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Abstract

We establish an optimal on-line relationship between tree machines 
and random access machines (RAMs). We present an on-line sim­
ulation of a tree machine of time complexity i by a log-cost RAM 
of time complexity O((tlogt)/loglog/). Using information-theoretic 
techniques, we show that this simulation is optimal.

We adapt the simulation of a tree machine to devise an on-line 
simulation of a d-dimensional Turing machine of time complexity t by 
a log-cost RAM running in time O(t(logi)1-1/ci(loglogi)1/d).
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1 Introduction

The random access machine (RAM) and the Turing machine (TM) are the 

standard models for sequential computation. Research into the use of time 

and space by these and other models gives us insight into their computational 

power. This research includes analyzing how two different models use time 

and space, and comparing time and space utilization within a single model. 

Another avenue of investigation is determining how altering the definitions of 

time and space (for example, log-cost versus unit-cost) for a model affects its 

computational power. Slot and van Emde Boas (1988), for example, showed 

how space equivalence of RAMs and Turing machines is affected by varying 

the definition of space complexity for RAMs.

Paul and Reischuk (1981) used tree machines to investigate the relation­

ships between time and space for random access machines and multidimen­

sional Turing machines. They presented a simulation of a log-cost RAM of 

time complexity t by a tree machine of time complexity 0(t). They also 

showed that a tree machine of time complexity t can be simulated off-line 

by a unit-cost RAM of time complexity 0(t/ log log t). Loui (1984b) showed 

that a multihead tree machine of time complexity t can be simulated by a 

tree machine with only two worktape heads in time 0 ((t  log^)/loglogi).

We present an on-line simulation of a tree machine of time complexity t 

by a log-cost RAM of time complexity 0 ((t  log t) /  log log t). Using the notion 

of incompressibility from Kolmogorov complexity (Li and Vitanyi, 1988), we 

show that this simulation is optimal. This appears to be the first application 

of Kolmogorov complexity to sequential RAMs. It is significant because few
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algorithms have been shown to be optimal.

Using similar techniques, we design an efficient on-line simulation of a 

d-dimensional Turing machine of time complexity t by a log-cost RAM run­

ning in time 0 (i(lo g t)1-1/d(log log i)1/d). For d =  1, the running time is 

O (tloglogt), which is the same as the result of Katajainen et al. (1988).

This work is a complement to Loui’s (1983) simulation of tree machines 

by multidimensional Turing machines and Reischuk’s (1982) simulation of 

multidimensional Turing machines by tree machines.

All logarithms in this paper are taken to base 2.

2 Machine Definitions

All machines that we consider have a two-way read-only input tape and a 

one-way write-only output tape. The principal differences in the machines 

are in their storage structures.

A tree machine, a generalization of a Turing machine, has a storage struc­

ture that consists of a finite collection of complete infinite rooted binary trees, 

called tree worktapes. Each cell of a worktape can store a 0 or 1. Each work- 

tape has one head. A worktape head can shift to a cell’s parent or to its left 

or right child. Initially, every worktape head is on the root of its worktape, 

and all cells contain 0.

Let W  be a tree worktape. We fix a natural bijection between the positive 

integers and cells of W . We refer to the integer corresponding to a particular 

cell as that cell’s location. Write cell(6) for the cell at location 6. Define cell(l) 

as the root of W. Then cell(26) is the left child of cell(6) and cell(26 -f 1) is
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the right child of cell(6).

Each step of a tree machine consists of reading the contents of the work- 

tape cells and input cell currently scanned, writing back on the same work- 

tape cells and (possibly) to the currently accessed output cell, and (possibly) 

shifting each worktape head and the input head. If the tree machine writes 

on the output tape, it also shifts the output head.

The time complexity t(n) of a tree machine is defined in the natural way.

A multihead d-dimensional Turing machine consists of a finite control 

and a finite number of d-dimensional worktapes, each with one worktape 

head. A d-dimensional worktape comprises an infinite number of cells, each 

of which is assigned a d-tuple of integers called the coordinates of the cell. 

The coordinates of adjacent cells differ in just one component of the d-tuple 

by ±1. At each step of the computation, the machine reads the symbols in 

the currently accessed input and worktape cells, (possibly) writes symbols on 

the currently accessed output and worktape cells, (possibly) shifts the input 

head, and shifts each worktape head in one of 2d -f 1 directions -  either to 

one of 2d adjacent cells or to the same cell.

The random access machine (RAM) (Aho et al., 1974; Cook and Reckhow, 

1973; Katajainen et al., 1988) consists of the following: a finite sequence of 

labeled instructions; a memory consisting of an infinite sequence of registers, 

indexed by nonnegative integer addresses (register r ( j)  has address j)\ and 

a special register AC, called the accumulator, used for operating on data. 

Each register, including AC, holds a nonnegative integer; initially all registers 

contain 0. Each cell on the input tape contains a 0 or 1. The following RAM 

instructions are allowed ((x) denotes the contents of register r(;c); (AC)
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denotes the contents of AC):

input. Read the current input symbol into AC  and move the input head 

one cell to the right.

output. Write {AC) to the output tape and move output head one cell 

to the right.

jump 9. Unconditional transfer of control to instruction labeled 9.

jgtz 9. Transfer control to instruction labeled 9 if {AC) > 0.

load =C. Load integer C into AC.

load j .  Load (j ) into AC.

load *j. (Load indirect) Load ((j )) into AC.

store j .  Store {AC) into r{j).

store * /. (Store indirect) Store {AC) into register r ((j)) . 

add j .  Add (j ) to {AC) and place result in AC.

sub j .  If {j) > {AC), then load 0 into AC ; otherwise, subtract (j ) from 

{AC) and place result in AC.

Define the length of a nonnegative integer i as the minimum positive 

integer w such that i < 2W — 1 (approximately the logarithm of z). The 

length of a register is the length of the integer contained in the register (note
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that the length of a register is a time-dependent quantity).

We consider two time complexity measures for RAMs, based on the cost 

of each RAM instruction. For the unit-cost RAM, we charge each instruction 

one unit of time. For the log-cost RAM, we charge each instruction according 

to the logarithmic cost criterion (Katajainen et al., 1988): the time for each 

instruction is the sum of the lengths of the integers (addresses and register 

contents) involved in its execution. The time complexity t(n) of a RAM is 

the maximum total time used in computations on inputs of length n. It is 

possible, of course, to define time complexity in other ways; e.g., we could 

charge some other function f ( j )  for access to register j  (Aggarwal et al., 

1987).

In our simulations, we group the registers into a finite number of mem­

ories, each memory containing an infinite number of registers. This does 

not increase the cost in time by more than a constant factor, since we could 

simply interleave these memories into one memory (Katajainen et al., 1988).

We use a technique of Katajainen et al. (1988) to pack and unpack 

registers in order to find the bit representation of a number and vice-versa. 

This divide-and-conquer strategy involves precomputed shift tables:

Lem m a 2.1 (Katajainen et al., 1988) If the proper tables are available, then 

it is possible to compute the u-bit representation of an integer n < 2U, and the 

numeric value of a u-bit string, both in O (ulogu) time on a log-cost RAM.

Lem m a 2.2 (Katajainen et al., 1988) The tables necessary for Lemma 2.1 

can be built in 0(u2u) time on a log-cost RAM.
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A machine M  of time complexity t is simulated by a machine M' on-line 

in time f ( t )  if for every time step s,- where M  reads/writes a symbol, there 

is a corresponding time step s[ where M' reads/writes the same symbol, and 

<  /(* )•

3 Simulation of a Tree Machine

3.1 Upper Bound

It is straightforward to simulate a tree machine with a log-cost RAM in time 

O(t\ogt). In fact, such a simulation is used in Theorem 3.2 to show that a 

tree machine can be simulated by a unit-cost RAM in real time. However, 

we can do better than the straightforward simulation for log-cost RAMs.

For simplicity, we consider tree machines with only one worktape, but our 

results generalize to multiple worktapes. Let T be a tree machine of time 

complexity t with one worktape W. We show that there is a RAM R that 

simulates T on-line in time 0((t\ogt)/ log log ¿).

We first provide a brief description of the simulation. We choose parame­

ters h and u such that u =  22/l+2 — 1. We specify the values of h and u later. 

As noted earlier, R has several memories. R maintains in the main memory 

the entire contents of W. The main memory represents W  as overlapping 

subtrees, called blocks. R represents the contents of each block Wx in one 

register rx of the main memory. When the worktape head is in a particular 

block WX1 R represents Wx in the cache memory. Step-by-step simulation 

is carried out in the cache, which represents the block Wx in breadth-first
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order, one cell of Wx per register of the cache.

Because blocks overlap, when the worktape head exits Wx, it is positioned 

in the middle of some other block Wy. At this time R packs the contents of 

the cache back into rx in the main memory and unpacks the contents of ry 

into the cache.

The details of the simulation follow.

Let W[x,  s] be the complete subtree of W  of height s rooted at cell(:c). 

A block is any subtree Wx =  W[x,2h +  1] such that the depth of cellar) is a 

multiple of h -f 1. Since a block has height 2h -f 1, it contains 22/l+2 — 1 =  u 

cells. Let the relative location of a cell within a block be defined in a manner 

similar to the location of a cell, where the relative location of the root of the 

block is 1, the relative locations of its children are 2 and 3, and so on.

Call a block Wp the parent block of Wx if cell(p) is the ancestor of cell(:r) 

at distance h +  1 from cell(:c). If Wx is the parent block of Wc, then Wc is 

a child block of Wx. Each block has 2h+1 child blocks. The topmost block of 

W, which contains the root of W, is called the root block.

Define the top half of a block Wx as W[xjh], and define the bottom half 

of Wx as the remaining cells of the block. Note that the top half of the block 

Wx is part of the bottom half of VEp, its parent block, so that the blocks 

overlap. Call the portion of Wx shared by Wp (i.e., the subtree W[x,h]) the 

common subtree of Wx and Wp.

R precomputes in separate memories two tables, half and translate. We 

explain later how R uses these tables. Here we describe their contents and 

how they are computed. Let half(z) (respectively, translate(z)) be the regis­

ter in half (respectively, translate) at address z.
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Half(z) contains [z/2J. For z =  l , . . . , i t /2 ,  R stores z in half(2z) and 

half(2z +  1).

For z =  22/l+1, . . . ,  u, translate(z) contains (z mod 2/l+1) +  2/l+1. it! never 

refers to any register in translate with address less than 22/l+1. Translate is 

computed as follows:

i :=  2h+1

for z =  22/l+1 to  u do 

translate(z) :=  i 

i :=  i +  1

if i =  22/l+2 then i :=  2/l+1

We now show how R simulates the tree machine using the cache. Assume 

the head of T is currently scanning a cell in block Wx. Let cache(z) be the 

register in the cache with address z and let cell(x, z) be the cell in Wx with 

relative location z. For each z =  1 , . . . ,  u, register cache(z) contains the bit in 

cell(:r,z); for example, cache( 1) contains the contents of cell(a:, 1) =  cell(:r), 

the root of Wx. Thus R uses u registers of the cache, each register containing 

one bit.

While the head of T remains in VFX, R keeps track of the head’s location 

with the cache address register in the working memory, a memory maintained 

by R for storing information necessary for miscellaneous tasks. If the cache 

address register contains z, then cell(a;,z) is currently being accessed in T.

To simulate a tree machine operation at cell(a:,z), R loads the contents 

(one bit) of cache(z) into AC. Once the contents are in AC, R simulates one 

step of T by storing either 0 or 1 in cache(z).
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If the head of T moves to a child of cell(a;, z), then the new address for 

the cache address register, as well as the relative location of the new block 

cell being read, is either 2z or 2z + 1. With one or two additions, R computes 

this new address and places it in the cache address register. When the head 

of T moves to the parent of cell(x, z ), the address of the corresponding cache 

register is \z/2\. Because R has no division operation, it accesses the proper 

register of table half to retrieve the new address in cache.

To describe what happens when the worktape head moves out of the 

current block, we first show how the blocks are stored in main memory. Main 

memory is divided into pages consisting of 2h+1 -f 3 registers each. A page 

corresponds to a visited block of W . Let page(x) be the page representing 

Wx. Define the address of a page to be the address of the first register in 

the page. The first register in page(x) is the contents register. For the page 

representing the root block, the contents register contains the entire contents 

of that block. For every other block Wy, the contents register contains the 

contents of the bottom half of Wy. The contents of cells in a block are kept 

in breadth-first order; i.e., reading the binary string in the contents register 

from left to right is equivalent to reading the bottom half of the block it 

represents in breadth-first order. Initially, all cells of a block contain 0, so 

all contents registers initially contain 0.

Following the contents register is the rank register, containing a number 

i  between 1 and 2h+1 indicating that Wx is the Fh child of its parent block. 

The next register is the parent register, containing the address of the page 

representing the parent block of Wx. The next 2h+1 registers are the child 

registers of Wx. The mth child register of page(x) contains the address of the
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page representing the mth child block of Wx or 0 if that child block has not 

been visited (see Figure 1).

The first page in main memory corresponds to the root block. Blocks 

are then stored in the order in which they are visited. The page address 

register, a register in working memory, contains the address of the page in 

main memory corresponding to the currently accessed block.

Let Wx be the currently accessed block and let Wp be the parent block of 

Wx. When the tree worktape head moves out of Wx so that it is positioned in 

the middle of a child block Wc, R makes the proper changes to main memory 

and load the cache from the contents register of page(c).

In main memory, R updates the contents registers of page(x) and page(p). 

To update page(x), R packs the contents of the registers of the cache which 

correspond to the bottom half of Wx into a single register in working memory 

(call it the transfer register, denoted by tr). Packing information in the cache 

consists of creating from the registers in the cache one binary string that 

represents the bottom half of a block (in the same format as a main memory 

register). The pack operation is that used by Katajainen et al. (1988). R 

then copies tr into the contents register of page(x) via AC (see Figure 2).

Updating page(p) consists of changing the bits of its contents register cor­

responding to the common subtree of Wx and Wp. R first saves the contents 

of the cache that encode the common subtree of Wx and Wc in a portion 

of working memory, since this information is needed in the cache as the top 

half of Wc. R also saves the contents of the cache that encode the common 

subtree of Wx and Wp. R then loads the contents register of page(p) into 

tr and unpacks the contents into the cache. The bits in working memory
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TREE WORKTAPE

Wx depth (j)(h +  1)

Wx

-f 2)(A -f 1)

page(x)

page(c)

a

0

11 bottom half of Wx ”

____________ 3

____________ 7

0

“ bottom half of Wc ”

1

a

contents

rank
parent

child 1

contents

rank

parent

Figure 1: Worktape W  (head moves from Wx to Wc)
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cache working mam

Figure 2: Updating page(p) in main memory

corresponding to the common subtree of Wx and Wp are then written into 

their proper locations in the portion of the cache representing the bottom 

half of Wp. R then packs the contents of the cache into tr and copies tr into 

the contents register of page(p).

R then determines whether Wc has been visited before by checking the 

contents of the child register of page(x) corresponding to Wc. If the child 

register contains a valid (i.e., nonzero) address, then R uses that address to 

access page(c). R then loads the contents register of page(c) into the cache. 

This action is similar to the manipulation of page(p) discussed above. R 

loads the contents of the common subtree of Wx and Wc saved in working 

memory into the registers of the cache representing the top half of the block.

If the child register of page(x) contains 0, then R allocates a new page to 

maintain the information on Wc.

R modifies the page address register to reflect the fact that the worktape
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head is now scanning block Wc. The address currently in this register is that 

of page(x). R writes the address of page(c) in main memory to the page 

address register. R determines from the cache address register the quantity 

i  such that Wc is the £th child of Wx. Then by accessing the t th child register 

of page(x) in the main memory, R can determine the address of page(c).

To modify the cache address register to reflect the relative location of 

the head within block Wc, R first translates the relative location of the leaf 

cell(:r,2:) in Wx to its relative location in Wc. Since leaf cell(:r, z) in Wx is 

the same as cell((c, 2  mod 2/l+1) +  2h+1) in Wc, R uses the table translate 

described above. Using one or two additions, R then calculates the relative 

location in Wc of this cell’s left or right child, depending on which branch 

the worktape head used to exit Wx. R then writes this new relative location 

into the cache address register.

A similar sequence of operations occurs if the worktape head moves out of 

a block (and further) into its parent block instead of into a child block. Then 

R uses the parent register to determine the address of the page representing 

the parent block, and R uses the rank register to determine the relative 

location of the worktape head within the parent block.

If R does not know the input size n ahead of time, then we let R adopt an 

incremental technique of Galil (1976). R begins by assuming that n =  2. If 

the input head reads a third symbol, then R begins again with n =  4, but it 

does not output symbols already printed. In general, R assumes n = 2k until 

it reads the (2k +  l)th symbol, at which time R starts over with n = 2k+1.

The values of u and h depend on the value of n; therefore u and h are 

recomputed each time the value of n is doubled.

14



Let the actual simulation (without the incremental method) run in time 

t'(n), where t'(n) >  n. It can be shown by induction that the simulation 

with the incremental method runs in time at most k't'(n), for some constant 

k '>  0.

By evaluating the cost of the simulation on a log-cost RAM, we derive 

the following result.

Theorem  3.1 A tree machine running in time t(n) can be simulated on-line 

by a log-cost RAM running in time 0((t(n)  log ¿(n ))/log  log ¿(n)).

Proof. Because the blocks have height 2h -f 1 and overlap by height h +1, 

each time the worktape head moves out of a block, it is exactly in the middle 

of another block; i.e., it will take at least h' =  h -f  1 steps before it exits 

this new block. Since the tree machine computation has at most t steps, the 

work of updating main memory from cache (packing), loading a new block 

to cache (unpacking), and directly simulating h' steps is performed at most 

t/h' times.

Updating main memory and loading a new block in cache involve the pack 

and unpack operations and a constant number of accesses to main memory. 

Registers in main memory have addresses no larger than (t/h')(2/l+1 +  3). 

Thus accesses to main memory take time O(\ogt +  h).

By Lemma 2.1, the time for the pack and unpack operations is 0(u  log u). 

By Lemma 2.2, the time to create the tables necessary for these operations 

is 0(u2u). The time to compute tables half and translate is 0 (u ).

Simulating one step of the tree machine consists of a constant number of 

accesses to cache, taking time O(logtf). Thus simulating h' steps takes time
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0(h' logu).

The total time required for R, then, is

(t / h')(0(\ogt +  h) +  O (ulogu) +  O(h'logu)) +  0(u2u).

Since h =  O(logu), the total time is

0(((t  log t) /  log u) +  tu +  t log u -f u2u).

Choose h so that u =  (log t)/ log log t. Then the total time for the simu­

lation is 0((t  log t)/ log log t). □

For unit-cost RAMs, we have a much stronger result:

Theorem  3.2 A tree machine can be simulated by a unit-cost RAM in real­

time.

Proof sketch. We design a unit-cost RAM R simulate tree machine T 

with worktape W . R has a contents memory, a parent memory, and several 

working registers. Let contents(x) (respectively, parent(x)) be the register 

with address x in the contents (respectively, parent) memory. Contents(x) 

at address x contains the contents of cell(ar) at location x in the worktape of 

T. If cell(:r) is visited by T, then parent(x) contains the worktape location 

of the parent of cell(x). The working registers are used as temporary storage 

and to keep track of which cell is currently accessed by T.

R simulates one step of T with a constant number of accesses to the two 

memories and the working registers. For example, if the head moves from 

cell(x) to a child of cell(:r), then R computes location 2x of the left child or
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2x +  1 of the right child with one or two additions and stores x in parent(2x) 

or parent(2x +  1). Thus to simulate t steps of T takes 0(t)  time on T. □

An immediate consequence of Loui’s upper bound on the simulation of a 

tree machine by a multidimensional TM is the following:

T heorem  3.3 (Loui, 1983) A log-cost RAM running in time t(n) can be 

simulated on-line by a multihead d-dimensional Turing machine running in 

time 0 (t(n )1+1/d/ log ¿(n)).

Using our simulation of a tree machine by a log-cost RAM, we obtain a 

nonlinear lower bound for simulating a RAM by a multidimensional Turing 

machine:

C orollary 3.4 There is a log-cost RAM R running in time t(n) such that 

for any multihead d-dimensional Turing machine S, S simulates R on-line 

in time O((^(n)1+1/d(loglog t(n))1+1/d)/(log t(n))2+1/d).

Proof. Let T be the tree machine described in the lower bound proof 

of Loui(1983). Let R be the RAM that uses the method in the proof 

of Theorem 3.1 to simulate tree machine T. T runs in real time, so by 

Theorem 3.1, R runs in time t(n) =  0((n log n )/log  log n). Now assume 

there is a d-dimensional Turing machine that simulates R on-line in time 

o((£1+1/̂ (loglog£)1+1/d)/(lo g t)2+1/d). We thus have an on-line simulation of 

tree machine T running in time n by a d-dimensional Turing machine running 

in time o(n1+1/d/  log n). But we know from Loui (1983) that the lower bound 

on such a simulation is f2(n1+1/,<i/log  n); hence we have a contradiction. □
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3.2 Lower Bound

We now show that the time bound of Theorem 3.1 is optimal within a con­

stant factor. We begin with an overview of Kolmogorov complexity, which 

we use to prove the lower bound.

For strings <7, r in {0 ,1}*, let K(cr) be the Kolmogorov complexity of a 

with respect to a universal Turing machine U. Define K {o ) to be the length of 

¡3 where ¡3 is the shortest binary string such that U((3) equals a. Informally, 

K(cr) is the length of the shortest binary description of a.

We say a string cr is incompressible if K(cr) >  |cr|. Note that for all n 

there are 2n binary strings of length n, but there are only 2n — 1 strings of 

length less than n. Thus for all n, there is at least one incompressible string 

of length n.

A useful concept in Kolmogorov complexity is the self-delimiting string. 

For natural number n, let bin(n) be the binary representation of n without 

leading 0’s. For binary string iu, let W be the string resulting from placing a 

0 between each pair of adjacent bits in w and adding a 1 to the end. Thus 

110 =  101001. We call the string bin(\w\)w the self-delimiting version of 

w. The self-delimiting version of w has length |u;| +  2 flog (| it; | -f 1)}. When 

we concatenate several binary string segments of differing lengths, we can 

use self-delimiting versions of the strings so that we can determine where 

one string ends and the next string begins with little additional cost in the 

length of the concatenated string. Note that in such a concatenation it is 

not necessary to use a self-delimiting version of the last string segment.

Kolmogorov complexity has recently gained popularity as a method for
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proving lower bounds. Li and Vitanyi (1988) provide a thorough summary 

of lower bound (and other complexity-related) results obtained using Kol­

mogorov complexity.

T heorem  3.5 There is a tree machine T running in time n such that for any 

log-cost RAM R, R requires time t{n) =  f2 ((n logn)/log  log n) to simulate T 

on-line.

Proof For simplicity, we omit floors and ceilings in this proof.

Tree machine T has one tree worktape and operates in real time. T ’s 

input alphabet is a set of commands of the form (e,^>), where e € {0 ,1 ,? }  

and ip indicates whether the worktape head moves to a child or parent of the 

current cell or remains at the current cell. Suppose T is in a configuration 

in which the cell x at which the worktape head is located contains e' . On 

input (e,^>), machine T writes e! on its output tape, and the worktape head 

writes e on cell x if e £ {0 ,1 }, but it writes e' (the current contents of x) on 

x if e =?. At the end of the step the worktape head moves according to ip. 

For every n that is a sufficiently large power of 2, we construct a series of n 

tree commands for which R requires time Q((n log n )/ log log n). As in (Loui, 

1983), the string of tree commands is divided into a filling part of length n/2 

and a query part of length n/2.

Let W  be the worktape of T, and let x0 be the root of W. Let d =  

log(n/8). Denote the complete subtree of W  of height d whose root is x0 by 

Wd. Let N =  n/8. We consider the complexity of the simulation in terms of 

N.
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We fill Wd with an incompressible string r of length 2N  — 1 such that r 

can be retrieved by a depth-first traversal of Wd. This is the filling part, for 

which T takes time 4N  (=  n /2)).

The query part consists of a series of questions. A question is a string 

of 2 log N  tree commands that causes the worktape head to move from the 

root xq of the tree worktape to a cell at depth d and back to xq without 

changing the contents of the worktape. As the head visits each cell during 

a question, T outputs the contents of that cell. T processes N/ (4 log N) 

questions <2i, Q2, • • • during the query part. We show that after each question 

Qj, there is a question Qj+i such that R takes time fi((log2 N)/ log log N) 

to process Qj+i, and Theorem 3.5 follows.

Assume that R has just processed question Qj. Let P(N)  be the max­

imum time necessary to process any possible next question. We show that 

some next question takes time H((log2 N)/ log P). Consequently, by defini­

tion, P  =  ft((log2 N ) /log  P); thus P =  fi((log2 N)/\og\ogN).

We first determine the total time t required for R to process all possible 

next questions.

Divide worktape W  into S =  (log A")/(21og P) sections, each of height 

2 log P. For 5 =  0 ,1 , . . . ,  S — 1, there are P 2s+2 exit points (bottom cells) in 

section s. We refer to any initial segment of a question as a partial question 

and the portion of the question that is processed while the worktape head 

is in one section as a subquestion (see Figure 3). To compute t , we compute 

for 3 =  0 ,1 , . . . , 5  — 1 the total time ts required for R to process all possible 

subquestions in section s. Since the depth of Wd is log N , there are N  possible 

next questions. Each of the p 2s+2 bottom cells of section s is visited during
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Xq

Figure 3: Processing section s of worktape W  

iV /P2s+2 of these questions.

Let aa be the string defined by the contents of the bottom cells of section 

s , from left to right; clearly, |<r3| =  P 2s+2.

Lem m a 3.6 The string as is incompressible up to a term ofO(s  log P);  i.e., 

K(as) >  Ws\- 0(5 log P ).

Proof. The incompressible string r, which gives the contents of W, can 

be specified by a string composed of the following segments:

1. a self-delimiting string encoding this discussion (0 (1 ) bits)
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2. a self-delimiting version of a binary string of length K (crs) that specifies 

as (I<(as) +  0(s  log P) bits)

3. self-delimiting versions of the values of s and P (O(logs) +  O (logP) 

bits)

4. a string specifying the bits in r but not in crs (2N  — 1 — P 2s+2 bits).

Thus I<(t) < K{<t3) +  (2N -  1 -  P 2s+2) +  0(s  log P).  But K ( t) > 2N -  1; 

therefore, K(crs) > P2a+2 — O (slogP ). □ Lem m a 3.6

i
Lem m a 3.7 If l  >  1 then ^ l o g i > (l/2)I\ogt

t=i

Proof. For all i such that 1 <  i <  £, evidently (i — l)(I — i) >  0; hence 

¿(£ — i +  1) >  I. Consequently

>

( l / 2) X X loS i +  -  * +  !))
i=i

( l / 2 ) ^ log(i(£-i  + l))
»'=1

( i /2 )  £  log i
»=i

(1 /2 ) /log /.
□ Lem m a 3.7

Lem m a 3.8 For s =  1 ,2 , . . . ,  S — l, the maximum number of registers ac­

cessed during the processing of all partial questions through section s — 1 is 

4P2s+1/lo g P .
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Proof. Let C =  4 P /log P . By Lemma 3.7, for P  sufficiently large, 

log * > P. The processing of each partial question through section s — 1 

could involve no more than C registers; otherwise, because of the total cost 

of addresses of registers, R would exceed time P  for some next question. 

There are P 2a different partial questions possible through section s — 1, so 

there are no more than 4P2s+1/  log P registers accessed for all possible partial 

questions. □ Lem m a 3.8

Let us consider a particular section s. Let r1? r2, . . . ,  rm be the registers, 

in order of increasing address, used to process tree commands in section s. 

The address of r,- is at least i. For 1 <  i <  m, let X{ be the set of bottom cells 

x of section s such that r,- is accessed while the worktape head is visiting some 

cell y in section s, and either y is an ancestor of x or y =  x (see Figure 3). 

We say that r; operates on the bottom cells in X{.

To compute a lower bound on ts, we assess the contribution to ts of 

accessing register r,-. For 1 < i <  m, the total access time for register r, 

in section s is at least the product of logi (since the address of r, is at 

least ¿), \X{\ (the number of bottom cells that rt- operates on), and N/P2s+2 

(the number of questions during which one of these bottom cells is visited). 

Totalling the time incurred by access to each register yields:

m
t, >  £ ( l o 6 0 l * , I W ^ +2). ( i)

i'= l

Using Lemma 3.10 below, we can determine a lower bound for f,, but we 

first introduce the following technical lemma.
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Lem m a 3.9 (Loui, 1984a [Section 4]) Let J and M be integers such that 

M > J. A sorted J-member subset of { 0 , . . . ,  M } can be represented with no 

more than 2J log (M /J ) +  4J +  2 bits.

Let h =  ( l /7 )P 2a+1.

m
Lem m a 3.10 £ | X (| >  (l/2 3 )JP2s+2.

iszh

Proof. Assume that the conclusion is false. Then r i , . . . ,  r^-i operate on 

at least (22/23)P 2s+2 bottom cells in section s. We can specify the string 

as as follows: we obtain the bits of . . .  ,X m explicitly. We obtain the 

other bits of cr5 by simulating R on each partial question to a bottom cell of
m

section s not in (J Xk■ On each such partial question, R uses only registers
k=h m

r i , . . . ,  i and registers accessed in sections 1 , . . . ,  s — 1. Thus a3 can be 

specified with a string composed of the following segments:

1. a self-delimiting string encoding the program of R and this discussion 

(0 (1 ) bits)

2. self-delimiting versions of the addresses and initial contents of registers 

accessed in sections 1 , . . . ,  s — 1 (at most SP2s+2/ log P -f  0 (s  log P) bits 

-  by Lemma 3.8, at most 4P2s+2/  log P  registers are required, and for 

each register, the contents and the address could each require P bits.)

3. self-delimiting versions of the addresses and initial contents of r1?. . . ,  r^-i 

((2 /7 )P 2a+2 +  O (slogP ) bits)
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4. a string specifying positions of cells in Xk for k >  h (we use Lemma 3.9 

with J =  (1/23)JP2*+2 and M  =  P 2s+2; this requires at most (14/23)P 2s+2 

bits. The encoding used to achieve Lennna 3.9 is such that the begin­

ning and end of this string can easily be determined.)

5. a string specifying the contents of cells in Xk for k > h (at most 

(1/23)P 2a+2 bits).

This means that the number of bits needed to specify crs is at most 

(151/161)P2a+2 -j- 0 (P 2s+2/log  P) < P 2s+2 — 0 (s  logP ) for sufficiently large 

P. Thus we have a contradiction of Lemma 3.6. □ Lem m a 3.10

Thus we have:m
ts >J2((l°& i)\X i\{N/p2s+2) (Inequality 1)

i=im
>£((logO |X ,|(JV /P2*+2))

t"=/l m
> ( iV /P 2*+2)( lo g ft )^ | ^ i

t=h
>  (iV /P23+2)(log h)(l/23)P2s+2 (Lemma 3.10)

>  (l/23)A^((2s -f l ) lo g P  — log 7) (definition of h)

> (l/23)Ns log P.

Now sum ts over all s to compute a lower bound for £, the total time

required for R to process all possible next questions:
5 -1

t =  E < .
3=0

> X )((l/23 )iV alog  P)
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>  (l/23)AT(log P)((log2 N)/(4 log2 P)  -  0 ((log  N ) /lo g  P))

> (l/92)((iV log2 iV )/log P  — O(loglV)).

Since there are N questions, we divide t by N  to derive the average time 

needed by R to process the next question, fi((log2 N ) /lo g  P). Some next 

question must require time greater than or equal to this average time. Since 

P  is the maximum time for some next question, P  >  H((log2 N ) /lo g  P); 

hence, P =  ii((log2 N ) /lo g  log N).

Thus for each question Qj , we can choose a next question Qj+i that 

takes time S7((log2 N ) /lo g  log N). Since the query part has N/(2 log N) 

questions, our choice of questions means that the query part takes time 

t =  (N / (2 log A^))n((log2 N ) /  log log N)) =  Sl((N log N)/ log log N). The 

entire simulation takes at least time t. Since N  =  n/8, the lower bound 

holds for n as well. □ T heorem  3.5

Because the lower bound proof considers only the time involved in access­

ing registers, the lower bound holds for RAMs with more powerful instruc­

tions, such as boolean operations or multiplication.

4 Simulation of a Multidimensional Turing 

Machine

By composing our simulation in subsection 3.1 of a tree machine by a log- 

cost RAM with Reischuk’s (1982) simulation of a d-dimensional Turing ma­

chine by a tree machine, we obtain an on-line simulation of a d-dimensional
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Turing machine of time complexity t by a log-cost RAM running in time 

0((5dlog*H log t)/ log log t). But we can improve this upper bound with a 

direct simulation.

T heorem  4.1 A d-dimensional Turing machine running in time t(n) can be 

simulated on-line by a log-cost RAM running in time 

O(t(n)(log t(n))1-1/d(log log ¿(ra))1̂ ).

Proof sketch. We design a log-cost RAM R that simulates d-dimensional 

Turing machine M . For simplicity, assume M  has one worktape; our results 

generalize to d-dimensional Turing machines with more than one worktape. 

Let s — ((log ¿ )/ log log t)l!d. Partition the worktape of M  into d-dimensional 

cubes (call them boxes) with side length s. Let corner[i) be the cell in box i 

with the coordinates whose components are the smallest.

For box i, if corner(i) =  (¿1 , ¿2, • • •, id), let index(i) =  idtd~l 4- id-\id~2 +  

. . .  -f ¿1 . R stores the contents of box i in the register in main memory with 

address index(i). Step-by-step simulation is carried out in the cache. R con­

ducts the simulation in t/s phases, each of s steps of M. For each phase: R 

unpacks the contents of 3d boxes that are within distance s of the worktape 

head (the head remains within these boxes during the phase); R simulates 

M  for s steps; and R packs the contents of the cache back to main mem­

ory. Using precomputed values of t, t2, . . . ,  td_1, R quickly computes index(i') 

from index(i) when box i' is adjacent to box i. For each phase, R takes time 

0 (log t) to access main memory, 0(log t) to compute the address of registers 

in main memory representing the new blocks needed in cache, 0(.slog,s) to 

simulate s steps in the cache, and O(sdlogs) to pack and unpack the appro-
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priate registers (Lemma 2.1). Thus the total time for the simulation is:

(t / s)(0(\ogt) -f 0(s  logs) +  0 (5 d logs))

=  0(((t  log t)/s) +  ¿3d“ 1 logs)

= O(i(log£)1_1/d(loglog t)1̂ ) .^

Once again, the result for unit-cost RAMs is much stronger:

T heorem  4.2 A multidimensional Turing machine can be simulated by a 

unit-cost RAM in real-time.

Proof. Schònhage (1980) showed that a unit-cost successor RAM can 

simulate a multidimensional Turing machine in real-time. It follows that a 

unit-cost RAM with addition and subtraction can simulate a multidimen­

sional Turing machine in real-time as well. □

5 Conclusions

Because the log-cost RAM is considered a “standard” among models of com­

putation, it is important to determine its relationships to other models. Here 

we have shown an optimal on-line relationship between log-cost RAMs and 

tree machines. We have constructed an analogous efficient simulation of mul­

tidimensional Turing machines by log-cost RAMs. We hope that this work 

will lead to further study of relationships between other models of computa­

tion.

Some further areas of research include:
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1. finding an off-line simulation that is faster than our on-line simulation 

of a tree machine by a log-cost RAM.

2. finding an optimal simulation of a pointer machine (Schonhage, 1980) 

by a log-cost RAM.

3. finding an optimal simulation of a unit-cost RAM by a log-cost RAM.
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