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ABSTRACT

It is shown that the state feedback matrix of a linear system optimal 
with respect to a quadratic performance index can be expanded in a 
MacLaurin series in parameters which change the order of the system. The 
first two terms of this series are employed in an "optimally sensitive 
design" for a high-order plant. The result of the optimally sensitive 
design is superior to that achieved by a conventional low-order design, 
while the amount of computation is considerably lower than it is required 
for a high-order design. An example of a second order design for a fifth 
order plant is given.

INTRODUCTION

This paper proposes a method for designing approximately optimal 
regulators for high-order linear plants with quadratic performance indices. 
The method is motivated by the fact that the application of the existing 
design procedure [l,2] to high-order plants represents a computationally 
difficult and cumbersome task. It is well known that the number of scalar 
equations, which correspond to the matrix Riccati equation, increases with 
the square of the order of the plant equation. A conventional attempt to 
avoid this difficulty is to neglect some small time constants, moments of 
inertia and similar "parasitic" parameters which increase the equation 
order. In the sequel the approach based on such a "low-order" description 
of the plant is called the low-order design. The design based on a "high- 
order" description of the plant, in which these "parasitic parameters are 
not neglected, is called the high-order design. At the present time a 
designer is left with the dilemma: either to apply the high-order design
which is computationally involved, or to use a low-order design which is 
simpler, but which may result in an unsatisfactory system performance.

The method of optimally sensitive design proposed in this paper 
provides an analytical tool for resolving this dilemma. It results in 
better system performance than achieved by the low-order design and 
requires considerably less computation than the high-order design. In 
this method attention is focused upon the dependence of the optimal
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feedback gain matrix K on small parameters whose presence increases the 
order of the plant equation. It is proved in this paper that K can be 
expanded in a MacLaurin series with respect to these parameters. The 
first term of this expansion corresponds to the low-order design. The 
second and, if necessary, few more terms are used as an "optimally 
sensitive" correction of the low-order design. The effectiveness of the 
optimally sensitive design is illustrated by a second order design for a 
fifth order p̂ Lant.

This paper makes use of the singular perturbation theory of ordinary 
differential equations [3-6], It represents further extension and appli
cation of the method proposed in an earlier paper [7].

LOW-ORDER AND HIGH-ORDER DESIGNS

In order to motivate the statement of the problem given in the 
section "Optimally Sensitive Design" high-order and low-order designs 
are compared in this section.

Let
dx—  = Fx + Gu (1)

be the low-order description of a physical plant, where x is an 
n-dimensional state vector and u is an r-dimensional control vector.
Equation (1) has been derived by neglecting the small parameters ,
whose presence could increase the equation order. A more accurate descrip
tion of the same physical plant is possible if the presence of these para
meters is taken into account. Let the small parameters be linear functions 
of a scalar parameter X, = P^X, where P^, i=l,...,m, are some known coef
ficients. Then the high-order description of the plant is

dx ~ ~—  = Axx + A2z + Bju, (2a)

X dt = A3* + V  + B2U ’ (2b)

where x is an n-dimensional vector and z is an m-dimensional vector [7].
The matrices Aj, A2, A^, A^, and B2 are differentiable functions of 
X, A^=A^(X) ,...', B2=B2(X), and their values at X=0 are denoted by C]_, C2,
C3» ^4» ^1 anc* ^2* resPec£ively. Since the descriptions (1) and (2) must 
coincide with X=0, F and G are defined as

F = cr c2c4'lc3> G = V C2C4 ' V  P)

It is apparent from (3) that a necessary condition for the compatibility 
of (1) and (2) is that is nonsingular. (This condition is a pre
liminary one. In the sequel a stronger condition will be imposed on C^.)
At X=0 the variable z is no longer a part of the state vector and can be 
expressed as a linear function of x and u,
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z = -C4 1 (C3x + D2u) . (4)

The transition from (1) to (2) is due to a small perturbation of X at X=0 . 
Without loss of generality this perturbation is assumed positive. It 
changes the order of the equation from n to n+m, ("singular perturbation") . 
Th£ notation x indicates the perturbed n-dimensional part of the (n+m) - 
dimensional state vector, while z is the additional m-dimensional part 
introduced by the same perturbation X > 0.

The design objective is to find a control u such that the performance 
index (5) is minimized,

r TJ = %y'(T) TTy(T) + y  (y'Qy + u'Ru)dt, (5)
o

where y is an n-dimensional output vector, R is a positive definite, and 
tt and Q are positive semidefinite matrices and prime denotes transposition.

The low-order design is considered first. In this case the low-order 
equation (1) is the side condition for the minimization of (5) and, without 
loss of generality, the output y is assumed to be equal to the state, y=x. 
Then the well known solution to the above optimal control problem is

u* = -Sx, (6)

where S is the low-order-optimal feedback gain matrix,

S = R"1G'M. (7)

The symmetric matrix M is the solution of the equation

dM -1—  = -MF - F'M + MGR G'M-Q (8)

with the end condition

M(T) = tt. (9)

Hence, the low-order design consists of solving a system of scalar
differential equations (8). To check the applicability of the low-order 
design the behavior of the plant (2) with the low-order optimal feedback 
gain S must be analyzed. For the purpose of this paper it suffices to 
show by an example that the result of a low-order design can be not only 
far from the optimum, but also unstable.

Example 1. In a voltage regulator problem [8] the plant is defined by the 
block diagram in Fig. 1 where s is Laplace variable and

T 1 = 5’ t 2 = 2> t 3 = °-07> t 4 = 0.04, t 5 = 0.1 (10a)

3. ̂ 2.5, a2 3 o 2, a^ 6 , a^ — 3, a^ = 3. (10 b)
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It is customary to attempt a low-order design by neglecting the time 

constants which are ten or more times smaller than the dominant ones. In 
this example T3 , T^, and T3 are twenty to fifty times smaller than and 
are neglected in the low-order model. The state equations for the low- 
order model are

where a = 5 Let the performance index be

(11)

00

J = (y2 + u2)dt , (12)
O

where the output is y=x^.

The feedback gain matrix S = [s^jS^] obtained from (7) and (8) is

S = [.9579 .0996]. (13)

The applicability of this low-order design depends on whether the regulator 
S can be used in connection with the fifth-order plant or not. The answer 
is negative since the resulting feedback system Fig. 2 is unstable. 
Moreover, this feedback system is unstable even if the time constants T3 , 
T^, and T5 have two times smaller values than in (1 0a).

As the above example shows it is very likely that the result of a low- 
order design is not directly applicable to a higher order plant.

The minimization of (5) with side 
high-order design. Let in this case y

condition 
= x and

( 2) is referred to as the

Ai A2 Bi
A = _a3A , B =

b 2A (14a)

Q o'r
, TT = TT 0

_0 0 _ O _ 0 0 -3

Then the result of the high-order design is

u + K2z ],

(14b)

( 1 5 )

where K = [k ^K^] is the high-order-optimal feedback gain matrix,

- 1 .K = R B'P, (16)



The symmetric matrix P is the solution of the equation
5

dP
dt -PA-A'P + PBR’V p  - Q (17)

with, the end condition

P(T) = tTq. (18)

In the high-order design scalar equations (17) must be solved.
No use is made of the result of the previous low-order design.

OPTIMALLY SENSITIVE DESIGN

A question which immediately arises from the comparison of the above 
two designs is whether it is possible to develop an approximation method 
which will represent a compromise between a simple but unsatisfactory low- 
order design and an optimal but computationally involved high-order design. 
In other words, a method is sought which will result in a performance 
superior to the performance achievable by the low-order design, but with an 
amount of computation considerably lower than it is needed for the high- 
order design.

The optimally Sensitive Design developed in the following sections 
consists of approximating the high-order-optimal gain matrix K(X) by its 
truncated MacLaurin series in X,

K(X) = K(o) + AK, (19)

where
AK dKi

dX 1
X .

x=0

There are two problems to be solved in the development of this method. 
Firstly, it must be shown under which conditions the optimally sensitive 
design is possible, that is when is the matrix K(X) continuous and differen
tiable with respect to X at X=0. Secondly, a procedure must be derived for
computing ^  at X=0. The practical applicability of the optimally sensi
tive design depends on the simplicity of this procedure.

CONTINUITY OF K(X) AT X = 0

In order to make thh analysis of the solution K(X) of (17) more con
venient, (16) and (17) are rewritten as follows:

X

dt

dt

R"1 (B1P1+B2H2) » K2 = R~ V BiH2+B^H3)

-p 1 a 1 -a ^p 1 -h 2a 3-a ^h ^+p 1e 1 p 1+p 1e h ^+h 2e ,p 1+h 2e 2h ^-q ,

-p1a2-h2a4-Xa ĥ2-a ĥ3+Xp1e1h2+p1eh3+Xh2e,h2+h2e2h3

( 20)

(2 1a)

(2 1b)
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X = -XA^H2-XH^A2-H3A4-A^H3+X H^E1H2+XH^EH3+XH3E ,H2+H3E2H3, ( 2 1 c )

where E^ = B^R 1 B^, E2 = B2R 1 B2, E = B^R *B£, and where P^, H2 and H3 are 
nxn, nxm and mxm matrices defined by

■pl Xh 2'

3 H2 XH3-'

The end condition (18) is partitioned into

PX(T) = tt , H2 (T) = 0, H3 (T) = 0. (22)

In view of classical theorems on the continuous dependence of solutions 
of ordinary differential equations on parameters, P]̂ = P^(X) , H2 = ^(X) 
and H3 = H^(X) are continuous functions of X when X>0. For the optimally 
sensitive design, however, it is necessary that these functions be contin
uous at X=0 as well, that is that they have the following properties:

Property 1: As X -* 0+ the limits

Px(X) - Lr  H2 (X) - L2, H3 (X) - L3

exist and are unique.

Property 2. L^, L2> and L3 satisfy equation

dL
(23a)

0 - -Ll V L2C4-C3L3+LlNL3+L2N2L3 ’ (23b)

0 ' 'V V W W v  (23c)
which is obtained by letting X=0 in (21) . N.. , N,£ and N are the values of
Ei, E2 and E at X=0. The end condition for (23) is Li(T) = tt .

If Px(X), H2 (X) and Hg(X) have the Properties 1 and 2 then the low- 
order design can be used as the first step of the optimally sensitive 
design. This is shown by substituting in (23a) the roots

L2 = * ^3 = ® *
of the algebraic equations (23b) and (23c),

dLl - 1  - 1
—  - -Ll(Cr C2C4 C3> - (Cr C2C4 C3>’L1

+ l 1 (d 1 -c 2c4"1 d 2)r '1 (d 1 -c 2c4'1 d2) 'L^Q,

(24)



and noticing that, by virtue of (3),
7

= -l 1f -f 'l 1+l 1g r "1g ,l 1-q .

This equation in is identical to the low-order Riccati equation (8) in 
M. Therefore = M and it follows from (20) and (24) that, as X ”* 0,

K X(X) - r '1(D1-C2C4'1D2)'M = S, R'2(X) - 0. (25)

Theorem 1. For the functions P^(X) , ^(X) and Hg (X) to have the pro
perties 1 and 2 it is sufficient that be negative definite.

This theorem is proved by applying a more general theorem due to 
Tikhonov [3], that is by showing that the roots (24) are the stable steady 
state solution of the following auxiliary equations

dL
—  " -L3C4-C4L3+L3N2L3 ’ (26a)

dL
—  = -L1C2-L2C4-C3L3+L1NL3+L2N2L3- (26b)

In (26), and t are considered as fixed parameters and the only 
independent variable is the "fast mode time" T. Let 1 3 (1 *03) and 
Lo (t ,09,0o) be the solution of (26) for any end condition Lo(T,0o) = 0o and
L2 (T,0 2,03) = 02.
Proposition. If is negative definite, then, as T -♦ -00t

L3 (t ,03) - 0, (I)

1*2 (I >02 »03) ”* ” ĵ1̂ '2̂ 4 * (II)
To prove this proposition, define a Lyapunov function, 

V(L3) = % trace(L^)2, 

whose derivative in view of (26a) is,

f  = trace ( ^ C ^ - L ^ + L ^ N ^ 2) .

dVIt is seen that if is negative definite “  must be positive definite 
which proves part (I). Part (II) is obtained by substituting L^=0 in the 
linear equation (25b) which is stable when is negative definite.

DIFFERENTIABILITY OF K(X) AT X=0

When X > 0  the classical theorems on differentiability of solutions of
ordinary differential equations with respect to parameters guarantfee the

ôPi ~ ÔHo ~ o hq —  and = — -existence and uniqueness of the derivatives 3~ ÔX
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These functions are the solutions of the sensitivity equations which can 
be obtained by differentiating (21) with respect to X .  The end conditions 
for such equations are zero, since the terminal conditions (22) do not 
depend on X. Then (20) can be differentiated with respect to X,

R"1 (B1 P 1+BÌ"i+B2H2+B2^2) (27a)

SK, , _
5 T  = R (b I V ^ h ^ b ^ + S ' ^ + b ^ ) (27b)

ÔB _ ÔB2

where ®1 = sT~ and B2 = a F The tilde stresses the fact that all the
above quanties are evaluated at X>0. However, the optimally sensitive
design requires the derivative ^  to be evaluated at X =0. Again the 
classical theorems are not applicable and the singular perturbation theory 
must be used.

Theorem 2. Functions W^, W2 and Wg have Properties 3 and 4 if the follow
ing three conditions are satisfied:

(1) is negative definite;

(2) A^, k .2 and have continuous first partial derivatives with 
respect to X ;

(3) Ag, A^ and Bg have continuous second partial derivatives with 
respect to X .

Property 3. As X “♦ 0+ the limits

V Wr  ^2 w2 * ^3 w3

exist and are unique.

Property 4 . The functions W^, W2 and are the solutions of the equations

dW
___1
d t -  • V r h “ l - « i V C i V V 3 - V 3 - * 3 l 2 - C3 M2-H ' l HXL l + l i r i L l

+ L 1N1W1+W1N L ^ + L i r L ^ + L 1NW^+W2 N'

+W2 N2 L2+ L 2r 2 L 2+ L 2 N2 W2>
( 2 8 a )

0 "  - d t '  - Wl C2 - L l “ 2 - W2 C4 - L 2“ 4 - Ci L 2 - C3 W3 + L l Nl L 2+ L l NW3

+ L 2 N' L 2+ L 2N2W3 ’
(2 8 b )

0 -  C; V L i C 2+ * 3 W 3 '
( 2 8 c )

where
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&A.

“i " dX x=o
, i = l , . . 4 ;  0. =

dB,

x=o
,j=l,2

r  = —-j dX x=o
a=i 2 • r  = — Ii>z » ax 1x=o

Equation (28) is obtained by differentiating (21) with respect to X and 
then setting X = 0 .  The end condition for (28) is given by

-CO
W1(T) = Jt-H2(T)C3-C^(T) +ttNĤ (t)+H2(t)N'tt+H2(t)N2Ĥ (t)

-TTCC3-C'C,TT+n(NC'+CN')n- TTCN2C'n]dT (29)

where C = and where ^(T) is the solution of

dH2
Tt------- " C2- H2C4 (30)

with the end condition H2 (T) = 0.

Theorem 2 immediately follows from a more general theorem due to 
Vasileva! [4].

In view of (27) and Property 3,

^ 1  - 1  SlCli

s g 2 - 1  SK2 | ar - R «»iwy = 3T1

(31a)

(31b)
X=0

and the analytical basis for the optimally sensitive design is completed 
since W^, W2 and W3 can be obtained from (28).

It should be noted from (29) and (30).that if there is no terminal 
cost, tt=0, the final condition W^(T) = 0.

DESIGN FOR TIME-INVARIANT SYSTEMS

If the matrices A and B do not depend on time, if T = 00 and if (2) is 
completely controllable and observable [l], then the feedback gain matrix 
K(X) is time-invariant and the high-order design consists of solving a
system of quadratic equations,

0 = -PA-A,P+PBR'1 B,P-Q . (32)o
In this case the optimally sensitive design is especially simple.

The matrices W-̂ , W2 and are time-invariant and (28) becomes



0 ■ -w1v Li V aì v c ì v v 3 - v y a3 H 'c? 2 +W i +V i Li +Li Ni wi

1 0

+W 1NL^+LirL^+L1NW^+W2N' I^+L^ 1 I^+I^N' W ^ N ^ + L ^ L ^ + L ^ W ^ ,

0 = -w 1c 2-l 1c 2-w 2c4-l a -c ìl 2-c -w 3+l 1n 1l 2+l 1n w3+l 2n -l 2+l 2n 2w 3,

0 = C2L2+L2C2+W3C4 n V

(33a)

(33b)

(33c)

Hence, the optimally sensitive design consists of the following steps:

1. solving linear scalar equations (33c) ,

2. inverting the mxm matrix C^,

3. solving n ^2+ ^  linear scalar equations (33a).

The computational simplicity of the above procedure compared with 
solving (32) is threefold. Firstly, all equations (33) are linear. 
Secondly, (33) represents m(n-l) less scalar equations than (32). Thirdly, 
steps 1 through 3 can be performed consecutively.

It should be noted that for the above time-invariant problem the 
sufficient condition of theorems 1 and 2 is satisfied even if is not 
negative definite, but is similar to a negative definite matrix.

Since at the present time there is no direct way to estimate how close 
is the result of an optimally sensitive design to the optimum, a typical 
design example is worked out which illustrates both the simplicity of the 
computational procedure and the applicability of the obtained result.

Example 2. Consider the plant in Fig. 1 and performance index (12) and 
let the output be y=x-̂ . The small parameters Tg, T^ and T^ are expressed 
as

T3 = 0.7X, T4 = 0.4X,

Then, the plant state equation (2) is written as

dx
dt

- 0.2

0

-0 .5" "O 0
—

0
x +

-0.5 1.6 0 0_

"*-10/7 60/7 0 “ "O'
-2.5
0

7.5 
-1 -

z + 0
-3-

Since the eigenvalues of are all negative and distinct, it is 
similar to a negative definite matrix and hence Theorems 1 and 2 hold. 
From the low-order design of Example 1,

L 1

0.2064 0.0111

0 . 0 1 1 1  0 . 0 0 1 1
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l 2 = -MC^ ; 1
0.0124 0.0425 0.3193

0.0013 0.0044 0.0332

Let

W,

W_

W1 W2‘
W0 =

]

W5 V
_w2 W3_ 2 -W7 W8 ” 9.

W10 wn W12

W1 1 W13 W14
w12 w14 W15

Then (33) is solved in three steps.

Step 1.

Step 2.

Step 3.

w q̂ = =0.0014,
wn  = 14/55/(60/7 w^-fO .0071) = 0.0049,
w = 7/17(7.5 w11-K).0531) = 0.0372,

= 2^/7 = 0*0170,
= 2/7(60/7 w 12+7.5 w ^) = 0.1275,

w,c = 7.5 w _ . = 0.9567.15 14
w. = 1.12 w0 - 0.0766,4 2
wc = 3.4286 w, - 0.1499,5 4
w r = 7.5 wc - 2.7492,6 5
w? = 1.12 w3 - 0.0039, 
wQ = 3.4286 - 0.0076,
wn = 7.5 w - 0.1428.y o
0.4 wn + 5.7474 w, = 0 1 6
-0.5 w.. + 0.7 w_ + 0.2988 + 2.8737 w = 0,1 2  b y
-w0 + w + 0.5976 w = 0.L i  y

Solving (33a) and (33b)

r = 1.9265, w2 = 0.2005, w3 = 0.0208
r4 = 0.1479, w5 = 0.3571, w6

=-0.1341
r7 = 0.0195, W8 = 0.0591, W9 = 0.3003

Finally, equation (31) gives

3 w_] = [>0.4023 0.9010]y
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ôKr
ôT| = [3 w 12 3 w1A 3 w1EJ  = [0.1116 0.3827 2.8702].

X=0
14 15

ÒKThe above value of is general in the sense that it may serve not
only for X = 0.1 as required in this example, but also for a range of values 
of X . In order to see how large this range is, the above result of the 
optimally sensitive design is compared with the result of the optimal high- 
order design. The table below gives the values of the performance index J 
obtained by the low-order design, the optimally sensitive design and the 
high-order design for the initial condition x^(0) = -10, X2 (0) = z-̂ (O)
= Z2 (0) = Zo(0) = 0. (Similar results are obtained for other initial 
conditions.)

TABLE OF VALUES OF THE PERFORMANCE INDEX J FOR 0 < X < 0.5

X 0 . 0 2 5 0 . 0 5 0 0 . 0 7 5 0.1 0 . 2 0 . 3 0 . 4 0 . 5

Low-order 
design 1 3 . 8 0 2 4 . 8 6 oc oc oc oc oc oc

Optimally
sensitive
design

1 2 . 6 0 1 1 4 . 6 6 1 6 . 5 7 1 8 . 3 6 2 5 . 0 3 3 1 . 5 7 3 8 . 7 6 4 5 . 5 5

High-order 
design 1 2 . 5 9 9 1 4 . 6 4 1 6 . 4 9 1 8 . 1 9 2 3 . 9 0 2 8 . 5 0 3 2 . 4 2 3 5 . 8 6

It is seen that the range of X in which the low-order design can be used 
is as narrow as 0 < X < 0.025, while the optimally sensitive design can be 
applied in about twelve times larger range, 0 < X < 0.3.

It should be noted that in this example the high-order design consists 
in solving» a system of fifteen quadratic equations (32), while the linear 
equations for the optimally sensitive design are easily solvable by hand.

For values of T3 , T4 and T5 given in (10a) X=0.1 and in view of (19) 
the optimally sensitive gain matrix is

K(0) + 0.1 = [0.9176 0.1897 0.0111 0.0383 0.2870].

The block-diagram of the resulting regulator system^is given in Fig. 3.
It is of interest to compare the matrix K(0) +0.1 with the high-order- 
optimal matrix K(0.1),

K(0.1) = [0.9243 0.1711 0.0161 0.0392 0.2644].
The comparison of the responses (Fig. 4) of the optimal (solid line) 

and the optimally sensitive (dotted line) systems gives another indication 
of the validity of the optimally sensitive design.

CONCLUSIONS

It is proved that in linear optimal systems in which the matrix C4 is 
negative definite (or similar to a negative definite matrix) the state 
feedback matrix K(X) can be expanded in a MacLaurin series with respect to
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a small parameter X which changes the order of the plant. This result 
made it possible to design an approximately optimal (n+m)-th order system 
on an n-th order model of the plant. It is shown that an "optimally 
sensitive design," which is computationally simpler than a high-order 
design, results in system performances superior to that achieved by a con
ventional low-order design.
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Fig. 1. High-order and low-order models of the plant.

FR - 16 74

Fig. 2. System with the low-order-optimal regulator.

FR -1681

Fig. 3. System with the optimally sensitive regulator
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Fig. 4. Responses of the high-order optimal (solid line) and optimally 
sensitive (dotted line) systems.
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