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ABSTRACT

Recent results on singular perturbations are surveyed as a tool for 

model order reduction and separation of time scales in control system design. 

Conceptual and computational simplifications of design procedures are examined 
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INTRODUCTION

Although many control theory concepts are valid for any system 

order, their actual use is limited to low order models. In optimization of 

dynamic systems the "curse of dimensionality" is not only in a formidable 

amount of computation, but also in the ill-conditioned initial and two point 

boundary value problems. The interaction of fast and slow phenomena in 

high-order systems results in "stiff" numerical problems which require 

expensive integration routines.

The singular perturbation approach outlined in this survey 

alleviates both dimensionality and stiffness difficulties. It lowers the 

model order by first neglecting the fast phenomena. It then improves the 

approximation by reintroducing their effect as "boundary layer" corrections 

calculated in separate time scales. Further improvements are possible by 

asymptotic expansion methods. In addition to being helpful in design 

procedures, the singular perturbation approach is an indispensable tool for 

analytical investigations of robustness of system properties, behavior of 

optimal controls near singular arcs, and other effects of intentional or 

unintentional changes of system order.

This paper is a tutorial survey of recent works on singular 

perturbations in control and estimation theory. Only several other 

references are mentioned to establish mathematical background and illustrate 

related approaches. Among surveys and monographs providing a broader view of 

the field are [Al-10].
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ORDER REDUCTION

Suppose that a dynamic system is modeled by

X = f (x,Z,U,t,|l) (1)

|1Z = g(x,z,u,t,|i) (2)

where |jl > 0 is a scalar and x, z and u are n-, m-, and r-dimensional vectors, 
respectively. For |jl = 0, the order n+m of (1), (2) reduces to n, that is (2) 

becomes

0 = g(x,z,u,t,0) (3)

and the substitution of a root of (3),

z = cp(x,u,t), (4)

into (1) yields a "reduced" model

x =* f[x,cp(x,u,t),u,t,0] = f (x,u,t) . (5)

The use of |i = 0 is formal since then z = ^ in (2) may be unbounded for g ^ 0.

An analysis validating this order reduction procedure is outlined in the next 

section where it also becomes apparent that a reduced model (4) represents 

slow and neglects fast phenomena in (1), (2). In this respect the singular 

perturbation approach is related to familiar "dominant mode" techniques 

[B2,E4] which neglect "high-frequency" parts and retain "low-frequency" parts 

of models.

We note that (3) may have several roots each resulting in a different

reduced model (4). Most of the available theory is restricted to models (4)

corresponding to real and distinct roots of (3), along which ^  is nonsingular.
a z



In the special case when g is linear in z the reduced model (4) is unique. 

For a linear system

3

the root (4) is

x = A ^ x  + A-^z + B.jU 

M-z = A2]x + A22z + B2u

z - -A^2 a21x -A22 B2u ,

(6)

(7)

(8 )

yielding the reduced model

x ~ ( A ^ ^"12^22^21 ^®i”̂ 12̂ 22^2 * (9)

In applications, models of various physical systems are put in form (1), (2)

by expressing small time constants T., small masses m., large gains K etc.,
r 1 J A

_as T. - c.p., m. = c |i, K = —  etc., where c., c., c are known coefficients1 J J 6
[A5,B5]. In power system models p, can represent machine reactances or 

transients in voltage regulators [B8], in industrial control systems it may 

represent time-constants of drives and actuators [Bll], in biochemical models 

p- can indicate a small quantity of an enzyme [B4], in a flexible booster model 

p- is due to bending modes [B3], and in nuclear reactor models it is due to 

fast neutrons [B7,9,12]. Singular perturbations are extensively used in 

aircraft and rocket flight models [B6,10,13,14].

INITIAL VALUE PROBLEMS

When does a reduced solution x, z approximate the original solution 

x, z and in what sense? For clarity we begin with the linear system (6), (7), 

assuming that it is time-invariant and that u = 0. To exhibit the error



4

z - z = z + a-22̂ 21X let
-1T] = z + k22 A2ix + p,M.jX (10)

and choose such that the substitution of (10) into (6), (7) separates the 

^-subsystem, as

x = (A-q - A ^ A ^ A ^  + p,M2)x ■+■ a12t1 (11)

(ill = (A22 +M-M3)T1, (12)

It is easily shown that there exists p.* > 0 such that FL = M^([i), i = 1,2,3, 

are bounded for all p.€[0,p,*]. For (jl —* 0 the eigenvalues of the independent 

T|-subsystem (12) tend to infinity like the eigenvalues of — A00. Thus (12) 

is the "fast” part of (6), (7). It can be written as

= (A22+M,M3)H(t ) (13)

where T is the "stretched time scale" defined for all jjl > 0,

t-t
T = ---- , T = 0 at t = t . (14)LL O '

The system (13) depends continuously on p, and at p. = 0 it becomes

^(T)
dT = A22T](t ).

From (8) and (10) at p, = 0 the initial condition for (15) is

11(0) = z(tQ) - z(tQ).

(15)

(16)

The solution Tj (t ) of the "fast" subsystem (13) is the input to the "slow"
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subsystem (11). The homogeneous part of (11) is an 0 (h ) perturbation of 

the reduced model (9) with u = 0. If the eigenvalues of A 2̂ all have 
negative real parts, then T|(t )-»0 as T->°°, that is for H small 11 as a 
function of t rapidly decays away from tQ . Under this condition, integra­

tion by parts in the variation of parameters formula for the solution of 

(11) yields

x(t) = x(t) + 0(n) (17)

and, on substitution into (10),

z(t) = z(t) + T| (t ) + 0(h ). (18)

Thus the reduced model state x(t) approximates the x-part of the actual

state, while to approximate its z-part we need both z"(t) from (8) and T) (t )
from (14). The "boundary layer" correction Tj (t ) is significant only during

a short interval [t , t.l after whicho’ 1J
z (t) = z(t) + 0(H). (19)

A remarkable property of the singularly perturbed model (1), (2) is that the 

structure of the approximation (17), (18) remains the same for time-varying 

and nonlinear systems. This is established by a fundamental theorem due to 

Tihonov [Cl], whose essential conditions are imposed on a "boundary layer" 

system for 7] = z - z"

U  = g[x,z + 7](T),u,t,0] , (20)

t kA function of H is denoted by 0(H ) when for all h^[0>M'*] its norm is less 
1c ithan ch , where c > 0, h* > 0 and k are some constants.



6

a nonlinear analog of (15). By virtue of (3) an equilibrium of (20) is 

T] = 0. Assuming the existence and smoothness of x(t), z(t) for t€[t ,T], 

the conditions imposed on (20) are, first, that T| = o be an asymptotically 

stable equilibrium of (20) at x(tQ), z(tQ), u(tQ), tQ,with 11(0) = z(tQ) - z(tQ) 
belonging to ifs domain of attraction; second, that for all t€[tQ,T] the 

eigenvalues of ^  along x(t), z(t), u(t) all have real parts less than a 

fixed negative number. Then (17), (18) hold for all t€[to ,T] and (19) 

holds for all t€[t^,T].

The proof of this theorem is found in [A1,8;C1,2,3] and, under

slightly weaker conditions, in [C4]. The separation of time scales is

exemplified by the fact thatin the boundary layer system the variables

x, z, u and t are fixed parameters. The boundary layer correction T| (t )

used in (18) is the solution of (20) with (16), where x, z, u and t are

fixed at their values for t = t .o
Expressions (17) and (18) represent 0(p,) approximations of x(t), 

z(t). If f and g in (1), (2) possess k+2 derivatives in their arguments, 

then x(t), z(t) can be approximated up to 0(|ik) using series with terms 
depending on t and terms depending on t . These terms can be generated by 

methods in [A4?8,10;C4,5].

BOUNDARY VALUE PROBLEMS

In boundary value problems when z(t) is specified at both t = to
and t = T, two boundary layer correction terms T] and TL are needed to■L R
compensate for z(tQ)-z(to) and z(T)-z(T), respectively. The correction

TL is the same as T| in the initial value problems. To define T an ■Lj R
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additional stretched variable is introduced for all |jl > 0,

ct = ^77̂  , cr = 0 at t=T, (21)

and (20) is rewritten in cr-scale with x, ~z, u and t fixed at their values
for t = T. Then 7] = 7] (cr) is its solution for T] (0) = z(T) -z'(T). TheK K R
approximation of z(t) is sought in the form

z (t) = z(t) + T)l (t ) + T]r (cr) + 000 (22)

such that 7] and 7] decay exponentially as t and a Lj r
norms satisfy the "dichotomy condition"

- - , that is their

-°2T< c..e , for 0 < t <

c4a
lR il <  c3e » fo r  ■ 00 <  cr <  0

(23)

where c^,...,c^ are positive constants. A simple illustration is again the 

linear system (12). Its solutions in t and a scales at \i = 0 are

\ ( T )  = eA22\ L (0), T1r (ct) = e ^ - r i ^ O ) .  (24)

Let the first k eigenvalues of A22 have negative real parts and the 
remaining m-k eigenvalues positive real parts. Then (23) will result if 

7] (0) = z(t ) - z"(t ) belongs to the eigenspace corresponding to the firstLj O O
k-eigenvalues of A00, and if 7] (0) = z(T) - z"(T) belongs to the eigenspace 

corresponding to the remaining m-k eigenvalues of A22• Under this condition 

(17) and (22) hold for all t€[tQ,T], while (19) holds for tQ < t^< t< t2< T.
^ 2 _ _ _In nonlinear problems ^  along x(t), z(t), u(t), is assumed to 

possess the above eigenvalue distribution throughout the interval [tQ,T].
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Also z(tQ) and z(T) - z'(T) are restricted to be on manifolds for which

the equilibrium 7] = 0 of (20) is attractive in forward and reverse directions 
of t, respectively. Then (17) and (22) hold for all t€[tQ,T]. Higher order 

approximations are possible by asymptotic expansions [A4,8,10;C4].

In a wider class of "matched" expansion methods [A3,9] other 

conditions for 'Wtching" of "outer" (slow) and "inner" (fast) terms are 

used. They are often motivated by specific applications, such as in inter­

planetary guidance problems [D6]. The conditions outlined here originate 

from [Al;Dl-5] and can be found in more recent works [A8,10;D7,8] and, in a 

compact form, in [D9]. These conditions are particularly suitable for 

optimal control problems whose Hamiltonian symmetry is related to the 

dichotomy (23). Practical implications of this relationship are discussed 

in the section on "Trajectory Optimization."

STABILITY AND STABILIZABILITY

In approximations discussed so far stability requirements were

imposed only on (20), and the reduced solution x(t) was permitted to be
unstable. In infinite time-interval problems it is of interest to establish

stability properties of x(t), z(t) from stability properties of x(t) and

T|(t ). Several such results are available.

For linear time-invariant systems a stability result immediately

follows from the upper triangular form of the system (11), (12). Its nri-n

eigenvalues are perturbations of the n eigenvalues of ^ ^ " ^ 2A,22A'21 an<*
the m eigenvalues of -7 A00. If the real parts of these eigenvalues are\* z. z

negative
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Re\{A223 < 0, Re\{Al;L-A12A22A2]L3 < 0, (25)

that is, if the reduced solution x(t) and the boundary layer correction 7](t )

are asymptotically stable, then there exists |i* > 0 such that the original
solution x (t), z (t) is asymptotically stable for all |i€(0,p,*]. For linear

time-varying systems a similar condition is derived in [El,6], assuming that
the reduced model be uniformly asymptotically stable and that for t > t the— o
eigenvalues of k^(t) have real parts less than a fixed negative number.

In nonlinear systems the first requirement of (25) is imposed on
Ss _the eigenvalues of evaluated along x(t), z(t), u(t) for all t > t . Inoz — o

addition, x(t), z"(t) and

F(t) òf òf òg
òx ò:z òz

-1
òx (26)

evaluated along x(t), z(t), ù(t), are assumed to have finite limits x(°°), 

z(“ ) and F(°°) as t-°°, where ReX{F(°°)] < 0. Then, if x(tQ) and z(tQ) are in 

the appropriate domain of attraction, the limits x(t) and z(t) as t-*“ are

x(t) - x(°°) + 0(ii), z(t) - z(«) + 0(ijl) . (27)

This is the content of the stability theorem in [E9], whose proof (along with 

an estimate of the domain of attraction) is given in [E10]. Alternative sets 

of conditions are given in [El]. In [E4,5] similar conditions are employed 

to analyze stability of networks with parasitics, while a problem of absolute 

stability is discussed in [E7] and stability bounds for p, are estimated in 

[E8]. Some early results on stability of control systems with infinite gain 

coefficients are found in [Bl]. Certain theorems on linear systems with 

slowly varying coefficients, such as [E2] and [E3, Sect. 32], are related to
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[El,6]. A general stabilizability condition for linear time-varying 

systems is formulated in [G6]. Two special cases for linear time-invariant 

systems, are discussed in [Ell,12].

REGULATORS AND RICCATI EQUATIONS

Among the most actively investigated singularly perturbed optimal 

control problems is the general linear-quadratic regulator problem. For 

brevity we consider only the time-invariant case. When the system (6), (7) 

is optimized with respect to
00

J = 7 J* (y'y + u'Ru)dt (28)

where y = C^x + C^z and R > 0, then to implement the optimal control

u - h B̂ K
we have to solve

(29)

K
r . A'r . 211
A11 A12 A'11 p.

+
A21 A22 A '22
p, p. A, 012 p,

K - K
B'

R [B| — ]K + C'C = 0, (30)

where C = [C^ C^] . To avoid unboundedness as p-^O the solution is sought

in the form

Ku 0x) HK12(H) 
p,Kj2(|i) m.K22 (M.)

K = K (p<) = (31)
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which permits us to set (i, - 0 in (30). At p, = 0 an mxm equation for K22*

K22A22 + A22K22 " K22S2K22 + c^c2 = 0, (32)

where S2 = B2R ^B2, separates from the (n+m)X(n-hn) equation (30). If A22, 

B2 is a stabilizable pair, and if A22, C2 is a detectable pair, then a 
unique positive semidefinite solution K22 exists and the eigenvalues of 
A22 " S2K22 *lave ne§ative real parts. Another result of the substitution of 
(31) into (30) is that at ^ = 0 it is possible to express K 2̂ in terms of 

and K22, and to obtain an nXn equation for K^,

+ A'K1]L - K11BR"1B ,K11 + C'C = 0. (33)

The expressions for A, B and C are given in [F5]- An interpretation of 

(32) and (33) is that (32) yields a "boundary layer regulator" for the 

fast variable T) (T), and (33) yields the regulator for the reduced state 

variable x(t). For A,B stabilizable and k,£ detectable, the implicit

function theorem applied to (30) with (31) shows that

K± . = Rij + 0 04) i,j = l,2. (34)

Not only are the approximations calculated from lower order equations, 

but in addition the ill-conditioning of (30) has been removed.

If are used instead of the system (6), (7) with feedback 

control (29) becomes

x = (Ai r S l KH “ SKi 2 )x  +  (A12~SK2 2 )Z (35)

[Lz = (A21-S'Ku -S2K{2)x + (A22-S2K22)z (36)



where = B^R and S = B^R ^B^. If this system is asymptotically 

stable, then because of (34), its solution x(t), z(t) is within 0 (M-) of 

the optimal solution. The stability condition (25) can now be applied to 

the feedback system (35), (36). The boundary layer stability condition 

is satisfied by A22~S2K22* The condition for the reduced system is satisfied 

by the solution of (33)t Thus (35), (36) is a near-optimal system.

The singularly perturbed regulator problem was posed in [FI] with 

C2 = 0 and stable, which gave K22 = 0. The general time-varying problem 

was treated in [F3,5] using the notion of boundary layer controllability- 

observability. These results and extensions [F6,7,9,10] are based on the 

singularly perturbed differential Riccati equation. An alternative approach 

via boundary value problems is presented in [G8,19], its relationship with 

the Riccati approach is analyzed in [F12]. In [F2] it was shown that the 

reduced Riccati equation (33) can also be obtained from the reduced model 

(9). Asymptotic expansions are constructed in [F6,7] and applied to a 17th 

order power station model in [F8]. Two other order reduction techniques 

[F4,11] lead to equations similar to (33) and it would be of interest to 

investigate their relationship with the singular perturbation approach.

TRAJECTORY OPTIMIZATION

In trajectory optimization problems for the system (1), (2) some 

conditions are imposed on x,z at both t = t and t = T, and a control u(t) 

is sought to minimize the performance index
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An optimal solution must satisfy H^ = 0 and

x = H , P = -Hx (38)

M»z = H , M-q = -Hz, (39)

with 2n+2m boundary conditions. Here H , H , H , H = f, H = g, denoteu x z p C[
the partial derivatives of the Hamiltonian H = V + p ’f+q'g, and the adjoint

variables for (1) and (2) are p and |iq, respectively. At \i = 0 we use H^ = 0

and H =0 to eliminate z and q from (38) and to get the reduced system z

x = H , p = -H (40)p’ x

for which only 2n conditions can be imposed. Suppose that they are uniquely

satisfied by a continuously differentiable reduced solution x(t),p(t).

Since the reduced variables z‘(t),q(t) obtained from H =0, H =0 may notq z
satisfy the remaining 2m conditions, corrections Ì]l (t ),Tì (a) for z> and

P CO,P (ct) fot q, are to be determined from appropriately defined layer L R
systems

II

p
H

 t- dT (41)

q
ii

\ < V PR>* *
1

*
il

- " V W
(42)

where (41) is used at t = t and (42) at t = T. To be specific consider the 

problem with fixed end points,

z(tQ) = z°, z(T) = zT . (43)

Then the initial values for T]̂  and T] are
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\(°) = z°-z(t0), nR (0) = zT - z (T) (44)

and the additional boundary conditions are

\ ,PL~*0, T_>CD; PR 0’ CT ■ 00- (45)

Existence of optimal solutions and their approximation by reduced solutions 

have been investigated in [Gl,3,9] and extended in [G16,17] by a construc­

tion of asymptotic expansions. Unfortunately the applicability of these 

results is restricted by the requirement that ^ ( 0) and T)R (0) be sufficiently 
small. To what extent such restrictions can be avoided in a general 

nonlinear problem (1), (2) and (37) is still an open question. Results 

without restrictions on z , z are available for linear time-varying systems 

[G6,8,13,19] and for a special class of nonlinear systems [G14,15,20].
They are bpeifly outlined here.

Let theperformance index be (28), but on the interval [t ,Tl, and
o

consider the trajectory optimization problem for (6), (7) allowing that the 
matrices in (6), (7) and (28) be time-varying. Using a "dichotomy 
transformation" proposed in [G6]

xi = * i + r i Z = 2̂ +r2 (46)

p
= P(t) V + N(t) rl

L v . V . r2 .
(47)

where P(t) is a positive definite and N(t) is a negative definite solution 

of a differential equation analogous to (30), we transform (41), (42) into 
two separate "layer regulator systems"
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d\  r
dT I-A22(to) ' S22(to)P22(to ^ \ (48)

d\
da = tA22<T> - S22(T>N22(T)]\ (49)

where T)L = \  = r2~r2 and P22 ̂ o^ ,N22 ̂  are tIie Positive and the
negative definite roots of (32) at tQ and T. If for all t€[t ,T]

rank[B22,A22B2,...,A22 B2] = m  (50)

r a n k C ^ A ^ , . . . ^ “'1^ ]  = m  (51)

then the approximations (17), (22) and

P(t) = p(t) + 0 (h ) (52)

q(t) = q(t) + P22(t0)HL + N22(T)T]R + 0(H) (53)

o Thold for arbitrary boundary values z , z since (48), (49) satisfy the 

dichotomy condition (23). A less restrictive stabilizability-detectability 

condition can be used instead of (50),(51). This is the main content of 

[G13]. An "inverse" Riccati approach to the linear fixed end-point problem 

is developed in [F9]. In [G8] a different set of conditions is derived 

and asymptotic expansions are constructed for the linear boundary value 

problem.

In [G14,15] the above results have been extended to the nonlinear

problem
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x * f1(x,t) + A12(x,t)z + B1(x,t)u (54)

M-z = g1(x,t) + A 22(x,t)z + B2(x,t)u (55)

1 TJ = J J [v^(x,t) + z'C2 (x,t)C2 (x,t)z + U'R(x,t)u]dt. (56)

It is shown in [G15] that, if the matrices in (32), (48), (49), (50), (51)

are interpreted as the matrices of (54), (55), (56) evaluated along x(t),

then (50), (51) are sufficient for the approximation (17), (22), (52), (53)
o Tto hold for (54), (55), (56) with arbitrary z , z . The conditions 

derived in [G14] extend the results of [G8] to (54), (55), (56). Among 

other works on trajectory optimization, [G18] shows that (40) can also be 

obtained from the reduced system, [Gl] analyzes the scalar problem,

[G2,B5] give approximations without layer corrections and [G10] makes an 

attempt to include control inequality constraints. Applications to aircraft 

control problems are discussed in [G4,5,ll,12] and in [B6,10,13,14].

CONTROLLABILITY AND TIME OPTIMAL CONTROL 

In the design of time-optimal controls difficulties with high-order 

systems are considerable even in the linear time-invariant problems. A 

simplified design procedure has been developed in [Hi,2,3]. The discussion 

here is based on [H2], where also the following controllability result is 

obtained. The use of (10) and

i = x - hA12A’ F̂1 + 0(n2) (57)

transforms (6), (7) into
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i = [A + 0(|i)]| + [B + 0(M.)]u (58)

tiT| = [A22+0(M.)]11 + [b2 + 0(|J,)]u (59)

where A = All“•A•12A22A21, B = B1~A12A12B2’ See
It follows from (58), (59) that for (jl small the controllability

of the reduced and the boundary layer systems, that is of the pairs A, B 

and A-22* B2j ^lIlPl^es the controllability of the original system (6), (7).
, In the time-optimal control problem a control u, subject to

constraint |u^| < 1, i = l,...,r, is to transfer the state of (6), (7) 

from x(0) = x°, z(0) = z° to x(T) = 0, z(T) = 0 in minimum time T. 

Equivalently the problem can be solved in terms of 5 and T|. A control 

steering 5 »11 to zero in minimum time is of the form

u = -SgniB'e^' ̂ ' ^ p + B ^ e  22 q}, (60)

where cr is as in (21), p and q are constant vectors and 0(|i) terms have 
been neglected. When the eigenvalues of A^  aH  have negative real parts, 

the term depending on <j is significant only near T. For some a* < 0 and 

0 < t < T +|ia'* the control (60) can be approximated by

u = -SgntB'e^’(̂ _t)p}, (61)

which is interpreted as a time-optimal control for the reduced system (9), 

steering x to zero. For T+|io* < t < T the control (60) is approximated by

_ _ ”Aoo^
u^ = -SgnfB'p+B^e q} . (62)

We note from (8) that, after the last switching of u, z may be far from the 
origin and the boundary layer control u is needed to correct this error.
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This separation of slow and fast switchings was first analyzed for 

single-input systems in [HI], and then generalized in [H2]. A special case 

when (7) is due to actuator dynamics is discussed in [H3].

FILTERING AND SMOOTHING

Results on singular perturbation of linear-quadratic regulator 

problems should have their counterparts in the linear-quadratic-Gaussian 

filtering and smoothing problems. Preliminary investigations along this 

line have been reported in [11,3-6], The analysis in [16] shows that the 

duality is not complete and the singularly perturbed filtering and smoothing 

problems require separate treatment and cautious interpretation. The 

analysis is more complicated since the white noise input process u in (58), 

(59) "fluctuates" faster than the fast part 7] of the state no matter how 

small n* > 0 is. In the limit, 7] becomes a white noise process whose 

covariance is the same as the covariance of the reduced solution 7], and 

the integral error covariance of Tj(t)-7](t) tends to zero. Thus, as an 

input to a slow system, T)(t) can replace T)(t), but not as an approximation 

for each t. Pursuing such considerations it is shown in [16] that a 

filtering (or smoothing) problem for the system (6), (7) can be obtained 
by solving two lower order problems in separate time scales.

An example given in [12] indicates that deterministic observers 

also can be approached as singular perturbations. Control problems with 

small noise are treated in [17,8].
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CHEAP CONTROL AND SINGULAR ARCS 

In singular perturbation problems considered so far a small 

parameter p, multiplies derivatives and the differential order is reduced 

when p = 0. Another sign of singular perturbation phenomena is a charac­

teristic lowering of dimensionality for the limiting problem, such as 

in limit approaches to singular optimal controls [Jl]. An example of these 

problems is

x = Ax + Bu, x(0) = x° (63)

T
J = h J* (x'Qx+p2u'Ru)dt (64)

0
where J is to be minimized for p. small. In [L2] analogous problems for 

systems governed by partial differential equations are called "cheap 

control" problems since the cost of the control u is cheap relative to that 

of the state x (for Q>0). Other applications include study of limiting 

possibilities for regulators and filters [J2,5;I8].

When |jl = 0, the resulting problem is a well-known singular problem 

[J3] whose solution satisfies the singular arc condition

B'Ko = 0 (65)

for t > 0  and the appropriate Riccati gain Kq . Motion is thereby restricted 

to a manifold of dimension at most n-r. By obtaining the asymptotic 

solution of (63), (64) as |i-*0, we show how this reduction in order comes 

about and, simultaneously, discover the nature of the initial control 

impulse. For p>0, the feedback control is
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u = - - y  r ' V k x  (66)
M*

where K > 0 satisfies the singularly perturbed problem

H J tt O •% *

M< + M* (KA+A'K+Q) = KBR_ B'K, K(T) = 0. (67)

The limiting solution Kq of (67) within (0,T) satisfies the singular arc 

condition (65). Asymptotic solution of (67) is complicated and considerably 

different however, in a hierarchy of cases (Case 1 where B'QB > 0, Case 2 

where B ’QB ® 0 and B|QB^ > 0 for B^ — AB-B). This reflects the situation 

for the singular arc problem [J3,4] where the initial optimal control 

successively becomes increasingly impulsive and the singular arc increasingly 

restrictive. A singular perturbation analysis in [J6-9] reveals the detailed 

structure of these phenomena.

TIME-DELAY SYSTEMS

The difficulties incumbent with control systems having time delays 

have motovated various approximations. When the delay is small, it is often 

neglected and a tractable "nominal" problem is solved. Such design procedures 

can be justified in terms of singular perturbation methods. Boundary 

layer phenomena do occur, although they are not of lowest order importance. 

Interesting and significant extensions are to problems with both small 

parameters multiplying derivatives and small delays. Discussions with 

applications to nuclear reactor models occur in [Kl-4] . In [K5] a method 

is proposed replacing several small time constants by a single time-delay.
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DISTRIBUTED PARAMETER SYSTEMS

From the results of [LI,2,3] it can be expected that the singular 

perturbation techniques will be among the main tools for asymptotic analysis 

and design of optimal control of distributed parameter systems. Several 

generalizations of the finite dimensional linear-quadratic problems are 

available. In particular, a distributed parameter analog of the method 

[F5,7] is developed in [L3] for systems described by singularly perturbed 

parabolic differential equations.

CONCLUSION

It seems that, instead of giving a short summary of solved 

problems, the conclusion of a survey of a new direction of research should 

concentrate on missing links, restrictive assumptions, and hints of new 

problems. Starting with Order Reduction the need for a systematic modeling 

procedure to formulate the model (1), (2) is apparent. Conversely, this 

model is expected to interpret other order reduction procedur'es as limit 

processes. In Initial and Boundary Value Problems, controllability and 

stabilizability studies may relax the restrictions of stable initial and 

final manifolds. Although Optimal Regulators seem a solved problem, 

there remains a desire to reduce the dimensionality of the feedback matrix.

In Trajectory Optimization, restrictions on norms of boundary layer jumps 

should be, and very likely can be, removed for a wider class of Hamiltonian 

systems. The only result with constrained control is the linear time-optimal 

control. Various generalizations to other bang-bang controls are visible.
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In addition to linear regulators, other optimum feedback design 

problems need to be solved. Order reduction in dynamic programming and 

Hamilton-Jacobi optimization approaches would result in even bigger 

conceptual and computational simplifications. Singularly Perturbed 

Filtering, Smoothing, Singular Arc, Distributed Systems and Time-Delay 

Problems require further exploration. More work on numerical aspects of 

these problems is also needed. What has been surveyed here is only a first 

step.
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