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1 Introduction

Most of the research activity on adaptive control of nonlinear systems [1-15] is still focused 

on the full-state feedback case [1-13], although output-feedback results are beginning to 

appear [14,15]. The full-state feedback case continues to be a challenge because of the severe 

restrictions of the two currently available types of schemes: the uncertainty-constrained 

schemes [1,2,3,4,10,11] restrict the location of unknown parameters, and the nonlinearity- 

constrained schemes [5,6,7,8,9,12] impose restrictions on the type of nonlinearities.

The systems to which uncertainty-constrained schemes can be applied may contain all 

types of smooth nonlinearities and are fully characterized by coordinate-free geometric condi

tions [2,3,11], which, unfortunately, are quite restrictive. On the other hand, the applicability 

of nonlinearity-constrained schemes is restricted by coordinate-dependent growth conditions 

on the nonlinearities, which may exclude even certain linear systems [13]. The nonlinearity- 

constrained schemes based on the “Control Lyapunov Function” approach [6,7,8], are ap

plicable to the class of systems for which a Lyapunov function with prespecified growth 

properties is known. Unfortunately, the existence of such a Lyapunov function can not be 

ascertained a priori.

The new adaptive control scheme developed in this paper combines the main advantages 

of earlier schemes without most of their disadvantages. It significantly extends the class of 

nonlinear systems for which adaptive controllers can be systematically designed. At each step 

of the new design procedure, the change of coordinates is interlaced with the construction of 

a parameter update law. The main idea of this nonlinear procedure evolved from an early 

linear result of Feuer and Morse [16].

Among the advantages of the new scheme are its conceptual clarity and wide applicability. 

Its stability proof, based on a straightforward Lyapunov argument, is particularly simple. 

The coordinate-free geometric conditions, characterizing the class of systems to which the 

new scheme is applicable, neither restrict the location of the unknown parameters, nor con

strain the growth of the nonlinearities. Instead, they require that the nonlinear system be 

transformable into the so-called pure-feedback form. Furthermore, in the case of systems

3



transformable into the more restrictive strict-feedback form, the new adaptive scheme guar

antees global regulation and tracking properties. This is now the broadest class of nonlinear 

systems for which an adaptive control scheme can be systematically designed to achieve 

global regulation or tracking without growth constraints.

The presentation is organized as follows: First, we address the regulation problem. In 

Section 2 we characterize the class of single-input nonlinear systems to which the new scheme 

is applicable. The design procedure is presented in Section 3, and the simple proof of stability 

is given in Section 4. In Section 5 we give the conditions under which the stability of the 

closed-loop system is global. The design procedure is extended to multi-input systems in 

Section 6 . Then, in Section 7, we use the design procedure to solve the tracking problem 

for a class of input-output linearizable systems with exponentially stable zero dynamics. 

In Section 8 we illustrate this procedure on some “benchmark” examples, and discuss its 

properties in comparison with previous results. Finally, some concluding remarks are given 

in Section 9. The reader unfamiliar with differential geometric results for nonlinear systems 

can follow the presentation starting with Section 3 and then omitting Propositions 5.3, 6.1 

and 7.3.

2 The Class of Nonlinear Systems

The adaptive regulation problem will first be solved for single-input feedback linearizable 

systems that are linear in the unknown parameters:

C — /o(() + T A M O  +
t=i

<7o(C) + 10 * 9 i(()
t=i

u , (2.1)

where ( G JRn is the state, u G JR is the input, 6 = [0l5 . . .  ,0P]T is the vector of constant 

unknown parameters, and /,-, 0 < i < p, are smooth vector fields in a neighborhood of

the origin Ç = 0 with /,(0) = 0 , 0 < i < p, g(0) ^  0 .

The design of the adaptive scheme assumes that the system (2.1) can be transformed 

into the pure-feedback form via a parameter-independent diffeomorphism. Necessary and 

sufficient conditions for the existence of such a diffeomorphism are given in the following 

proposition.
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P rop o sition  2 .1 . Consider a parameter-independent diffeomorphism z = 4>{(), with = 

0, that transforms, in a neighborhood Bz of the origin, the system (2.1) into the so-called 

pure-feedback form

¿i =  z2 +  0T7 i  (21,22)

¿2 =  z3 +  0T72(*i, z2, z3)

i (2.2)

¿n—1 =  Zn *t* 6  7 n—\(z\, • • • 5 Zn)

Zn =  7<>(2) +  0T7n(2) +  [/?o(*) +  0TP(zj\ U ,

with

7.(0) = 0 , 0 < z < n , /?o(0) ^ 0 . (2.3)

Such a diffeomorphism exists if and only if the following conditions are satisfied in a neigh

borhood U of the origin:

(i) Feedback lin earization  condition. The distributions

Ç* = span {#0, adfog0, . . . ,  ad)Qg0} , 0 < i < n -  1 (2.4)

are involutive and of constant rank i + 1 .

0 0  P u re-feedb ack  condition.

9i e
1 < i < p .  (2.5)

[ x ji ]  e  s i+\ v x e g j , 0 < j < «  — 2 ,

P roo f. Sufficiency. As proved in [17], condition (i) is sufficient for the existence of a 

diffeomorphism z = </>(£) that transforms the system

C = M O  + flfo(C)ti, /o(0) = 0  , flfo(O) Ï  0  (2.6)

into the system

¿i = Z{+1 ,1  < i < n — 1

Zn = 7oW  + A )W « , (2.7)
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with

7o(0) = 0 , /3o(0) /  0 . 

Hence, in the coordinates of (2.7) we have

fo{<t> (*)) = fa  ••• Znlo(z)\

=  [0 ... 0 (3o{z )\t
r i i d dy = span , 0 < i < n — 1 .

(2.8)

(2.9)

(2.10)

( 2.11)
„ 9zn’ '"  ’ dz„_;

Because of (2.11), the pure-feedback condition (2.5), expressed in the z-coordinates, states 

that

* 6 span{ i } ’
l < t < p .  (2 .12)

d _

dzj J . G spam
d Z n'" ' dzj-1 

But (2.12) can be equivalently rewritten as

, 2 < j  < n ,

/ n \ f 7i(*i) ^

*(*)) = 0
\ f t W  /

. M r \ z ) )  =

7 2 (2 1,2 2)

7n—l,i(2i, • • • , 2n)
 ̂ , • • • , 2n) J

, 1 < i < p .  (2.13)

Furthermore, since 0(0) = 0 and /,(0) = 0 ,1  < i < p, we conlude from (2.13) that

7j(0) = 0 , 1 < j  < n .  (2.14)

Combining (2.9), (2.10), (2.13) and (2.14), we see that in the ^-coordinates the system (2.1) 

becomes (2 .2).

Necessity. If there exists a diffeomorphism £ = 0 (f)  that transforms (2.1) into (2.2), one 

can directly verify that the coordinate-free conditions (i) and (ii) are satisfied for the system

(2.2), and hence for the system (2.1). □

R em ark  2.2 . The “extended-matching” condition, introduced in [2,3] and used in [1] in 

the equivalent form of a “strong linearizability” condition, is a special case of the “pure- 

feedback” condition (2.5). This is easily seen by noting that if the system (2.1) satisfies the
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feedback linearization condition (2.4) and the extended-matching condition

9i e  g°, fi 6  g \  i < i < p ,  (2.i5)

then it is transformable into the pure-feedback form (2 .2) with 7* = 0 , . . . ,  7„_2 = 0. □

3 Adaptive Scheme Design

The conditions of Proposition 2.1 give a precise geometric characterization of the class of 

nonlinear systems to which the new adaptive scheme is applicable. We now design the new 

adaptive scheme for systems of the form (2 .2):

k  = zi+1 + 0T7 ;(2i , . . . ,  Zi+1) , 1 < i < n -  1

zn = 'yo(z)  + 0T-fn(z) + [p o {z)  + 0T(3(z) u ,
(3.1)

with

7.(0) = 0 , 0 < z < n , /?o(0) ^  0 . (3.2)

Recall that 0 is the vector of unknown parameters, and 70, (30, and the components of ¡3 and 

7,-, 1 < i < n, are smooth nonlinear functions in Bz, a neighborhood of the origin z = 0.

Using an idea similar to those exploited by Feuer and Morse [16] for adaptive control of 

linear systems, the design procedure interlaces, at each step, a change of coordinates with 

the construction of a parameter update law. Not only is the design procedure systematic 

and conceptually clear, but also the stability proof is a straightforward Lyapunov argument. 

The new. adaptive scheme for the system (3.1) is designed step-by-step as follows:

Step 0. Define x\ = zi, and denote by ci, c2, . . . ,  Cn constant coefficients to be chosen later.

»
Step 1 . Starting with

Xi = z2 + ffT7i(zi,z2) , (3-3)

let $1 be an estimate of 6 and define the new state x2 as

x2 = c1x1 + z2 + #?7 i(zi, z2) . (3.4)

7
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Substitute (3.4) into (3.1) to obtain

x\ = -c\xx + x2 + {0 -  ^i )T7i (21, 2:2)

= -C 1 X 1 + x2 + {0 — ^i)Ttu1(xi,x2,^ i ) . (3.5)

Then, let the update law for the parameter estimate dx be

^1 = xx wx{xx,x2,tix)- (3.6)

Step 2 . Using the definitions for 27, x2 and t?i, write x2 as

¿2 = Cx[-CxXx + x2 + (6 -tix )TWx{xx,x2,fii)\+Z3 + 0T~f2{zx,z2,z3)

+ x1w1(x1, x2, ^i )T7 i (2i , ¿2) +

- 23 + ^TT2(^1, 2̂, 3̂)] + ^2(^1, x2, I?i) + 0Ti{;2(x1,x 2,tf1) .(3.7)

Let 9 2 be a new estimate of 9 and define the new state x3 as

d j  
dz2x3 = c2x2 + [ 1 + [23 + 1̂ 72(21, 22, 23)]

+ ^2(^1, ^2,^ l) + #2 02(®1, ^2,^ l) •

Substitute (3.8) into (3.7) to obtain

(3.8)

X2 = -C2X2 + X3

+  ( 0 - t f 2)T il>2(xx,x2,#x) + f l  + 72(01, 22,^3)

= -C 2X2 + X3 + (0 -  1?2)T^2(^1, *2,^3, l?i,l?2) • 

Then, let the update law for the new estimate 92 be

l)2 = X2W2(x1,X2,X3,^1,l)2)-

(3-9)

(3.10)

Step i (2 < i < n — 1) Using the definitions for Xj , . . . ,  x, and i? i,. . . ,  r?,_i, express the

derivative of X{ as

t ^ 7 iX. = 1 +
T ^7*-l

d z{
Zi+X + 0Tji(z x ,...,z i+i)

+Vi(x!, . . . , Xi, 1?!, . . . , l?,_i) +  0T ^i(x 1, . . . , Xi, t?i, . . . , l?t_i) . (3.11)
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Let I?,- be a new estimate of 6 and define the new state x t+1 as

xi+i = c{Xi -f I 1 + . .  f  i  +  d i 1 d r - 1 Zi+i + 7i(zh • • • 5 zi+i)dz2J  V •“ dzi ,
+V>.-(®1, . • •, x t-, i91?. . . ,  . . . ,  a;,-, i? !,. . . ,  . (3.12)

Substitute (3.12) into (3.11) to obtain

X{ = — C{Xi + Xi+i + [9 — tfj)T r/>i+ (1 + t ^ 7 i
’l  + C x ^ l T . '

— CiXi ~f" “l“ (̂  »̂) W {(xi, . . . , SJj'-j-i, , • • • •> ) •

Then, let the update law for ??,• be

tii = (®1 5 • • * 5 *̂ t+l 5 »• • • 5 ^*) •

(3.13)

(3.14)

Step n. Using the definitions for x i , . . . ,  xn and i?i, . . . ,  $ n_i, express the derivative of xn

as

*» = (1+̂ £)'"(1+Ci%r) [aw+ow]«
+(^n(x, 1?1, . . . ,  n_i) + 0T̂ ri(x, 1?1, . . . ,  tfn_ i ) . (3.15)

Let dn be a new estimate of 0 and define the control u as

1u =

where

# 7 i

CnXn ipn (3.16)

* M . , • • • A )  = 11 + ^  ] • • • ( i  + C x 97"-'1 1 ■ -aTdzn

Substitute (3.16) into (3.15) to obtain

dzn ’o(z) + 0Tnf}(z) . (3.17)

¿n  — -̂n^n ”1” ^n) 0"+(1+̂ £)---(1+ei^ r ) /?(z)u
— Cn37n + (0 ^n) ^n(^ 5 ^1 ? • • • ? ^n) 5 (3.18)

where (3.16) is used in the definition of wn. Finally, let the update law for the estimate 

T?n b e

i?n = xnwn(x,tiu . . . , i?n) . (3.19)

9
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The above steps complete the formal development of the new design procedure. Its 

feasibility and the stability of the resulting closed-loop system are analyzed in the next 

section.

4 Feasibility and Stability

The above design procedure has introduced a set of new coordinates X\,. . . ,  xn defined by

Xi

In order to ensure that the procedure is feasible, we construct in Proposition 4.1 an estimate

T  C iRn(1+p) of the feasibility region such that for all (z, $ 1, . . . ,  tfn) 6  T  the coordinate 

change (4.1) is one-to-one, onto, continous and has a continuous inverse, and the denominator 

in (3.16) is nonzero.

P rop o sition  4 .1 . Let Bz be defined as in Proposition 2.1 and B# C Mp be an open set 

such that

Then, the set T  — Bz x B$ is a subset of the feasibility region.
0

P roo f. Obvious, since (4.2) and (4.3) guarantee that in Bz x J5J (4.1) is uniquely solvable

(4.2)

(4.3)

for z and the denominator in (3.16) is nonzero. □

R em ark  4 .2 . The nonglobal nature of the feasibility region is not due to the adaptive 

scheme, because, even when the parameters 6 are known, the feedback linearization of the

system (3.1) can only be guaranteed for 9 (E Be, with Be C Mp an open set such that

(4.4)

(4.5)
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In the feasibility region, the adaptive system resulting from the design procedure can be 

expressed in the ^-coordinates as

¿1 = -cx^ i + x2 + {0 -

Xn—\ — n̂—l -̂n—1 d* Xn d" (0 $n— l) ^n— • • • ) 5 ^1) • • • j $n—l) (4.6)

Xn — Cn3Jn d" (0 1?n) ^1 5 • • • 5 ^n)

$,• =  X{ W i(x, l?i, . . . , I?,*) , 1 < 2 < n .

The stability properties of this system are now established using the quadratic Lyapunov 

function

V(x, * „ . . . , * , )  = i * Tx + I  ¿ ( f l  -  * ) T(* -  * )  • (4.7)

(4.8)

The derivative of . . . ,  tfn) along the solutions of (4.6) is

V = [ctx- + (<9 -  tft)T(xti<;t- -  ¿¿)] +
i=i t=i

n n—1

=  ~ Y j c ix l  +  •
i=i t=i

At this point we can choose the coefficients C\, . . . ,  cn that were left free in the design proce

dure. The choice cz > 2, for all i = 1 , . . .  , n, guarantees that V is negative semidefinite:

V < -IMI2.

This proves the uniform stability of the equilibrium

(4.9)

£ = 0 , di — 6, 1 < i < n (4.10)

of the adaptive system (4.6}. To give an estimate ft of the region of attraction of this 

equilibrium, we note that ft must be a subset of our estimate T  of the feasibility region. Let 

ft(c) be the invariant set of (4.6) defined by {V < c}, and let c* be the largest constant c 

such that ft(c) C T . Then, an estimate ft of the region of attraction is

ft = ft(c*) = {(x,T?!,.. .,i?n) : V (x ,t? !,.. . , t fn) < c*} , c* = arg sup {c} . (4.11)
n(c) c r

11



R em ark  4 .3 . It can be expected that the above estimate is not the tightest possible one, 

because the choice of the unity gains in the update laws was made for simplicity. W ith some 

a priori knowledge about the shape of T, different adaptation gains can be found so that il 

is maxixized by a better fit of T . □

Next, we use the invariance theorem of LaSalle to establish that for all initial conditions 

. . . ,  ’dn)t=o £ the adaptive system (4.6) has the following regulation properties:

lim a:(£) = 0 , lim x(t) = 0 , lim $,(i) = 0 , 1 < i < n . (4*12)t— MX) t— >00 t— ►oo

In order to return to the original coordinates £, we note that, because of (4.2), the solution 

z2 = • • • = zn = 0 of the system of equations

Zi+I + 0T7i(O> *2, • • •, 2*+i) = 0 , 1 < i < n -  1 ,  (4.13)

is unique in Bz x B$, and that 2t- , l < i < n can be expressed as smooth functions of

1 < i < n using (4.1). Combining these facts with (4.12), we obtain

lim Z\(t) = 0 , lim ¿i(t) = 0 , 1 < i < n . (4-14)t— ►oo t— »oo

Using an induction argument, it is now shown that Z{(t) —» 0 as t —> oo, 1 < i < n:

•  For ¿ =  1 , we have Z i ( t )  —> 0 as t —> oo.

• For i =  k, 2 < k < n, we assume that Z j{t) — ► 0 as t —*■ oo, 1 < j  < k — 1. Then, from

(4.14) we have

lim zk-i{t) = lim { zk+1 + 6>T7fc_1(21, . . . , ^ _ 1, 2:fc)} = 0,  (4.15)

and from the uniqueness of solutions of (4.13) we conclude that zk(t) —► 0 as t —»• oo.

Hence, z(t) -> 0 as t —* oo. Finally, since z = 4>(() is a diffeomorphism with 0(0) = 0, 

regulation is achieved in the original coordinates namely

lim ((t) = 0. (4.16)

The above facts prove the following result:

12



T heorem  4 .4 . When the design procedure of Section 3 is applied to a system of the form 

(2.1) that satisfies conditions (i) and (ii) of Proposition 2.1, the resulting adaptive system 

has a stable equilibrium at £ = 0, = 9, 1 < i < n, whose region of attraction includes the

set 0  defined in (4.11). Furthermore, regulation of the state ( ( t) is achieved:

lim CW = 0 ,I—>oo

for all initial conditions in 0 .

5 Global Stability

There are strong theoretical and practical reasons for investigating whether the stability 

properties of an adaptive system can be made global in the space of the states and param

eter estimates. Systems with a finite region of attraction may not possess a wide enough 

robustness margin for disturbances, unmodeled dynamics, and other model imperfections. 

Furthermore, for nonglobal results it is usually hard to find nonconservative verifiable esti

mates of the region of attraction.

Another aspect of the global stability issue is the comparison of the proposed adaptive 

controller with its deterministic counterpart, that is, the controller that would be used if the 

parameter vector 9 were known. Suppose that for all values of 9 there exists a deterministic 

controller that achieves global stabilization and regulation of the system. If, with 9 unknown, 

the proposed adaptive controller does not achieve the same global stability, this loss is clearly 

due to adaptation.

The stability result of Theorem 4.4 is not global, but, as pointed out in Remark 4.2, this 

is not due to adaptation. For pure-feedback systems, global stability may not be achievable 

even with 9 known. We now consider “strict-feedback” systems for which a globally stabiliz

ing controller exists when 9 is known, and prove that our adaptive scheme guarantees global 

stability when 9 is unknown.

In order to characterize the class of “strict-feedback” systems, we use the following as

sumption about the part of the system (2.1) that does not contain unknown parameters:

(4.17)

□

13



A ssum ption  5 .1 . There exists a g lobal diffeomorphism z = with (¡>(0) = 0, that

transforms the system

C = /o(C) + 0o(C)u, (5.1)

into the system

¿i = Zi+i , 1 < i < ra — 1

¿n = 70(2) + Æo(;z)u, (5.2)

with

7o(0) = 0 , #>(*) ± 0 V* G ITT . (5.3)

R em ark  5.2 . The local existence of such a diffeomorphism is equivalent to the feedback 

linearization condition (2.4). However, at present there are no necessary and sufficient con

ditions that can verify the global validity of this assumption. Sufficient conditions for As

sumption 5.1 are given in [18], while necessary and sufficient conditions for the case where 

/30(z) = const, can be found in [19,20]. □

P rop o sition  5.3 . Under Assumption 5.1, the system (2.1) is globally diffeomorphically 

equivalent to the “strict-feedback” system

¿i = zi+1 + 0T7,-(zi, . . . , z,-), 1 < i < n — 1

Zn = 70(2) + 0Tln(z) + (do(z)u (5.4)

if and only if the following condition holds globally:

S tric t-feed b a ck  condition.

9i = 0 ,

[X Ji]  G Gj , VX E Qj , 0 < j < n - 2 ,

with Qi, 0 < j  < n — 1, as defined in (2.4).

1 < z < p , (5.5)

P roo f. The proof is very similar to that of Proposition 2.1. First note that because of the 

assumptions that the diffeomorphism z = is global and that /30(z) ^  0 Vz 6 JRn, the
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distributions Cp , 0 < j  < n—1 , are globally defined and can be expressed in the ¿-coordinates 

as

Qx = span a 0 < i < n — 1 . (5.6)
dzn' ’ dzn_i j  ’

To prove the sufficiency part of the proposition, note that if the pure-feedback condition 

(2.5) of Proposition 2.1 is replaced by the strict-feedback condition (5.5), then (2.12) and 

(2.14) are replaced by

9i = 0 ,

d z i 1'
6  span

d d 1 <  2 <  P  . (5.7)

dzn ’ dzj j  ’ 

Thus, the expression for fi((f>~1(z)) in (2.13) becomes

2 < j  < n ,

/

W 1« )  =

7 i, i (^ i)

72, i(ZU Z2)

7 n —l,t ( ^ li  • • • ? ^n—l )

V 7n,*(^l> • • • > Zn) )

1 <  2 <  p  . (5.8)

□The necessity part is again straightforward.

The above proposition gives a geometric characterization of the class of systems for which 

the following global properties can be achieved.

T heorem  5.4. Under the conditions of Proposition 5.3 the stability and regulation results 

of Theorem 4.4 become g lobal, i.e., they are valid for any initial conditions in Q = ffin(1+pK

P roof. When the adaptive design procedure (3.3)-(3.19) is applied to the system (5.4), then 

for all G 1RP, 1 < i < n, the change of coordinates (4.1) is one-to-one, onto, continuous 

and has a continuous inverse, and the control (3.16) is well defined, since

d l i

dz{ + 1
(̂ r) = 0 , (3(z) = 0 , fio(z) ^  0 Vz£lRn. (5.9)

Hence (4.2)-(4.3) are trivially satisfied on T  = Bz x B% = Mn̂ 1+P\ and from (4.11) we 

conclude that f1 = ]Rn̂ 1+p\ □
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6 Multi-input Systems

The design procedure of Section 3 can be easily extended to multi-input nonlinear systems 

of the form

C = /o(f) +
*=i j=i

so(C) + ¿ # ¡ 4 ( 0
i=l

uj y

with

/«(o) = 0 , 0 < i < p , rank Go(0) = m , Go = [pj . . .  g™], 

that can be transformed into

(6.1)

( 6 .2)

¿i = 4+i + 0T4  («}. ••• .  zh-ki+2. • • -. * r .  • • • > z£.-*,+s) » i < » < - 1 , i < jm

zk, = 7o(*) + ö 7 ^ ( 4  + 

with

iT
ßo (z) + i2 e‘ßi(z)

e=i
u , 1 < j  < m , (6.3)

(6.4)7/ (0) = 0 , 0 < 2 < k j , 1 < j  < m , det Bo(0) ^  0 , 

where £0 = , /?™]T, and EJLi kj = n.

P rop o sition  6 .1 . There exists a parameter-independent diffeomorphism z = 0(C), with 

0(0) = 0, valid in a neighborhood Bz of the origin, that transforms the system (6.1) into 

the system (6.3) if and only if the following conditions are satisfied in a neighborhood of the 

origin:

(i) Feedback lin earization  condition. The distributions

Q' = span [gJ0, adfogJ0, . . . ,  ad'fogJ0, 1 < j  < m} , 0 < i < n -  1

are involutive and of constant rank r,-, with rn_1 = n.

(ii) P u re-feedb ack  condition.

9i €  Q°, 1 < j < m ,

(6.5)

[XJt] 6  Çk+1, V X 6 Ç k, 0 <
1 < 2 < p . (6.6)
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P roof. As proved in [21,22], condition (i) is necessary and sufficient for the existence of a 

diffeomorphism z — $(() such that in the ¿-coordinates we have

M4> *(*)) = [ 4  • • • 4 , - i  7¿(*) • • • z?  • • • zL - i  7 ” (2)] 

G0(4>-\z)) = [ o . . . o ^ ( z ) .. . 0 .. .o/?™(z)]T

Qx = span
d d

■, 1 < j  < m > , 0 < i < n — 1 .
d z k j  ’ ' "  ’ d z jb j-i

It is now a tedious but straightforward task to verify that condition (ii) is equivalent to

(6.7)

(6.8)

(6.9)

'(2 )) = [O-.-O0',i(z)...O ...O /3")(z)]T , l < t < p ,  1 < J <

7i,.(2i > 4 .  • • •, 2i", • • ■, 2)

m (6. 10)

7 ¡t„ i(2 )

/ 1 ~1 _m m l
7l,*Vzl » • ’ • ’ z k \ - k m + ‘2'> • ' - ’ Z \  ’ Z2 /

7?m,.(2)

1 <  2 <  p (6.11)

□

The design procedure for the system (6.3) is the following:

Steps 0 through (n — m): Apply steps 0 through (kj — 1) of the single-input procedure to 

the first (kj — 1) equations of each of the m subsystems of (6.3), to obtain the system:

M = ~ 4 xJi + ®J+i + (<? 7 ? ! , . . . , ^ _ i ) , c j > 2 ,
i - i

£ = — 1) + 1 < i < & j , 1 < j  < m
p=i

tit = xj . . .  ,#*), l < ^ < n  — m (6 .12)

’ <  '
— # o ( z , 1 ? 1 ,  • • • , t in -m )  +  l ? l ,  • . . , ^ n - m ) ^

~rn
L J

t'=l

+ $(S, 01, • • • , l?n-m) +  V^T(a:, #1, . . . , $ n —rn)@ ,
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where

Bi(z, i?i , . . . ,  l9n_m) —

1 + •  •• f i + / r T( 4

. (6.13)

Step n — m + 1 : Let ^„-m+i be a new estimate of 9 and define the control u as

n T —1

U = A 1 m „mCk1Xk1 ‘ ’ * CkmXkmB q(.2, 1?1, . • • , m) “t" ^ ]B j ( z ,  9 l , . . . , i^n—m )^ n —7n+l,t
t'=l

-$(x,tfl,...,tfn_m) - W T (x , 9 i , . . .,^n-m)^n-m+l} , 4, > 2 > 1 <  j  <  171. (6.14) 

Substitute (6.14) into (6.12) and rewrite the last m equations of (6.12) as

d
dt

4 , 4 ,

X  IL
L  J 4L  Km Km J

11 ’ 4 , 4 ,

c f  X™
L  Km Km J

4* {W  - f  B\U . . . BpU] | (9 — i? n -m + l)

+  ^ n - m+l ( ^ ,  ^ 1 ,  • • . , t f n - m + l ) ( 0  ~  ^ n - m + l )  , (6.15)

where (6.14) was used in the definition of VFn_m+1. Finally, let the update law for the 

estimate i?n_m+i be

9 n —m+l — to+1 j ^1» • • • » ^ n —m + l)

Xk i

L
L  Km  J

(6.16)

Note that this procedure will again be feasible only in a certain feasibility region, which
p

can be defined as the region in which the matrix B = B0 + ^  is invertible.
i=i

The stability properties of the resulting closed-loop system are analogous to those listed in 

Theorem 4.4, and can be similarly established using the Lyapunov function

n—m+l1 -j n—m+i
V(x, t f i , . . . , t f„_m+1) = - x Tx + -  J2  (0 — ^.)T(  ̂ — ^.)- (6.17)

» = 1
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7 A Global Tracking Result

We now turn our attention to the tracking problem for a class of input-output linearizable 

systems characterized by structural Conditions analogous to those in Propositions 2.1 and 5.3. 

Every regulation result in Sections 2-5 has its tracking counterpart. For brevity, we restrict 

our presentation to the tracking version of the global regulation result in Section 5. The 

counterparts of nonglobal regulation results can be obtained using the same Lyapunov func

tion argument as in this section to determine an invariant set in which asymptotic tracking 

is guaranteed.

Consider the nonlinear system

C = /o(0 + E *.7 i(C ) + a> (0« (7.1)

y = MO *

where f  £ JRn is the state, u £ IR is the input, y £ M is the output, 9 — [$i, . . . ,  0P]T is the 

vector of constant unknown parameters, h is a smooth function on Mn with h(0) = 0 , and 

the vector fields g0, /,-, 0 < i < p, are smooth on lRn with g(Q 0 , V( £ iRn, /,(0) = 0,

0 < i < p. We first formulate the input-output counterpart of Assumption 5.1:

A ssu m p tion  7 .1 . There exist n — p smooth functions <f>i((), p + 1 < i < n, such that the 

change of coordinates
zi = h(Q 
z2 = Lfoh(C)
3̂ = L%h(0

*P = L ^ h (  0  
^ = M O   ̂ P + l < i  < n

is a g lobal diffeomorphism z = that transforms the system

C = /o(O + 0o(C)w 
y = HO
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into the special normal form

i i  = z2

Zp-i = zp (7.4)
if  = ToW + A (*)u
i x = $o{y, zr)

7o(0) = l £ A ( 0 ) - 0 ,  $ o(0,0) = 0 (7.5)

A (*) = LnLZ'KC) i0 V* €  JR". (7.6)

R em ark  7 .2 . In order for (7.3) to be locally equivalent to (7.4), it is necessary and sufficient 

that the following conditions hold in a neighborhood of the origin ( = 0:

L90L)Qh = 0 , 0 < i < p — 2 (7.7)

K L f i ' m  *  0 (7-8)

Q* is involutive and of constant rank i -f 1 ,  0 < i < p — 1 . (7-9)

The sufficiency of these conditions is a consequence of Proposition 10 in [23]. The necessity

can be easily established by verifying that (7.7)-(7.9) hold in the coordinates of (7.4). How

ever, at present there are no necessary and sufficient conditions that can verify the global 

validity of this assumption. □

We are now ready to formulate the input-output counterpart of Proposition 5.3:

P rop o sition  7 .3 . Under Assumption 7.1, the system (7.1) is globally diffeomorphically 

equivalent to the “strict-feedback” normal form

¿i = Zi+i + 0T7»'(2i > • • • ,Zi,zr) , 1 < i < p -  1

zp = 'yo(z) + 0Tj p(z) + Po(z)u (7.10)

¿r = $o (y ,2r) + £ 0i$ i(y ,* r)
t=i

y = zx,

if and only if the following condition holds globally:
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S tric t-feed b a ck  condition.

[X,fi\ V X e g i ,  0 1 (7.11)

with 0 < j  < p — 1, as defined in (2.4).

P ro o f. The proof follows closely that of Proposition 5.3. First, because of the assumptions 

that the diffeomorphism z = 0(() defined in (7.2) is global and that (30(z) ^  0 Vz E IRn, the 

distributions ÇP , 0 < j  < p—1 , are globally defined and can be expressed in the z-coordinates 

as
J d dg  = span , 0 < * < p -  1.

The sufficiency follows from the fact that, by (7.11) and (7.12),

± ,
d zjJ \

( d 5 1
E span < —— , . . . ,  —— >, 2 < j  < p , 1 < * < p •dz. dzj

(7.12)

(7.13)

Thus, the expression for /,•(</> *(z)) is

(  h , i { z \ ’>zT) \

7 2 ,t (Z l,2 2 ,2 r )

M r\z)) =
1p-\,i(z\t • • • ? zp-li z*)

~1p,i(zx, . . . , z p,zT)
H z u z r )

l <  i <  p. (7.14)

□The necessity part is again straightforward.

R em ark  7.4 . To obtain the input-output counterpart of Proposition 2.1, one just needs to 

replace condition (2.4) (feedback linearization condition) of Proposition 2.1 with conditions 

(7.7)-(7.9) and condition (2.5) (pure-feedback condition) with

9i € S°,

€ ç j+1, v x e g i ,
1 <  2 <  p (7.15)

□

As in most tracking problems, we need an assumption about the stability of the zero- 

dynamics of (7.10):
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A ssu m p tion  7 .5 . The zT-subsystem of (7.10) has the bounded-input-bounded-state (BIBS) 

property with respect to y as its input.

It was shown in [9, Proposition 2.1] that the following conditions are sufficient for As

sumption 7.5 to be satisfied:

(i) the zero dynamics of (7.1) are globally exponentially stable, and

v
(ii) the vector field $  = $ 0 + in (7.10) is globally Lipschitz in z.

i= i

However, they are too restrictive for our purposes. For example, the system zr = — (zT)3 + y2 

violates both these conditions, but is easily seen to satisfy Assumption 7.5. On the other 

hand, for nonglobal results it is convenient to use the assumption of exponential stability of 

the zero dynamics in order to estimate the region of attraction using a converse Lyapunov 

theorem.

The control objective is to force the output y of the system (7.1) to asymptotically track 

a known reference signal yT(t), while keeping all the closed-loop signals bounded.

A ssu m p tion  7 .6 . The reference signal yr(t) and its first p derivatives are known and 

bounded.

To achieve the asymptotic tracking objective, the design procedure presented in Section 3 

is modified as follows:

Step 0 . Define

Xi = Z i - y T. (7.16)

Step 1 . Starting with

¿i = + <9T7 i (2i , zr) -  yr , (7.17)

let be an estimate of 0 and define the new state x2 as

x2 =  CiXi +  z2 +  tf?7i(zi,z*) ~  Vr

= CiXi + z 2 + t f iwi (z i , zr, yr) - y T, > 2.  {7.18)
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Substitute (7.18) into (7.17) to obtain

¿ 1  = - c xxx + x2 + (0 -  ^i)TWi(zi, Vx) 

Then, let the update law for the parameter estimate be

= x1 w1(x1,zr,;/T).

(7.19)

(7.20)

Step 2. Using the definitions for xi, x2 and write x2 as

¿2 = C\[ C\X\ + x2 + (9 -  l91)Tw1(x1,z\yr)} + z3 + 9T-f2(zl , z2, zT) 

+xl w1(x1,zT,yr)i:~f1(zu zT) + 1?^

, ^ 7 i ( z u z *)

dzl $ o ( * i , 2 r ) +  ' % 2 0 i $ i ( z 1, z r )
t=i

-  Vx

(7.21)= Z3 + V>2(X 1,X2, ZT, 0 1, V t , tir, Hr) + 6TW2(xu *2, Zr, l>lt J/r, yr) .

Let i92 be a new estimate of 9 and define the new state x3 as 

x3 = c2x2+z3 + ip2(xi,x2,zr,d l ,yT,yT,yx) + tilw2(xi,x2,zTid-L^^yr) , c2 > 2 . (7.22) 

Substitute (7.22) into (7.21) to obtain

X2 = - c 2x2 + x3 + (0 -  '92)t w 2( x 1 , x 2 , 2r , r?!, t/r, yr ) , (7.23)

Then, let the update law for the new estimate d2 be

= x2w2(xl ,x2,zT,til ,yT,yT) . (7.24)

Step i (2 < i < p — 1) Using the definitions for Z j , . . . , ^  and i?i, . . . ,  express the 

derivative of X{ as

ii = zi+i + <pi(xu . . . ,Xi ,zr,tf i , . . . ,  fli-uyr, • • •, yil))

+6TWi(xu . . . ,  Xi, zr, 1? ! , . . . ,  yr, • • •, 2/il_1)) • (7.25)

Let i9,- be a neiu estimate of 9 and define the new state xt+i as

Zt+ l CiXi + 2 t+i + v?i(a?i,. . . ,  Xi, zT,tii , . . . ,  yr, . . . ,  y[l))

+tijwi(x i , . . . ,  xt-, 2r, i?i , . . . ,  i, 2/r, • • •, 2/i‘_1)) , c , ->2 .  (7.26)
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Substitute (7.26) into (7.25) to obtain

x{ = -CiXi + xi+1 + (0 -  1}) . (7.27)

Then, let the update law for ti{ be

tit = xt ii;1(x i , . . . , a ; i , 0 r, i ? i , . . . , i9t_ i , y r , . . . , y i ,"1)) . (7.28)

Step p. Using the definitions for xx, . . . ,  xn and t9l9 . . . ,  i?p_i, express the derivative of xn as

Xp = (30(z)u T ^P(*̂ i? • • • j 'E'pi z i tii, . . . ,  tip_i, yr, . . . ,  )̂

T9 Wpî xi , . . . ,  xp, z , i?i, . . . ,  tip_i, yr, . • • ? yj. )̂ •

Let tfp be a new estimate of 9 and define the control u as

u = -CpXp-Vp-ti^Wp , cp > 2 .
M z)

Substitute (7.30) into (7.29) to obtain

ip — CpXp + (0 tip} 'Wpî xi, . . . ,  Xp,  ̂ . . . ,  tip—i, i/r, . . . ,  ŷ . )̂

Finally, let the update law for the estimate tip be

!?„ = Xpw,(xu . . . ,  xp, zr,t ) , , . . . ,  t?„_i, , s/i"-1 ’ ) •

(7.29)

(7.30)

(7.31)

(7.32)

As was the case in the regulation result of Section 5, the assumptions of Proposition 7.3 

guarantee that the design procedure (7.16)—(7.32) is globally feasible. The resulting closed- 

loop adaptive system is given by

xi = - c xxi + x2 + (0 -  ti1)Tw1(x1,z\yr)

Xp-1 = -Cp-iXp-i + Xp + (0 -  tip-i)TWp-i(xi, .. . . ,®p_ i ,z r, t? i , . . . , i ?p_i , y r, . .

Xp = CpX p T ($ tip) wp(æi, . . . ,  «£pj 2 î ■. . . , ^p_l, 2/r, - * * , 2/iP_1)) (7.33)

¿r = * 0(y ,;O  + £ f t S i ( y , * r)
t=i

î),‘ — X{ W{(̂ Xi, . . . , X{, 2 , . . . , î?t_l 5 2/r? • • • ? 2t f - 1)),  1 < * < P

V = xi + yT.
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The stability and tracking properties of (7.33) will be established using the quadratic 

function

Vt(xi i , . . . , # , )  = H  + (<9 — — ¿̂)1 . (7.34)
z  t=i

The derivative of Vt along the solutions of (7.33), with c,- > 2, 1 < i < p, is

Vt = -  E  [cixl + (0 -  -  i?,-)] + E  x*x*+1
i=i *=i
p p-1

= - E °ix2i + Ê .+i
t=i t=i
p

< - J 2 x*̂  °- (7-35)
í=i

This proves that Vt is bounded. Hence xi t . . . , x p and . . . ,  dp are bounded. The bound

edness of Xi and yr implies that y is bounded. Combining this with Assumption 7.5 proves 

that zT is bounded. Therfore, the state vector of (7.33) is bounded. This fact, combined 

with Assumption 7.6, implies the boundedness of z, £ and u. Thus, the derivatives ¿ i , . . . ,  xp 

are bounded. Now (7.34) and (7.35) imply that Vt is bounded and integrable. Moreover, 

the boundedness of aq, . . . ,  xp and x\t . . . txp implies that Vt is bounded. Hence, Vt —> 0 as 

t —► oo, which, combined with (7.35), proves that

hm Xi(t) = 0 , 1 < i < p . (7.36)

In particular, this means that asymptotic tracking is achieved:

lim Xi(t) = lim [y(t) -  t/r(i)] = 0. (7.37)t ÔO t ÔO

These result's are summarized as:

T heorem  7.7 . Under Assumptions 7.1, 7.5 and 7.6, and the strict-feedback condition (7.11), 

the adaptive design procedure (7.16)-(7.32), applied to the nonlinear system (7.1), yields 

global asymptotic tracking and boundedness of all the closed-loop signals. □

8 Discussion and Examples

W ith the help of two simple examples, we now discuss some of the main features of the new 

adaptive scheme. The first example illustrates the systematic nature of the design procedure,
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while the second one compares the stability properties of the new scheme with those of the 

nonlinearity-constrained scheme of [9].

E xam ple 8 .1  (R eg u la tion ). We first consider a “benchmark” example of adaptive non

linear regulation:
¿1 = z2 + 0z\
¿2 =  ¿3 (8.1)
z3 = u,

where 6 is an unknown constant parameter. This system violates both the geometric con

ditions of the schemes proposed in [1,2,3] and the growth assumptions of [5,6,9,12]. In fact, 

the only available global result for this example was obtained in [7].

The system (8.1) is already in the form of (5.4) with /?0 = 1. Hence, this system satisfies 

the conditions of Theorem 5.4, which guarantees that the point z = 0, = i92 = ^3 = 0

is a globally stable equilibrium of the adaptive system. Moreover, for any initial conditions 

2(0) € 7R3, (i?i(0), ^2(0), ^3(0)) € iR3, the regulation of the state z(t) is achieved:

lim z(t) = 0 . (8-2)
t—►00

The design procedure of Section 4, applied to (8.1), is as follows:

Step 0. Define — Z\.

Step 1. Let be an estimate of 0 and define the new state x2 as

x2 = 2x\ -f z2 + 9 i x l . (8.3)

Substitute (8.3) into (8.1) to obtain

¿1 = —2xi + x2 x\{6 — $ i ) . (8.4)

Then, let the update law for $1 be

¿ i = x 3 . (8.5)

Step 2 . Using (8.3) and (8.5), write x2 as

¿2 =  2 ( z2 +  Oz^) 4- z3 + î i 2 x i ( z2 9 zj) 4- x\. (8-6)
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Let 0 2 be a new estimate of 6, and define the new state

x3 = 2x2 + 2(z2 4- tM i )(1 + 0 i®i) + x\ + z3 (8.7)

Substitute (8.7) into (8 .6) to obtain

¿2 = ~ 2z2 + ^3 + 2x1(1 + 0 13 1)(0 -  0 2) (8.8)

Then, let the update law for 0 2 be

¿2 = 2x2x\(1 + ^i^i) (8.9)

Step 3. Using (8.3), (8.5), (8.7) and (8 .8), write ¿3 as

¿3 = 2 - 2x2 + x3 + 2^1 (1 + ti\Xi)(9 -  0 2)] + 2 z3 + 2z\d2(z2 + 0z\)

-\-2z\x 2x \(1 + i?!̂ )] (1 + 0i£i) +  2(̂ 2 +  $ 2 * 1 ) +  i?i(z2 +  0*?)

+5x?(z2 + 0z\) + U .

Let 0 3 be a new estimate of 0, and define the control u as

(8.10)

u = —2x3 — 2 —2z2 +X3 + 2x\(l + 0 i3 i)(0  — $ 2)] ~ 2 z3 -+■ 2^ii92(̂ 2 T 0Zi ) 

+2z\x2x\(1 + i?ia?i)] (1 + 0 ia?i) -  2(z2 + i92z?) [3* + 0 i (22 + 0z\)

—bx\(z2 + 0z\). (8 -11 )

Substitute (8.11) into (8.10) to obtain

¿3 = - 2^3 + 2xJ(l+  20x3!)+ 4zii?2+  2tfi(22 +  iMi)*? +  5a:i (# -  ̂ 3) • (8.1 2 )

Finally, let the parameter update law for 0 3 be

0 3 = x3 2x{(l + 2tiiXi) + 4^02  + 20\(z2 + ^2Z{)z{ + 53* (8.13)

The resulting adaptive system is
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¿X = —2 x i - \ - x 2 + x l ( 0  — 'd1)

¿2 = - 2 x 2 + x 2 + 2x\(l + -  ti2)

¿3 = —2x̂  + 2x1(1 + iMi) + 4ziI?2 + 2i?i(z2 + $2z\)z\ + (0 -  3̂ )

¿1 =  x\

02 = 2a;2a;J(l + ^i^x)

¿3 = £3 2xJ(l  + ^1X1) + 4zf02 + 201(z2 + d2z\)z\ + 5x i] •

Using the Lyapunov function

1

(8.14)

v  =  _ x\ + x2 + x3 + {6 — i?x) + [0 — $2) + (0 — $3)' •(8.15)

it is straightforward to establish the above mentioned global stability properties. □

E xam ple 8.2 (T racking). Consider now the problem in which the output y of the nonlinear 

system

(8.16)

¿1 =  Z2 + 0z\
¿2 =  It +  Z3
¿3 = -Z3 + y
y = *1 ,

is required to asymptotically track the reference signal yT = 0.1 sint.

For the sake of comparison, let us first solve this problem using the scheme of [9]. This 

scheme employs the control

u = - z 3 + fci(*x -  yT) + k2(z2 + 0xz\ -  yT) + yT -  20izxz2 -  202z\ , 

where 0lt 02, the estimates of 9, 92, respectively, are obtained from the update laws:

e l£ l  \  e l{2
0,  = 9o =

(8.17)

(8.18)
i +  i? +  f! l +  fl +  i l '

Using a relative-degree-two stable filter M(s), the variables ei, f i ,  £2 in (8.18) are defined as

ei = y - y r + u>- 0xfx -  02(2 (8.19)

6 = M(s) \2zxz2 + k2z ^ (8 .20)

6 = M(s)[2z*\ (8 .21)

U1 — M(s) ^x 2̂^x̂ 2 T k2z f j + 02 ^2^i)] . (8 .22)
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Simulations of this system were performed with

M(s) = , 6 = 1 , h  = - 6 , h  = - 5 ,  (8.23)

and all the initial conditions zero, except for ^(O.), which was varied between 0 and 0.45. 

The results of these simulations are shown in Fig. 1. The response of the closed-loop system 

is bounded for î(O) sufficiently small, that is, for 2i(0) < 0.45. However, for larger 2i ( 0), 

the response is unbounded. This behavior is consistent with the proof of Theorem 3.3 

in [9], which guarantees boundedness for all initial conditions only under a global Lipschitz 

assumption. In the above system, the presence of the term z\ leads to the violation of this 

assumption.

The unbounded behavior in Fig. 1 is avoided by the new scheme, which results in a 

globally stable adaptive system. This is illustrated by simulations in Fig. 2. The design 

procedure of Section 7, applied to the system (8.16), results in the change of coordinates

xi — zi ~ Vt
x2 = 2(zi -  yT) + z2 + i z\ -  yT,

the control

u = - z 3 -  3x2 -  2(z2 + tf2z?)(l + ^1 1̂) -  xiA  + 2yr + yr , (8.25)

and the update laws

= x\z\ , = 2x2z\(l + d\Xi). (8.26)

□

The above example illustrates an obvious advantage of the new scheme in the case of 

strict-feedback systems: it guarantees global stability for all types of smooth nonlinearities. 

Its advantages are less obvious, but still important, in the case of pure-feedback systems, 

when the feedback linearization is not global. In this case, the new scheme provides an 

estimate of the region of attraction, which is not the case with the schemes of [5,9,12]. On the 

other hand, the schemes of [1 ,6] guarantee local results and give stability region estimates for 

larger classes of systems than the scheme presented in this paper. In the case of pure-feedback 

systems, it would be of interest to compare the sizes of stability regions obtained with

(8.24)
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different schemes. Another significant task would be to compare their robustness properties. 

However, such tasks are beyond the scope of this paper.

9 Conclusions

The results of this paper have advanced in several directions our ability to control nonlinear 

systems with unknown constant parameters. The most significant progress has been made 

in solving the global adaptive regulation and tracking problems. The class of nonlinear 

systems for which these problems can be solved systematically is now much larger than ever 

before. The strict-feedback condition precisely characterizes the class of systems for which 

the global results hold with any type of smooth nonlinearities. For the broader class of 

systems satisfying the pure-feedback condition, the regulation and stability results may not 

be global, but are guaranteed in regions for which a priori estimates are given. It is crucial 

that the loss of globality, when it occurs, is not due to adaptation, but is inherited from 

the deterministic part of the problem. All these results are obtained using a step-by-step 

procedure which, at each step, interlaces a change of coordinates with the construction of 

an update law. Apart from the geometric conditions, this paper uses simple analytical tools, 

familiar to most control engineers.
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