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ABSTRACT
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Mathematical reasoning provides the basis for problem solving and learning in many complex 
domains. A model for mathematical reasoning in support of explanation-based learning is presented, and 
an implemented learning system in the domain of classical physics is described. The system's 
mathematical reasoning processes are guided by the manner in which variables are cancelled in specific 
problem solutions. Attention focusses on how obstacles are eliminated from calculations. Obstacles are 
variables that preclude the direct evaluation of the problem s unknown. Analyzing the cancellation of 
obstacles leads to the generalization of the specific solution. An illustrative example highlights an 
important issue in explanation-based learning, namely generalizing number. It is argued that such 
generalization requires extension of the sample solution s explanation. This type of generalization cannot 
be performed by the standard explanation-based approach of propagating constraints. An approach that 
overcomes this shortcoming is presented.
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ANALYZING VARIABLE CANCELLATIONS TO

GENERALIZE SYMBOLIC MATHEMATICAL CALCULATIONS

1. INTRODUCTION

We are applying the paradigm of explanation-based learning [l-3] to the generalization of symbolic 

mathematical calculations. The mathematical reasoning component of an implemented machine learning 

system is presented. A significant feature of this system is that it can verify and augment human- 

provided solutions to specific problems. Once understood, the technique used by the human is generalized, 

and the result is added to the system s knowledge base. This new knowledge is then available to help solve 

future problems and as a stepping stone toward acquiring more difficult concepts.

In explanation-based learning, a specific problem solution is generalized into a form that can be later 

used to solve conceptually similar problems. The generalization process is driven by the explanation of 

why the solution worked. Deep knowledge about the domain allows the explanation to be developed and 

then extended.

Our system is capable of performing many of the mathematical manipulations expected of a college 

freshman who has encountered the calculus. Mathematical reasoning provides the basis for problem 

solving and learning in many complex domains. We concentrate on the manner in which variables are 

cancelled in specific calculations. Reasoning about these cancellations leads to a general version of the 

specific solution. Currently we are focussing on generalizing solutions to college-level physics problems: 

hence the name of the complete system. Physics 101. (The overall operation of this system is described in 

[4].) The domain of classical physics provides realistic and complex problems with which our 

understanding and generalization algorithms can be tested. A physics problem concerning conservation of 

momentum is used as an illustrative example in this paper. Several other problems, including one 

involving conservation of energy, have also been solved using the techniques described here.
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The sample momentum problem addresses the important issue in explanation-based learning of 

generalizing number. Generalizing number can involve generalizing such things as the number of entities 

involved in a situation or the number of times some action is performed. This issue has been largely 

ignored in previous explanation-based learning research. Instead, other research has focused on changing 

constants into variables and determining the general constraints on those variables. While we recognize the 

importance of doing this, in our system we have concentrated on augmenting the explanation. Once the 

explanation is augmented, a standard explanation-based learning algorithm [5] is applied.

We envision incorporating ideas such as ours into systems that perform symbolic mathematical 

computations [6-9]. In this vein, it can be viewed as a learning apprentice [10-14] for domains based on 

mathematical calculation. Learning apprentices have been defined [10] as

interactive knowledge-based consultants that directly assimilate new knowledge by observing and analyzing 
the problem-solving steps contributed by their users through their normal use of the system.

Since our system constructs detailed explanations, it can explain its actions to naive users, point out faulty 

human solution steps, and fill in the gaps in sketchy calculations. In addition, it graphically illustrates its 

processing during generalization. For these reasons, this work also has implications for intelligent 

computer-aided instruction (ICAI) [15, 16]. Although we are currently working within the domain of 

physics, the results obtained are relevant to any mathematically-based domain.

2. INITIAL KNOWLEDGE

Physics 101 possesses a large number of mathematical problem-solving strategies. For example, it 

can symbolically integrate expressions, cancel variables, perform arithmetic, and replace terms by 

utilizing known formulae. Figure 1 contains the initial physics formulae provided to the system. These 

formulae are instantiated for each specific physical situation. Newton's second and third laws are 

included. (Newton s first law is a special case of his second law.) The second law states that the net force 

on an object equals its mass times its acceleration. The net force is decomposed into two components: the 

external force and the internal force. External forces result from any external fields that act upon objects. 

Object Is  internal force is the sum of the forces the other objects exert on object I. These inter-object
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forces are constrained by Newton s third law, which says that every action has an equal and opposite 

reaction.

— 1 '  ̂ j  —  ■ \
Vobji [velocityo5jl(t)s - positionobj,(t) ]

"........ . 1 '  ̂ J ■■■■! I I ^
Vobji [acceleration objl(t) s -  velocity obj,(t) ]

---- * ---------- 1
Vobji [forcenet o5j,(t) =massobj, * acceleration^)]

---- * ----1 ----1
Vobji [ force „et̂ bjl(t) 1 force external,objl̂  + ôrceinterndl,objl̂  ̂]

objN■— —11 ...  ̂ n ■ \
Vobji [force¡nterni| 0bj|(t): f°rceobjj,objl̂ ]̂

objJ :obj1 

objJSobjl

Vobji [VobjJirtji [forceobjJobjl(t) s -  forceobjlobjJ(t)]]

Figure 1. The Initial Physics Formulae of the System

3. UNDERSTANDING SOLUTIONS

Lnderstanding a human-provided solution involves two phases. First, the system attempts to verify 

that each of the human s solution steps mathematically follows. If successful, in the second phase the 

mathematical reasoning component of Physics 101 builds an explanation of why the solution works. A 

sample collision problem illustrates these two phases.

V erifying Solutions

Assume a human uses equation 1 while solving a two-object1, one-dimensional collision problem.

(See [4] for more details about this sample problem.) The goal is to determine velocityob] Y Y 0 2) - the

velocity, in the .r-direction, of object 1 at time 2. The value of the other seven variables are known.

For clarity, a two-object collision problem is assumed here. However, the current implementation requires an example 
involving at least three objects to properly motivate the general version of equation 1. Later sections of this paper describe the reasons 
for this.
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" “ W ' l  * - « * ,  «W dr-W M  v e tod .,^ ,« , + masSo6j2 ^  (1)

being explicitly stated, the principle of conservation of momentum is being invoked as the

momentum W  X vet e i y ) 0f the objects at two dilferent times is equated This

variation of any formula known to the system (fi “  eqUat,°n “  "0t 3
■S needed if Physics 101 is ^  ph.vslcaily-cons,stent mathematical derivation

time at which I  ^  ^  ‘ * “  * *  -  -  -  R a t io n  only dilfer as to the

the general form of '  “  aUemPt "  “  delermme 3 expression describinggeneral form of one side of the equation.

The actual calculations of the system appear in figure 2 The o , •
„ .. in ngurei. The goal is to convert, via a series of

ta - ■ i  -  -  < w ~ — —  

or o . i . , u , i  ,r t “  1 “  ” m  m * “ p
sides.) expressions are termed right-hand

Figure 3 illustrates three possible forms of the underlying time d h
could be periodic d k ^-dependent expression. The expression

periodic, and hence could be eauated »> .•
Alternatively the • by SOme number of periods,

ernatively. the expression could be parabolic. Here there would be
times where it is valid . d be some quadratic relationship between

respect to f  eqU3te ^  “ P"“ 8'0"- A third ^ ¡ b i l i t y  is that the expression is constant with

Figure X Equating an Expression at Two Times
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massobjf velocityobj1x(t) + massobj2 velocityo5j2 X(t)

S u b s t  F o rm u la e  : massobji / accelerationobj 1 x(t) dt +massobj2 /  acceleration obj2x(t) dt

S u b s  t T o M e r g e  A l g e b r a  : massobj1 / ( forcenet,objl,xM / niassobji)dt + mass^ / (forcenet(0bj2,x(t) / massobj2)dt

C o n s t a n t s O u t O f C a lc u lu s  : (massobj1 / massobj1 )J*forcenetobj1iX(t) dt + (massobj2 / m ass^) / forceneti0bj2 (̂t)dt

C a n c e lA lg e b r a  : 1 J*force.0bj 1 ,X̂  ̂*  + 1 ! ^ n e ^ o b \ Z ^  *

R e m o v e ld e n t i t ie s  : /* ™ w t* jij|W *  + /force ̂ ^ ( t )  dt

S u b s t  F o rm u la e  : |  (force externa|0bj1iX(t) + forcejnterna|0bj1x(t) )dt + /  (force externa|0bj2(X(t) + forcejntern4j obj2tX(t) )dt

S u b s  t  F o rm u la e  : 1 (force externail0bji^(t) + f°rceobj2,objlTx̂ t) )dt + /(force externa|0bj2x(t) + force 0bjii0bj2,x(t))dt

S u b s t T o M e r g e A lg e b r a  : / (forceexterna|0bj1(X(t) - forceobj10bj2(X(t))dt + /(forceexternaii0bj2(X(t) + force0bjii0t,j2,x(̂ )̂dt

C o m b in e C a lc u lu s  : / (forceexterna| obj i iX(t) - forceobj10bj2tX(t) + forceexterna| 0bj2 (̂t) + force objlobj2(X(t))dt

C a n c e lA lg e b r a  : / (forceexterna|0bji^(t) + Okgm /s2 + forceexternai,obj2,x(t))dt

R e in o v e ld e n t i t ie s  : /  (force externa|,obj1,X(t) + f°rce external,0bj2̂ f̂̂ )dt

S u b s t V a lu e s  : /(Okgrn/s2 + 0kgm/s2 )dt

A d d N u m b e r s  : /Okgrn / s2 dt

S o lv e C a lc u lu s  : constant1

Figure 2. Verif ying Equation 1

The annotations to the left of the expressions in figure 2 are produced by the system. These 

annotations indicate how Physics 101’s mathematical component explains each calculation step. In the 

first step, the formulae substitutions are chosen as a last resort.2 This means that they are not chosen in 

support of a variable cancellation. In the next step, the formulae substitutions are chosen because the mass 

terms can be cancelled. Before this cancellation can take place, however, the cancelling terms must be 

brought together. The calculation continues in a like manner until all the unknown variables are
_____________________  i

2 Initially, the system chose to replace the velocities by the derivative of the positions. This led nowhere and the system 
backtracked. No other backtracking occurred during the calculation of ngure 2. The system is guided by the goal of cancelling 
variables, which greatly reduces the amount of unnecessary substitutions during problem solving. See [17] for further discussion of 
Physics 101's problem solver.
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eliminated. Then the known values are substituted and the ensuing arithmetic and calculus is solved. 

Since the initial expression is constant, it can be equated at any two times. Equation 1 is valid.

Explaining Solutions

At this point the system has ascertained that the human’s use of a new equation is indeed valid. In 

the next step, the system must determine a reason for including each variable in this equation. This will 

determine which variables are required in its general form.

In the explanation process, Physics 101 determines how the value of the current problem’s unknown 

is obtained. The problem s unknown is the variable whose value is being sought; in the sample problem. 

velocityobj j. During this process, the system determines the role of each variable in the initial expression of 

the calculation.

During a calculation one of three things can happen to a variable: ( l )  its value can be substituted, 

(2) it can be symbolically replaced during a formulae substitution, or (3) it can be cancelled. 

Understanding and generalizing variable cancellation drives Physics 101’s mathematical reasoning 

component. The system can identify the following five types of variable cancellations:

additive identity
These are algebraic cancellations of the form x  — x  — 0. The second CancelAlgebra step in figure 2 
contains two additive cancellations.

multiplicative identity
These are algebraic cancellations of the form x  l x  — 1. The first CancelAlgebra step in figure 2 involves 
two multiplicative cancellations.

multiplication by zero
These are cancellations that result from an expression (which may contain several variables) being 
multiplied by zero. None appear in figure 2.

integration (to a number)
This type of cancellation occurs when variables disappear during symbolic integration. When integration 
produces new variables (other than the integration constant), this calculation is viewed as a substitution 
involving the original terms. No cancellations of this type appear in figure 2.
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differentiation (to a number)
This is analogous to cancellation during integration.

Obstacles are variables appearing in a calculation but whose values are not known. Primary obstacles 

are obstacle variables descended from the unknown. In the momentum problem the only primary obstacle 

is forceinternal obj j.3 If the value of each of the primary obstacles were known, the value of the unknown 

would be specified. The system ascertains how these obstacles are eliminated from the calculation. 

Cancelling obstacles is seen as the essence of the solution strategy, because when all the obstacles have been 

cancelled the value of the unknown can be easily calculated.

Figure 4 illustrates the concept of primary obstacles. The goal of the sample problem is to determine 

the value of a velocity. Since this is not known, the problem is transformed to that of finding acceleration 

(for simplicity, the integral sign is ignored here). However, the value of acceleration is not known either. 

This leads to the substitution of the net force divided by mass. The mass is known, but the net force is 

not. The net force is then decomposed into two components - a known external force and an unknown 

internal force. The internal force is the lone obstacle to knowing the value of the velocity. Physics 101 

needs to determine how the solution in figure 2 circumvents the need to know the value of this variable.

velocity

acceleration

/ \
f  orce /  mass

force + force
external internal

Figure 4. Decomposing the Unknown

3 Actually, the right-most occurrence of force ob j2ob n  in figure 2 satisfies the above definition of a primary obstacle. However, 
since this \ariable is descended Irom a primary obstacle ( forceinternal obJ iX is not considered a primary obstacle. Cancelling a 
primary obstacle means that the values of its descendants need not be known.
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First, the system determines that forceinternal obj  l is eliminated by being additively cancelled.

Although cancelled additively, this variable originally appears in a multiplicative expression (a = — ).
m

Hence, the system must determine how it is additively isolated. It discovers that multiplication by 

m a s s obj i performed this task. So an explanation of the massobj 1 term in the left-hand side expression is 

obtained.

The next thing to do is to determine how the terms that additively cancel forceinternal ^  x are 

introduced into the calculation. Forcein[ernal obj x is replaced by the equivalent forceobj 2.obj 1. which is 

cancelled by the equal-and-opposite forceobJ \ ob)2 descended from velocity^} 2. The forceobj loAy 2- too. 

must first be additively isolated. Physics 101 discovers that the left-hand side’s massobj 2 performs this 

isolation. The system now has explanations for the massobj 2 and the velocity obj 2 terms in the left-hand 

side.

Cancellation of the primary obstacles requires the presence of additional variables on the left-hand 

side of the equation. These extra terms may themselves contain obstacle variables. These are called 

secondary obstacles. Physics 101 must also determine how these obstacles are eliminated from the 

calculation. The elimination of the secondary obstacles may in turn require the presence of additional 

variables in the left-hand side expression, which may introduce additional secondary obstacles. This 

recursion must terminate, however, as the calculation is known to have eliminated all of the unknown 

terms.

Once the system determines how all of the obstacles in the calculation are cancelled, generalization 

can occur. At this time, Physics 101 can also report any variables in the left-hand side of a calculation 

that are irrelevant to the determination of the value of the unknown.

4. GENERALIZING SOLUTIONS

Physics 101 performs generalization by using its explanation of the specific solution to guide the 

determination of the problem s unknown in the general case. This process is illustrated in the following
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figures.4 The system starts with the generalized unknown, velocityob}1. It then performs the general 

versions of the specific formulae substitutions that produced the first of the primary obstacles. This can be 

seen in figure 5.

velocity ̂ ¿(t)

= |accelerationobj|X(t)dt 

s |(force„eti0bjl x(t) / massobjl)dt 

: (1 / mass ĵ,) j* forcenet objlx(t) dt

* ^  / massobj|) j (̂ orceexternal,objl,X̂  ̂ + ôrceinternal,objl,X̂ ))dt 

Figure 5. Introduction of the Primary Obstacle

Recall that the internal force is additively cancelled in the specific case. Hence, the next 

generalization step is to additively isolate forceinrernal . The variable mass^jj is introduced into the

left-hand side of the general calculation in order to accomplish this isolation. Figure 6 presents this 

generalization step.

4 During generalization, Physics 101 produces a graphical description of its processing. The figures that follow (except figure 9) 
aTe actual outputs of the implemented system. It is expected that these outputs will prove useful in an ICAI svstem.
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massobj, velocity ̂ ¿(t) 

s massobjl /  acceleration obj| X(t )  dt 

s massobjl / ( forcenet,objl,xM / niassobj,)dt 

8 (massobji / « n a s s o b ^ / f o r c e n e t ^ l t j d t

8 1 (f f°rcenet,obM(t)dt

8 / forcenet,obM(t)dt

= |  (forceexterMlobj|X(t) + force;nterna| 0b|jX(t) )dt

Figure 6. Introduction of Massobj, to Additively Isolate the Primary Obstacle

At this point the general version of the primary obstacle is isolated for an additive cancellation. To 

perform this cancellation, those terms that will cancel the internal force must be introduced into the 

general calculation. The system determines that in the specific solution the net internal force acting on 

object 1 is indirectly cancelled because each of the inter-object forces acting upon object 1 is individually 

directly cancelled. (Recall that in figure 2. the formula forceinternal 0bjl = forceobj2objX is used. The second from 

last formula in figure 1 is the general version of this specific formula.)

In the general case, all of the other objects in a situation exert an inter-object force on object I. All of 

these inter-object forces need to be cancelled. In the specific case, velocityobj2 produced the canceller of 

object 1 s internal force. The massobj 2 term is needed to isolate the canceller for the additive cancellation. 

So to cancel forceinrernal ob]1 in the general case, a mass X velocity term must come from every other object 

in the situation. Figure 7 presents the introduction of the summation that produces the variables that 

cancel forceinternal objl. Notice how the goal of cancellation motivates generalizing the number of objects 

involved in this expression.

Once all the cancellers of the generalized primary obstacle are present, the primary obstacle itself can 

be cancelled. This is shown in figure 8, which is a continuation of figure 7 (the last line of figure 7 is 

repeated in figure 8).
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objN

massobjl velocity objl.x(̂ ) + 2  mass 05jj velocity 0bjJ,x̂ ^
objJ :«bj1 

objJiobjl

objN

s mss objl /  acceleration obj,x(t) dt + £ mass objJ J acceleration objJ x(t) dt
objJ sobjl 

objJiobjl

objN

= massobjl / (force net,objl,x̂  f niassobjl)dt + 1 massobjj  f(forcenet objJ x(t) / massobjj)dt
objJ sobjl 

objJiobjl 

objN

s (massobj, /  massobj,)Jforcenet,objl̂ (t)dt + £ (mass ĵj / massobjJ)/forcenetobjĴ (t) dt
objJ sobjl 

objJiobjl 

objN

= 1 Xforcenetfltô xfti <*» + l  1
objJ :obj1 

objJiobjl 

objN

s / forcenet,0bjl^)dt + l  |forcenetobjJX(t)dt
objJ sobjl 

objJiobjl

objN

s |(forceexterna|0bj|X(t) + force¡nternal,objl,X(t) )dt + £ J (forceexternal,objJ,+ f°rce internal,objJ,X^)dt
objJ sobjl 

objJiobjl

Figure 7. Introduction of the Cancellers of the Primary Obstacle

Now that the primary obstacle is cancelled, the system checks to see if any secondary obstacles have 

been introduced. As can be seen in figure 8, the inter-object forces not involving object I still remain in the 

expression. Figure 9 graphically illustrates these remaining forces. All of the forces acting on object I have 

been cancelled, while a force between objects J and K still appears whenever neither J nor K equal I. This 

highlights an important aspect of generalizing number. Introducing more entities may create interactions 

that do not appear in the specific example.
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objN

I  (forceexternal,objU^) + f°rceinternal.objl,X^)dt + 2 | (f°rceexternal,objJ,X^ + f°rceinternal,objJ,X^)dt
objj :obj1 
objJ Sobjl

objN objN objN

J  (force external,objl,x(t) + Z  f°rceobjJ,objl,xM)dt + 2 / (f°rce external,objj,X^ + £  f°rceobjK,objJ,xM)dt
objj sobjl objj =obj1 objK =obj1
objJ*objl - objj Sobjl objKtobjJ

objN objN objN

|(forceexterni|obj|,x(t) + 2 forc8objl,objJ,X^)])dt + 2 / (f01-06external,objJ,xi1 ̂ + 2 forceobjK,objJ,xM)dt
objj =obj1 

objj Sob jl

objN

objj =obji 

objJSobjl
objK :obj1 

objK SobjJ

objN objN»bjN objN objN objN

I  (forceeternal,objl,X^) + 2 [ “ f°rceobjl,objJ,xM] + 2 force external,objj,X^ + 2  2 forceobjK,objJ,X^))dt
O b lJS o b ll  nhi.l Z n h il aKi.I * aKo4 aKiV » « k Uobjj =obj1 

objJSobjl

objN

objj sobjl 

objJSobjl
objJSobjl objKsobjl 

objJSobjl objK SobjJ

objN objN objN objN

/ ( loreee«errttlibw(*)+ ï  0k9m / s * +  I  f<raexte™i,ol>jJ,X<t> + l  l
objJSobjl objJSobjl obiJsobM obiKsobhobjJSobjl 

objj Sobjl
objj sobjl 

objJSobjl
objJSobjl objK sobjl 

ob jj S ob jl ob jK S objj ob jl

Figure 8. Cancellation of the Primary Obstacle

Figure 9. The Remaining Inter-Object Forces
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Physics 101 cannot eliminate the remaining inter-object forces if the specific example only involves a 

two-object collision. It does not detect that the remaining forces all cancel one another, since in the two- 

object example there is no hint of how to deal with these secondary obstacles. A three-body collision must 

be analyzed by the system to properly motivate this cancellation. (In a three-body collision, force^  3 ohj2 

cancels force^j 2 ,obj 3» neither of these variables are descendants of velocityobj j.) When the specific example 

involves three objects, the system continues as in figure 10. It ascertains that the remaining inter-object 

forces cancel.

objN

mass 0bj, velocity obj,x(t) + l  niassobjJ velocity ̂ ¿ ( t )
objJ iobj1 

objJiobjl

I

a

objN objN

= |(forceexterna|obj|X(t) + £ Okgrn/s2 + £ force external, objJ,xM
objJiobjl objJiobjl

objJiobjl objJiobjl

objN objN

= / (force external,objl^^) + l  Okgrn/s2 + £  force external,objJ ît)
objJiobjl objJ lobjl

objJiobjl objJiobjl

objN

= j* (force extema|, 0b jl,xM  +  £  ^orce external,objJ,x(^)dt
objJiobjl 

objJiobjl

Figure 10. Cancellation of the Secondary Obstacles

Figure 11 contains the final result of generalization. A cQnstraint propagation algorithm [5] is applied 

to the calculation structure of figure 10. This algorithm determines that there is no constraint that 

restricts this formula to the x-direction. It applies equally well to the y- and z-components of velocity. 

Hence, the acquired formula is a vector law. This process also derives the constraints that the masses of 

the objects be constant over time (since each was factored out of a temporal integral - see figure 2), and 

that the objects cannot have zero mass (since their masses appear in the denominator of expressions).

objN ObjN

+ l  l
objJiobjl objKiobj 1 

objJiobjl objKtobjJ objl

objN objN

+ £  £  Okgrn/s2 )dt
objJiobjl objKiobjl 

objJiobjl objKiobjJ objl
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The Result of Generalization

objN_____  ̂ objN

force external,objliO : /  £ massobjl velocity objl(t)
objl :«bj1 obji: obj1

The Preferred Formulation

objN_____  ̂ objN

— £ force eternal,objli*) 5 £ massobji velocity objlf1)
dt objl s objl „ objl: obj 1

Preconditions

(AND (IndependentOf ? mass t) (NOT (ZeroValued? mass obj|)))

Figure 11. The Final Result

Notice that those variables whose values are used in the specific solution remain in the general 

formula. Only symbolic cancellation can fully eliminate a variable. The differential form of the simplified 

final equation is produced and added to Physics 101 s collection of general formulae. (Generalizing the 

two-body collision results in an expression still containing those inter-object forces that do not involve 

object I.) The new formula says: The rate of change of the total momentum of a collection of objects is 

determined by the sum of the external forces on those objects. Other problems, which involve any number 

of bodies under the influence of external forces, can be solved by the system using this generalized result.

The Cancellation Graph

Figure 12 contains the .cancellation graph for a three-body collision problem. This data structure is 

built by the system during the understanding of the specific solution. It holds the information that 

explains how the specific example s obstacles are eliminated from the calculation. This information is used 

to guide the generalization process illustrated above. This graph and its relation to the preceding figures are 

summarized below.

The graph in figure 12 records that the only obstacle of the unknown (velocityobj f) is object I s 

internal force. This primary obstacle is blocked from an additive cancellation because it is divided by mass 

(figure 5). Another mass term cancels the additive blocker (figure 6). Once object I s internal force is
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Unknown
I

velocijy obj J 

PrimaryObstacle 

force internal,obj 1

AddBlocker
!

1 /  mass obj l
I

CancellingExpression

CancellingExpression 

+

force Qbj i obj 2

m ass obj 1 AddBlocker

1 /  mass obj 2

Secondar yObstacle 

force internal, ob j 2

Secondar yObstacle 

force internal, ob j 3

CancellingExpression AddBlocker CancellingExpression CancellingExpression AddBlocker FullyCancelled 

mass obj 2 l / m a s s obj 2 force obj2,obj3 m assobj 3 l / m a s s obj 3

FullyCancelled AddBlocker

v I
1 / m a s s obj3 

FullyCancelled

FullyCancelled

Figure 12. The Cancellation Graph

isolated, it is additively cancelled by forceobj l obj 2 and forceobj ! obj 3 (figures 7 and 8). However, before 

cancellation can occur the additive blockers of both of these terms must be cancelled. Introducing these 

two inter-object forces results in the introduction of two secondary obstacles; the internal forces of 

objects 2 and 3. Both of these can be additively cancelled, since their additive blockers are already 

cancelled. The remainder of object 2 s internal force is cancelled by the inter-object force between 

object s 2 and 3 (recall that a portion of this internal force cancelled part of object I s internal force). 

Cancelling the internal force of object 2 also fully cancels the other secondary obstacle; the internal force 

of object 3 (figure 10). In a two-body problem the only secondary obstacle ( forceinrental obj2) is fully 

cancelled when the primary obstacle ( forceimernai obj x) is cancelled. In that case, there is no information to 

motivate the cancellation of the portions of the other internal forces that remain once the unknown’s 

internal force is cancelled (figure 9).
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Generalizing Number

Much research in explanation-based learning involves relaxing constraints on the entities in a 

situation, rather than generalizing the number of entities themselves. Nonetheless, many important 

concepts require generalizing number. Explanation-based learning provides a solution to a major problem, 

namely, how to know when it is valid and proper to generalize the number of entities.

A learning system s world knowledge may dictate that the general situation corresponding to a 

specific example may involve an indefinite number of entities. The system must recognize which parts of 

the explanation describe how the example s success depends on the specific number of entities. Once this is 

done, the explanation must be extended by replicating the appropriate portions. This replication process 

may impose constraints on allowable numbers. The system must ensure that the replication process does 

not itself introduce ill-effects. Notice that this process is guided by the explanation, and therefore does not 

require extensive problem-solving search.

To illustrate this point, compare the situation where a learning system observes someone clearing all 

four pyramids off of a box before moving the box, to a second situation where four wheels in a bin are 

used to build a wagon. Both scenarios involve four components, but require different generalizations. The 

explanation-based approach provides the foundation for the correct analysis of each situation. The general 

clearing operation will involve clearing all objects on a box (in this example, four), as the box must be 

cleared to be moved. The wagon-building plan, however, will allow the use of only four wheels regardless 

of how many are in the bin. The explanation of a component’s functionality dictates the constraints on the 

number of components allowable in the general situation.

In the sample momentum problem, information about number, localized in a single physics formula, 

leads to a global restructuring of the solution. There are a number of valid generalizations of equation 1, 

some of which do not require generalizing number. For instance, the identity of the objects and the initial 

velocities could be generalized to produce: the momentum of any two-object system is conserved, provided 

there are no external forces. Unfortunately this is not broadly applicable. The system would need to learn 

separate rules when it encountered a four-object system, a five-object system, etc.
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5. RELATED WORK

Our explanation-based approach to learning has much in common with [5, 18-34]. See [35] for a full 

discussion. Other work in the area of computer understanding and generalization of mathematical 

calculations appears in [36-40]. Additional research on the computer solution of physics problems is 

presented in [41-46].

Comparison to O ther Explanation-Based Generalization Methods

A number of explanation-based generalization algorithms have been developed. Most [2, 5, 20. 21. 

23. 29, 47] do not alter the structure of the explanation; no additional objects nor inference rules can be 

incorporated into the explanation. They work by changing constants in the observed example to variables 

with constraints. Another algorithm [3] allows for the elimination of easily-reconstructed details. 

However, as we have seen in generalizing number, extensive augmentation of the explanation can be 

required to produce the appropriate generalization. Only after properly augmenting the explanation should 

one of the constraint-propagation algorithms be applied.

Consider the LEAP system [10], The system is shown an example of using NOR gates to compute the 

boolean AND of two OR s. It discovers that the technique generalizes to computing the boolean AND of 

any two inverted boolean functions. However. LEAP cannot generalize this technique to allow 

constructing the AND of an arbitrary number of inverted boolean functions using a multi-input NOR gate. 

This is the case even if LEAP’S initial background knowledge were to include the general version of 

DeMorgan’s Law and the concept of multi-input NOR gates. Generalizing the number of functions 

requires alteration of the original example’s explanation. This generalization cannot be performed using 

their goal regression algorithm alone.

Ellman s system [20] also illustrates the need for generalizing number. From an example of a four- 

bit circular shift register, his system constructs a generalized design for an arbitrary four-bit permutation 

register. A design for an A-bit circular shift register cannot be produced. As Ellman points out. such 

generalization, though desirable, cannot be done using the technique of changing constants to variables.
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O ther Approaches to Generalizing Number

Two other approaches to generalizing number have been recently proposed. In the FERMI system 

[48], cyclic patterns are recognized using empirical methods and the detected repeated pattern is generalized 

using explanation-based learning techniques. Another approach [49] notices when an operator is used 

repeatedly in a solution sequence and then determines, from the explanation structure, the constraints on 

two consecutive applications of the operator. Physics 101 differs from these approaches in that the need 

for generalizing number is motivated in Physics 101 by the analytical understanding of the specific 

solution and the knowledge of how the underlying technique extends to arbitrary situations.

6. CONCLUSION

We have designed and implemented a reasoning system that performs explanation-based learning in 

mathematically-oriented domains. The system s understanding and generalization processes are guided by 

the manner in which variables are cancelled in a specific problem. Attention focusses on how obstacles are 

eliminated in the specific problem. Obstacles are variables that preclude the direct evaluation of the 

unknown. Cancelling these variables allows the determination of the value of the unknown.

One important feature of analyzing variable cancellation is that the generalization of number is 

properly motivated. This feature is illustrated in the sample momentum problem presented in this paper. 

Generalizing the number of entities in a situation is ignored in most research in explanation-based learning. 

Instead, the focus is on determining the general constraints on the entities provided. Extending the 

structure of the explanation is necessary in order to generalize number. In our system, restructuring of the 

explanation is motivated by the need to cancel variables in the general case. A formal domain-independent 

account of generalizing number can be given only after detailed investigations of this phenomenon in many 

disparate domains.
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