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Abstract

In this paper we present a new one-dimensional shape matching technique based on elastic 
deformation of a model or template. Deformations of the given template are introduced 
as a way to improve the matching with the image data. A trade-off is made between the 
amount of deformation and a figure of merit that accounts for the match. This approach 
yields a new optimization functional so that the optimal match for a given shape is 
expressed as a solution of a variational problem. Numerical methods are presented to 
solve the resulting system of ordinary differential equations.

This new matching technique can be used for pattern recognition applications where 
binarizing images s hard or impossible. An illustration of the nre shape matching method 
is shown for several optical character recognition problems.



1 Introduction
In this paper, we present a new shape matching technique based on the deformation of 
a one-dimensional “sketch” of the shape to be matched. The sketch (or template) can be 
visualized as made up of an elastic material, and is deformed to find the best possible 
match in the image.

The new technique is a generalized form of template matching in which a model of 
the shape is known in advanced and the image is searched for evidence supporting the 
presence of the model. Traditional template matching techniques are quite inflexible 
and sensitive to small geometrical distortion of the sought pattern. In our method, 
deformations of the pattern are allowed as a way to improve the matching with the 
image data. A trade-off is made between the amount of deformation in the pattern and 
a figure of merit that accounts for the match.

Shape matching methods can be classified according to the way apriori knowledge of 
the shape is used. In data-to-model methods, raw image data is analyzed by extracting 
features and comparing them to those rendered by the model.

On the contrary, in model-to-data methods, such as template matching, we start with 
a model (the template), and search the image for evidence supporting the presence of the 
model. This is essentially a top-down procedure and, in principle, it could give better 
results than data-to-model methods, since it can use a priori information embedded in 
the model that feature extraction-based methods cannot exploit.

The technique presented in this paper belongs to the general class of model-to-data 
methods. As an illustration of the significant improvements that the new technique 
introduces over template matching, we will analyze its advantages in two scenarios.

The two most common applications of a template matching technique are similarity 
ranking and class assignment. Similarity ranking is carried out when looking for an image 
in an image database based on the sketch of a shape. In this case, we have one template, 
and a number of images. The goal is to rank the images according to their similarity 
with the template. The effect of brittle matching in this case is to narrow the scope of 
the search: only images with shapes very similar to the template are ranked well. Other 
images in the data base containing deformed ocurrences of the sought shape may receive 
meaningless scoring.

In class assignment, a series of different templates representing classes are matched 
against a single image. The class of the template with the best match is sought. An 
example of class assigment is optical character recognition. In this case, the effect of 
brittle matching is the proliferation of templates. For instance, in [6], template matching 
is used for the recognition of digits. In that case, 1,000 templates are used to recognize 
a training set of 10,000 digits with 95% accuracy. This large number of templates was 
necessary to take into account all the variations of the digits in the training set. This 
will also pose problems for the recognition of digits that are not part of the training set: 
there is no warrantee that other digits with different distortion than those in the training 
set will be recognized by the same templates.

We believe that reliable figures of merit or similarity measures for matching can be
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obtained from the elastic deformation energy of a prototype shape. This gives a template 
a great flexibility in matching similar shapes, and provides graceful degradation of the 
similarity measure as the two shapes to be matched are set apart.

One can picture the technique by thinking of a thin metallic bar, that is melted in 
a furnace and given the shape of the template. In the matching process, the bar starts 
by assumeing the shape of the template without internal stress, that is, in a status of 
minimal internal energy. Then, we start stretching and bending the bar, trying to adapt 
it to the relevant characteristics of the image1. While doing this, we simultaneously keep 
track of the degree to which the deformed bar matches the image, and of the deformation 
energy of the bar, looking for a “good compromise” between the two.

The outline of the paper is as follows. In Section 2, we briefly discuss related work. 
In Section 3, the new matching technique is presented. The properties of the optimal 
deformation of the template are studied in Section 4. In Section 5, the numerical solution 
to the shape matching problem is described. Different possible measures of the quality 
of match are discussed in section 6. Also in section 6, the variation of these measures 
with respecto to the initial position of the template is studied. Section 7 shows a new 
approach to an OCR problem where conventional binarization of digits is impossible. 
This OCR approach is obtained by using the shape matching technique shown in the 
paper.

2 Related Work
In the past, researchers have developed a number of techniques for shape matching based 
on deformation and continuity. In this section we briefly review these techniques, and 
highlight the differences with respect to our method.

The most widely known objects with elastic deformation properties are the snakes 
[8, 15, 19]. A snake is a spline curve that is superimposed to an image, and deformed 
to match image contours, while retaining certain smoothness characteristics. Snakes 
have been used mainly for extraction of smooth boundaries and applied, e.g. to head 
boundaries identification [19].

The main difference between snakes and the approach presented in this paper is that 
snakes carry no a priori model of the shape. Rather, “smooth” contours are sought. This 
makes the snakes not well suited to look for contours that are not smooth. Actually, in 
some papers (e.g. [15]), it was noted that snakes do not give satisfactory results when 
requested to look for a rectangle in the image, because the smoothness requirements 
cannot be met at the sharp corners.

In our approach, on the contrary, we have a model that, however irregular it may be, 
represents the state of zero energy, and we set constraints only on the deformation of 
the original model. Therefore, looking for a rectangle, or for any irregular shape is not -

1The relevant characteristics depend heavily on the application, and the issue will be given the 
proper mathematical treatment in the following sections. For the present example, we can assume that 
the template is fitted to the edges of the image.
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given the appropriate model -  different from looking for a circle or for any very regular 
shape.

To emphasise the difference by means of a physical analogy, we could stress that, 
in the snakes model, a rubber band -  whose undeformed state is a very small ring -  is 
extended to fit edges in the image.

In our approach, on the contrary, a rubber sheet with shape of the sought template 
is deformed to match the image data.

Another approach has been proposed that models digits in an OCR application as 
splines [7, 20]. The model is then fitted to a binary image of a digit, and the agreement 
between the model and the image is measured by the displacement that it is necessary 
to give to the original control points to obtain the maximum match.

This method suffers from the same drawbacks as the snakes. Namely, it cannot easily 
fit shapes that cannot be modeled as a smooth spline. In addition, it uses an optimization 
procedure that maximizes the probability that all pixels be generated by the spline. As 
such, it is not easily generalizable to deal with gray level images.

Other methods have been proposed to impose continuity and smoothness constraints 
on deformation directly on the discrete images.

For instance, Burr [2] proposes a method to register images, that is, to find point 
corresponcencs between two images. The goal is to find one-to-one associations between 
points in the first image and corresponding (displaced) points in the second image. At 
first, every point in the undeformedimage makes a tentative match with a point in the 
deformed image. In general, many of these point relations will be wrong. To correct 
them, Burr uses a relaxation process, based on constraints between nearby points. The 
constraint is basically that nearby points in the undeformed image should be connected 
to nearby points in the deformed image. This relaxation process eventually leads to the 
right registration.

Methods similar to Burr’s find application in OCR [17], and in shape matching [3].

3 The Matching Technique
The model in our approach is a one-dimensional template r  : IR IR2, which is a curve 
in the image space, parametrized with respect to the arc length s. All the curves we 
use have length normalized to 1. The individual components of r  will be denoted by r M, 
where greek indeces take values in {1 ,2 }. Einstein’s summation convention will be used 
throughout the paper. Also, let /3 : IR2 h* [0,1] be the image to be fit with the template.

Since the exact shape of r  will not be present, in general in the image, deformations 
of the original template r  have to be allowed to find a good match with the image data.

Thus, the deformation 9 is a unitary length smooth curve 9 : [0,1] IR2, which is 
added pointwise to the model template r  so as to obtain the deformed template

=  t ( s ) +  0 (5 )

In terms of the analogy outlined in the introduction, we can say that r  is the mold 
used in the furnace to melt the prototype: the “original” shape of the template. On the
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other hand, <j> is the metallic bar that can be made different from r due to the deformation 
9.

To measure how far we go from r, we measure the elastic energy of the deformation. 
This energy is computed based on the deformation 9(s) as:

To ease the notation, we set:

<2)
so that eq. (1) becomes:

[  «•' ds (3)

Note that in eq. (3) the measured elastic energy is that of the deformation. It doesn’t 
matter how irregular, even discontinuous, the shape of the template r  might be. Taking 
back the physical analogy, when the metallic bar has been melted in a given shape, it 
takes that shape without internal tensions, no matter how irregular it is. Only when the 
shape is modified by 9 a state of stress appears.

In addition to the deformation, we want to know how well the deformed template 
fits the image (3. The way this measure is defined depends in part on the nature of the 
application.

Foe example, if the shape we are fitting is a drawing in the image plane (as could be 
the case of OCR), then we have to fit the template to the “black” areas of the image.

If (3{x) representes the “blackness” at point x , then a measure of the fitness between 
the elastic template <f> and the image is given by:

f 1 [/?(<^))]r ds (4)Jo

Where r >  0 is a “shape factor” coefficient that can be used to weigh the match in 
“almost black” areas differently from the match in “almost white” areas. For instance, 
if /3 € [0, 1], as will be assumed henceforth, when r —► oo, only areas in which (3 =  1 give 
a contribution to the integral, while all the areas in which (3 is grey do not contribute.

On the other hand, if we look for a particular shape in a general image (e.g. the shape 
of a car in an outdoor scene), then we want to fit the template against the contours of 
the image. A way to do this is to place the template on the maxima of the gradient of 
the image. In this case, the match measure could be:

f 1 [|VW W )|]r ds (5)Jo

where r has the same meaning as in (4).
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For the general case, assume a differential operator is given:

Dm - a0 + 2s  arir2<qTri/)rr2ri+r2<=iV OXl OX2
(6)

and let \£(:r) be defined as:
®[*] = (7)

Then, the matching term can be expressed a-s:

f  'H[(f)(s)]ds 
Jo (8)

Note that the two cases in (4) and (5) above can be obtained as special cases of (8) 
by setting a0 =  1, atJ =  0, for the “blackness” matching and ai0 =  a01 =  1, aXJ =  0 
otherwise for the contour matching.

The elastic template should find a compromise between the maximization of eq. (8), 
which measures the match between the deformed template and the image, and the min­
imization of eq. (3), which measures the deformation of the template from its original 
position. This compromise is accomplished by minimizing the compound expression:

/  m  =  j i 1 {<*•' { m Q  -  *  M s)] }  ds (9)

This is a regularization problem of the type discussed in [16], whose solution is ob­
tained by variational techniques [9], and where the function

<5(0) =  a ' -  *  [¿M l (1 0)

plays the role of a Lagrangian function.
Writing down the Euler-Lagrange equations for this problem, we have:

-  « * « s = ¿ s  (•  w ) ( h )

working out the derivatives and the summations, the system of ordinary differential 
equations to be solved is:

a
d40* X(P0* dV[x]
ds4

— a
ds2 do*

, ¿¿ =  1, 2. (1 2 )
(0+r)(a)

Solving this system of equations gives the deformation 0 that minimizes f  4>, thus, 
the deformation that optimally fits r to the image ¡3.

4 Solution of the Variational Problem
The problem posed in the previous paragraph is a regularization problem in the sense 
of Tihonov [16, 13], whose solution requires the integration of the system of nonlinear
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ordinary differential equations (11). The solution of the problem in closed form is in 
general impossible, and a suitable numerical technique has to be used for the solution.

In this section, we study the solution to the variational problem (9) and show that 
if we approximate the integral /  by a summation taken over n points, then a locally 
optimal solution can be found in a space of dimension n. This means that there are n 
functions g u . . . , g n such that the locally optimal solution is given by:

n

/  =  '52m9i
¿=1

for some suitable coefficients This property is important since it allows to reduce the 
differential equation (11) to an algebraic system in 2n unknown (n coefficients for each
component of the deformation $).

Our proof is an extension of that in [18] in which it has been proven that a similar 
property holds when ^  is linear in ip.

If we approximate the integral with a summation taken over n points, the second 
term in the variational problem (9) becomes:

(13)
1=1

This is the quantity that the variational equation tries to maximize. If we assume 
that #  is limited by M, the maximization of (8) is tantamount to the minimization of:

E lM - * w-on
i'=i

or, since 0 < < M, to the minimization of:

¿ [ A # - * ! # « ) ] ] 4 .
1=1

The variational problem (9) can thus be restated as:

with

(14)

(15)

(16)

(17)

In this section, we discuss how the results of [1] can be extended to the present case 
under the hypothesis of “small” displacement of the spline from the optimal solution.

We start by posing the problem in a quite general and abstract form, which contains 
the variational problem (16) as a special case.
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Let X  and Y  be real Hilbert spaces and D G C[X, Y], the space of linear operators 
on X  into Y. Define the kernel Af of a generic transformation F  as:

Af{F) =  { x e  X\F{x) =  Oy} (18)

and the range as
H{F) =  {y  € F|3x € X  : F(x) =  y}  (19)

Let n functionals k{ : X  h* 1R be given, define A : X  IRn as A(x) =  [fci ( / ) , . . .  fcn( /)]  
with /  € X,  and let f  € lRn be given. We call smoothing spline function relative to D , 
A and f  any element that satisfies:

II^MII2 =  m in||I(/)-r||2. (20)

with L : X  >-¥ Z =  lRn x Y  defined as:

(21)

and
r =  [r; 0] =  [ru . . .  r„; Oy] (22)

The norm in Z  is defined as:

II£ ( / )  -  HI2 =  p ' t i H f )  -  '•■')2 +  \\Df\\y (23)
1=1

where || • ||y is the norm induced by the inner product in Y .
Z is an infinite dimensional Euclidean space, and Q =  LX  is a manifold embedded in 

Z. Note that the immersion of X  in Y  defined by the second part of L is linear, while the 
immension of X  into the finite dimensional space IRn defined by the first n components 
of L is nonlinear.

Let TQ be the tangent bundle of Q. For every X € Q, TXQ is a linear space, isomorphic 
to a linear subspace of Z. If T£Q is the subspace orthogonal to TXQ , then

Z =  TXQ © TxQ  ' (24)

Note that all these spaces are euclidean, and thus they are isomorphic to their tangent 
spaces. For the sake of clarity we will distinguish, when needed, from the element s € LX  
and the same element thought as belonging to Z. To this end, we introduce the natural 
immersion l : LX  h* Z.

T heorem  4.1 A function s G X  is an extremum of the variational problem <S||L(s) — 
r ||2 = 0 iff

‘ (£ W  -  r) € TfaQ  (25)

Proof:
the proof is by contraddiction. Suppose l(L(s) — r) =  7 +  p, with p G Tjf^Q and 
7 G T ^ Q .  Consider a curve q : [—1,1] Q, with q(0) =  L(s) and q(0) =  7. Set
d ( t )  =  ||«(<) -  HI2.
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In this case, we have:
d(t) =  -2  (q ( t ) - r ,q ( t ) ) z

and:
d(0) =  —2(^(0) -  r, q(0))z =  - 2((7 +  p), 7>z 

Since 7 and p are orthogonal, it holds:

<i(0) =  - 2IMI2 < 0

Therefore, ||L(s) — r ||2 cannot have an extremum along the curve q at t =  0. Since s 
is an extremum in LX  if and only if it is an extremum along all the curves in LX  that 
pass through it, this proves the theorem □

Considering the function L : X  Z, we can build the differential L* : TaX  »-> Tl(3)Z 
and the pull-back L* : ^  T*X (see [12]). Note that, since X  and Z are euclidean
-  and hence isomorphic to their tangent spaces -  we can write:

Lm:Xv-> Z

and
LT :Z  y^tX

in a similar way we can define Dm, D*, Am, and A*. Note that, once a point s 6 X  has 
been set, all these are linear transformations.

Moreover, set N = N (D m) and q =  dim N.
Before we prove the main theorems, we report the following lemma from [18]: 

Lem m a 4.1 Let M be any subspace of X , and F : X  Y , then

F* (F,M)X =  fc(F*)  n M 1 (26)

Proof:
Let y € Y. Then, by (30), y G (F+M)L if and only if F*y G M 1 . This also implies 
y e K(F*).

Thus, in 7Z(F*), we can write (F*M )X =  (F *)-1 M L. Restricting this equality to
7£(F*), and applying F* to both sides yields eq. (26). □

T heorem  4.2 For every point x  € Q we have:

Tj-Q =  G (27)

with:
G =  Af(Lm) (28)

dim G = n — q (29)
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Proof:
We first prove (28).

From the definition of the differential and the pull-back, it results, for any function 
$  : M y-+ U, where M  and U are arbitrary manifolds, and r 6 TM , u; G T*U ([12]) it 
holds

(lj, '¡!*v)u =  (\P*u>, v)m (30)

From (30) is easy to show that:

TXQ =  K(L.) = JV(£*)X (31)

where L* and L* are to be computed at the point x- From this follows that:

T$Q = N (L ').

To prove (29), let z =  [zy, ze] G Z. Since Y  and E are euclidean, it is also zy G TzY 
and ze € TZE, thus we can write

L* z =  D* zy +  pA*zs

To have z G Af(L*), we must have L*z =  0, that is, there must be x such that

x =  D* zy =  —pA*zE

that is:

x G D*Y fl A*E =  K {D *)m i{A*)
= Af(D.)L r\K(A*)
=  n { A * ) f ]N L
™ u

By lemma 4.1,
H =  K(Am) fl N l =  A*(A*N) (32)

but, since dim AmN =  dim N = q, we have (being T* and A* one-to-one):

dim A*(A+N) =  dim G = n — q

□
We can build a basis for H in the following way. Set B =  (/lAf)1 , and let {&i,. . .  &„_9} 

be a basis for f?, then, from eq. (32), it follows that a basis for H is given by {hi , . . .  /in- 9}, 
with hi =

With the basis for H , noting that L*G =  H and that L* is invertible over # ,  we can 
build a basis for G as {<71, . . .  gn-q} with

9% =
A - 1 hi 

P . .
(33)
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T heorem  4.3 The solution of the minimization problem (20) is the element s £ X  such 
that:

L{s) - r = J 2  N9j € G (34)
j=i

where the /i,- satisfy the algebraic system:
n -q

^ N ( 9 h 9 i ) z  =  - ( a,gi)z i = l , . . . n - q .  (35)
i=i

Proof:
This theorem is proved, for the smoothing spline, in ([1]). We repeat here the proof using 
our symbolism, for the sake of clarity.

By eqs. (25) and (27), we have L(s) — a E G, thus (34) holds.
Also, since L(s) € LX  =  Q, we have, from eq. (27), Lm(s) € GL, thus:

L*s =  pjgj +  r e G L (36)
j -1

thus the inner product of L* with any element of the basis of (7, gi, vanishes: (L*s,gi)z =  
0. Expressing Lm as in eq. (36) yields (35). □

We can apply these theorems to the case of the elastic deformation by setting n — 1, 
and:

*  W «)] (37)
[A /;0]
Ds

where Ds is the differential operator of the variational problem resulting from the elastic 
deformation, as defined in (17).

5 Numerical Solution
The spline solution discussed in the previous section makes it possible to reduce the 
differential variational problem of Sect. 3 to an algebraic nonlinear problem in which the 
control points of the spline function describing the deformation 0 are the unknowns.

The number of knots of 0 determine the computational complexity of the problem 
and, by means of the approximation (13), it also determines the degree by which the 
variational problem (16) that we solve by means of a spline function approximates the 
true elasticity variational problem (9).

The situation is different for the original template r. The template r is not involved 
in the solution of the variational problem but in the evaluation of

dV

m *) d̂ f 
r

D =

10



The numerical complexity of the problem is therefore independent on the number of 
points we use to describe the template.

On the other side, we want a description of the shape r that allows for shape irregu­
larities, without imposing any artificial smothness constraint. This can be accomplished 
by using a piecewise linear approximation for the template: the linear approximation can 
accomodate sharp corners, and, since the template is known exactly a priori, it can be 
made as precide as desired by using a suitable number of knots.

According to this, the template r  is represented by a set of NT points

T =  { ( ta > ta )> A =  0 . . .  iVT}  (38)

which axe supposed equidistant in the interval [0,1]. That is, the point is the
value assumed by the prototype r(s) for s =  s\ =  X/Nr. The value of the prototype at 
the point s can be computed by the linear interpolation equation: given by

T|V,»J +  ( N t -s  -  L^rSj) fr fNr. j + i -  T [ N r a l )

TjWr.J +  (N*S ~ l^ M )  (TtJVr.j + l -  TIAm ) .

For the deformation 9, we have to take into account the smoothness constraints: 9 
results cis the solution of eq. (11), which is a fourth order differential equation. This 
means that we must guarantee the existence at least of the fourth derivative of 9.

We guarantee the required continuity degree representing 9 by fifth order splines. Let 
B be the i/-th element of the B-spline basis of the space of fifth order splines with 
equidistant knots. We divide the interval [0,1] into Ng interval by selecting the knots 
S u =  v/Ng, with V — 0 . . . Ng.

We add three “ghost” knots on each side of the interval (these knots are used to build 
some of the B-spline that assume nonzero values in the extreme knots; see [14]), so that 
the full set of knots is:

{•** =  t' =  —3 . . .  AT« +  3}  (40)

The deformation 9 in the point s € [0,1] can then be expressed as:

(41)

The coefficients c£, v =  — 3.. .Ng  +  3, fi =  1,2 determine the solution uniquely. The 
solution can thus be found by imposing eq. (11) in all the knots.

At the i/-th knot we have:
rj+3

«3K , « 0 -  E  j M  (42)
v=r)—3

where

c = {*,„} (43)
= {<%} 1 v ~  - 3  • • • Ng 4- 3 fi =  1,2
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(that is, c € IR(iV®+6)><2). The range in which the index v varies depends on the fact that 
the B-splines have compact support so that, given a knot ŝ  only a limited number of 
B-splines assume there nonzero values.

Equation (11) can be written in the knot ŝ  as:

»7+3E [«2fîi5,,4K)-«1ei5),2K)]cï = |i
i/=ij—3 0{3r,,C )+T{3r,)

(44)

for rj =  — 3 . . .  Ne +  3. For sv outside the interval [0,1], we assume

d0»
=  0

this corresponds to a situation in which the spline “hangs loose” outside the limits of the 
template, being subjected to no attraction.

The system of equations (44) can be written in matrix form as:

A c  =  b (c) (45)

where

A {a»v} (46)
* =  -3 ...7 V , +  3, ij =  -3 ...7 V # +  3

(that is, A € ]R('v«+«)x(w»+6)), and

b(c) { * , ( « ) }

6 (st, ,c )+ t {s v )
rj =  — 3 . . .  No +  3

(47)

(that is, b € H ^ 6*).
Note that, because of the limited support of the B-spline basis, A is a band matrix 

with seven nonzero diagonals.
For the solution of (45) we use an iterative technique. Let c(n) be the solution 

computed at time ¿, with elements c£(n). If we consider b as a constant vector, then the 
solution of (45) can be (formally) determined as:

c =  A  1b (48)

Since b is not constant, but depends on the current solution c, this equation must be 
computed iteratively, until a stable point is reached.

c(n +  1) =  (1 — e)c(n) +  eA _1b(c(n )) (49)

where £ is a suitable learning constant.
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6 Measuring the match
Once a numerical solution for the variational problem (9) has been found,, we must 
provide a measure of how the shape r  and the shape <t> are similar. This process is quite 
goal-dependent and, in particular, it depends on whether class assignment or similarity 
ranking is made.

In this section, we will first discuss match measurement applied to class assignment, 
and then will discuss the differences for similarity ranking.

In class assignment, we have Nt templates to be matched against one image, and we 
ask which of the templates ios the closest to the image.

We use capital greek letters to index the different templates, so, is the undeformed 
version of the E-th template, and 0E;/1 is the /z-th component (/i =  1,2) of the E-th 
deformation.

The first quantities we use derive directly from eq. (9). For the E-th template, we
measure the Bending energy:

b e = [  ( 0 j * y  ds (50)

the Strain Energy:
<SE =  / '  ( o f “ ) 2 ds (51)

and the Relative matching:

A is =  /  [¡3(r(s) +  0(s))]r ds 
Jo

(52)

The latter measure is called “relative” because it considers all the templates of unitary 
lenght, and does not measure how much of an image is covered by the template. The 
measure A f is easier to understand if we think to match the template against the dark 
areas of the image, i.e. the case in which =  /3(x). In this case, M  is a measure of 
how much “gray” there is under the template when the template is considered of unitary 
lenght. If we think for a moment in terms of binary images, then M  indicates which 
fraction of the template is on the black area.

This is a limitation of A i, as can be seen by observing the situation in Fig. 1. In this 
case, the template of a “1” is superimposed to the image of a 4. Since all the template 
is contained in the black area of the image, we have A i =  1 in spite of the fact that the 
“1” template covers only a part of the 4.

In order to discriminate in situations like this, we need another measure that takes 
into account the fraction of the image that is covered by the template. Since the image is 
two-dimensional and the template is one-dimensional, this fraction is, strictly speaking, 
zero. To obtain a meaningful value, consider the distance || • ||2 in IR2 and, for the 
deformed template </>, the band

QpW  =  j z  € IR2| mm \\x -  <t>(s)|| <  p j  (53)
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Figure 1: This is a situation in which the measure A4 fails. Since the template 1 is completely 
contained in the black area of the 4 , it results A4 — 1.

around the curve (f>. The Absolute matching is then defined as:

where the constant p is chosen in practice to be rougly the size of a pixel.

The four measures # s , <SE, A4E, -4s are used to determine the likelihood that the 
image is a realization of the template E.

We expect the “right” template to have values of A4E and ,4s higher and values of 
and 5 s lower than the other templates, although the exact degree to which this happens 
depends on the particular application.

These measures make up the base to classify the image. Classification can be done 
in a number of ways, divided into two broad classes:

The first is separate classification, that is, a classifier with four inputs and one output 
is used for each template. The classifier is given the values 5 1, «S1, A41, and A 1 and 
yields the likelihood Cl for the first template, then is given the values B2, <S2, A42, and 
A 2, yielding the likelihood £ 2 of the second template, and so on for all the templates. 
In other words, if Csep is the classification function of the separate classifier, we have 
(Fig. 2):

CE =  C“ ’, (Be, S * , M e,A s ) (55)

The second class is a global classification. In this case, a single classifier with s many 
outputs as the number of classes No, and 4 x Nt inputs is used. In general, Nc < Nt , 
since there may be several temlates belonging to he same class). The output is a vector 
Q 6 JRNc whose z-th element gives the likelihood that the image is in the z-th class. If 
C9lob is the classification function, and C9lob,t its z-th component, then the likelihood that
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Nt

Figure 2: The separate classifier solution for the classification of the matching measures. In this 
case the likelihood measure for the E-th template is based on the values B^, <SE, A fE, A?  only.

the input image is in the ¿-th class is:

Ci =  (56)

This arrangement is partially depicted in Fig. 3
Note the slightly different result we obtain from the two systems. In the first case 

we obtain a likelihood £ E for every template (whose number is Nt), while in the second 
case we obtain a likelihood £, for every class (whose number is No). In the first case, of 
course, the outcome of the classification will be the class corresponding to the template 
with the maximum likelihood.

In the case of similarity ranking, there is a single template and a number of images to 
be matched. Using capital latin letters to index the images, the measures BF, SF, M F 
and A F can be determined as in the previous case for the F^  image.

The separate classifier scheme will yield the classification values:

CF = Csep{BF, SF, M f , Af ) (57)

For most applications of similarity ranking, it is not feasible to have a global classi­
fication. For instance, aproblem involving the retrieval from an image database would 
require a classifier with a number of inputs four times the number of images in the 
database.
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Figure 3: The global classifier solution for the classification of the matching measures. In this case 
the likelihood measure for the i-th class is based on all the B, S, A f , and A  values.

7 Dependence on the initial conditions
An important issue to be raised is the dependence of the matching on the initial placement 
of the template. For most applications, in fact, it is difficult to obtain a precise placement 
of the template over the pattern to be matched, while a rough placement can be relatively 
easy to obtain. Therefore, a method that is insensitive to the initial placement of the 
template is highly desirable.

We carried out a few experiments to gain some insights into this problem by using 89 
handwritten digits and 10 digit templates. All the digits were drawn by the same writer. 
When the correct template was suitably placed above the digit, the convergence was 
always satisfactory: the template deformed to take into account the differences between 
the different digits and eventually matched perfectly the digit image.

To investigate the dependence of the matching result on the initial placement of the 
template, we embedded the digit image (that has dimensions 32 x 32) in the center of a 
white “strip” of size 32 x 96. The size was chosen so that when the template was placed 
at the extrema of the strip it didn’t overlap he image at all.

For each of the 89 digits, the “correct” template -  that is, the template corresponding 
to the digit that had been placed on the strip -  was then slided through all the different 
positions in the strip. At each position, the elastic deformation algorithm was run, and 
the two matching measures M  and A  were recorded. The two measures were averaged 
out over all the 89 digits.

Fig. 4 shows how the average A  (upper curve) and the average M. change as a func­
tion of the initial position of the template. Both curves have a very similar behavior,
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Figure 4: How the match varies with the initial placement of the template

characterized by the presence of two plateaus. The highest plateau surrounds the perfect 
match position, and corresponds to the placements error that does not have a significant 
impact over the performances of the method. This can be estimated, in this case, as 
between 1/3 and 1/2 if the image length. The plateau is not symmetrical around the 
perfect match point. This is probably due to the fact that most of the digits are also not 
symmetric. Also, the particular writer we picked up for the experiment, had a slanted 
calligraphy. This could make it easier for the templates to converge when it is misplaced 
on one side than on the other.

The region in which we have perfect match extends to templates initially displaced by 
1/3 of the image length. This confirms the good position-independence characteristics of 
the method at least in the case of isolated shapes. This result can be negatively affected 
by the presence of other shapes close to the shape the template should converge to.

8 OCR by elastic deformation
In this section, we present, as an illustration of the new matching technique, an applica­
tion to an OCR problem. This is not an attempt to present a complete solution to OCR 
but to offer some insight in the way the new matching theory could be potentially used 
to solve a practical problem. This application is quite interesting since the new matching 
technique avoids one problematic step of OCR applications: the binarization, i.e. it is 
not necessary to convert the original grey-level image data into a binary image.

Most of the current OCR approaches rely on feature extraction and classification. 
First, a suitable set of features is extracted from the image, then, a classifier is applied 
to estimate some probability measure for any character, based on the detected features.

The main problem in this approach is that there is no theory to guide the selection

17



process such a complex case as OCR. To quote [11], pag. 1032:

.. there is no mathematical principle. Rather it is still an open problem, and 
there is no sign that it will be solved in the near future. Hence, our intuition 
has been the most reliable weapon in attacking this problem.

Moreover, most of the structural features (terminal points, loops, joints ...) require a 
binary image. Therefore, somewhere in the preprocessing stage a bunarization operation 
to separate the character from the background is necessary. For some images this may 
not be easy. Consider the image in Fig. 5, which represents a credit card slip obtained by

t " 1 1
Difficult

binarization

Difficult separation 

from background

Figure 5: Image of a credit card slip from a receipt carbon copied by a manual machine used to record 
the purchase. Some of these copies are very dirty because of heavy ink blurring due to the pressure of 
the moving part of the machine. Binarization can be a hard problem in for this image quality

a manual receipt printer of the type commonly used in shops where no magnetic reader 
is available. The inprint is obtained by carbon copying the number in relief on the credit 
card. This procedure causes the ink to blur out the characters and to create a “dirty 
gray” background, which makes binarization quite difficult. Also, in some cases, like 
in Fig. 6, although the image is of good quality, separation of the character from the 
background is extremely difficult because of the background texture present in the slip.

Poor contrast also is a serious problem for attempting to separate individual char­
acters. Most of them are based on connected component analysis ([5]), analysis of the 
histogram of the image projections, or texture analysis (see [4] for a review of methods).

On the other hand, a new approach to OCR is obtained by fiting the templates di­
rectly on the grey level image, avoiding binarization altogether. Moreover, based on the 
experiments in Sect. 7, elastic template matching is insensitive to reasonable translations, 
thus allowing the character to be only roughly positioned. The method is also insensi­
tive to small rotations. This allows the system to correctly identify slightly misaligned 
characters without incurring in the problems caused by excessive invariance as pointed 
out, for instance, in [10].
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Difficult separation 

from background

Figure 6: In this case, the inprint (which reports the purchase date) is of good quality, but the 
background drawing makes quite difficult to separate the digit.

Digit
Measure 1 2 3 4 5

S 2.43 2.11 4.43 4.39 3.92
B 1.08 1.26 3.44 2.58 2.22
A 6.21 9.12 8.69 7.22 8.54
M 0.76 0.65 0.67 0.58 0.57

Csep 0.91 1.18 0 0 0

6 7 8 9 0
S 2.04 5.73 2.67 11.28 2.44
B 1.21 2.39 1.99 2.69 1.41
A 6.59 6.54 11.59 7.51 10.15
M 0.69 0.65 0.60 0.71 0.63

Csep 0.87 0 0.2 0 0.95

8.1 OCR results
In this section, we report results obtained for two different scenarios. In the first test, we 
try to recognize digits taken from poor quality credit card slips.

Ten digit models are obtained by hand from a good quality sample of credit card 
digits, and then the ten models are matched against the credit card image data.

Fig. 7 shows the final results obtained by our matching method applied with the ten 
models. The deformation and match measurements, as well as the classification values 
obtained by a separate classifier are reported in Tab. 8.1. For this example, the classifier 
was a simple classifier of the form

Caep = WiS + w2B + w3A + w4M

where the weights have been trained using the data obtained from 40 good quality
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Figure 7: Ten templates deformed to match a digit taken from a credit card slip image

credit card digits.

We also made some experiments in handwritten characters recognition using a subset 
of the NIST database. The subset is made up of approximately 3,000 characters taken 
from 50 writers.

We used ten samples (one per digit) from the first of the 50 writers to create the 10 
templates to be fitted against the images.

In the first experiment, we attempted single writer recognition, that is, we tested the 
system on all the other digits from the same writer. We used the same simple classification 
scheme as in the case of the credit card slips. For every template, the four measures 5 , 
B , M , and A  were obtained and, based on these, the template was assigned a score given 
by:

S =  A  + 2 M - - ( S  +  B) (58)

where the weights have been chosen to roughly balance the differences in relative mag­
nitude of the measures.

After all the scores had been computed, we checked the highest score Si and the 
second highest 52. The digit was assigned the class of the template that scored S\. The 
score S2 was used to assess the reliability of the classification: if we had

-< 0.05 (59)
*->1

(i.e. a difference of less than 5% between the highest and the second highest score) the 
classification was considered as unreliable, otherwise it was considered as reliable.

An example of fitting is reported in Fig. 8. First, we tested the system on the 89
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Figure 8 : An example of fitting to a sample from the NIST database. The template is obtained from 
a digit written by the same writer as the test image.

digits written by the same writer that produced the templates. We obtained 0% error (no 
digit was misclassified). In 14 cases, however, the classification was “unreliable” . Most 
of these cases were Is. We argue that this is because of the exterme similarity between 
the 1 and the 7, and because of the fact that the simple scoring scheme does not allow 
for a comparison of the measures relative to these two digits.

When we tested the system on the whole 50 writers set the results were not as good. 
We obtained a 15% error, and a 17% of unreliably classified digits. In this case, we believe 
the reason for this poor behavior is in the extremely limited number of templates.

Even with the flexibility provided by the elastic deformation mechanism, a single 
template per digit is not representative enough to follow the huge variations of style 
among the 50 writers.

As an example, both digits in Fig. 9 represent a 2, nevertheless, they are very different. 
Also, some writers close the 4 on the top, while other don’t. This result in an extreme 
variety of shapes that cannot be covered with just one 4 template.

We believe that the flexibility provided by the elastic match will help keeping the 
number of templates low (well below the number of 1,000 templates reported in [6]).
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Further research is being pursued along these directions.
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