administration, paging, and control table management

In [4] a transaction oriented multi-microprocessor architecture with hardware support for communi
cation and scheduling to be applied as a network node is described. Here the operating system functions
scheduling, synchronisation, and interprocess communication are comprised in a separate unit the Signal
ing and Scheduling Processor (SSP). Furthermore, the SSP handles all internal and external communica
tions, the dispatching, and the resource assignment All signaling is carried through using hardware queues.
Larger data sets, however, are exchanged via a shared memory. The architecture enhances system perfor
mance by allowing its execution units to work without interference.

The approach, which appears to be the closest match with the here proposed ideas, is Tempelmeier’s
supplementary processor for operating system functions [51,53]. It is intended to increase the performance
of real-time computers by migrating most functions of the operating system kernel to a separate processor.
The immediate interrupt recognition and reaction, however, is still located in the general processor, which
mainly performs the user tasks and operating system processes of second kind. It was shown [52,54], that
the architecture yields a considerable improvement of task response times and interrupt reaction times. This
was achieved by providing parallel processors for user tasks and operating system functions, and by almost
reducing to zero the time intervals for which external interrupts need to be disabled for purposes of ensur
ing the integrity of operating system data structures. The architecture is also an implementation of the
layer model for real-time operating systems [10], and achieves a simple operating system structure by the
clear separation from the user tasks.

For completeness purposes, we shall finally consider some other examples of outboard migration
found in real-time systems where the guide-line has been the support of special application oriented
features, whereas the operating system remained in a classical von Neumann CPU. So, high computational

-3 2 -

performance shall be achieved by so-called real-time supersystems. In order to cope with the arithmetic
requirements of certain application areas such as signal and image processing in the framework of embed
ded and satellite or missile borne systems, respectively, distributed architectures have been considered
[7,50]. These systems are tailored to perform their evaluations within reasonable time-limits under the con
ditions imposed by the locations of deployment. Hence, the architecture of general purpose process control
computers, which support the observation of strict deadlines, is not the scope of this development.

In a similar manner, special devices, cp. e.g. [42], have been built for carrying through certain time-
critical algorithms. By implementing them in firmware the desired speed increases were achieved. These
units are attached as front-end processors to conventional mini- or microcomputers, being too slow to cope
with the corresponding functions themselves.

The above considerations reveal that various approaches have already been made to support operat
ing system concepts by architectural measures. As far as real-time features are concerned, it can be con
cluded that only some of those have been migrated which were known from previous operating systems.
No attempt, however, has been made to utilise hardware and firmware facilities for the implementation of
typical hard real-time support features that cannot otherwise be realised. Although architectures were
developed to meet some language constructs, especially of Ada, there was no integral effort yet to built a
system according to the special requirements of a process control language suited for the application
engineer and of a corresponding operating system. That is the motivation for the attempt aiming into this
direction which is to be worked out in detail in the remainder of this paper.

-3 3 -

4. Design of an Auxiliary Processor
In the previous chapter, the concept of an auxiliary processor was described whose function it is to

accommodate the kernel, i.e. the time-critical part, of a real-time operating system especially tailored for
the real-time programming language Pearl as extended in section 2.2. Such a unit shall cooperate as sys
tem controller with one or more conventional processors in process control computers employed in hard
real-time environments. The device is composed of three levels, which perform the functions as assigned
in Table 5. Partly, these functions are called from the application programs and thus also constitute the
operating system processor’s user interface. The subject of this chapter is to describe in detail the
hardware modules of the proposed auxiliary processor and the algorithms executed in two separate subpro
cessors as primary and secondary event reactions.

4.1. Description of the Hardware Composition
The single hardware components of the auxiliary processor are all grouped around a common inter

nal dataway, the bus. The access to it and further on to the various storage elements is synchronised by a
bus controller. The latter coordinates the bus activities of the primary and secondary reaction processors as
well as of the external general processing unit(s) and a peripheral for storing protocol data, and surveys the
distinct access rights. Since a bus controller is a widely used hardware component, it does not require
further discussion here.

In order to prevent excessive overhead connected with writer/reader synchronisations, additional
data communication channels are provided for the transmission of operation parameters from the primary
level and the attached general processors) to the secondary level in the form of first-in-first-out memories.

In the sequel we shall now specify the different functional units arranged along the dataway.

4.1.1. Time Dependent Elements
All time related features, as shown in Figure 5, are based on a quartz controlled clock with a separate

current source to maintain a correct real-time even if the system power supply breaks down. The frequency
generator provides three different clock pulse trains /, / , and / ’, the first of which normally triggers the
clock. Tliis is realised in form of a divided, individually addressable counter yielding day, hour, minute,
second, and an appropriate subdivision thereof, selected to keep the quantisation error negligibly small.
Opposite to the counter stands a correspondingly structured register. The outputs of both units are con
nected to a comparator generating a time signal upon equality. It is fed into a storage module that will be
detailed later in the context of recognition devices for events. The algorithms performed as reaction to this
signal are then the subject of the next section.

The purpose of a second register/comparator combination is to produce continuation signals for
transmission to the external processor(s), where they start the execution of operations at precisely given
points in time. The”continuation signal originates from gating the comparator output with the one of an 1-
bit storage location that can be set and cleared via the bus. The comparator pulse automatically loads the
register with a bit pattern equivalent to infinity and also resets the enable flip-flop if propagating through
the gate. Before a processor requests the exact timing of an operation, it performs all necessary prepara
tions and then transfers the corresponding task into a wait state by disabling its system clock. This takes
place not more than eps time units before the critical moment, whose time is loaded into the comparator
register together with setting the masking flip-flop associated with the pertaining processor. As can be seen
from Figure 6, the continuation signal finally resumes the task execution by enabling the clock frequency.
If eps is an installation parameter, there will never be more than one pending operation scheduled for a pre
cise time. The Constance of eps also avoids the necessity of mutual synchronisations in case a multiproces
sor is being controlled.

In order to obtain exact results on program performance and behaviour, the software verification pro
cess is architecturally supported by a testing module. Since this is only temporarily needed during the life-

-3 4 -

time of a real-time computer system, it can have the form of a plug-in module. The device consists of an
interrupt generator and of a further clock comparator/register combination. For each interrupt source to be
simulated, the unit handles a time schedule. Thus, the simulation results will not be falsified by the addi
tional workload that would be imposed on the auxiliary processor if it had to take care of these schedules,
too. Upon the occurrence of the comparator signal, the unit triggers the associated interrupts via the inter
nal dataway. Then the register is loaded with the next critical moment. The interrupt generator’s working
method does not need to be further described here, because it is quite similar to the primary reaction to time
events, that will be discussed later. However, two functions modifying the system clock during the test
phase must be mentioned. If required by the simulation program, the clock can be stopped by disabling the
frequency generator’s three output lines. Furthermore, the unit controls the multiplexer, feeding either the
frequency / o r / into the clock. Normally,/is put through. But, if no task is being executed during a simu
lation run, the clock may be triggered by the considerably higher frequency/, in order to reduce the
corresponding time requirements. The occurrence of any of the three comparator signals will automatically
restore the original multiplexer setting. The interrupt generation unit detects an idle state of the external
processor(s) by questioning the processor state flip-flop(s). Their contents gate the frequency/counting the
running tasks’ accumulated execution times up and the residual times down, which are required before the
tasks will terminate. These counters are necessary as hardware support for the implementation of feasible
scheduling algorithms, viz. the deadline driven one for single processor systems and the one first stated in
[27] and modified in [25] for multiprocessors. As many flip-flop/counter combinations must be provided as
there are processors in the system, since this is the maximum number of running tasks.

4.1.2. Event Recognition Modules
In the course of this hardware definition, we distinguish between four kinds of events for which

recognition modules need to be provided:
- the time signal,
- external interrupts,
- status transfers of synchronisers, and
- the assumption of certain relations of shared variables to given values.

The general structure of such a module is displayed in Figure 7.
A signal generated by one of the different sources, whose internal composition will be discussed

later, sets the event storage flip-flop and triggers the counter of event occurrences. Furthermore, the actual
time is latched when the output of the former turns high. Before flip-flop and counter will have been ser
viced and cleared, subsequent incoming signals will only increase the value held in the counter. Its purpose
is to also recognise those signals arriving so closely after each other that they cannot be serviced. This
feature will mainly be used in the verification phase of an application for detecting performance bottle
necks.

The source of the time signal is the first comparator of a register with the real-time clock as shown in
Figure 5. Hence, its output is simply connected with a storage element and a counter.

Interrupts may be raised by external devices or internally for simulation purposes, e.g. by the Pearl
statement TRIGGER. Since the latter can be accomplished via the internal dataway, an or-composition of
this with an externally connected signal line serves as signal source in case of interrupts.

Accessible to all system components, the auxiliary processor provides a common storage area for
shared and for synchronisation objects. The synchroniser type semaphore can be reduced to the type bolt
and, therefore, only one implementation needs to be considered. A bolt is represented as a pair of integer
variables, the first of which expresses the state of the object. The second one gives the bolt’s enter range, or
the maximum number of requests that can be granted at any one time in case of a semaphore representa
tion, respectively. According to the hardware implementation of a bolt as shown in Figure 8, two signals
are generated. They are raised when the status assumes the respective values 0 and enter range-1. Thus,
two event recognition modules are associated with each synchroniser. For the fast execution of locking
operations the status signals are also accessible as a bit vector.

-3 5 -

For the description of the signal generation facility connected to shared variables we refer to Figure
9. The addresses of those shared objects are stored into the address variables for which the assumption of
certain states is being awaited. When in the course of a writing access to the common storage area the data
address is available on the bus, what can be detected by observing the Read/Write and Address/Data bus
lines, respectively, the comparators match it with the contents of the address registers. In case of equality,
an event is signaled to the associated recognition module. All further operations will be performed on the
primary reaction level.

4.2. Primary Event Reaction
Before we can commence discussing the algorithms running in the primary reaction processor han

dling the various kinds of events, the time management requires some attention, since it performs a wider
and more specific range of operations. We begin with describing a general form of time schedules imply
ing a considerable simplification, before turning to the data structures and the procedures, which will be
formulated in the process control language Pearl.

4.2.1. Representation of Time Schedules
Since the previously introduced hardware will allow a precise and reliable time management, the dis

tinction between the Pearl language elements ALL and EVERY and between UNTIL and DURING may be
dropped. Hence, the various forms of time schedules can be converted to a common one reading as

AT {clock-expression I [interrupt-expression]+duration-expressionl}
EVERY duration-expression2 DURING duration-expression3

where [...] stands for the point in time when the specified interrupt occurs and the duration-expressions
yield non-negative values. This language construct is also representable by a tripel

T(n)=(t(n),dt,rt(n)), n>0, with
t(n+1):=t(n)+dt, rt(n+ l):=rt(n)-dt, n>0,
t(0)=clock-expression I [interrupt-expression]+duration-expressionl
dt=duration-expression2, and
rt(0)=duration-expression3.

Upon reaching the time t=t(n), n>l, the two calculations in the above equation will be carried out in paral
lel. The schedule is worked off if rt(n+l)<0 holds. Otherwise, t(n+l) will be handled as a future critical
moment.

4 2 2 . Algorithms and Data Structures of the Time Management
Let n>0 be a configuration parameter. The just introduced time schedule tripels are stored in the 1-

dimensional data structure T={(t(i),dt(i)/t(i)) I i=0,...,n}. We lay down that dt(i)=0 shall mean that the
corresponding T(i) contains no valid schedule. Then, the set of critical moments for which certain opera
tions are scheduled is given in unordered form by (t(i) I dt(i)=0 and i=0,...,n}. The stati of the elements of
the four 1-bit-arrays p, q, g, and e of length n+1 signify:
p(i)= L, T(i) will be fulfilled with the next time signal and t(i) is already the next but one critical moment

of T(i),
0, otherwise

q(i)= L, T(i) will be fulfilled with the next but one time signal,
0, otherwise

-3 6 -

g(i)= L, T(i) is associated with an operation to be timed precisely,
0, otherwise

and
e(i)= L, T(i) is exhausted,

0, otherwise.
Finally, let zkl and zk2 be the next and the next but one, respectively, critical points in time of all
schedules. The value of the variable zkl is for a time t<zkl equal to the one held in vr, the clock’s first
comparator register.

Upon reaching the time zkl, i.e. with recognising the time signal, the following procedure will be
performed. It first updates the comparison register of the clock. By saving p as vector r, the information is
provided which the event processing algorithm needs to initiate those operations being associated with the
schedules now fulfilled. The exhausted ones of the latter are marked. Then, the schedules are evaluated
that will be fulfilled at the next critical moment, to yield new next but one points of time. Eventually, the
actual content of the vector q and the minimum of all valid t(i), i=0,...,n, are determined, in order to be able
to redefine vr immediately after the occurrence of the next time signal. This proceeding minimises the
delay between the comparator signal and the reloading of the corresponding register.

update: PROCEDURE;
vr:=zkl:=zk2; r:=p; e:=(n+l)’0’B;
FOR i FROM 0 BY 1 TO n REPEAT;
IF p(i) AND rt(i) LT 0 THEN
dt(i):=0; e(i):=TB;

FIN;
END;
p:=q;
FOR i FROM 0 BY 1 TO n REPEAT;
IF p(i) THEN
t(i):=t(i)+dt(i); rt(i):=rt(i)-dt(i);

FIN;
END;
CALL minimum;
END;

with
minimum: PROCEDURE;

zk2:=infinity; q:=(n+l)’0’B;
FOR i FROM 0 BY 1 TO n REPEAT;
IF rt(i) GE 0 AND dt(i) GT 0 THEN
IF t(i) LE zk2 THEN
IF t(i) LT zk2 THEN
zk2:=t(i); q:=(n+l)’0’B;

FIN;
q (i> ’l ’B;

FIN;
FIN;
END;
END;

where "infinity" stands for an appropriately selected large constant and "(repeat) bit-literal" serves as
abbreviation for an explicit loop when setting a bit array. The complexity of the above procedures is of the
order 0(n+l). It is possible to speed them up by performing the operations of the loops in "update" in
parallel on n+1 array components. In order that the routines can work properly, several variables need to be
initialised as follows:

- 37-

init: PROCEDURE;
FOR i FROM 0 BY 1 TO n REPEAT;
dt(i):=0; p(i):=q(i):=g(i):=e(i):=’0’B;

END;
vr:=zkl :=zk2:=infinity;
END;

For deleting a time schedule T(i), 0<i<n, only three assignments are necessary:
delete: PROCEDURES FIXED);

dt(i):=0; p(i):=q(i):=’0’B;
END;

The price for this extremely simple solution of complexity 0(1) is that possibly time signals may be gen
erated, although no element of p or q, respectively, is set

Before the secondary reaction level requests the primary one to perform the inverse operation of
inserting a new schedule S=(ts,dts,rts,ex) into T, it has checked the validity of the transmitted parameters
and has determined the index i of an unoccupied array element where the components of S will be stored.
Then, according to the value of ts, the variables vr, zkl, zk2, p, and q, respectively, will if necessary be
updated.

insert: PROCEDURES CLOCK, (dts/ts) DURATION, ex BIT, in FIXED);
t(in):=ts; dt(in):=dts; rt(in):=rts; g(in):=ex;
IF ts LT zkl
THEN vn=zkl:=ts;

FOR i FROM 0 BY 1 TO n REPEAT;
IF p(i) THEN
t(i):=t(i)-dt(i);rt(i):=rt(i)+dt(i);

FIN;
END;
p:=(n+l)’0’B; p(in):=’l ’B;
t(in):=ts+dts; rt(in):=rts-dts;
CALL minimum;

ELSE
IF ts EQ zkl
THEN p(i):=’l ’B; t(i):=ts+dts; rt(i):=rts-dts;

CALL minimum;
ELSE
IF ts LT zk2
THEN zk2:=ts; q:=(n+l)’0’B; q(in):=’l ’B;
ELSE
IF ts EQ zk2 THEN q(in):=’rB ; FIN;

FIN;
FIN;

FIN;
END;

In case the loop in the above instruction sequence can be converted to parallel operations, e.g. for deter
mining which components of p have the value ’l ’B, the insert routine’s complexity can be reduced from
0(n+l) to 0(1). Since the THEN clauses are partly identical, there are some possibilities for code compres
sion desirable for a microprogrammed implementation. When inserting or deleting schedules the actual
time and the pertaining parameters have finally to be written into the protocol file.

- 3 8 -

4.2.3. Algorithms and Data Structures of the Event Management
As already previously pointed out, the set of events to which the unit must react is composed of

- the time signal z,
- the external interrupts u(i), i=l,...,card(U), under observation of associated masking bits m(i),
- synchronisation events s(i), i=l,...,card(S), and
- the assumption of certain relations of shared variables to given values v(i), i=l,...,card(V),
i.e. E={z}uUuSuV with m=card(E)= 1 +card(U)+card(S)+card(V). At any point in time there is a set of
scheduled activities A={a(i) I i=0,l,...}. Since a time schedule may exist for each ae A, the maximum possi
ble number of them to be handled equals the dimension n+1 of T described in the last section. The elements
of A may be
- tasking and synchronisation operations in the sense of Pearl,
- the start of program units reacting to ON-exceptions,
- the start of the alternatives in EXPECT-statements,
- the start of routines handling the exceptions of temporal surveillance features,
- the call of the processor scheduling strategy, and
- the start of routines when shared variables have assumed given value relations.

Between the two sets E and A there exists a relation
RcExA: eRa iff the activity a must be executed upon the occurrence of the event e, ee E and ae A.
In the case of e=z only those elements of Rc{(z,a(i) I i=0,...,n} may be considered for which currently
r(i)=’l ’B holds, i=0,...,n. For use in the event reaction algorithm to be stated in the sequel, the relation R
will be implemented as a two-dimensional array "rel" of bits. This primary reaction is activated by each of
the clock pulses arriving with the frequency/’, being an appropriate part of the basic system clock/.
Hence, the recognition time of an event does not exceed 1 //’. In a loop polling all m event recognition
modules it is detected whether and which events have occurred. First, the corresponding time latches and
counters are read out and protocoled together with the event identification. Then, the event storage flip-
flops and the occurrence counters will be reset:

protocol: PROCEDURE^ FIXED);
WRITE i, tl(i), cr(i) TO protocol buffer;
ff(i):=’0’B; cr(i):=0;
END;

For the time signal the procedure "update" will subsequently be executed. It provides the vectors r and e
stating which schedules are presendy being fulfilled together with the exhausted ones. After recording
them, the componentwise logical conjugation of the array r with the first row of the relation R will be car
ried out to determine those time dependent activities that must now be performed. With the result the vec
tor g is masked to mark those activities requiring precise timing. Interrupts are only be considered if an
associated masking bit is set, which will also be protocoled. The masking data do not require special flip-
flops for storage. Instead, they can be held in the unit’s working storage area. The primary interrupt han
dling concludes with the Boolean disjunction of the array r with the row of R associated with the event just
considered. Thus, those activities are determined that must be subsequendy carried out by the secondary
reaction processor. Synchronisation and shared variable events are treated in an analogous manner. In the
latter case, however, it will be immediately examined whether the new value, that was just stored into a
shared variable, fulfills a given relation to a prescribed quantity. This will be accomplished by calling the
procedure "compare". Its parameters are an index and the arrays ad, rl, and v representing the shared vari
ables’ addresses, the arithmetic or logical relations, and the comparison values, respectively. In case the
Boolean procedure detects that the shared variable in question has assumed the expected value relationship,
a message is written into the protocol file and r is appropriately updated. Linked to the first shared variable
are the insertion and deletion operations of time schedules, that are handled as described in the next sec
tion. After completion of a polling cycle, the vector r identifying the elements of A to be performed is
written together with the actual time to the secondary level processor. The task "primary reaction" has a
complexity of the order 0(n+m+l).

- 3 9 -

W H E N /’ ACTIVATE primary reaction;
with
primary reaction: TASK;

r:=(n+l)’0’B; t=clock;
IF ff(l)
THEN CALL protocol(l); CALL update;

WRITE r,e TO protocol buffer;
r:=r AND rel(l,0:n); gm:=g AND r;

FIN;
FOR i FROM 2 BY 1 TO UPB u +1 REPEAT;
IF ff(i)
THEN CALL protocol(i);

IF mk(i)
THEN WRITE mk(i) TO protocol buffer,

r:=r OR rel(i,0:n);
FIN;

FIN;
END;
FOR i FROM UPB u +2 BY 1 TO UPB u +UPB s +1 REPEAT;
IF ff(i)
THEN CALL protocol(i); r:=r OR rel(i,0:n);

FIN;
END;
i:=UPB u +UPB s +2;
IF ff(i)
THEN CALL protocol(i);

IF CONT ad(l) EQ 1
THEN CALL insert(ts,dts,rts,ex,in);

WRITE ts,dts/ts,ex,in TO protocol buffer;
ELSE
IF in GE 0 THEN
CALL delete(in); WRITE in TO protocol buffer;

ELSE
FOR in FROM 0 BY 1 TO n REPEAT;
IF dv(in) THEN
CALL delete(in); WRITE in TO protocol buffer,

FIN;
END;

FIN;
FIN;
CONT ad(l):=0;

FIN;
FOR i FROM UPB u +UPB s +3 B Y 1 TO
UPB u +UPB s +UPB v +1 REPEAT;
IF ff(i)
THEN CALL protocol(i); k:=i-UPB u -UPB s -2;

IF compare(k,ad,rl,v)
THEN WRITE ad(k),v(k) TO protocol buffer,

r:=r OR rel(i,0:n);
FIN;

FIN;
END;

-4 0 -

WRITE t,r,e,gm TO secondary level;
/* Push data into input fifo of the secondary level processor. */
END;

and
compare: PROCEDURES FIXED, (ad,rl,v) () FIXED IDENTICAL) RETURNS (BIT);

CASE rl(k)
ALT b:=CONT ad(k) EQ v(k);
ALT b:=CONT ad(k) NE v(k); ...
/* and other appropriate comparisons */...
OUT b:=’0’b;

FIN;
RETURNS(b);
END;

4.2.4. Implementation of Further Features
As a means of internal event communication Pearl provides objects of type SIGNAL. In the above

described hardware set-up no special support for them has been assigned, because signals can be easily
implemented employing the shared variable feature. Thus, a signal will be associated with a shared object
of type BIT. Raising or INDUC(E)ing it then reduces to the operation of setting the variable, and the signal
reaction will be scheduled as an activity to be commenced when the corresponding variable assumes the
value ’l ’B.

As the program given in the last section shows, the insertion and deletion of time schedules into the
internal data structure is also linked to a shared variable assuming certain values. When the latter has been
set by the secondary level processor to 1 or 2 for insertion or deletion, respectively, during the next event
polling cycle the corresponding parameters are fetched from locations in the common memory, the
requested operation is performed, possibly even several times in case of a delete, and the shared variable is
finally reset to zero.

For certain applications it may be necessary to know in the user program which particular events
gave rise to an activity. Information on the just occurred events can be provided by copying the stati of the
flip-flops ff into a bit vector during execution of the task "primary reaction" and by writing it to the secon
dary level, too.

The verification of the reliable software performance, especially with regard to the temporal require
ments, is an aspect of fundamental importance for real-time data processing. That is the reason why all data
necessary to reconstruct the occurrence of events and the connected operations are protocoled by the above
stated procedures. The thus recorded information is essential during the implementation and acceptance
phase of an application, but also valuable for analysing later software malfunctions. Physically the proto
col information is written into a buffer being part of the common memory. As already mentioned, there is a
separate device independently controlling the formatting into readable form and the data transmission to a
mass storage medium, when the buffer is filled to a certain extend. Further duties of this device could be
selecting only a specified subset of all protocol data, when they are not entirely needed any more.

43 . Secondary Event Reaction
Proceeding from the requirements of the high-level language Pearl, first the individual functions of

the secondary reaction level processor will be derived. Then, its main control programs for accepting
operation parameters and initiating the requested services will be given. After describing the single entries
of the task control blocks managed by the unit, its various functions will be discussed in detail and stated in
form of Pearl routines. Their formulation, however, will involve only low-level features suggesting a

-4 1 -

microprogrammed implementation.

J
4.3.1. Compilation of Functions to be Performed

In Pearl, as well as in other real-time programming languages, concurrent processing is realised by
the task concept. For the operating system nucleus, and hence for the corresponding auxiliary processor,
this implies that the following functions must be provided:
- initialisation of a control block for each task upon elaboration of its declaration,
- scheduling and execution of the tasking operations ACTIVATE, TERMINATE,
normal termination of a task, PREVENT, SUSPEND, CONTINUE, and RESUME,

- buffering of task activations,
- scheduling and execution of task resumptions in connection with
synchronisation operations

and EXPECT statements,
- prevention of EXPECT schedules, and finally
- scheduling and initiation of ON reactions.
Since there will generally be more than one ready task, the processor dispatching must be organised. To
this end, the feasible deadline driven scheduling algorithm is called in the course of the above mentioned
operations’ execution. This processor assignment scheme handles also overload situations as early as pos
sible and calls for its part the virtual storage management. The latter employs a look-ahead algorithm as
described in section 3.2, allocating page frames for the code of complete tasks and utilising information
provided by the response time driven dispatcher and extracted from the schedules of task (re-) activations.
All these operating system features are controlled by the language elements introduced into Pearl in section
2.2. The same holds for the precise timing of tasking operations, requiring some additional service from the
secondary level processor. The assumption of certain value relations by shared variables is a class of events
occurring in schedules. The primary reaction level in connection with special hardware modules performs
the necessary surveillance of the shared variables. Providing parameters to this feature and controlling it is
a further function to be carried through by the auxiliary processor’s highest level.

In addition to the above mentioned functions directly initiated from language constructs in the appli-r
cation programs, there are other ones supporting the execution of the former. In detail, these comprise the
interpretation and processing of operation parameters, the validation of time schedules, and the assignment
and pre-emption of the general processor. The most complex task, however, is the management of
schedules, especially of those temporal ones whose initial times depend upon interrupts, and of their rela
tion to activities to be performed when the corresponding events occur.

4.3.2. The Control Programs
We begin our considerations of the procedures executed by the auxiliary processor’s secondary reac

tion level (SRL) with introducing some data structures and stating two routines accepting service request
parameters and initiating their elaboration.

As already mentioned earlier, operation parameters are transmitted from the attached general
processor(s) and the unit’s primary reaction level (PRL) via two first-in-first-out memories to the SRL in
order to prevent excessive overhead connected with writer/reader synchronisations. For the purpose of
guaranteeing the system’s high reaction speed accepting PRL data has the precedence. The latter specify
the activities associated with the just occurred events. These activities are represented by one or more
parameter sets for the individual SRL functions stored in the array b. The various objects involved - which
were partly already introduced and discussed in section 4.2 - and their interdependence are displayed in
Figure 10. The parameters arriving from the general processor through the corresponding fifo are first
brought into a temporary buffer for further treatment Each parameter set consists of a word specifying the
function to be performed followed by data words required by this routine. Their number may be derived
from the function identifier by calling the procedure "pamo".

-4 2 -

We shall now state the control programs in an implementation oriented form. In order to avoid
context-switching operations in connection with processing the data originating from the two fifos, SRL is
equipped with two register sets. If the one associated with PRL is active, then the data-available-interrupt
of the corresponding fifo is disabled. It will be enabled upon switching to the other register set. The main
task cyclically calls the virtual storage administration procedure "vsadmin", which was stated in section
3.2. The parameter of the latter is the Boolean array foe, whose entries indicate whether the corresponding
page frames are occupied. Initially, the elements of foe are cleared. The procedure call "protocol" appear
ing at various locations in the sequel serves as an abbreviation of writing appropriate data into the protocol
file.

MODULE(SRL control programs);
PROBLEM;
prl service: TASK PRIORITY 1;

DISABLE prl fifo data available interrupt;
Switch context to register set 1;
WHILE prl fifo data available REPEAT;
READ t,r,e,gm FROM prl fifo;
CALL protocol;
FOR i FROM 0 BY 1 TO n REPEAT;
IF r(i) THEN
j:=i;WHILE b(j,i) NE NIL REPEAT;
Execute function identified by b(j,i);
j:=j+pamo(b(j,i));
END;

FIN;
END;

END;
Switch context to register set 2;
/* Thus the infinite loop in the other task is continued. */
ENABLE prl fifo data available interrupt;
END;

main: TASK PRIORITY 2;
WHEN prl fifo data available interrupt ACTIVATE prl service;
ENABLE prl fifo data available interrupt;

wait: WHILE processor fifo empty REPEAT;
CALL vsadmin(foc);

END;
READ tb(l) FROM processor fifo;
j:=pamo(tb(l));
FOR i FROM 2 BY 1 TO j REPEAT;
READ tb(i) FROM processor fifo;

END;
Execute function identified by tb(l);
CALL protocol;
GOTO wait;
END;

MODEND;

4.33 . Description of the Task Control Blocks
It was already mentioned that upon declaration a control block is initiated for each task. For this pur

pose an array tcb(l:cb), cb>l, is allocated in the common storage consisting of records as defined in Table
6.

-4 3 -

Table 6. Task Control Block Layout
Entry Data Type Initial Value Meaning
tid CHARACTER^) d Task identifier
res BIT d ’l ’B, if task declared with RESIDENT attribute
keep BIT d ’l ’B, if task declared with KEEP attribute
trsp DURATION d Task’s response time
trun DURATION d Task’s maximum run time
onm (l:m) BIT d Mask of signals occurring in task’s ON statements
fsa FIXED 0 Continuation address after completing ON reaction
sigid FIXED 0 SIGNAL identification for ON reaction
aon FIXED 1 Start address of general ON reaction
sta FIXED 1 Task code start address
page FIXED 1 Page number of task code on mass storage
frame FIXED -1 Number of page frame where task resides; -1 otherwise
reg (0:creg-l) FIXED 0 Register status of processor
bolt (l:cs) BIT zero ’l ’B, if bolt seized by task
d DURATION 0 Maximum residual run time
rt DURATION 0 Accumulated run time
tcrit CLOCK oo Moment of next exactly timed operation; oo otherwise
int DURATION oo Average activation interval of interrupt driven schedules
tcond CLOCK oo Deadline if task is ready; ®o otherwise
tact CLOCK oo Time condition relative to next not yet buffered activation
tcont CLOCK oo Time condition relative to forthcoming activation
ba FIXED 0 Number of buffered activations; 0<ba<mba
ringl FIXED mba-1 1. Index for administration of circular buffer of buffered activations
ring2 FIXED mba-1 2. Index for administration of circular buffer of buffered activations
ta (0:mba-l) CLOCK O O Time condition
using (0:mba-l) FIXED 0 Pointer to semaphore mentioned in USING clause
ato (0:mba-l) CLOCK oo Timeout condition of USING synchronisation
alt (0:mba-l) FIXED 0 Tcb index of alternative task mentioned in USING clause
opt FIXED 0 Parameter for synchronisation resume
exp (0:n) BIT zero Parameter for EXPECT statement processing
ready BIT 0 *1’B, if task is contained in ready list
run BIT 0 ’l ’B, if task uses the processor
susp BIT 0 ’ l ’B, if task suspended explicitly or by EXPECT
sync BIT 0 T B , if task suspended for synchronisation
em (0:n) BIT zero Mask of task’s EXPECT schedules contained in rel
acs (0:n) BIT zero Mask of task’s ACTIVATE schedules contained in rel
tes (0:n) BIT zero Mask of task’s TERMINATE schedules contained in rel
prs (0:n) BIT zero Mask of task’s PREVENT schedules contained in rel
sus (0:n) BIT zero Mask of task’s SUSPEND schedules contained in rel
cos (0:n) BIT zero Mask of task’s CONTINUE schedules contained in rel,

also used for RESUME schedules
tos FIXED 0 Column index in rel of timeout schedule
sys FIXED 0 Column index in rel of synchronisation resume schedule

In its initial value column the abbreviations d and 1 stand for appropriate data to be extracted from the task
declarations or to be provided be the linkage editor, °° for a very large constant, and zero for a vector of
’O’B entries, respectively. As array bounds three installation parameters are mentioned in the table, viz.
mba, creg, and cs, standing for the maximum number of permitted buffered task activations, for the number
of the general processor’s internal registers, and for the amount of synchroniser hardware representations,

-4 4 -

respectively. The elements of the bit arrays with lengths n+1 correspond to the ones in the vectors r, e, and
gm. The meaning of the single tcb entries will become clear in detail from the context in which they are
applied as described in the next section. There, like a tcb field, the quantity "active" is interrogated being an
abbreviation for the expression

ready OR run OR susp OR sync.

4.3.4. Algorithms of the Operating System Nucleus
In this section we shall describe the routines called by the control programs to perform the SRL func

tions compiled earlier. For easy readability they are formulated as Pearl procedures. By transforming the
procedure names into one word quantities, however, and appending the appropriate procedure parameters
the data sets describing the requested services are formed. We already know them as contents of the arrays
b and tb from section 4.3.2.

Since they have no connection with the other SRL algorithms, we commence with two procedures
initialising and terminating the surveillance of shared variables. For the meaning of the mentioned arrays
we refer to the procedure "compare" in section 4.2.3.

initsurv: PROCEDURE((a,op,w) FIXED);
/* Parameter description:

a : address of shared variable,
op: relational operator specification,
w : value */

i:=l;
WHILE ad(i) NE NIL AND ad(i) NE a REPEAT;
i:=i+l;

END;
ad(i):=a; rl(i):=op; v(i):=w;
CALL protocol;
END;

and
termsurv: PROCEDURES FIXED);

i:=l;
WHILE ad(i) NE a REPEAT; i:=i+l; END;
ad(i):=NIL;
CALL protocol;
END;

We now turn to the routines that put the first task of the ready list, i.e. the most urgent one, into the
running state or perform the reverse operation, respectively. Before pre-empting the processor, the follow
ing procedure waits as long as the non-interruption bit is set This bit may be set by a task if a short critical
region is to be executed without disturbance. The tcb index of the task to which the processor is presently
assigned is stored in the variable "ass". If the processor is idle its state as well as the value of "ass" are zero.
The further objects occurring in the following processor withdrawal procedure were introduced in sections
2.2.2.3. and 4.1. Here and in the sequel the parameter i always gives the tcb index of the task to which the
function is applied.

preempt: PROCEDURES FIXED);
IF ass EQ i THEN
WHILE non interruption bit REPEAT; END;
processor state:=’0’B;
tcb(i).rt:=t time; tcb(i).tl:=t res;
FOR j FROM 0 BY 1 TO creg-1 REPEAT;

-4 5 -

tcb(i).reg(j):=processor register(j);
END;
tcb(i).run:=’0’B; ass:=0; CALL protocol;

FIN;
END;

The array ti contains the tcb indices of the tasks ready for execution and ordered according to increasing
deadlines. The actual number of the ready list’s elements is available as c t Accordingly, the processor
assignment routine reads as follows.

procadm: PROCEDURE;
IF ass NE ti(l) THEN
IF ass NE 0 THEN CALL preempt(ass); FIN;
ass:=ti(l); tcb(ass)jnn:=’l ’B;
IF tcb(ass).frame EQ -1 THEN
CALL vsadmin(foc);

FIN;
FOR j FROM 0 BY 1 TO creg-1 REPEAT;
processor register(j):=tcb(ass) jeg(j);

END;
t time:=tcb(ass).rt; t res;=tcb(ass).tl;
IF tcb(ass).tcrit NE °° THEN
/* Preparations for task (re-) start at precisely given time */
comparison register 2:=tcb(ass).tcrit;
tcb(ass).tcrit:=oo;
continuation signal mask:=’l ’B;

FIN;
processor state:=’ 1’ B;
CALL protocol;

FIN;
END;

When a task has turned ready for execution the following procedure is invoked. It inserts the task’s
tcb index into the ready list By calling the routine "schedule" it is checked whether the actual free task set
can be executed meeting all given deadlines. If need be, an overload situation is handled by terminating all
tasks that were not declared with a KEEP attribute and by preventing any further (re-) activations. All
interrupts are disabled by resetting the mask mk and the overload signal is set. For the occurrence of this
event special tasks coping with the situation can be scheduled.

toexec: PROCEDURES FIXED);
tcb(i) .ready :=’ l ’B;
tcb(i).tcond:=tcb(i).ta(tcb(i).ring 1);
k:=ct; ct=ct+l;
WHILE tcb(i).ta(tcb(i)jing 1) LT
tcb(ti(k)).ta(tcb(ti(k)).ringl) AND k GT 0 REPEAT;
ti(k+l):=ti(k); k:=k-l;

END;
ti(k+l):=i;
CALL schedule;
CALL protocol;
END;

with
schedule: PROCEDURE;

IF ass NE 0 THEN tcb(ass).tl:=t res; FIN;
s:=0; zg:=’0’B; t:=clock;

-4 6 -

FOR k FROM 1 BY 1 TO ct REPEAT;
s:=s+tcb(ti(k)).d;
IF tcb(ti(k)).ta(tcb(ti(k)).ringl)-t LT s THEN
GOTO out;

FIN;
END;
zg:=TB ;

out: IF zg THEN CALL procadm; ELSE
FOR k FROM 1 BY 1 TO ct REPEAT;
IF NOT tcb(ti(k)).keep THEN
CALL execprev(ti(k)) /* Prevent task ti(k) */;
CALL execterm(ti(k)) /* Terminate task ti(k)*/;

FIN;
END;
mk:=zero;
sv(2):=’l ’B
/* Raising of signal associated with an overload situation */;

FIN;
CALL protocol;
END;

The inverse operation of removing a task from the ready list is performed by
backexec: PROCEDURES FIXED);

IF tcb(i).ready THEN
IF tcb(i).run THEN CALL preempt(i); FIN;
tcb(i)jeady:=’0’B; 1:=0;
FOR k FROM 1 BY 1 TO ct REPEAT;
IF i NE ti(k) THEN 1:=1+1; ti(l):=ti(k); FIN;

END;
ct:=l; ti(l+l):=0;
CALL procadm;
CALL protocol;

FIN;
END;

The next procedure to be stated here prepares the schedules of tasking operations and inserts these
data into the corresponding data structures. First, an old schedule is deleted when a new one for the same
task and the same operation is to be inserted. In case a resume operation is requested, the pertaining task is
immediately suspended and a continuation is scheduled. This applies to the RESUME tasking statement as
well as to the future task reactivations connected to EXPECT and synchronisation operations. The parame
ters of the operations to be performed upon fulfillment of their schedules are read in from the processor
fifo, their validity is checked, and then they are stored into the array b. New values for the tcb entries
required by the storage administration scheme are determined. In the course of this, the array ivl is used
giving for each interrupt the mean time between its occurrences. Finally, data pointing to the associated
schedules are stored in the task’s tcb. There is only one schedule common to all tasks linking the signals to
an ON reaction described later. This schedule always resides in rel(l:m,0). To simplify the formulation of
the following procedure, the tcb entries acs(.), tes(.), prs(.), sus(.), and cos(.) are addressed as sch(l:5,.),
respectively.

schtop: PROCEDURES,s) FIXED);
/* Parameter description:

i: tcb index,
s: operation selector:

1=ACTIVATE,
2=TERMINATE,
3=PREVENT,

-4 7 -

4=SUSPEND,
5=CONTINUE,
6=RESUME,
7=EXPECT-Resume,
8=Synchronisation-Resume,
10=ON */

IF sE Q 10 THEN
b(l,0):=s; b(2,0):=NIL;
READ rel(l:m,0) FROM processor fifo; GOTO return;

FIN;
1:=LF s NE 6 THEN s ELSE 5 FIN;
IF 1LE 5 THEN
IF tcb(i).sch(l,0:n) NE zero THEN
hv:=zero;
FOR j FROM 0 BY 1 TO n REPEAT;
IF tcb(i).sch(l j) THEN
hv(j):=rel(1 j); rel(l:mj):=zero; b(l j):=NIL;

FIN;
END;
IF hv NE zero THEN in:=-l; dv:=hv; sv(l):=2; FIN;
tcb(i).sch(l,0:n):=zero;

FIN;
IF 1EQ 1 THEN tcb(i).tact:=tcb(i).int:=°o; FIN;
IF 1 EQ 5 THEN tcb(i).tcont:=°o; FIN;

FIN;
IF s GE 6 AND s LE 8 THEN
CALL execsusp(i) /* Suspend task i */;
IF s EQ 6 THEN s:=5; FIN;
IF s EQ 8 THEN
tcb(i).susp:=’0’B; tcb(i).sync:=’ l ’B;

FIN;
FIN;
READ 1 FROM processor fifo;
k:=l; hv:=zero; tvs:«»; dti:=0;
FOR j FROM 1 BY 1 TO 1 REPEAT;
WHILE k LE n AND b(ljc) NE NIL REPEAT; k:=k+l; END;
IF k GT n THEN GOTO return; FIN;
/* No more space for schedule storage */;
READ rel(l:mjc) FROM processor fifo;
kk:=l; hv(k):=ei:=’l ’B; tcomp:=0;
IF NOT rel(l,k) THEN tcomp:=clock ELSE
READ ts FROM processor fifo
/* This variable and dtO use the same storage location. */;

READ dts FROM processor fifo;
READ rts FROM processor fifo;
READ q FROM processor fifo; ex:=q AND ’Ol’B;
IF (q AND ’10’B) EQ ’OO’B THEN
IF ts LE clock OR dts LE 0 OR rts LT 0 THEN
hv(k):=ei:=’0’B; rel(l:m,k):=zero;

ELSE tcomp:=ts; in:=k; sv(l):=l; FIN;
ELSE
IF dtO LT 0 OR dts LE 0 OR rts LT 0 THEN
hv(k):=ei:=’0’B; rel(l:mJc):=zero;

FIN;

-4 8 -

/* Parameter preparation for the second stage of a two-stage schedule */
rel(l,k):=’0’B; b (U):= ll; b(2Jc):=dtO;
b(3,k):=dts; b(4Jc):=rts; b(5Jc):=ex; b(6,k):=k;
tcomp:=dtO+clock; kk:=7;

FIN;
FIN;
b(kk,k):=IF s EQ 8 AND rel(lX) THEN 9 ELSE s FIN;
kk:=kk+l; b(kkjc):=i;
IF s EQ 1 OR s EQ 5 THEN
/* Input of further parameters for activation and continuation operations */
kk:=kk+l; READ b(kkjc) FROM processor fifo;
tcomp:=tcomp+b(kk,k);
EF s EQ 1 THEN
FOR 11 FROM 1 BY 1 TO 4 REPEAT;
kk:=kk+l; READ b(kkjc) FROM processor fifo;
END;

FIN;
IF ei THEN
IF rel(2:m,k) NE zero THEN
dta:=0;
FOR 11 FROM 1 BY 1 TO cinterrupt REPEAT;
IF rel(ll+interrupt displacement^) THEN
dta:=dta+l/ivl(ll);

FIN;
END;
IF s EQ 1 THEN dti:=dti+dta; FIN;
tcomp:=tcomp+0.5/dta;

FIN;
tvs:=min(tvs,tcomp);

FIN;
FIN;
kk:=IF ei THEN kk+1 ELSE 1 FIN; b(kk,k):=NIL;

END;
IF s LE 5 THEN
tcb(i).sch(s,0:n):=hv;
IF s EQ 1 THEN
tcb(i).tact:=tvs;
IF dti NE 0 THEN tcb(i).int:=l/dti; FIN;

FIN;
IF s EQ 5 THEN tcb(i).tcont:=tvs; FIN;

ELSE
IF s EQ 7 THEN tcb(i).em:=hv; ELSE
j:= l; WHILE NOT hv(j) REPEAT; j:=j+l; END;
tcb(i).sys:=j; j:=j+l;
WHILE NOT hv(j) REPEAT; j:=j+l; END;
tcb(i).tos:=j;

FIN;
FIN;

return: CALL protocol;
END;

The routine reacting upon the fulfillment of two-stage schedules reads as follows. It initiates the execution
of the scheduled operation when a corresponding event has occurred. In case an interrupt was detected, the
associated cyclic time schedule is newly set up.

-4 9 -

secstage: PROCEDURE((dtO,dts,rts) DURATION,ex BIT,k FIXED);
IF ev(l) THEN CALL procedure identified by b(7,k)

with parameters b(j ,k), j=8,...; FIN;
IF ev AND *01...1’B NE zero THEN
in:=k; sv(l):=l; rel(lJc):=’l ’B; ts:=clock+dtO;
IF b(7,k) EQ 1 THEN
tcb(b(8,k)). tact:=ts+b(9 X);

FIN;
IF b(7 Jc) EQ 5 THEN
tcb(b(8,k)).tcont:=ts+b(9,k);

FIN;
f* Wait one PRL cycle. */; in:=k; sv(l):=2;
IF dtO EQ 0 THEN CALL procedure identified by

b(7,k) with parameters b(j,k), j=8,...; FIN;
FIN;
CALL protocol;
END;

The procedures that will be described .in the sequel carry through those operations whose parameters
and links to schedules were processed by the last two ones.

The first routine to be stated performs the SRL reaction to signals, and all necessary preparations
required by the application program to branch into an appropriate ON sequence. Then the processor is res
tarted. The index of the program counter within the processor’s register file is here designated as pc.

execon: PROCEDURE;
IF ass NE 0 THEN
hv:=ev AND tcb(ass).onm;
IF hv NE zero THEN
tcb(ass).fsa:=processor register(pc);
processor register(pc):=tcb(ass).aon;
j:= l;
WHILE NOT hv(j+signal displacement) REPEAT;
j:=j+l; END;
tcb(ass).sigid:=j;
processor continuation signal:=’l ’B;
FIN;
CALL protocol;

FIN;
END;

The next procedure serves for removing all schedules set up within the framework of an EXPECT
statement.

prevexp: PROCEDURES FIXED);
hv:=tcb(i).em AND rel(l,0:n);
FOR j FROM 1 BY 1 TO n REPEAT;
IF tcb(i).em(j) THEN
tcb(i).em(j):=’0’B; rel(l:m,j):=zero;
b(l,j):=NIL;

FIN;
END;
IF hv NE zero THEN in:=-l; dv:=hv; sv(l):=2; FIN;
CALL protocol;
END;

Upon occurrence of one of the events mentioned in an EXPECT statement’s alternative, the follow
ing procedure will resume the execution of the task containing this language construct.

-5 0 -

resexp: PROCEDURE(i FIXED);
hv:=tcb(i).em AND e;
IF hv NE zero THEN in:=-l; dv:=hv; sv(l):=2; FIN;
hv:=tcb(i).em AND r, tcb(i).exp;=tcb(i).exp OR hv;
IF tcb(i).susp AND NOT tcb(i).ready AND

NOT tcb(i).run AND NOT tcb(i).sync THEN
teb(i).susp:=’0’B; CALL toexec(i);

FIN;
CALL protocol;
END;

When a task or an activation operation is suspended for synchronisation two reactions may be
scheduled: the check whether the required resources can now be claimed and the timeout handling. For the
former the bit vector "boltevent" is examined in appropriate positions comprising the status outputs of the
synchroniser hardware representations.

testsync: PROCEDURE^ FIXED);
IF rel(l:m,tcb(i).sys) AND boltevent EXOR

rel(l:m,tcb(i).sys) EQ zero THEN
tcb(i).opt:=tcb(i).opt+l;
CALL protocol; CALL ressync(i);

FIN;
END;

timeout: PROCEDURE(i FIXED);
tcb(i).opt:=tcb(i).opt+2;
CALL protocol; CALL ressync(i);
END;

with
ressync: PROCEDURE^ FIXED);

tcb(i).sync:=s’0’B; in:=tcb(i).tos; sv(l):=2;
rel(l :m,tcb(i).sys):=rel(l :m,tcb(i).tos):=zero;
b(1 ,tcb(i).sys):=b(1 ,tcb(i).tos):=NEL;
tcb(i).sys:=tcb(i).tos:=0;
IF NOT tcb(i).susp THEN
IF tcb(i).opt LE 2 THEN CALL toexec(i);

ELSE CALL prepexec(i);
FIN;
FIN;
CALL protocol;
END;

Finally, we turn now to the processing of the actual tasking operations and commence our considera
tions with the treatment of schedule prevention. According to the semantics of Pearl, any schedule for task
ing operations connected to a certain task and eventual buffered activations of the latter are deleted.

execprev: PROCEDURE^ FIXED);
tcb(i).ba:=0; tcb(i).tact:=tcb(i).tcont:=°°;
hv:=tcb(i).acs OR tcb(i).tes OR tcb(i).prs OR

tcb(i).sus OR tcb(i).cos;
FOR j FROM 1 BY 1 TO n REPEAT;
EF hv(j) THEN
hv(j):=rel(l j); rel(l:mj):=zero; b(l j):=NIL;

-5 1 -

FTN;
END;
IF hv NE zero THEN in:=-l; dv:=hv; sv(l);=2; FIN;
tcb(i).acs;=tcb(i).tes:=tcb(i).prs:=tcb(i).sus:=tcb(i).cos;=zero;
CALL protocol;
END;

In order to simplify the forthcoming procedures, we introduce the following subroutine for the
annihilation of exhausted time schedules.

annexsch: PROCEDURE(bcO BIT IDENTICAL);
/* be is an array of type (0:n) BIT. */
hv:=bc AND e;
IF hv NE zero THEN
in:=-l; dv:=hv; sv(l):=2;
FOR j FROM 1 BY 1 TO n REPEAT;
IF hv(j) THEN
rel(l,j):=’0’B;
IF rel(l:m j) EQ zero THEN
b(l j):=NIL; bcS):=’0’B;

FIN;
FIN;

END;
FIN;
CALL protocol;
END;

Employing this routine, the procedure performing task suspension can be easily formulated.
exeesusp: PROCEDURES FIXED);

IF tcb(i) .active THEN
CALL backexec(i);
tcb(i).susp:=’ 1 ’B; tcb(i).tcond:=°°;
CALL annexsch(tcb(i).sus); CALL protocol;

FIN;
END;

The inverse tasking operation, viz. continuation, is carried through by the next procedure. Here and
later on in the activation program, the parameters for the operation’s precise timing are set if this feature is
requested. The actual operation takes place eps time units after the corresponding premature time event.

execcont: PROCEDURES FIXED, tc DURATION);
/* Parameter description:

i : teb index,
tc: response time */

IF tcb(i).susp AND tcb(i).em EQ zero THEN
tcbS).susp:=’0’B; tcbS).tcont:=°°;
tcbS).ta(tcb(i).ringl):=tcbS).tcond:=clock+tc;
av:=tcbS).cos AND gm; CALL annexsch(tcbS).cos);
IF NOT tcbS).sync THEN
IF av NE zero THEN
tcbS).tcrit:=clock+eps;
tcb(i).ta(tcb(i).ringl):=tcb(i).tcrit+tcb(i).tl;

FIN;
CALL toexec(i);

FIN;
CALL protocol;

FIN;
END;

-5 2 -

When a task is to be activated, this request and the corresponding parameters are first buffered. If
there are no former task activations to be processed, the task execution is prepared and initiated.

execact: PROCEDURES FIXED, tc DURATION, usg FIXED,
tor DURATION, toa CLOCK, ii FIXED);

/* Parameter description:
i : tcb index of task,
t c : response time,
usg: pointer to semaphore mentioned in USING clause,
ton relative timeout condition,
toa: absolute timeout condition,
i i : tcb index of alternative task */

IF tcb(i).ba LT mba THEN
tcb(i).ba:=tcb(i).ba+1;
tcb(i).ring2:=tcb(i).ring2+l REM mba;
tcb(i).ta(tcb(i).ring2):=tvs:=clock+tc;
tcb(i).using(tcb(i).ring2):=usg;
tcb(i).ato(tcb(i).ring2):=IF toa NE 0 THEN toa ELSE clock+tor FIN;
tcb(i).alt(tcb(i).ring2):==ii;
av:=tcb(i).acs AND gm; tcb(i).tact:=°°;
FOR j FROM 1 BY 1 TO n REPEAT;
IF tcb(i).acs(j) AND NOT e(j) THEN
tcb(i).tact:=min(tcb(i).tact,tvs+

IF re l(lj) THEN dt(j) ELSE tcb(i).int FIN);
FIN;

END;
CALL annexsch(tcb(i).acs);
IF NOT tcb(i).active THEN CALL prepexec(i); FIN;

FIN;
CALL protocol;
END;

with the following auxiliary procedure taking care of the synchronisation implied by the presence of an
USING clause:

prepexec: PROCEDURES FIXED);
j:=tcbS).using(tcbS).ringl);
IF j GT 0 THEN
IF tcb(i).opt EQ 0 THEN
IF bolt statusS) EQ 0 THEN
bolt statusS):=-l; tcbS).boltS):=’l ’B; j:=i;

ELSE
k:=l; ts:=tcbS).ato(tcbS).ringl);
WHILE k LE n AND b(l,k) NE NIL REPEAT;
k:=k+l;

END;
l:=k+l;
WHILE 1 LE n AND b(l ,1) NE NIL REPEAT;
1:=1+ 1;

END;
IF 1 GT n OR ts LE clock THEN GOTO return; END;
tcbS).sync:=’l ’B; tcbS).opt:=2;
b(l,k):=8; b(l,l):=9;
b(2,k):=b(24):=i; b(3Jc):=b(3,l):=NIL;
relS+sync displacementJc):=rel(l,l):=’ 1 ’B;
tcbS).sys:=k; tcbS).tos:=l;
dts:=l; rts:=0; ex:=’0’B; in:»!; sv(l):=l;

-5 3 -

FTN;
ELSE
av:=zero;
IF tcb(i).opt EQ 3 THEN
bolt status(j):=-l; tcb(i).bolt(j):=’l ’B; j:=i;

ELSE j:=tcb(i).alt(tcb(i).ringl); FIN;
tcb(i).opt:=0;

FIN;
ELSE j:=i;
FIN;
IF tcb(i).opt EQ 0 THEN
tcb(j).rt:=0; tcb(j).tl:=tcb(j).trun;
tcb(j).reg(pc):=tcb0.sta;
IF av NE zero THEN
tcb(j).tcrit:=clock+eps;
tcb(j).ta(tcb(j).ringl);=tcb(j).tcrit+tcb(j).tl;

FIN;
CALL toexec(j);

FIN;
return: CALL protocol;

END;
Upon reaching its normal end, each task requests the execution of the following SRL procedure that

removes the task from the ready list and puts the next buffered activation - if any - into the ready state.
execend: PROCEDURES FIXED);

CALL backexec(i); tcb(i).tcond:=°°;
j:=tcb(i).using(tcb(i).ringl);
IF j GT 0 THEN
bolt status(j):=0; tcb(i).bolt(j):=’0’B;

FIN;
tcb(i).ringl:=tcb(i).ringl+l REM mba;
tcb(i).ba:=tcb(i).ba-1;
IF tcb(i).ba GT 0 THEN
av:=zero; CALL prepexec(i);

FIN;
CALL protocol;
END;

Additionally to the above actions, in the course of handling a TERMINATE tasking operation, even
tual synchronisation, timeout, and EXPECT schedules are deleted and all synchronisers seized by the task
including an USING semaphore are released.

execterm: PROCEDURES FIXED);
IF tcb(i).active THEN
CALL backexec(i); CALL annexsch(tcb(i).tes);
tcbS).susp:=tcbS).sync:=’0’B;
tcbS).tcond:=»o;
IF tcb(i).sys NE 0 THEN
rel(1 :m,tcbS).sys):=zero;
b(l,tcb(i).sys):=NIL; tcb(i).sys:=0;

FIN;
IF tcbS).tos NE 0 THEN
in:=tcbS).tos; sv(l):=2;
rel(l :m,tcbS).tos):=zero;
b(l,tcb(i).tos):=NIL; tcb(i).tos:=0;

FIN;

-5 4 -

CALL prevexp(i);
FOR j FROM 1 BY 1 TO cs REPEAT;
IF tcb(i).bolt(j) THEN
tcb(i).bolt(j):=’0’B;
IF bolt status(j) EQ -1 THEN bolt status(j):=0;
ELSE bolt status(j):=bolt status(j)-l; FIN;

FIN;
END;
tcb(i) .ring 1:=tcb(i) .ring 1+1 REM mba;
tcb(i).ba:=tcb(i).ba-1;
IF tcb(i).ba GT 0 THEN
av;=zero; CALL prepexec(i);

FIN;
CALL protocol;

FIN;
END;

-5 5 -

5. Evaluation of the Architecture
5.1. Implementation of Extended Pearl

It is the subject of this section to detail the additional steps a compiler for extended Pearl has to take,
when preparing programs for execution on the considered process control computer. This comprises com
pile time checks, the processing of options, and mainly the generation of special code and task control data.
Particularly, the translation of language elements into calling sequences of the operating system processor
and into direct access to its hardware components is described. For several language constructs their
interaction with functions of the auxiliary processor and their reduction to program sequences involving
only low-level language features are outlined. Employing these elaborations, the corresponding machine
code generation becomes easily possible.

5.1.1. Compiler Functions
We commence our considerations on the additional compiler activities by treating the pragmas being

intended for the selection of various options. Thus, the compiler can be instructed to flag dynamic language
features, when their usage is to be prevented for security reasons. In the test phase of a program many
verification language elements including TRIGGER and INDUCE statements will be inserted in it to con
trol its execution and to examine its performance. Hence, in order to avoid the removal of these statements
and to retain them for later use instead, it is selected with a pragma whether they are to be honoured or to
be regarded as comments. Different syntax check procedures with respect to the LOCK synchronisation
statement are invoked by a further pragma. The available alternatives are the application of either the
resource releasing or of the resource hierarchical deadlock prevention scheme. The latter allows the nesting
of LOCK statements, provided the sequence of resource requests complies with a predefined resource
hierarchy. The remaining pragmas concern the compiler’s code generation phase. So, it is determined
whether the just considered program module shall be executed on the general processor or under the test
monitor in the auxiliary processor’s interrupt generator, where it produces temporal request patterns for the
testing of other software. The test monitor is a supervisor tailored for this purpose. In case the general pro
cessor turns idle, it redefines the system time to the next scheduled moment in order to reduce the time
requirements of simulation runs. Another pragma specifies the extent of the event recording desired, and
has to be converted by the compiler into parameters for the protocol hardware.

Now we turn to the discussion of some compiler functions to be carried out during the processing of
declarations and specifications. Upon elaboration of a task declaration, a corresponding control block is
allocated and initialised, provided the maximum number of tasks that can be simultaneously handled is not
exceeded. Interfaces are treated in the same way as tasks. The encountered interrupts and synchronisers are
assigned to the corresponding hardware elements being part of the auxiliary processor. Accordingly, object
names are transformed into hardware addresses. In the course of this, information from the SYSTEM divi
sion is utilised, and interrupt array references are reduced to lists of single interrupt references. When
shared variables are declared appropriate storage space is allocated within the common memory. Further
more, for synchronising the access to them, each shared variable is associated with an implicitly defined
bolt. The application of the SYNC monadic operator to a shared variable is replaced by a reference to its
implicit bolt. The system or user defined objects of type SIGNAL are represented as shared one-bit vari
ables. They do not require protection by implicit bolts. The mentioned storage and hardware element
assignments are subject to capacity restrictions whose observance naturally needs to be checked. The data
contained in the INTERVAL attributes of interrupt specifications are gathered for later use in the array ivl
also located in the common memory. The task attributes KEEP and RESIDENT give rise to corresponding
task control block entries. Here also the maximum task run times must be recorded. They are either pro
vided by the user or estimated by the compiler according to the method outlined in section 2.2.2.3. In this
context, the program load times need to be regarded.

In order to subject a program to the virtual storage administration scheme described in section 3.2, its
object code generated by the compiler must be divided into pages. Tasks and procedures with the
RESIDENT or REENT attributes, respectively, as well as objects of GLOBAL scope are placed in those

-5 6 -

pages that remain permanently in storage. However, their maximum number may again not exceed a cer
tain limit.

5.1.2. Run-Time Features
In this section we shall discuss the implementation of the new language constructs as introduced in

section 2.2 as well as the realisation of some other statements that require communication with the operat
ing system processor. We start our considerations with some simple features.

The auxiliary processor’s hardware level is addressed by the following instructions and functions. In
order to determine values for the monadic operators NOW, BVALUE, SVALUE, and TSTATE, giving the
actual time, the stati of bolts and semaphores as well as of tasks, the clock register, the status registers of
the synchronisers’ hardware representations, and appropriate task control block entries are directly read
out, respectively. On the other hand, the UPDATE statement is converted into writing a new value into the
down counter T.RES determining the executing task’s maximum residual run time. Certain one-bit storage
locations in the common memory serve for masking the interrupt lines. They are set and reset by ENABLE
or DISABLE statements. TRIGGERing an interrupt is performed by a writing access to the corresponding
interrupt recognition hardware element. In a similar way the INDUCE statement is realised, viz. a logical
one is written into the shared variable associated with the signal to be raised. If this variable was subjected
to surveillance for the assumption of the true value, the scheduled event reaction will be initiated by the
auxiliary processor.

For the implementation of the MAXLOOP clause in the repeat statement the compiler generates a
counting of the performed iterations, and for the case of an overflow a conditional branch to the raising of
the pertaining system defined signal.

When an activity is to be scheduled for later execution, corresponding parameters need to be
transmitted to the auxiliary processor as we shall see later. In the course of preparing these parameters for a
time schedule given with the EXACTLY attribute, an associated indicator is set and the installation param
eter eps is subtracted from the initial time of the schedule. Furthermore, as time condition the sum of the
(residual) maximum task run-time and eps is supplied, causing the deadline driven scheduling algorithm to
put the task into the running state immediately. All other preparations are carried through by the operating
system processor within the reaction time span of length eps before the hardware finally starts the task exe
cution at the exactly specified moment No provisions are to be made within the code of the task.

Since the occurrence of an interrupt is unforeseeable, the implementation of WHEN reactions
without delay is impossible, unless the event is expected with the program loaded and the processor in the
idle state. However, this possibility shall not be considered, because it is inefficient and the system cannot
perform any other tasks. If this feature is needed nevertheless, the external hardware generating the inter
rupt must do that a little earlier. Then it can be realised with the help of a two stage schedule having the
EXACTLY attribute.

In the sequel we shall discuss the replacement of an EXPECT statement by a piece of code easily
tangible by the compiler. The syntax of the EXPECT statement was introduced by the following production
rules:

expect-statement::=EXPECT alternative-string FIN;
with
altemative::=AWAIT event-list DO statement-string .

We consider now an EXPECT statement appearing in a task whose control block is stored under the index i
in the array tcb. By transmitting data describing the event lists to the auxiliary processor, the later execu
tion of the statement body is scheduled. The single lists or alternatives correspond with the set bits in the
array tcb(i).em(0:n). Upon occurrence of one or more mentioned events, the alternatives to be carried

-5 7 -

through then are marked in the bit array tcb(i).exp(0:n) by the operating system processor. Thereafter the
task is resumed and all marked alternatives are executed in the sequence they were originally written down.
At the end of this, the task is either suspended or control branches to those alternatives which were marked
in the meantime. Thus, an EXPECT statement can be replaced by the following equivalent sequence.

/* Schedule an EXPECT-Resume operation for the occurrence of any event
contained in

event-listl, event-list2,...; this implies the suspension of the task */;
begin: hv:=tcb(i).exp; tcb(i).exp:=zero;

/* zero stands for a vector with appropriately many ’O’B components */;
j:=0;
FOR k FROM 1 BY 1 TO n REPEAT;
IF tcb(i).em(k) THEN
j:=j+i;IF hv(k) THEN
CASE j
ALT statement-string 1;
ALT statement-string2;

FIN;
END;
IF tcb(i).exp EQ zero THEN SUSPEND; FIN; GOTO begin;

end: /* Request the operating system to prevent the task’s EXPECT schedule */;
The QUIT instructions appearing within the statement strings are replaced by jumps to the label "end",
where the operating system processor routine prevexp is called for the prevention of the above EXPECT-
resume schedule.

A structured synchronisation feature was defined as follows:

lock-statement: :=
LOCK synchronisation-clause-list [NONPREEMPTIVELY]
[TIMEOUT [IN duration-expression I AT clock-expression}
OUTTIME statement-string FIN]

PERFORM statement-string UNLOCK;
with
synchronisation-clause: :=

semaphore-expression-list I
EXCLUSIVE(sync-object-expression-list) I
SHARED(sync-object-expression-list)

and
sync-object: :=bolt I shared-object .

Let i again be the tcb index of that task’s control block in which a LOCK statement occurs. First, the syn
chronisation clause list is converted to entries in the array lv(l:cs,l:2) of bits according to
lv(j,l):=’l ’B, if exclusive access to the protected object is requested,
lv(j,2):=’l ’B, if shared access to the protected object is requested,
lv(j,*):=’0’B, otherwise,

-5 8 -

for j=l,...,cs, where cs designates the number of synchroniser hardware representations. Their status out
puts are available as the matrix "boltevent" having the same structure as lv. The comparison of them yields
whether the synchronisers can be claimed as requested. The indicator nia is set to 1 in case the
NONPREEMPTIVELY attribute is present and to the value 0 otherwise. It is used in the course of pro
gramming the non-interruption hardware register, signifying that the running task may not be pre-empted if
it holds the value ’l ’B. The setting of this bit given in the sequel refers to the application of the resource
releasing deadlock prevention method, i.e. there may be no nesting of LOCK statements. When the
resource hierarchical algorithm is employed, the bit’s programming as shown in form of comments is
slightly more complex and requires an integer variable nni with initial value 0 as a further tcb entry. In the
following piece of code replacing the LOCK statement, the tcb fields "opt" and "bolt" are used to control
the flow of processing and to mark claimed bolts, respectively. When seizing a synchroniser, appropriate
new values are written into its status register.

non interruption bit:=’ 1 ’B;
IF lv AND boltevent EXOR lv EQ zero THEN tcb(i).opt:=l;

ELSE
non interruption bit:=’0’B;
/* or: non interruption bit:=tcb(i).nni GT 0; */;
/* Parameter preparation and transmission to the operating system

processor for scheduling
the PERFORM and OUTTIME clauses; this implies task suspension */;

FIN;
IF tcb(i).opt EQ 1 THEN
non interruption bit:=’l ’B;
FOR j FROM 1 BY 1 TO cs REPEAT;
EFlv(j,l) OR lv(j,2) THEN
tcb(i) .bo!t(j):=’ 1 ’B;
IF lv(j,l) THEN bolt status(j):=-l;

ELSE bolt status(j):=bolt status(j)+l;
FIN;
FIN;
END;
tcb(i).opt:=0;
IF nia EQ 0 THEN non interruption bit:=’0’B; FIN;
/* or: tcb(i).nni:=tcb(i).nni+nia; non interruption bit:=tcb(i).nni GT 0; */;
/* Execution of the PERFORM clause;

here appearing QUIT statements are replaced by jumps to "unlock" */;
unlock: FOR j FROM 1 BY 1 TO cs REPEAT;

IF lv(j,l) OR lv(j,2) THEN
tcb(i).bolt(j):=’0’B;
IF lv(j,l) THEN bolt status(j):=0;

ELSE bolt status(j):=bolt status(j)-l;
FIN;
FIN;

END;
non interruption bit:=’0’B;
/* or: tcb(i).nni:=tcb(i).nni-nia; non interruption bit=tcb(i).nni GT 0; */;

ELSE tcb(i).opt:=0; /* Execution of OUTTIME clause */;
FIN;

Within the PERFORM clause seized resources can already be released before reaching the LOCK
statement’s end by employing an UNLOCK instruction defined as

unlock-statement::=UNLOCK semaphore-expression-list I sync-object-expression-list; .

-5 9 -

The lists of mentioned synchronisers are again converted to entries of an array uv(l:cs,l:2) whose meaning
is analogous to that of the lv elements. Accordingly, the UNLOCK replacement reads as follows.

FOR j FROM 1 BY 1 TO cs REPEAT;
IF uv(j, 1) OR uv(j,2) THEN
tcb(i).bolt(j):=’0’B;
IF uv(j,l) THEN lv(j,l):=’0’B; bolt status(j):=0;

ELSE lv(j,2):=’0’B; bolt status(j);=bolt status(j)-l;
FIN;
FIN;

END;
Owing to the close interaction between operating system processor and application programs in han

dling ON reactions, this feature requires attention here, too. When a signal is raised from a task, the auxili
ary processor’s scheduled reaction is activated via the signal hardware and the general processor ceases to
execute instructions. This is necessary in order to prevent further operations on undefined data, e.g. in case

~ of a divide check. The operating system processor now loads the actual content of the program address
counter as continuation address, and the identification of the occurred signal into the task’s tcb fields fsa
and sigid, respectively. Then, the start address of the general ON reaction within the application program is
written from the tcb entry aon into the program address register and the task execution is restarted. As
shown in the sequel, this reaction routine commences with saving the continuation address and the signal
identification in the two stacks cad and sid, in order to enable the handling of nested ON requests. The pro
cedures "push", "pop", and "top" perform the necessary stack operations. With each signal a Boolean lock
variable is associated to prevent the nested treatment of the same signal. In case the reaction to a signal
leads to the raising of the same one, the operating system is called to treat this event Normally, the ON
reaction proceeds with resetting the occurred signal, invoking the corresponding handling procedure, and
returning to. the address where the program flow was interrupted. The single handling procedures are con
tained within the bodies of the blocks where they are defined as not explicitly called subroutines. In the
course of processing the ON statements appearing in an application program, the starting addresses of these
procedures must be loaded into the array rpa in accordance with the block structure.

CALL push(cad,tcb(i).fsa); CALL push(sid,tcb(i).sigid);
IF lock(top(sid)) THEN CALL pop(cad); CALL pop(sid); INDUCE system reaction signal;
ELSE
lock(top(sid)):=’l ’B; signal(top(sid)):=’0’B;
CALL CONT rpa(top(sid)); lock(top(sid)):=’0’B;
next:=top(cad); CALL pop(cad); CALL pop(sid);
GOTO CONT next;

FIN;
As final topic relevant to the implementation of extended Pearl on the considered process control

computer architecture, the calls for operating system services remain to be discussed. These calls are
always performed by loading appropriate parameter sets into a first-in-first-out memory linking the general
with the auxiliary processor. The first element of a parameter set determines the requested function and is
followed by a variable number of specific data. The meaning of the mentioned data will be described in the
sequel.

When the surveillance of a shared variable is to be commenced or terminated its address is provided.
In case of the former operation also a relational operator and a corresponding comparison value are
specified.

The above stated ON reaction, being part of the application tasks, is initiated by an operating system
procedure scheduled upon user program start for the occurrence of all possible signals. This general routine
has no parameters.

The majority of operating system functions require as sole parameter the index of that element in the
array tcb where the control block of the task is stored to which the operation applies. Among these func
tions are the routines carrying out the tasking statements PREVENT, SUSPEND, TERMINATE, and the
normal task end. After requesting the latter, a task must cease its execution by stopping the processor.

-6 0 -

Then, we have the procedures resuming a task upon occurrence of one of the events mentioned in an
EXPECT statement’s alternative and preventing the corresponding schedules, respectively. Additionally to
the tcb index, the service routine performing task CONTINU(E)ation requires as parameter the response
time, from which the task’s time condition is calculated. The same data must be provided when converting
an ACTIVATE statement to a calling sequence. To take care of an USING synchronisation clause, how
ever, further parameters are necessary: the pointer to the mentioned semaphore, a relative and an absolute
timeout condition, and the tcb index of the task to be activated when the waiting time exceeds. If no
USING clause is present, the pointer must assume the value 0. The other parameters are then irrelevant.
When the absolute timeout parameter is 0, the required value is calculated by adding the relative timeout
condition to the actual time.

The most complex parameter sets have to be generated for the purpose of scheduling operating sys
tem services for future execution. They commence again with the tcb index of the pertaining task, followed
by a selector with the values 10 for the ON reaction and 1 to 8 for the operations ACTIVATE, TER
MINATE, PREVENT, SUSPEND, CONTINUE, RESUME, EXPECT-resume, and synchronisation-
resume, respectively. As further parameter for scheduling the ON reaction, a bit vector is supplied enabling
the recognition of all signals that are mentioned in the tasks of the running program. In case of the other
options, after the selector a number is transmitted specifying the amount of elementary schedules that will
follow. Each of them consists of a bit vector indicating all those events whose occurrences shall cause the
execution of an operating system function. If the bit corresponding to the time event is set in this vector,
four additional data items describing a time schedule must be provided. The first one is either the
schedule’s initial value or the displacement to be added to the occurrence time of an interrupt yielding such
a value. After that follow the interval between time events, the validity duration of the schedule, and two
further bits. The first of these specifies that a two-stage schedule is present, i.e. a time displacement was
given, whereas the other one requests exact timing of the operation. For reasons of easing the operating
system processor’s operation in the case of the tasking statements CONTINUE, RESUME, and
ACTIVATE, after each elementary schedule a response time, and if need be also USING clause parameters
as discussed above, must be provided. When scheduling a synchronisation-resume, always two elementary
schedules are transmitted with which the auxiliary processor associates two different reactions. The first
one is the check whether the synchronisation request has turned possible after one or more synchronisers
were released and the other one initiates the handling of the timeout condition.

5.2. Qualitative Evaluation
In the course of evaluating the here proposed computer architecture, some qualitative considerations

will be sufficient, because a quantitative evaluation based on analytic modeling was already carried out by
Tempelmeier in [52,54,55].

First of all, it has to be stressed that the evaluation criteria for real-time embedded systems are quite
different from those ones used with respect to batch or time-sharing computer systems. There the objective
of further development is to increase the processing speed. For real-time systems, however, the throughput
and the CPU utilisation are less important. What the user expects is the reliable and predictable fulfillment
of his requirements. Also, the cost of a process control computer has to be seen in a larger context Natur
ally, the costs of a two processor system as proposed in this paper are higher than those of a conventional
von Neumann computer. Since the latter cannot guarantee reaction times, it may be unable to cope
appropriately with exceptional and emergency situations of the external technical process. In comparison to
the costs of a damage of such a process, which is caused by a computer’s malfunction, like the non-timely
execution of a scheduled task or the loss of an interrupt, the price for an auxiliary processor will be almost
negligible.

In a conventional real-time computer every interrupt causes a considerable overhead. This is espe
cially unproductive, if the context contained in large register sets needs to be saved and later reloaded. In
most installations, the majority of the interrupts is generated by the interval timer, typically 1000 times per
second in order to realise system clocks with a one millisecond resolution. The clock interrupt handling
routine updates its time and date variables and checks - mostly unsuccessfully - whether any time-

-6 1 -

scheduled activities have become due. It is clear that thus a considerable amount of a computer’s available
processing time is wasted. The here proposed architecture uses simple hardware support to provide the
same functions based on a more accurate timing. By migrating the operating system nucleus to a special
device, the context-switching operations, which are necessary to be performed in the general processor, are
reduced to the minimum. The latter is only determined by the structure of the application and the employed
task scheduling strategy. As was mentioned already before, the deadline driven scheduling is optimal with
respect to the number of pre-emptions it causes.

In his dissertation [47], Schrott points out the problem of prolonged reaction times caused by long
phases, during which the operating system [cp. also 10] disables the recognition of interrupts. This measure
is usually applied to avoid interrupt cascades while executing elementary operating system functions and to
synchronise the access to basic operating system lists. The here proposed architecture solves this problem
by distributing the intrinsically independent functions of event recognition, task administration, and task
execution to separate units.

In the early days of real-time data processing the fundamental requirements of timeliness and simul
taneousness [33] were realised by the user himself. He employed the method of synchronous programming
to schedule, within his application software, the execution of the various tasks. To this end, he usually
wrote his own organisation program, a "cyclic executive" [37]. Thus, a predictable software behaviour
could be realised and the observation of the time conditions could be guaranteed. Later, the method of syn
chronous programming was replaced by the more flexible approach of asynchronous programming, which
is based on the concept of the task. Tasks can be activated and run at any time, asynchronously to a basic
cycle. The flexibility and conceptual elegance of the method was gained by renouncing predictability and
guaranteed time conditions. The auxiliary processor has been designed to solve these problems of asyn
chronous programming.

The most important measure for the performance of real-time systems is the response time. The latter
is heavily influenced by the software organisation and here especially by the operating system. Its overhead
has effects both on the task response times and the interrupt reaction times. The former depend on the
overall computing speed of a system and on the operating system overhead, which is executed together
with the user tasks in an interleaved manner. Thus, the overhead becomes part of the task response times.
Also the interrupt reaction times depend on a system’s hardware and software characteristics. As men
tioned above, owing to the internal organisation of an operating system and the necessary functions to be
performed, e.g. context-switching, there may be a considerable delay of unpredictable length before a con
ventional system can acknowledge a received interrupt. Both stated problems have been attacked with the
here proposed approach. They could be solved by the observation of the inherent independence between
running user tasks or operating system functions on one hand, and operating system routines or external
requests on the other. Based on their independence, the mentioned activities were assigned to different dev
ices and can be carried out in parallel, which reduces both task response and interrupt reaction times.

5.3. Outlook
In order to evaluate the feasibility of the here proposed auxiliary processor more thoroughly,

presently a simulation program is being developed. Also, a prototype is under construction. All hardware
features as mentioned in section 4.1 have been built. Since speed is not the objective of a prototype, but its
easy realisation and the provision of a comfortable environment to allow for frequent software
modifications, the primary and secondary reaction levels are modeled by one personal computer each. The
first one of them communicates via a digital interface with a local bus, to which all hardware features are
connected. The fifo data transfer between the two reaction levels is realised by a standard serial communi
cation link. The routines stated in chapter 4 could be directly implemented on the personal computers by
applying a corresponding Pearl compiler, which recently became available for PCs.

The development of the auxiliary processor is a contribution to a project on "Future Generation Pro
cess Control Computers for Use in Hard Real-Time Environments", carried out in cooperation with Prof. T.
Ichikawa, Information Systems, Faculty of Engineering, Hiroshima University, Japan. Its objective is to
realise an architecture for process control computers employed in time-critical applications characterised

-6 2 -

by providing inherent reliability. In Hiroshima a high-level language oriented descriptor architecture
named SPRING [41,57,58] was developed, which comprises a specially tailored operating system. After
successful check-out, the prototype of the auxiliary processor will be integrated into SPRING to form an
asymmetrical multiprocessor structure. It will serve as a fast event recognition device and will perform all
time-critical operating system and task scheduling functions.

"In conclusion, our trial could ... be recognised as a significant step towards the realisation of
advanced architectures with adequate role-sharing between hardware and software" [41].

-6 3 -

References
[1] Preliminary Ada Reference Manual. And: J.D. Ichbiah et al.: Rationale for the Design of the Ada

Programming Language. ACM SIGPLAN Notices 14,6 Parts A and B, June 1979
[2] Ada Reference Manual (July 1980). In: H. Ledgard: Ada - An Introduction. New York-Heidelberg-

Berlin: Springer 1981
[3] National Standards Institute, Inc., ANSI/MIL-STD-1815A-1983. Lecture Notes in Computer Science

155, Berlin-Heidelberg-New York-Tokyo: Springer-Verlag 1983
[4] S.R. Ahuja, A. Asthana: A Multi-Microprocessor Architecture with Hardware Support for Commun

ication and Scheduling. ACM SIGPLAN Notices 17,4,205-209, April 1982
[5] U. Ammann: Vergleich einiger Konzepte moderner Echtzeitsprachen. 6. Fachtagung der Gl ueber

Programmiersprachen und Programmentwicklung. Darmstadt 1980. pp. 1-18. Informatik-
Fachberichte 25. Berlin-Heidelberg-New York: Springer 1980

[6] C. Andres, A. Reischmann, P. Holleczek, W. Muehlbauer: Ein Pearl-Testsystem zum Einsatz in
verteilten Systemen. Pearl-Rundschau 3,5,247-250,1982

[7] R.G. Arnold, R.O. Berg, J.W. Thomas: A Modular Approach to Real-Time Supersystems. IEEE
Transactions on Computers, C-31,5,385-398, May 1982

[8] T.D. Atkinson et al.: Modem Central Processor Architecture. Proc, of the IEEE 63,6,863-870, June
1975

[9] R. Barnes: A Working Definition Of The Proposed Extensions For PL/1 Real-Time Applications.
ACM SIGPLAN Notices 14,10,77-99, October 1979

[10] R. Baumann et al.: Funktionelle Beschreibung von Prozessrechner-Betriebssystemen. VDI-Richtlinie
VDI/VDE 3554. Berlin-Cologne: Beuth-Verlag 1982

[11] A.D. Berenbaum, M.W. Condry, P.M. Lu: The Operating System and Language Support Features of
the BELLMAC-32 Microprocessor. ACM SIGPLAN Notices 17,4,30-38, April 1982

[12] B.M. Brosgol et al.: Matrix of Ada Language Implementations. ACM Ada Letters 11,3,71-76,
November 1982, as updated in 11,4,136-143, January 1983, and in 11,5,97-98, March 1983

[13] G.E. Brown, R.H. Eckhouse, Jr., R.P. Goldberg: Operating System Enhancement Through Micropro
gramming. ACM SIGMICRO Newsletter 7,1,28-33,1976

[14] P.J. Brunner, H. Boesmann, A. Tarabout, W. Werum: Universelles PEARL-Betriebssystem. KFK-
PDV 55, Karlsruhe, 1976

[15] G. Chroust: Orthogonal Extensions in Microprogrammed Multiprocessor Systems - A Chance for
Increased Firmware Usage. EUROMICRO Journal 6,2,104-110,1980

[16] DIN 44300: Informationsverarbeitung, Nr. 161 (Realzeitbetrieb), Maerz 1972
[17] DIN 66253: Programmiersprache Pearl, Teil 1 Basic Pearl, Vomorm, Juli 1981; Teil 2 Full Pearl,

Norm, Oktober 1982
[18] W. Ehrenbergen Softwarezuverlaessigkeit und Programmiersprache. Pearl-Rundschau 3,2,49-55,

1982
[19] B.F. Eichenauer: Prozessprogrammiersprachen und Portabilitaet. 5. Fachtagung der Gl ueber Pro

grammiersprachen. Braunschweig 1978. pp. 9-27. Informatik-Fachberichte 12. Berlin-Heidelberg-
New York: Springer 1978

[20] A. Ghassemi: Untersuchung der Eignung der Prozessprogrammiersprache PEARL zur Automa
tisierung von Folgeprozessen. PhD Thesis. Universitaet Stuttgart 1978

[21] W.K. Giloi: Grundlagen, Operationsprinzipien und Strukturen von innovativen Rechnerarchitek
turen. Gl - 8. Jahrestagung. Berlin 1978. pp. 274-307. Informatik-Fachberichte 16. Berlin-
Heidelberg-New York: Springer 1978

[22] W.A. Halang: On Methods for Direct Memory Access Without Cycle Stealing. Microprocessing and
Microprogramming 17, 5, May 1986

-6 4 -

[23] G. Heiden Let Operating Systems Aid in Component Designs. Computer Design 21,9,151-160, Sep
tember 1982

[24] R. Henn: Deterministische Modelle fuer die Prozessorzuteilung in einer harten Realzeit-Umgebung.
PhD Thesis. Technical University Munich 1975

[25] R. Henn: Zeitgerechte Prozessorzuteilung in einer harten Realzeit-Umgebung. Gl - 6. Jahrestagung,
pp. 343-359. Informatik-Fachberichte 5. Berlin-Heidelberg: Springer-Verlag 1976

[26] R. Henn: Antwortzeitgesteuerte Prozessorzuteilung unter strengen Zeitbedingungen. Computing 19,
209-220,1978

[27] H.H. Johnson, M. Maddison: Deadline Scheduling for a Real-Time Multiprocessor. Eurocomp. Conf.
Proceedings, 1974, pp. 139-153

[28] R.K. Johnson, J.D. Wick: An Overview of the Mesa Processor Architecture. ACM SIGPLAN
Notices 17,4,20-29, April 1982

[29] A. Kappatsch: Full Pearl Language Description. PDV-Bericht KFK-PDV 130. GfK Karlsruhe 1977
[30] W. Kneis (Ed.): Draft Standard on Industrial Real-Time Fortran. International Purdue Workshop on

Industrial Computer Systems. ACM SIGPLAN Notices 16,7,45-60,1981
[31] J. Labetoulle: Ordonnancement des Processus Temps Reel sur une ressource pre-emptive. These de

3me cycle, Université Paris VI, 1974
[32] J. Labetoulle: Real Time Scheduling in a Multiprocessor Environment. IRIA Laboria, Rocquencourt,

1976
[33] R. Lauben Prozessautomatisierung I. Berlin-Heidelberg-New York: Springer-Verlag 1976
[34] R. Lauben Prozessautomatisierung und Informatik. Gl - 8. Jahrestagung. Berlin 1978. pp. 381-394.

Informatik-Fachberichte 16. Berlin-Heidelberg-New York: Springer 1978
[35] C.L. Liu, J.W. Layland: Scheduling Algorithms for Multiprogramming in a Hard-Real-Time

Environment. J ACM 20,46-61,1973
[36] LTR Reference Manual. Compagnie d’informatique militaire, spatiale et aeronautique, Velizy,

October 1979
[37] L. MacLaren: Evolving Toward Ada in Real Time Systems. ACM SIGPLAN Notices 15,11,146-

155, November 1980
[38] K. Mangold: Ein quellenbezogenes Testsystem fuer PEARL auf einem Prozessrechner. PEARL-

Rundschau 2,6, 3-7, Dezember 1981
[39] G.J. Myers: Advances in Computer Architecture, 2. Ed., New York: John Wiley & Sons 1982
[40] P.M. Newbold et al.: HAL/S Language Specification. Intermetrics Inc., Report No. IR-61-5,

November 1974
[41] N. Nishi, H. Tsubotani, T. Ichikawa: SPRING: A High Level Language Architecture in Ada

Environment. Proceedings of the IEEE Computer Society’s International Computer Software and
Applications Conference (COMPSAC), 7-11 November 1983, pp. 373-377

[42] Periphere Computer Systeme GmbH: KE-Handbuch, Munich, 1981
[43] R. Roessler, K. Schenk (Eds.): A Comparison of the Properties of the Programming Languages Algol

68, Camac-IML, Coral 66, PAS 1, Pearl, PL/1, Procol, RTL/2 in Relation to Real-Time Program
ming. International Purdue Workshop on Industrial Computer Systems. Physics Institute of the
University of Erlangen. Nuremberg 1975

[44] R. Roessler: Betriebssystemstrategien zur Bewaeltigung von Zeitproblemen in der Prozessautoma
tisierung. PhD Thesis. Universitaet Stuttgart 1979

[45] H. Sandmayr: A Comparison of Languages: CORAL, PASCAL, PEARL, ADA and ESL. Computers
in Industry 2,123-132,1981

[46] V. Scheub (Secretary of the Pearl Association): Private communication, May 1985

- 65-

[47] G. Schrott: Ein Zuteilungsmodell fuer Multiprozessor-Echtzeitsysteme. PhD Thesis. Technical
University Munich 1986

[48] A. Schwald, R. Baumann: Pearl im Vergleich mit anderen Echtzeitsprachen. Proceedings of the
’Aussprachetag Pearl’. PDV-Bericht KFK-PDV 110. GfK Karlsruhe, Maerz 1977

[49] D.P. Siewiorek, C.G. Bell, A. Newell: Computer Structures: Principles and Examples. New York:
McGraw-Hill 1982

[50] E.E. Swartzlander Jr., B.K. Gilbert: Supersystems: Technology and Architecture. IEEE Transactions
on Computers, C-31,5,399-409, May 1982

[51] T. Tempelmeier: A Supplementary Processor for Operating System Functions. 1979 IFAC/EFTP
Workshop on Real Time Programming. Smolenice, 18-20 June 1979

[52] T. Tempelmeier: Antwortzeitverhalten eines Echtzeit-Rechensystems bei Auslagerung des
Betriebssystemkems auf einen eigenen Prozessor. PhD Thesis. Technical University Munich 1980

[53] T. Tempelmeier: Auslagerung eines Echtzeitbetriebsssytems auf einen eigenen Prozessor. Proc. of
Fachtagung Prozessrechner 1981,196-205

[54] T. Tempelmeier: Antwortzeitverhalten eines Echtzeit-Rechensystems bei Auslagerung des
Betriebssystemkems auf einen eigenen Prozessor. Teil 2: Messergebnisse. Report TUM-I8201,
Technical University Munich 1982

[55] T. Tempelmeier: Operating System Processors in Real-Time Systems - Performance Analysis and
Measurement. Computer Performance, Vol. 5, No. 2,121-127, June 1984

[56] T. Tempelmeier: Response Times of a Real-Time System with Microprogrammed Operating System
Kemel. Report TUM-I8508, Technical University Munich 1985

[57] H. Tsubotani, N. Monden, M. Tanaka, T. Ichikawa: A Computing System to Support Development
of Reliable Software. IEEE 1984 Proceedings of the Fourth Symposium on Reliability in Distributed
Software and Database Systems, pp. 232-237

[58] H. Tsubotani, N. Monden, M. Tanaka, T. Ichikawa: A High Level Language-Based Computing
Environment to Support Production and Execution of Reliable Programs. IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2,134-146, February 1986

[59] N. Wirth: Modula: A Language for Modular Multiprogramming. Software Practice & Experience 7,
3-35, 1977

[60] N. Wirth: Programming in Modula-2. Berlin-Heidelberg-New York: Springer 1982

Figure 2. Gantt diagram of a feasible schedule for a symmetric 3-processor system

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PI

P2

P3

0 4 /3 7 /3 11/3 19/3 2 7 /3 39 /3

T1 T2 T3 T4
i

T5 T6
Figure 3. Gantt diagram of a feasible schedule for a single processor system

T1 T3 T5 T
T2 T4 T2 T4 < 1 ^

T3 T6 T5 T6

Figure 4. General Configuration and Interconnections

INTERNAL DATAWAY

Figure 5. Time Related Hardware Components

SYSTEM RESET SYSTEM CLOCK

FIGURE 6. EXACT TIMING FEATURE IN A GENERALPROCESSOR

CLOCK OUTPUT

INTERNAL DATAWAY

FIGURE 7. EVENT RECOGNITION MODULE

BOLT STATUS • ENTER-RANGE - 1
BOLT STATUS - 0

FIGURE 8. HARDWARE IMPLEMENTATION OF BOLT SYNCHRONISER

SIGNAL

INTERNAL DATAWAY

FIGURE S. HARDWARE TO DETECT VALUE CHANGES OF

SHARED OBJECTS

EVENTS 0 N
TIME SIGNAL

OTHER EVENT
RECOGNITION
MODULES

PRL

SRL

EV

Figure 10. Logical Connection of Objects Maintained by the Auxiliary Processor

