
September 1991 UILU-ENG-91-2248
DAC-32

Analog and Digital Circuits

AN ALGEBRAIC
APPROACH TO
SWITCH-LEVEL
SIMULATION

Ibrahim N. Hajj

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
<gfliftiTTgSSSiftdATiüN 6 f this page

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

1*. REPORT SECURITY CLASSIFICATION

Unclassified
1b. RESTRICTIVE MARKINGS

None
2». SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2248 (DAC-32)
6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A______

7a. NAME OF MONITORING ORGANIZATION

Semiconductor Research Corp

6c ADORESS {City, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS {City, State, and ZIP Code)

SRC
PO Box 12053
Research Triangle Park, NC 27709

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Semiconductor Research Corp

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

SRC 88-DP-109

10. SOURCE OF FUNDING NUMBERS

SRC
PO 12053
Research ̂ Triangle

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

Park, NC 27709

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Oassification)
An Algebraic Approach to Switch-Level Simulation

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Technical FROM TO 32
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Switch-level simulation; MOS VLSI circuits;
switch-level matrix algebra; path algebra

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper presents a new methodology for computing the steady-state solution of
switch-level networks. The method is based on a matrix algebra similar in many respects to
circuit nodal analysis in that the formulation steps are similar to the nodal equation
formulation steps and the network matrix has the same dimension and structure as the nodal
admittance matrix, except that logic operations (min and max operations) are employed in
formulating and solving the network equations. Solution algorithms are then developed
using the new algebra. The approach has been implemented as a part of a mixed-mode
simulator which uses partitioning and sparse matrix solution techniques in analyzing the
circuit. In its switch-level mode, the simulator can perform logic and concurrent fault
simulation using realistic fault models, and has been found to be competitive with existing
switch-level simulators.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
G3 UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

1

+
An Algebraic Approach to Switch-Level Simulation

Ibrahim N. Hajj

Coordinated Science Laboratory and
Department of Electrical and Computer Engineering

University of Illinois
1101 West Springfield Avenue

Urbana, Illinois 61801

Abstract

This paper presents a new methodology for computing the steady-state solution of

switch-level networks. The method is based on a matrix algebra similar in many respects to

circuit nodal analysis in that the formulation steps are similar to the nodal equation formula­

tion steps and the network matrix has the same dimension and structure as the nodal admit­

tance matrix, except that logic operations (min and max operations) are employed in formulat­

ing and solving the network equations. Solution algorithms are then developed using the new

algebra. The approach has been implemented as a part of a mixed-mode simulator which uses

partitioning and sparse matrix solution techniques in analyzing the circuit. In its switch-level

mode, the simulator can perform logic and concurrent fault simulation using realistic fault

models, and has been found to be competitive with existing switch-level simulators.

^This work was supported by the Semiconductor Research Corporation.

2

L Introduction

Switch-level simulation is now a well established method for verifying the steady-state

logic behavior of digital MOS circuits. The technique has attracted a lot of attention, and

since its introduction 10 years ago [1], a large number of papers have been published on the

subject [2-4], to mention just a few. The technique has also been used for fault simulation,

test generation, and symbolic analysis (because of limitation of space and since this is not a

survey paper, we will keep the list of references to a minimum). Almost all, if not all,

switch-level solution techniques proposed so far have relied on path tracing, path strengths

and propagation of signals along paths. Even when matrix techniques and elimination algo­

rithms were developed, the concepts were based on using matrix algebra to determine path

strengths in labeled graphs [5], [6].

In this paper, we present a matrix algebra for switch-level simulation similar in many

respects to circuit nodal analysis, in that the matrix formulation has the same dimension and

structure as the nodal admittance matrix of the underlying circuit model, except that logical

operations are used in solving the equations, rather than real arithmetic. In contrast, the

method proposed in [6] requires setting up three systems of Boolean equations, and the

number of equations depends on the number of signal strengths in the switch-level network

model.

In some respects, the proposed method can be considered as a matrix implementation of

the switch-level theory presented in [4]. Even though the authors in [4] explain the relation

between switch-level theory and circuit theory and the connection between the path-based

algorithms and Gaussian elimination, no specific matrix-based algorithm is included. One

motivation of this work is to related switch-level solution algorithms, from the implementation

3

point of view, to circuit-level nodal analysis, and to incorporate the algorithms into a mixed­

mode simulator by sharing as many common subroutines as possible with other simulation

nodes, such as circuit and timing simulation algorithms. Another motivation is to have the

flexibility of performing fault simulation using realistic fault models of various strengths,

including bridging faults. Bridging faults can be more efficiently injected into a matrix-based

formulation than a path-based formulation, especially if symbolic representation is used.

In the next two sections the basic operations of the new algebra are explained. The for­

mulation of the switch-level network model in matrix form and its solution are considered in

Section 4. Implementation issues and examples are given in Section 5.

n . Basic Operations

We use the "order-of-magnitude" switch-level circuit model proposed in [4], which is a

generalization of the switch-level models of Bryant [2] and of Hayes [3]. Each node is con­

sidered to have any one of three values: 0 (low), 1 (high), X (unknown, or intermediate

between and including 0 and 1). Each transistor is allowed to have a lower (guaranteed)

strength and an upper (potential) strength, determined by the range of its conductance values.

The relative strength values of the branches are represented by two integers (al5a2), where

represents the lower strength and a2 the upper one. For example, an edge consisting of a

single-NMOS transistor has strength (0,0) if its gate voltage is 0, (a2,a2) if its gate voltage is

1, and (0,a2) if its gate voltage is X. The initial condition at a storage node is modeled by

adding a branch connecting it to a source whose value is equal to the node’s initial value.

The node branch is considered to be always fully on with an upper strength chosen to reflect

the capacitance at the node relative to the capacitances at all other storage nodes in the circuit.

4

The maximum strength of the node branches is chosen to be weaker than the lowest upper

strength index assigned to any transistor branch in the circuit; but this is not necessary, a large

capacitor could be given a strength number higher than a transistor with low conductance if

the capacitor is expected to hold most of its charge during a clock cycle.

Let the strengths of the branches, both node and transistor branches, in the switch-level

network model be ordered in ascending order as follows:

0 < 1 < 2 < • • • < s (1)

where s is the number of discrete upper strengths assigned to the branches in the switch-level

network model. In general, the strength of a branch is assigned two integers (a ^) , where

aj < a2, which represent the interval of its conductance values.

We now define a set P to consist of all possible intervals (a1,a2), a! < a2, defined on the

set of integers in (1). A component of P will also be denoted by a lower case letter, e.g., x.

We also define the join (addition, OR) and the multiplication (AND) operations on the ele­

ments of P, respectively, as follows, where x = (a ^) , y s (a3,a4):

x + y = (a^a^ + (a3,a4) = (max(a!,a3), max(a2,a4)) (2)

x • y = (ai,a2) • (a ^ = (min(a1,a3), min(a2,a4)) (3)

when there is no confusion, the product x • y will also be written as xy.

Claim 1. The set P given in (1) together with the + and • operations defined in (2) and (3),

and the zero element being 0 = (0,0), and the unit element being e = (s,s), define a path alge­

bra [7].

5

Proof:

(A) The + operation is idempotent, commutative, and associative:

(A.l) x + x = (a ^ + (a^a^ = (m a x ^ a ^ , max(a2,a2))

= (alfa2) = x V x e P

(A.2) x + y = (a ^ + (a3,a4) = (max(a!,a3), max(a2,a4))

= (max(a3,a1), max(a4,a2))

= (a3,a4) + (a!,a2), V e P

= y + x V x, y e P

(A.3) (x+y) + z = ((a ^ + (a3,a4)) + (a5̂) = (max(a1}a3), max(a2,a4)) + (a5,a6)

= (max(a1,a3,a5), max(a2,a4,a6))

= (aj,a2) + (max(a3,a5), max(a4,a6))

= (a1?a2) + ((a3,a4) + (as^)) V x, y, z e P

= x + (y+z).

(B) The • operation is associative, and distributive over + :

(B.l) (x y)z = ((a!,a2) • (a3,a4)) • (%,%) = (minCa^), min(a2,a4)) • (as^)

= (min(a1,a3,a5), min(a2,a4,a6))

= (ai,a2) • ((a3,a4) • (as.a*))

= x(yz) V x, y, z e P

(B.2) x(y+z) = (aba2) • ((a3,a4) + (as^))

= (a!,a2) • (max(a3,a5), max(a4,a5)) (4)

= (min(a1,max(a3,a5), min(a2,max(a3,a6))

and

xy + xz = ((a^a^ • (a3,a4)) + ((aj,a2) • (a ^))

= (minCa^), min(a2,a4)) + (minCa^), min(a2,a6)) (5)

= (max(min(a1,a3), minCa^)), max(min(a2,a4), min(a2,a6))).

6

But, it can be shown that if a, b, c are three real numbers, then

max(min(a,b), min(a,c)) = min(a,max(b,c)). (6)

It follows that (4) equals (5), and therefore,

x(y+z) = xy + xz V x, y, z e P

Similarly, it can be shown that

(B.3) (y+z)x = yx + zx V x, y, z e P

(C) The zero element <j> = (0,0) and the unit element e = (s,s) have the following properties:

(C.l) (J) + x = (0,0) + (a!,a2) = (m ax^a^, max(0,a2)) = (ax,a2) = x

(C.2) <j) • x = (0,0) • (a ^) = (a!,a2) • (0,0) = (mintO^), min(0,a2)) = (0,0) = <J)

(C.3) e + x = (s,s) + (a^a^ = (max(s,aj), max(s,a2)) = (s,s) = e

(C.4) e • x = (s,s) • (a!,a2) = (min(s,a1), min(s,a2)) = (a1}a2) = x

V x e P

This completes the proof.

Remark. The joint operation (a1,a2) + (a3,a4) can be interpreted as the parallel combination

of two branches to form a new equivalent branch of conductance strength equal to

(max(a!,a3), max(a2,a4)), while the product (a1}a2) • (a3,a4) gives the series combination of

two branches. The need for a minimum value of the strength of a branch other than 0 as sug­

gested in [4] can be explained by considering the parallel combination of two branches, one

with strength (0 ^ and the other (a3,a3), where 0 < a3 < a2, as shown in Fig. (la). It can be

easily seen that the strength of the equivalent branch will be (a3,a2). The series combination

of (0,a2) and (a3,a3) is (0,a3), as shown in Fig. (lb).

7

It follows from Claim 1 that the elements of P obey the elementary properties of path

algebras. These properties are given in [7] and are repeated here for completeness. For

example, we can define an ordering < of P by the following rule:

(al5a2) < (a3,a4), if and only if a2 ^ a3. (7)

In particular,

<|> < x V x e P. (8)

In addition, every element x e P is sub-unitary; i.e., x ^ e, V x e P. The powers of an

element x e P are defined by:

x0 = e, xk = xk_1 x (k = 1,2,...)

with x2 = x, V x e P. Therefore, every element x e P is indempotent and stable of index 0,

and its closure is

x * = e, V x e P. (9)

Let Mn(P) be the set of all nxn matrices whose entries belong to P. Then for any

matrices, Y = [y^] and Z = [z^] in P,

Y + Z = [yij + Zij] (10)

Y -Z = [£ y ik-Zkj] (11)
k=l

In addition, M^P) is itself a path algebra, and the properties of the addition and multiplication

operations given in Claim 1 apply also to the matrix case. In this case, the zero matrix is an

nxn matrix O whose entries are all (j), and the unit matrix E is an nxn matrix with unit ele­

ments e on the diagonal and <J> entries elsewhere, and

8

<D + Y = Y, <& Y = 0 = Y 0

E • Y = Y = Y • E V Y e M^P).

in. Node Strength and State and Solution

of Simple Switch-Level Networks

In the above section, we described the operations that could be used to perform series-

parallel combinations of branches in a switch-level network model. Before we explain the

solution of general switch-level network equations, we consider a simple network which con­

sists of a single branch of strength (a1,a2) connecting an input node I to a storage node v, as

shown in Fig. 2. The input node could represent the initial condition at the storage node.

Assertion 1. The value of the signal at node v is given by (a^a^oL where I could be 0, 1

or X.

Assertion 1 has often been used to describe the value of a signal at a node, where (a^a j

is termed the "strength" of the signal at v, and I its state. It can also be considered as "Nor­

ton" equivalent circuit at v, where (a1,a2)0I represents the equivalent current value. Note that

the symbol "0" is introduced because (a^a^ and I are defined over different fields. In con­

trast, in circuit analysis, the conductance (or the admittance) and the voltage values are both

real (or complex), and they can be multiplied to obtain an equivalent current as another real

(or complex) member.

Consider now a storage node v connected to two input nodes and I2 by two branches

(a1?a2) and (a3,a4), respectively, as shown in Fig. 3.

9

Assertion 2. The signal value at node v shown in Fig. 3 is given by

(a!,a2) ° Ii + (a3,a4) • I2 = ((a ^ + (a3,a4)) »1
A \ A

= (m ax ia^), max(a2,a4)) ° I

where I = { Ij if Ij = I2 or if â > a4; I2 if a3 > a2; X otherwise}.

The justification of the addition operation in Assertion 2 is based on the assumption that

the signal value at a storage node depends on the states of those input nodes connected to it

by edges of maximum strength. This is also the basis of the lattice operation used in [2] and

[3]. In fact, if a! = a2 and a3 = a4, the addition operation given in (12) becomes exactly the

operator of Hayes [3]. Equation (12) could also be interpreted as the parallel combination

of two Norton equivalent circuits.

Let us consider now a storage node connected to an input node Ij by a series connec­

tion of two branches of strengths (a1?a2), (a3,a4), as shown in Fig. 4.

Assertion 3. The signal value at vls shown in Fig. 4, is given by

(a3,a4) • ((a^a^ « I = ((a3,a4) • (ai,a2)) o I

= (m in ted), min(a2,a4)) - 1.

Equation (13) can also be interpreted as the elimination of the intermediate node v2.

We will now consider the properties of the addition and the multiplication operations

defined in (12) and (13).

10

Properties

(D.l) The + operation defined in (12) is indempotent and commutative over 0 •

Proof: Obvious.

(D.2) Given (a1,a2)0Ii + (a3,a4)ol2 + (a5,a6)0I3; if Ij * I2 * I3, then the + operation defined

in (12) is associative over 0 . In general, however, the + operation defined in (12) is not

always associative over 0 • In particular, if ^ = I2 * I3, and if a3 < a$ < aj < a4, then the +

operation is not associative over 0 .

Proof: Suppose that the condition is true; i.e., Ij ^ I2 ^ I3 , then

((a1}a2) o Ij + (a3,a4) «. I2) + - 13 = (max(ai,a3), max(a2,a4)) • + (a5,a6) o I3

= (max(a1,a3,a5), max(a2,a4,a6)) «
a A

where Ij = { lx if aj > a4; I2 if a3 > a2; X otherwise }, and {Ij = Ij if ax > a4 and ax > a$;

I2 if a3 > a2 and a3 > a6; I3 if a5 > a2 and a5 > a4; X otherwise).

Similarly,

(aj,a2) o Ij + ((a3,a4) « I2 + (a5,a6) « I3) = 0 *1 + (max(a3,a5), max(a4,a6)) <, I2

= (max(ax,a3,a5), max(a2,a4,a6)) - 12

A A
where I2 = { I2 if a3 > a$; I3 if a5 > a4; X otherwise }, and I2 = { lx if ax > a4 and ax > a6;

A A
I2 if a3 > a2 and a3 > a$; I3 if a5 > a2 and a5 > a4; X otherwise }. Therefore, I2 = Ix . Now

suppose Ij = I2 * I3 , then

((ax,a2) o lx + (a3,a4) «. Ix) + (a5,a6) - 13 = (max(ai,a3), max(a2,a4)) » lx + (a ^) «. I3

= (max(ai,a3,a5), max(a2,a4,a6)) «, lx

11

where Ii = { Ij if max(a1,a3) > a$; I3 if a5 > max(a2,a4); X otherwise }, which is the correct

result.

On the other hand,

(a ^ • Ii + ((a3,a4) • Ix + (a5,a6) - 13) = (a^a^ • Ii + (max(a3,a5), max(a4,a6)) ° I3

= (max(al5a3,a5), max(a2,a4,a6)) » I3

where I3 = { if a3 > a$; I3 if a5 > a4; X otherwise }, and I3 = { Ij if a3 > a6 or if

&Y > max(a4,a6); I3 if a5 > a4 and a5 > a2; X otherwise }. Now if a3 < < aj < a4, then

= Ij, but I3 = X. Therefore, I3 is not necessarily equal to Ij. Note, that the final strength

of the signal is the same in both cases, but the state is different. This fact leads to the follow­

ing rule.

Rule 1. When performing the + operation over 0 , perform the operation on signals with

the same state first.

A network example illustrating Rule 1 is given below in Section V. Note that Rule 1

need not be applied if the signal strengths are definite; i.e., if aj = a2 and a3 = a4. We will

now consider the properties of the multiplication operation defined in (13).

(D.3) The • operation defined in (13) is associative, but not necessarily distributive

over + and 0 . In particular, if a3 > a$, and < a5 or a2 < a6 (or if a5 > a4, and

< a3 or a2 < a4), then the • operation is not distribute over + and 0 .

12

(a) (Associative)

((a1,a2) * (a3,a4)) • (as^) * Ix = (m in ted), min(a2,a4)) • (a5,a6) » Ij

= (min(alya3,a5>y min(a2,a4,a6)) - (1 4)

= (ai,a2) • ((a3,a4) • (a5,ag)) o I j .

(b) (Distributive)

(a!,a2) • ((a3,a4) o Ij + (as^) o I2) = (a ^) • ((max(a3,a5), max(a4,a6)) o Ij)

= (min(a1,max(a3,a5)), min(a2,max(a3,a5)) « Ij

where ^ = { Ix if Ii = I2, or if a3 > a$; I2 if a5 > a4; X otherwise }. On the other hand,

(a ^ • (a3,a4)°Ij + (a^a^ • (a5,a6) -12= (min(a1,a3)^nin(a2,a4))»lx + (min(a1,a5),min(a2,a6))»I2

= (max(min(a1,a3)4nin(a1,a5)), max(min(a2,a4),min(a2,a6)) a ?!

= (min(a1,max(a3,a5)), min(a2jnax(a4,a6))) « ?! (16)
A

where Ij = { ^ if = I2, or if min(al5a3) > min(a2,a6); I2 if m in ta ^) > min(a2,a4); X other­

wise}. Note, that we have applied relation (6) to shown that the signal strengths in (16) and

(15) are the same. Now, if Ij * I2, a3 > a6, and aj < a5 or a2 < a6, then Ij = Ij, while
A a A
Ij = X ; or if Ij * I2, a5 > a4, and aj < a3 or a2 < a4, then Ij = I2, while = X.

Rule 2. When performing the operation (a^a^ ((a3,a4) o Ij + (a5,a6) o I2), if

Ij * I2, and a3 > or a5 > a4, perform the + operation inside the brackets first.

In other words, if one signal "dominates" the other inside the brackets, perform the + opera­

tion inside the brackets first. Rule 2 in fact corresponds to the blocking operation devised in

[2]. Note also that in Rule 2, (a^a^ outside the bracket need not be checked; this is due to

the fact that if a3 < ag and a5 < a4, the operation becomes distributive, independent of (a],a2).

As will be seen in the next section, in particular (23) and (24), there will be cases when

it is necessary to perform the following operation:

(a1,a2)((a3,a4) »1 + ^»ag) »0 + (a7,a8) » X)

+ (39*̂ 10) 0 1 + (all»a12) 0 0 + (a13»a14) ' X.

Rule 2 calls for performing the + operation inside the brackets first on any two signals in

which one signal dominates the other, while Rule 1 calls for the addition of signals of the

same state by opening the brackets first. These two rules seem to be in conflict. However, it

can be shown that the conditions that necessitate the application of Rule 1 (as stated in pro­

perty D.2) are not in conflict with the conditions that call for the application of Rule 2 (as

stated in property D.3). Thus, Rule 2 has precedence over Rule 1; but when Rule 2 is not

applicable, the brackets should be opened first in case Rule 1 conditions apply. This is for­

mulated in the following Rule.

Rule 3. When performing (a1,a2)((a3,a4) o 1 -1- (a5,a6) « 0 + (a7,a8) ° X), perform the + opera­

tion first inside the brackets on any signals in which one dominates the others; otherwise,

open the brackets first.

An example illustrating Rule 3 is given below in Section V. We are now in a position

to address the problem of solving for the node voltages in a general switch-level network.

The basic operations needed are Eqs. (2), (3), (12), and (13), together with Rules 1 and 3.

IV. Network Solution

We assume the circuit under consideration to be partitioned into an interconnection of

channel-connected subcircuits. We consider the computation of the steady-state solution of

one such subcircuit, given the states of the gate nodes of each transistor in the subcircuit as

14

well as the initial conditions at the subcircuit storage nodes. A switch-level network model

can then be constructed based on the states of the gates of the transistors, transistor dc charac­

teristics, initial conditions at the storage nodes, and the states of the input signals, including

power supply VDD and ground. We use a switch-level nodal formulation approach, similar in

many respects to the standard circuit nodal formulation approach, where conductance is

replaced by branch strength intervals and conductance addition is replaced by the maximum

operation defined in (3).

The switch-level nodal equations can be written in the form:

v = Av + Bo vs (18)

where v is n-vector of voltage values at the storage nodes and vs = [1 0 X]1, the vector of

input states. Equation (18) can be derived from the nodal circuit equations by using an

"order-of-magnitude" model and applying a limiting process as is done in [4], or can be con­

structed from a labeled graph model [7] of the switch-level network. The entries of A and B

are of the form (a^aj), with A being symmetric of size nxn with <(> entries on the diagonal of

size, and B is an nx3 matrix. Note that A can also be considered as an andjacency matrix of

an absorptive graph, and thus is itself absorptive and stable, with a stability index not greater

than (n-1), and its closure is

A* = E + A + A 2 + ••• + A"-1. (19)

A feasible solution of (18) is a vector v whose elements are of the form (a^apd that

satisfies the equation. The least solution of (18) can be found by

v = A* (Bo vs). (20)

15

The proof can be obtained by direct substitution of (20) into (18). Note that the vector

Bovs can be written as

bn°l + b10°0 + bUoX‘ *>11 b10 XT—*

cr III W 0 <
V

i II

t>2iol +

ooJ

+ b^oX
=

2̂1
ol +

b20 +oo

b2x

.bnlo1 + f o o + tw x bnl. bn0. n̂x

(21)

The closure A* is in some sense equivalent to the inverse of a nonsingular matrix in

ordinary linear algebra. In performing the product A* in (20), Rules 1 and 3 should be fol­

lowed; otherwise, some states in the solution vector v would be X when they should be 0 or

1. Note that state X is valid even when the actual state is 0 or 1 since X includes 0 and 1.

We say that a least solution is minimal if it has a minimum number of X states. We claim

that following Rules 1 and 3 in performing the product in (20) guarantees a minimal least

solution.

When the dimension n of A is relatively large, A is sparse since it has the same structure

as the nodal admittance matrix; but A* is in general dense, and the Gauss elimination method

provides a more efficient way to solve (18). The proof that Gauss elimination finds the least

solution of (18) is given in Appendix A. As shown in Appendix A, at the end of the forward

Gauss elimination process all the elements on and below the diagonal of A become <|). Since

A is symmetric, only the upper off-diagonal elements of A, a^, i = l,2,...,n-l, j = i+l,...,n,

need to be stored and operated on. Thus, during the elimination process, the upper off-

diagonal elements of A and the b vector are updated by the following algorithm.

16

{Forward elimination}
for k «— 1 to n-1 do
begin

for i k+1 to n-1 do
begin

for j «- i+1 to n do
begin

®ij «“ ay + ^ *kj (2 2)
end
bi <— bi + ay \ (23a)

end
bn b„ + ata bk (23b)

end

The solution is then obtained by backward substitution:

[Backward substitution}
for i <— n to 2 do
begin

Vi «- b;
for j = 1 to i-1 do
begin

bj bj + aji ^ (24)
end

end
Vi = b j

In performing the operations in (23) and (24), Rules 1 and 3 should be followed in order

to obtain a minimal least solution. Since A has the same structure as the nodal admittance

matrix, sparse matrix techniques can be employed to minimize computation and storage, simi­

lar to what is done in solving linear algebraic equations, especially when n is large.

Remarks

1. Note that the diagonal elements of A need not be operated on during the elimination pro­

cess. This means that no operation is performed when a single off-diagonal element

exists in the k-th row of the reduced matrix at the k-th step in the elimination process;

17

i.e., the operation in (22) can be skipped. Thus, the total number of logical operations

required to solve (18) by Gauss elimination is less than the number of floating-point

operations needed to solve a linear symmetric system of the same structure. More

specifically, the number of logic operations required in the matrix factorization step, Eq.

(22), is (n2-3n+2), where each max or min operation is counted as one logic opera-

tion. In practice, for series-parallel networks with sparse matrix techniques used, the

number of operations is of order n, as pointed out in [6]. The number of logic opera­

tions required in the forward and backward substitution steps, Eqs. (23) and (24) com­

bined, is 6n2 - 4n in the worst case because of the need for applying Rules 1 and 3.

2. Note that Rule 1 needs to be applied only when the transistor strengths in a subcircuit

contain intervals rather than definite strengths. We can thus conclude that if all the sig­

nal states arriving at the gates of the transistors of a subcircuit are all definitely 0 or 1,

with no X states, then the + operation in (12) becomes associative over 0, and Rule 1

need not be strictly followed. In addition, the + operation inside the brackets in Rule 3

should be performed first before opening the brackets. In this case, the three components

in each row of the b vector in (21) can be reduced to a single component at the outset,

and the logic operations required in carrying out (23) and (24) become 2(n2 - n).

3. If the b vector in (18) is changed, while A remains unchanged, then the operation in (22)

need not be repeated, and only (23) and (24) are repeated for each new b vector.

4. Gauss elimination can also be used to compute the closure A* by solving the matrix

equation

18

AA* = E (25)

instead of using (19).

V. Examples

In this section, we explain the solution of typical small examples to illustrate the con­

cepts and the techniques described above.

Example 1: This example illustrates the need of applying Rule 1. Figure 5(a) shows a

simple NMOS NOR gate; its switch-level network model is shown in Fig. 5(b). There is only

one storage node in this circuit, vout. The numbers inside brackets indicate the maximum

strength of each transistor or storage node. The switch-level equation at vout is:
/

vout = (2,2). 1 + (0,3)o0 + (3,3)oO + (l,l)oX.

If the first two terms are added first, contrary to Rule 1, the result would be vout = (3,3)oX.

On the other hand, Rule 1 calls for adding terms 2 and 3 first; and the result in this case is

vout = (3,3)o0, which is the minimal least solution.

Example 2: This example illustrates the application of Rules 1 and 3. Consider the NMOS

circuit with pass transistors shown in Fig. 6(a), with its switch-level network model shown in

Fig. 6(b). The initial conditions at the storage nodes are vj = 0, v2 = 0, v3 = 1. Since a sig­

nal with an X state exists at the gate of one of the transistors, the entries of the b vector

should not be collapsed to one entry in each row at the outset so that Rules 1 and 3 can be

applied during the elimination process. The network equations are

19

V 1 ♦ (3 ,3) <t> V 1 (3 ,3) (4 ,4)

v 2 = (3 ,3) ♦ (0 ,3) v 2 + 0 ol + (1 , 1)

.V 3 .
. <t> (0 ,3) 0 . v 3 .(2 ,2) . . «> .

where we have shown the entire network matrix for clarity. As mentioned in the previous

section, only the upper or lower part of the matrix need to be stored. Since at every step in

the elimination process at most one non-zero off-diagonal element exists in the pivot row, the

network matrix remains unchanged. The forward elimination process yields

vi (4,4)
v2 = <J> ol + (3,3)

_v3 .(2,2). .(0,3).

where Rule 3 has been applied in which the (4,4) entry dominates the other entries in row 1.

Backward substitution yields:

v i (0 ,2) (4 ,4) (4 ,4 M)

v2 = (0 ,2) ol + (3 ,3) °0 — (3 ,3)oO

_V3 .(2 ,2) . .(0 ,3) . (2 ,3)oX

Example 3: Consider the XNOR circuit shown in Fig. 7. The weights of the transistors

are indicated in brackets on the figure; and all the capacitances at the storage nodes are given

a weight of one. This circuit is channel-connected with internal feedback. Suppose

A = B = 1. We will use relaxation techniques to solve for the output. Let the initial states

at the node be v ^ = v2° = v3° = X. The equations become

v i 0 0 (0 ,3) v i (2 ,2) (4 ,4) (U)

v 2 = 0 0 (0 ,3) V2 + (2 ,2) ol + (4 ,4) o0 + (U)

V3 .(0 ,3) (0 ,3) <D . _V3 .(2 ,2) . . ♦ . .(1 ,D .

Applying forward elimination and backward substitution, one gets

20

V1 (0,2) (4,4) (4,4).0

v2 = (0,2) ol + (4,4) o0 = (4,4)o0

.V 3 .
.(2,2). .(0,3). (2,3)°X

Using another iteration, one gets

4> 4> * (2,2) (4,4) (U)
v = <t> * <t> v + (2,2) ol + (4,4) of) + (U)

.1» ♦ .(2,2). . <t> . .(1,1).

The new solution is then

Vl (4,4)-0

v2 = (4,4)-0

_v3 (2,2)ol

which can be confirmed to be the solution by applying another iteration.

Example 4: Consider the circuit shown in Fig. 8 where the weight of each transistor is

shown on the figure, and the weights of all storage nodes are 1. Suppose

A = B = C = D = 1, E = 0; and let the initial conditions at all the storage nodes be X.

The network equations are give by

vi f (3,3) 4> vi (2,2) (4,4) (1,1)
v2 = (3,3) (3,3) v2 + (4,4) ol + o0 + (U)

.V 3 .
. <t> (3,3) . _V 3 _ . 4> . . <e . .(1,D.

Forward elimination gives:

v i 0 (4,4)

v2 = (4,4) ol +

_V3 .(3,3). . 4> .

while backward substitution gives

21

V1 (3,3) (4,4) (4,4)o0

v2 = (4,4) ol + <t> o0 = (4,4)ol

v3 .(3,3). . <t> . (3,3)ol

Note that in this problem we could have collapsed the b vectors into one at the outset. Now

suppose A = C = E = 1,B = D = X, then the equations become:

vi * (0,3) (3,3) V1 (2,2) (4,4) (1,1)
v2 = (0,3) (0,3) v2 + (4,4) ol + <l> o0 + (1,1)

v3 .(3,3) (0,3) <l> . v3 . 4> . . <l> . .(14).

Forward substitution gives

V1 ♦ (4,4)
v2 = (4,4) ol + ♦

.V 3 .
.(3,3). .(3,3).

while backward substitution gives

Vl (3,3) (4,4) (4,4)-0

v2 = (4,4) ol + (0,3) o0 = (4,4). 1

.V 3 .
.(3,3). .(3,3). (3,3).X

VI. Implementation and Results

We have implemented the above algorithms as a part of a mixed-mode simulator which

partitions MOS circuits into channel-connected subcircuits. The switch-level solution mode

uses the same data structure and storage, and the same equation ordering as the circuit

analysis part of the program. For switch-level simulation only the lower (or upper) part of the

matrix A need to be formulated. Sparse matrix techniques are used. During the reordering

phase, nodes with single or no off-diagonal row (or column) elements after symbolic elimina­

tion are chosen first (Markowitz criterion). These nodes do not require any operations during

22

the equation elimination process, Eq. (22). The simulator allows zero-delay, unit-delay, or

multiple-delay simulation. Both large combinational and sequential circuits have been

analyzed. The accuracy of the results has been confirmed by performing circuit simulation.

Compared to COSMOS [9], our switch-level logic simulator is slower, especially for circuits

containing small size subcircuits. In this case the compiled functions of each subcircuit is

small. The advantage of the matrix approach, however, is in analyzing large channel-

connected subcircuits, such as tally circuits and barrel shifters. In addition, in our current

implementation, some speed degradation occurs in having to load the matrices at every itera­

tion. The speed is expected to improve by updating the matrices rather than reloading them at

every iteration.

An advantage of our approach compared to the compiled approach is in fault simulation.

It allows more realistic circuit-related switch-level fault models to be inserted in the circuit for

fault simulation than the compiled approach. We have implemented a concurrent fault simu­

lation using the proposed algebra, where transistor faults, line faults and bridging faults are

simply inserted into the appropriate places in the matrix formulation [10]. Both output vol­

tage monitoring and current testing are easily applied for fault detection.

VII. Conclusions

In this paper, we have presented a new algebraic method for switch-level simulation.

The method employs a matrix formulation similar in structure to the underlying circuit nodal

equations. The algebra uses logical max and min operations, equivalent to addition and multi­

plication, in formulating and solving the equations. Two rules on the order in which opera­

tions have to be carried out are also derived. These rules need to be followed in some cases

23

in order to arrive at a minimal solution. Gaussian elimination and sparse-matrix techniques

are used in solving the equations.

The new approach has been found particularly useful in fault simulation where realistic

circuit related faults can be easily injected into the matrix formulation. In addition, faults

with variable strengths can be easily specified. The approach can also be easily extended to

include switch-level network models with partial ordering [11].

Acknowledgement: The author would like to thank his students, Terry Lee, Tom

Messerges, and Farid Najm, for their contributions to this work and for their efforts in imple­

menting and testing the algorithms.

24

Appendix A

Gauss elimination eventually uses the right-hand side of each equation k in (18) one at a

time to eliminate the k-th variable from the remaining equations. If we define the original

system in (18) by

V = A(0) v + b(0). (A.l)

Gauss elimination derives n new systems

v = A ^ v + b ^ , k = l,2,...,n (A.2)

where the final system Â n) is strictly upper triangular, which can then be solved by backward

substitution. What is needed is to show that the systems in (A.2) all have the same least solu­

tion. Suppose that at the (k-1) step in the Gauss elimination process, the system in (A.2) is

partitioned as:

Aft"1) Aft"1» Aft"»' bft-»'

A*-» = O aft-» Aft'» , b*"» = bft-»

9 Aft’» Aft-» bft'».

where Aft l\ aft l\ Aft ^ are of order k-1, 1, and n-k, respectively. Define

A(k-i) _ Q(k) + R(k)

O 9 $ Aflr» Aft-» A ft '» '
where Q® = O aft-» o , R * = o <1> A ft'»

o A ft'» o o 9 Aft’ ».

System k is obtained from (A.4) by eliminating the k-th variable:

A<k) = Q(k)* R(k)
b(k) = Q(k)* b(k-l) (A.5)

25

If A is absorptive, then and A® can be shown to be also absorptive [7], and hence

stable, at every step in the elimination process. Thus, the closure a^ -1)* = e.

In particular,

Q(k)* =
E O O
O e O
O A $-1} E

(A.6)

A(k) = q OO* r OO

U r " A g-«
= O ()>

d> O A g -» + A3̂ -'> A g-»_

b(k) _ Q(k)* b(k-l)

[b1<k- 1)

= b ^ >

b f - » + A fr« b ^ -»

Note that all the elements on and below the diagonal in the first k columns of A® are 0.

At step k, the solution is obtained from (A.5) by:

v = A®* b®

= (Q®* R®)* Q®* b(k_1)

= (Q® + R®)* b ® 1»

= A ® 1)* b ® ‘),k = l,2 ,...,n

A S '»
A g-‘>

(A.7)

where we have used the identity (Q+R)* = (Q*R)*Q* [7, p.91] and (A.4) to arrive at the

final result in (A.6). Thus all the n systems in (A.l) have the same least solution.

References

[1] R. E. Bryant, "An Algorithm for MOS Logic Simulation," Lambda, 4th qtr. 1980,
pp. 46-53.

[2] R. E. Bryant, "A Switch-Level model and Simulator for MOS Digital Systems,"
IEEE Trans. Computers, February 1984, pp. 160-177.

[3] J. P. Hayes, "A Unified Switching Theory with Applications to VLSI Design," Proc.
IEEE, 1982, pp. 1140-1151.

[4] R. H. Byrd, G. D. Hachtel, M. R. Lightner, and M. H. Heydemann, "Switch-Level
Simulation: Models, Theory, and Algorithms," Computer-Aided Design of VLSI
Circuits and Systems, Vol. 1, JAI Press, Greenwich, CT, 1986.

[5] I. N. Hajj, "A Path Algebra for Switch-Level Simulation," IEEE Int. Conf. on
Computer-Aided Design, Santa Clara, CA, pp. 153-155, November 1985.

[6] R. E. Bryant, "Algorithmic Aspects of Symbolic Switch Network Analysis," IEEE
Trans, on Computer-Aided Design, Vol. CAD-6, no. 4, pp. 618-633, July 1987.

[7] B. A. Carre', Graphs and Networks. Clarenon Press, Oxford, England 1979.

[8] R. E. Bryant, "Switch-Level Algorithms," IEEE Design & Test of Computers, Vol. 4,
no. 4, pp. 26-40, August 1987.

[9] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffer, "COSMOS: A Com­
piled Simulator for MOS Circuits," Proc. 24th Design Automation Conference, pp.
9-16, June 1987.

[10] T. Lee and I. N. Hajj, "A Switch-Level Matrix Approach to Transistor-Level Fault
Simulation," International Conference on Computer-Aided Design, Santa Clara, CA,
November 1991, (accepted).

[11] P. Agrawal, S. H. Robinson, and T. G. Szymanski, "Automatic Modeling of Switch-
Level Networks using Partial Orders," IEEE Transactions on Computer-Aided
Design, Vol. 9, no 7, pp. 696-708, July 1990.

Figure Captions

Fig. 1(a): Parallel combination of two branches, where a3 < a2.

Fig. 1(b): Series combination of two branches, a3 < a2.

Fig. 2: Storage node v connected to an input node I by a branch of strength (a1?a2).

Fig. 3: Storage node v connected to two input nodes Ij and I2.

Fig. 4: Two storage nodes connected in series to an input node.

Fig. 5(a): NMOS NOR gate.

Fig. 5(b): Switch-level network model.

Fig. 6(a): NMOS circuit with pass transistors.

Fig. 6(b): Corresponding switch-level network model.

Fig. 7: XNOR circuit.

Fig. 8: NMOS circuit with pass transistors.

Fig. 1(a): Parallel combination of two branches, where

(a3,a3> <0.a2)

Fig. 1(b): Series combination of two branches, a^ < a

I

(a i * a 2)

X)

Fig. 2 : Storage node v connected to an input node I by a branch of strength , a2) .

(a ^ a ^ (a3,a 4)

Fig. 3 : Storage node v connected to two input nodes i and i 2.

(a l ,a 2) (a3 ,a4)

I X). X)1

Fig. 4 : Two storage nodes connected in series to an input node.

1VDD

'out

(0,3)

Fig. 5(a) : NMOS NOR gate. (b) : Switch-level network model.

VDD

Fig. 6(a) : NMOS circuit with pass transistors. (b) : Corresponding switch-level network model.

VDD VDD

Fig. 7 : XNOR circuit.

^DD VDD

Fig. 8 : NMOS circuit with pass transistors.

