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Numerical Studies of Strong Shock Waves 

Part VIII: Properties of a Shock Wave for a Mach Number of 2.5

B. L. Hicks and M. A. Smith 

ABSTRACT

This report describes a study of the structure of a shock 

wave in a gas of hard spheres for a Mach number ^  = 2.5. The charac

teristics of the velocity distribution function f, of the collision 

integral, and of moments of these functions are discussed in detail 

for nine stations within the shock wave.

The structure was calculated by solving the (non-linear) 

Boltzmann difference equation by an iterative numerical method that 

includes Monte Carlo evaluation of the collision integral and a num

ber of other new techniques. The 12th iterate is taken to be the 

solution of the difference equation. The average convergence error 

of this iterate is estimated to be not more than 0.5% of f.

It is found that although departures of the calculated 

solution from the Mott-Smith shock are generally small they are the 

smallest on the upstream side of the shock. The most important 

specific results are the following:

1. The largest deviation of the calculated velocity distri

bution functions from the Mott-Smith functions occurs near the hot side 

of the shock and near the "cold peak" in velocity space and amounts 

to 21% of f. The rms deviations at any given station in the shock

are from four to ten times larger than the likely error at that station 

and eleven times larger than the estimated convergence error of the
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iteration method. The deviations form regular patterns in velocity 

space at each station in the shock.

2. The collision integral (a-bf) calculated by the Monte 

Carlo method smooths rapidly during the first few iterations. The 

residual [vxa(df/dx)-a+bf] is two to five times smaller for the 

twelfth than for the first iterate. Earlier studies show that the 

random and systematic errors of the Monte Carlo evaluation of the 

collision integral lie in the range 1-3% for a Monte Carlo sample of 

the size used here.

3. The calculated reciprocal shock thickness is 0.301 +

0.009, in units of the reciprocal upstream mean free path, a value not 

significantly different from the Mu -moment" value obtained by Mott- 

Smith. The density gradient dn/dx, however, is an asymmetrical 

function of the reduced density n = (n-n^/( n ^ n ^  unlike the sym

metrical function obtained by Mott-Smith. Thus the maximum of the 

gradient occurs at n = 0.41 rather than 0.5; there is a significant 

difference between the upstream and downstream half-thicknesses of the 

shock; and the density gradient is a parabolic function of n only on 

the upstream side of the shock.

4. The calculated collision rate deviates significantly from 

the equilibrium value calculated from the local density and tempera

ture in the shock, but never by more than 2.5%. Three moments of 

(a-bf) behave very much like dn/dx, as functions of n, which possibly 

suggests a source of difficulty in the six moment method of estimating

shock structure.
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5. Five moments of f including the Boltzmann flux, approach 

their equilibrium values on the hot side of the shock more rapidly than 

do the Mott-Smith values of the same moments. The maximum deviations 

between the calculated and Mott-Smith values of these moments are con

sistently six to nine times larger than the likely errors of the cal

culated moments. The moment 7)^, proportional to the lateral temperature 

tjL, shows the largest maximum deviation, namely 1.8% and is a quadratic 

function of n on the upstream side of the shock. The deviations of 

other moments are asymmetrical, the maximum deviations occurring near 

the hot side of the shock.
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LIST OF SYMBOLS

1. Basic Set

Variables and .Functions (Nordsieck units used throughout)

a = a(v,n) 'j

b = b(v,n) j parts of the collision integral, (a-bf)

f = f(v,n) velocity distribution function
f ' ,F,F ' f ( v ' , n ) , f ( V , n ) , f ( V ' , n )
I number of iterations
J number of stations in the shock wave
j ordinal number of stations in the shock 

wave - j=0,l,...(>l)

X i—1 II <
3 scaling parameter

upstream Mach number

N7
N7
2 - number of collisions in the Monte 
Carlo sample

n particle density
An reduced particle density, (n-l)/(n2-l)
6n (n2-l)/(J-l)
n' dn/dx
n' Monte Carlo value of n'
r ordinal number of the collision sample
s ordinal number of velocity bin — 

8*0,1,...,226
V

X component of v perpendicular to the shock 
wave

Vxa value of v measured relative to the shock 
wave
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1 Yl component of v parallel to the shock wave

1 V molecular velocity
■ < 

1 
< 
1

velocities of molecules entering a collision

1 V,V' velocities of molecules leaving a collision

1
X position coordinate measured perpendicular 

to the shock wave

1 Subscripts, etc.

1
c or 1 indicates "cold" or upstream side of shock 

wave

1
h or 2 indicates "hot" or downstream side of shock 

wave
■

1
in refers to "machine" units of velocity,

v = K v m 1
MC Monte Carlo

1 M-S Mott-Smith

indicates v > (<) 0 xa

1 j station j

■
s velocity bin s

1 I number of iterations

1 2. Special Symbols Used in This Report

1 G(n) Boltzmann flux

■
H(n) Boltzmann function

1 %(•>). »l'k (n) k-th moments of f and of df/dx

1 t± "lateral" temperature
■

1
1

6f = 6f .js [AVjs f 1=12 ' fI=(pMC



6

f . JS value of f for the j-th station and s-th 
velocity bin

AV. f 
Js mean value of f . for a set of four Monte 

Carlo runs

e . f JS "likely" error of A V . fJS
e .f 
J rms value, taken w.r.t. s, of e. fJS

V a twice the collision frequency

Pj(6f), Pjf rms values, taken w.r.t. s, of 6f . and of
f . JsJS

(7 . f JS sample standard deviation of fJS
cr .f 
J rms value, taken w.r.t. s, of c f

js
max (v ), 0 , 0TT xm I II parameters describing the distribution of 

f i n  velocity space

The operators AV, a, and e refer to the mean, sample standard

deviation and "likely" error computed from a set of four, statistically 

independent values of an operand.
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INTRODUCTION

In this report we shall describe in detail the solution of 

the Boltzmann differential equation for a strong shock wave (M^ = 2.5). 

The method of solution was first described in a p a p e r f o r  the 

Oxford Symposium and illustrated there by brief discussions of a strong 

shock wave and of a pseudo-shock. The accuracy of the method of
( 2)solution for a strong shock wave is discussed in a recent CSL report. 7 

Our solution of the Boltzmann equation involves the fol

lowing major steps:

1) Replace the Boltzmann differential equation by a set of 

226 difference equations, one for each velocity

bin v = (v , Vj_). The difference equations are derivedX
by using a Monte Carlo evaluation of the collision 

integral (a-bf) and a stable numerical integration with 

respect to the variable n, the particle density, as an 

independent variable.

2) Solve this set of difference equations for 226(J - 2)

values of the velocity distribution function f(v,n) and

also of a(v,n) and of [b(v,n)f(v,n)], where J is the

number of stations in the shock. The solution is

obtained by an iterative method which permits close con-
( 2)trol of the errors.

3) Calculate physically interesting moments of the velocity 

distribution function f and of the collision integral
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(a-bf). Numerical integration methods are used that 

are more accurate than the individual values of the 

integrand.

The results discussed in this report were obtained at the

twelfth iteration, I = 12, for M = 2.5 using fixed sets of Monte 
(2) N7Carlo samples, each sample containing 2 collisions. Most of the

results refer to N7 = 15 and to J = 9 stations in the shock. The 

starting values (zero-th iterate) were Mott-Smith velocity distribution 

functions. Four independent runs were made corresponding to four inde

pendent sets of collision samples. The results output during each 

computer run include the following numbers, in Nordsieck u n i t s , f o r  

each of nine stations in the shock and for any specified iteration:

226 values of f, a, and bf; 11 moments of f; 9 moments of a; and 9 

moments of (a-bf). The moments mentioned include the Boltzmann func

tion H, the Boltzmann flux G, and their derivatives. We note that all 

of these quantities are known at the two boundaries before we solve the 

Boltzmann equation for the shock wave.

We shall use Nordsieck units throughout the report unless 

otherwise stated. In these units the maximum value of the velocity 

distribution function and the values of density and temperature are 

equal to one at the upstream boundary of the shock wave. The unit of 

length is 2 2X (upstream mean free path). The unit of velocity is 

(tt/2)X (upstream mean molecular speed).

We shall describe only what appears to be the most interesting 

of the characteristics of this large set of results for M^ = 2.5. In
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particular, we shall discuss the mean value and "likely" e r r o r o f  

each of the physically interesting quantities. These means and errors 

are derived from the four independent runs. This description of the 

shock wave for = 2.5 may then serve as a model for similar analyses 

at other Mach numbers.

OUTLINE OF TECHNIQUES USED IN SOLVING 

THE BOLTZMANN EQUATION

Our method of solving the Boltzmann equation for a shock 

wave is successful because it combines a number of new techniques 

that overcome earlier difficulties. These techniques may be summarized 

as follows.

1) Derivation of the difference equations

1.1) Use of an efficient Monte Carlo method (1962)^ 

of evaluating the collision integral in the Boltzmann equation.^  

Although the Monte Carlo method has so far only been applied for 

elastic sphere molecules, this restriction is not necessary to the 

success of the method. Its accuracy has been carefully studied in two 

CSL reports. ’ The method has been successfully applied to several 

problems.^

1.2) Least squares adjustment of the collision integral 

(1964). This adjustment forces the conservation equations to be 

satisfied, prevents positive values of the gradient dG/dx of the 

Boltzmann flux, and prevents drift owing to unavoidable bias in our 

quadrature method used to evaluate the collision integral. (No quadra

ture method is free from bias.)
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These two steps of the derivation define, for a "fixed" 

set of collision samples defined e a r l i e r , a n  algorithm for calcula

ting the collision integral at each station and velocity bin.

1°3) Use of n as an independent variable in place of 

x (1963). The variable n is generated during the solution of the 

Boltzmann difference equations and is used as the independent variable. 

This choice of the independent variable makes possible an appropriate 

variation of the interval Ax through the shock wave for any Mach num

ber; stabilizes the shock by eliminating the artificial origin on 

the x axis; separates the problem of determining those functions like 

f and its moments that vary slowly with n and show small Monte Carlo 

fluctuations, from the problem of determining those functions such as 

(a-bf) and dn/dx that show more rapid variation with n and larger 

fluctuations. The function dn/dx = n'(n) is obtained directly by 

integration of the collision integral (a-bf) so that its "likely" 

error can be calculated more easily than if this derivative were ob

tained by differentiation of n(x). The function n ’(n) contains all 

the physically interesting information about the density profile. In 

particular, its maximum value is inversely proportional to the (density) 

shock thickness.

The first three steps of the derivation replace, for a given 

number of stations J and a fixed set of collision samples, the Boltzmann 

differential equation by the Boltzmann difference equations,

2. Solution of the difference equations. A rapidly con

verging, iterative method of solution of the Boltzmann difference
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equations is obtained through the use of a stable numerical integra

tion with respect to n which "homes" on the boundary values (1958, 

Nordsieck), and by completing separate iterative sequences for each 

of four fixed sets of independent, random collisions (1966). Averaging 

the solutions for these four sets of collisions gives the final, mean 

values of f and estimates of the statistical errors.

If, for given J, sample set, and starting values, the rms

difference between the iterates for iterations (1-1) and I is less than
-4 —say 2x10 we call the I-th iterate a solution, f (v,n), of class A ofil

the Boltzmann difference equations. If, for given J, both the esti-
( 2) —mated rms convergence error and the rms variation of f (v,n) withü

starting values are less than the rms variation of f^(v,n) across the 

four runs, then we call the mean of f^(v,n) across the four runs a 

solution of class B. It is solutions of class B of the difference 

equations that we shall discuss in this report.

REQUIREMENTS TO BE SATISFIED BY SOLUTIONS OF THE 

BOLTZMANN EQUATION FOR A SHOCK WAVE

There is at present no theory of the convergence of the solu

tions of our Boltzmann difference equations to solutions of the
N7Boltzmann differential equation, as the sample size 2 , number of itera

tions I, number of velocity bins S, and number of stations J are 

increased. In the absence of such theory we can at least require that 

the solutions of the difference equations satisfy a number of require

ments that the solutions of the differential equations would themselves
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satisfy. Some of these requirements^^ are listed below, and the solu

tions we discuss in this report satisfy all of them within the limita

tions of accuracy imposed by finite values of I and S.

1. Monotonic decrease of the Boltzmann flux G.

2. Constant values in the shock of the three conserved 

moments of f.

3. Non-positive values of dG/dx.

4. Zero values of the x derivatives of the three conserved 

moments.

5. Agreement with values of three moments of (a-bf) cal

culated analyt ically.

6. Agreement with known boundary values of f, a, bf and 

their momentso

7. (a-bf) = 0 on v = 0, that is, for molecules whose x
X cl

component of velocity is zero relative to the shock.

8. Iterative solution independent of starting values 

(that is, of the zero-th iterate).

BEHAVIOR OF THE VELOCITY DISTRIBUTION FUNCTION

The unknown function in the Boltzmann difference equations is

the velocity distribution function f(v ,n.) = f (i=l,2 *•*(J-2):s j js J v ' ’

s=0,1,2 * * *225r.) . Once this function is known we can calculate the two

parts of the collision integral a, bf by the Monte Carlo method and

any moments of f, a or bf. We shall therefore first discuss the behavior

of f before turning to the other functions.Js
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For purposes of orientation it is useful to have before us
(2) ^—the rms values of f at the j-th station, that is, p^f, p^f, p^f.

The quantity p .f is the rms value of f . at the i-th station. The J js
notations — ^ and -s- refer, respectively, to molecules moving forward

or backward with respect to the shock, that is, to v > 0 or v < 0.xa xa
The rms values are given in Table 1.

Table 1

Rms Values of f - (J = 9)

j

1 
73 (_i. 1 
Hi P,f P3f— J

0 0.1396 0.1793 0.00026

1 0.1286 0.1650 0,0109

2 0.1206 0.1540 0.0206

3 0.1157 0.1464 0,0312

4 0.1135 0.1420 0.0413

5 0.1143 0.1408 0.0514

6 0.1178 0.1429 0.0614

7 0.1240 0.1484 0.0718

8 0.1349 0.1593 0.0843

In our discussion of f. it is convenient, js for several

reasons, to use the Mott-Smith velocity distribution functions

as reference functions: for M  ̂= 2.5 they are good approximations

to the solution of the Boltzmann equation; they are simple (linear'
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functions of the independent variable n; and they are the zero-th 

approximations used in our iterative, numerical solutions of the Boltz

mann difference equations. We therefore shall use the difference 

function

6 f  = 6 f  . = [ A V . f I  - f .
JS  JS  1=12 JS

I ]1=0 ( 1 )

in our discussion.

In accordance with the conventions in Report IX the first

term on the right-hand side of this equation is the mean value of f. ,
JS*

for each bin s and station j, taken over the four independent colli

sion samples for the twelfth iteration. The second term on the 

right-hand side is the Mott-Smith or starting value of the velocity 

distribution function for the same bin and station. We shall use 6f 

as an abbreviation for 6 f . .JS
We find that we can define the most important characteristics 

of the variation of 6f in velocity space by describing, in each of 

four regions in velocity space and for each j (or station), the bins 

for which 16 f | > 10 e f, that is, the bins for which 16 f | is statis

tically very significant. The "likely error"^ e f is that corres-
js

ponding to the Monte Carlo fluctuations^^ and is equal to 0,442a f
J S

where a . f is the sample standard deviation of f across theJs js
four independent runs.

The four regions, numbered I — IV, are shown schematically 

in Figs. 1 a, b and can be used to describe the behavior of the dif

ferences 6f at any station by appropriate parameterization, as shown 

in Table 2. In many individual bins outside these four regions the
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differences are also significantly different from zero, though by less 

than lOe^f . Since they are highly correlated with respect to j and 

s, the differences in these regions outside I - IV are also quite

significant in the aggregate, but we shall not discuss them further 

here.

In discussing Table 2 we note first that the departures of

the characteristics of the shock from Mott-Smith behavior are nearly

the same for j = 1, 2 (and sometimes 3), a result also found in the

behavior of some of the moments to be discussed later» Also, the total

number of significant bins, that is those bins in which 16 fI > lOe f
js

increases from 29% for j = 1 and 2 to 38% for j = 3 - 7.

The total number of significant bins in regions I and II is

almost constant as j changes, but the numbers of bins in each of these 

two regions changes drastically with j. Regions III and IV contain 

most of the large values of f (i.e. most of the molecules) so that the 

characteristics of these two regions should strongly affect the moments 

and also the rms value of 6f, that is, p 6f. In most of the bins in 

Regions III and IV, for j = 7, the values of f are nearer to the 

equilibrium values on the hot side of the shock (n = n^) than are the 

Mott-Smith values» In Region IV the largest value of 6f occurs near

Vxm = 11 and vlm = 9 at j = 4 and amounts to +14% of f. In Region III

the largest 16f| occurs near the cold peak (v ~  10 and v. = 1) at

j - 7 and amounts to 21% of f, The subscript m refers here to "machine"

units of velocity in which (v /v ) = (Vj. /VjL) = 8.40 for M. = 2.5.xm x m t
We note certain further correlations indicated by our cal

culations: the number of significant bins in Region III at the j-th



Table 2

Difference 6f between Monte Carlo Solution and Mott-Smith Functions

1 2 3

j

4 5 6 7
Region I: 6f > 0
no. of bins; 9 12 10 14 25 36 56

140 135 125 125 105 85 60
max 6 f 2.5X10'4 2.8xl0“4 1.5X10"4 2.5X10"4 3.9x10 -4 2.8X10'-4 7.4X10“4

Region II: 6f < 0
no. of bins 42 43 49 46 37 18 3
0II 120 115 105 110 85 75 25

max J ô f1 l.oxio"3 4.5X10“4 7.4X10"4 3.5X10“4 2.7X10'•4 5.4xl0"-4 3.1X10“5
Region III: 6f < 0
no. of bins 6 6 9 10 11 14 14
~  max vxm 9 11 9 11 13 13 13
max 1ô f j 2.6X10"2 4.3X10"2 5.5X10'2 6.2X10-2 6.2x10" 2 5.6X10"■2 9.3X10“2

Region IV: i5 f > 0 ^
no. of bins 9 6 13 14 17 15 12
max 6f 5.8X10"3 6.OxlO“3 7.3X10"3 1.2X10"2 1.2X10“2 7.5X10“3 5.3X10“3

* /1 \
The subscript m refers to machine unitsv J in which v /v =xm x 8.40.

a) An anomalous velocity bin.



Table 2 (continued)

j

no. of
significant bins 1 2 3 4 5 6 7

in I & II 51 55 59 60 62 54 59

in III 6c IV 15 12 22 24 28 29 26

for v < 0xa 13 16 12 17 26 34 33

for v > 0xa 53 51 69 , 68 65 52 55

total (all v ) 66 67 81 85 91 86 88

Significant bins are those for which 6 f  > 4. 6ct . f , ' - js a difference of "two letters"

in the isoline plots of 6f(j,s) and of cr^f.or more between corresponding velocity bins
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station correlates well with the quantity a .f/p .6f, and the total

number of significant bins for which v < 0 at the i-th station corre-xa J
___

lates well with the quantity a^f/p 6f, results that are not unexpected, 

in view of our definition of "significant bins."

In the calculation of (a-bf) in both Regions I and II for 

an equilibrium gas, there is known to be a small positive bias^^ pro

duced by discarding the "unsuccessful collisions." There is also 

presumably some (unknown) bias in calculating (a-bf) in Regions I and 

II for the non-equilibrium gas in the shock wave and a corresponding 

bias in the values of f obtained by the iteration process. In these 

regions there is, however, no similarity between the bias pattern of 

(a-bf) for the equilibrium gas and the patterns of 6f for the seven 

stations in the shock wave.

A quantitative summary of the values of 6f that are signi-

ficantly different from zero can be made by comparing p .6f (the rms

value of 6f at the j-th station) with e^f (the rms likely error at the

j-th station). The comparison is given in Table 3. The bottom row of

numbers in Table 3 measures the fractional uncertainty in p^6f. The

numbers indicate that the "likely" error in f is small, compared to

P & f» at each station. Further calculation shows that the rms "likely"

error for all bins and stations is only 157» of p6f, the rms 6f for all
( 12)bins and stations. Note that e .f is almost constant across the

J
shock but that p 6f increases substantially from the cold to the hot 

side of the shock. The fractional uncertainty in p ,6f therefore 

decreases from the cold to the hot side of the shock.
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Table 3

Properties of f and 6f for each station

j 1 2 3

103xSjf 0.98 1.22 1.33

103xPj6f 3.73 6.09 7.40

e .f/p .6f J J 0.26 0.20 0.18

4 5 6 7

1.21 1.04 0.98 0.94

8.20 8.50 8.32 9.11

0.15 0.12 0.12 0.10
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We have observed a small anomaly in the iterative solutions 

of the Boltzmann difference equations. As I increases from 1 to 12 the 

values of f and of (a-bf) in certain ("maverick") velocity bins seem to 

slowly diverge. (This behavior does not prevent finding solutions of 

class B, as defined earlier.) The anomaly occurs for several sample 

sets for J = 9 but only near the hot side of the shock and for two or 

three bins at most. A phenomena possibly related to that of the 

maverick bins is the lack of convergence, within I < 12, of the 

iterative sequence for = 11. Both phenomena appear to be charac

teristic of the Monte Carlo sampling and will be investigated further,

BEHAVIOR OF THE COLLISION INTEGRAL

During the first few iterations the isolines of the collision 

integral (a-bf) become much smoother than they are for 1 = 0 ,  but this 

increase of smoothness is less for J = 9 than for J = 3. Similarly, 

the variation of dn/dx with n is smoother for I = 12 than for 1 = 0 .

(In the last section of the paper we shall make a distinction between

dn/dx and dn/dx = f(a-bf) dv/v . This distinction is not needed0 MC xa
here.) Several pieces of evidence thus indicate that the early itera

tions serve to adjust, in a subtle way, the values of f at each 

station to the collision samples, both at that station and at neighbor

ing stations.

The smallness of 6̂ -f, the change in f from iteration (I - 1) 

to iteration I, was used in Report IX as one measure of the degree of 

convergence of the iterations. This measure corresponds to the "second
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(g)
test" of a proposed solution of the Boltzmann equation for a 

shock wave. In the "first test," given in the same reference, the 

ratio of the two terms in the Boltzmann equation is used instead as a 

measure of accuracy of the proposed solution. We can use a second 

measure of convergence here that is similar to the "first test." In 

this second measure of convergence we use the difference of the two 

terms in the Boltzmann equation; namely, [v (df/dx)-a+bf],
X cl

where v^a is the x component of molecular velocity measured relative 

to the shock. We find that the values of this difference are two to 

five times smaller for I = 12 than for 1 = 0 .  Note that the iteration 

method that produces wor^s to reduce 6f progressively and does

not necessarily reduce as rapidly the rms value of [v (df/dx)-a+bf]
X cl

(or its finite difference equivalent).

The errors in the Monte Carlo calculation of the two parts, 

a and bf, of the collision integral have been discussed in some detail 

for gases in equilibrium. For purposes of orientation we quote several 

of these errors here. The mean systematic error in determining (a-bf), 

near equilibrium, is 1.27, of a or of bf, for a well-filled velocity 
space. The standard deviation of the systematic error of (a-bf) is 

1.87c of a or of bf. For = 15 (the value used in the calculations 
described here) the standard deviation of the random error of (a-bf) 

is 2.67. of a or of bf.

We can compare (a-bf) , the Monte Carlo value of (a-bf) for 

the shock wave with (v^a df/dx)M _^, the Mo t t - S m i t h ^ v a l u e  of 

(v „ df/dx). (The subscript a in v indicates a velocity component
X  cL
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measured relative to the shock.) For this purpose we use the Monte

Carlo value of (a-bf) for the twelfth iteration of one of the four

runs for J = 9, N = 15. We calculate (v df/dxX, 0 from the / xa M-S
equation

(df/dx)M _s = B(n-l)(n2-n)-(f2-f1)/(n2-l) (2)

where B = 0.5049 (corresponding to Mott-Smith's use of the "u2" 

moment), n and n^ have the values calculated in our Monte Carlo 

Boltzmann program, and all quantities are in Nordsieck units.

The two functions, as we would expect from the comparison of 

Monte Carlo and Mott-Smith values of f earlier in the report, are 

quite similar. Indeed, the sign of the difference [(a-bf)MC
(vxa df/d*)M_s] can be predicted, for the regions III and IV of

Figs, la, b, from the values of 6f. Near the hot side of the shock,

at j = 7, the difference is positive for every bin for which v > 0 ,xa
and the isoline pattern of the difference resembles that of (-v df/dx)v xa 'M-S
throughout the velocity space. This behavior of the difference for 

j = 7 is caused by the fact that (a-bf)^_, is roughly proportional to 

(vxa df/dx)^_g there but is much smaller in absolute value. Various 

moments of (a-bf)^ and of (v^ df/dx)^  ̂ behave in similar fashion.

THE DENSITY PROFILE

For several years we have found it desirable to use n, the 

particle density, as the independent variable in place of x. We use a 

related variable n = j(J-l) here and plot dn/dx = J(a-bf) dv/v
X cl
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against n as in Fig, 2, The mean values and 50% confidence limits 

(corresponding to the "likely errors") for dn/dx are shown for each 

value of n.

The maximum value of dn/dx in Nordsieck units is 0,362 +
(13)

0,011, and it occurs at n = 0,41. The reciprocal shock thickness 

(dn/ (n2~ 1)dx) is then 0.301 + 0.009,^ in units of (upstream mean free 

path) , and the thickness is 3.32 + 0.10^ in units of the upstream 

mean free path. The Mott-Smith value^  ̂ of the reciprocal shock

thickness, derived from his "u " moment method and in units of 

(upstream mean free path) , is 0.303, not significantly different from 

the Monte Carlo value.

The dn/dx vs n profile in Fig. 2 is decidedly asymmetrical, 

unlike the Mott-Smith profile. Thus, for example, (dn/dx)M is 50% 

larger than (dn/dx)^^ , for j = 7. This asymmetry corresponds to a 

less obvious asymmetry of the n vs x profile (Fig. 3) calculated by 

numerical integration. We can describe the asymmetry of this density 

profile as follows. Consider the three points, 1, 2, 3 on the density 

profile defined by three values of n, namely, n = 0.0625, 0.500 and 

0.9375. The upstream half-thickness" of the shock is measured by
/to \

(X2_X1̂  “ 2,18 + 0*03 j[n units of the upstream mean free path.

The downstream half-thickness" of the shock is measured by 

X̂3_X2^ = — 0=05, in the same units, The difference between

these half-thicknesses is 0,64 + 0.006('13  ̂ which is 19% of the shock 

thickness.

On the left side of the density gradient curve (j = 1,2,3,4) 

we find that (dn/dx)/[h(l-n)] is not significantly different from the
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(13)constant value 1.445 + 0.047. For j = 5, 6, 7 the departures

from this value are significant and are consistently negative. We

note that Mott-Smith's velocity distribution functions imply that the

quadratic dependence of dn/dx upon n should hold for the entire shock.

His value of the proportionality constant (in Nordsieck units, cal-
2culated from the "u " moment equations) is 1.461. We can compare 

these values with two others. The values of the proportionality 

constant calculated for J = 3, Ny = 17 and 1 = 0  and 12 are 1.4712 + 

0.029^  ̂ and 1,4792 + 0.046.^^ The first of these values is

calculated from Mott-Smith velocity distribution functions using the

moment dn/dx = |(a-bf)dv/v . The second value is calculated fromd xa
Monte Carlo velocity distribution functions at I = 12, i.e., after 

solution of the Boltzmann difference equation has been obtained, and 

uses the same formula for calculating dn/dx.

The similarity of the four values of the ratio (dn/dx)/

[n(l-n)] is remarkable. We may conclude, as we did after examination 

°f 6f(j,s), that the Mott-Smith values of f and the values of a-bf 

derived from them, correspond more closely to the solution of the 

Boltzmann equation on the upstream than on the downstream side of the 

shock.

VARIOUS OTHER MOMENTS OF a AND OF (a-bf). (J=9, N7=15, 1=12)

In Fig. 4 the mean values and 50% confidence limits of the 

Boltzmann flux G(n) = Tv f log f dv are plotted vs n for I = 12. For 

comparison, the values of G(n) are also shown for 1 = 0  (Mott-Smith).
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The difference between the two curves is much larger than the likely 

error. Note that the curve for I = 12, corresponding to solution of 

the Boltzmann equation, approaches the hot side of the shock (n = 1) 

with a much more nearly horizontal slope than does the Mott-Smith 

curve. The deviations between Monte Carlo and Mott-Smith values 

again are in the direction of more rapid approach to equilibrium 

values on the hot side. Each curve decreases monotonically and 

therefore, because dn/dx is positive within the shock wave, each cor

responding function satisfies the Boltzmann Theorem.

The quantity v = fa dv is twice the collision frequency and,cl ^
2 1/2for an equilibrium gas, equals ^2n T /tt. We find that the Monte 

Carlo values of v differ at most by 2.5% from the values calculated
a

from this equilibrium formula using the local values of density and

temperature. The likely error in v is less than 1.1% at eacha
station in the shock.

The derivatives

yv) 2 ' = V a,b = J(a-bf)dv (3)

7>j 3' = J \ a(a-bf)dv (4)

P 2, N -
>1)4' = Jv^ (a-bf)dv (5)

of the three conserved fluxes are identically zero because of the
2 2(a-bf) correction used in our calculations. (Note that v = v +a xa
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shock

Three other moments of (a-bf) used in Yen's
(14)structure derived by the six-moment method

description of 

are

»1711 '

IIjf v ^(a-bf)dvXcL

IIr—1 fvxa3(a-bf)dv

= Jvxa Yj.Vbf)dv

( 6 )

(7)

( 8 )

We calculated the values of these moments from the (a-bf) tables obtained 

in our Monte Carlo solutions of the Boltzmann equation. The three moments

exhibit a striking similarity to the moment dn/dx = P(a-bf)dv/v . InJ xa

Table 4

Behavior of Three Moments of a-bf

j

1 2 3 4 5 6 7

V  (dn/dx) -0.463 -0.442 -0.432 -0.452 -0.445 -0.433 -0.341
+ o . o i 9 ^1 3  ̂ 0 . 0 1 0 0.015 0.009 0.014 0.016 0.030

7V|11'/ (dn/dx) -0.649 -0.625 -0.616 -0.635 -0.620 -0.591 -0.419
+0.029 0.015 0 . 0 2 0 0.017 0 . 0 2 2 0.027 0.050

^ 7H  7  (dn/dx) 0.670 0.618 0.601 0.646 0.636 0.613 0.426
0.024 0.011 0 . 0 2 2 0 . 0 1 2 0.019 0 . 0 2 1 0.047

fact each ratio,^ /(dn/dx), (k = 6,11,711) does not vary significantly

as j varies from 1 to 6, as seen in Table 4. Also, 7rj7 ' = r  2V  V*■> xa a (a-bf)dv

^ 711' + is not significantly different from zero. These several

results may clarify numerical problems that are inherent in the six-moment 

method of estimating shock structure.
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VARIOUS MOMENTS OF f

The independent variable, n actually used in our numerical 

integration of the Boltzmann equation is slightly different from the 

particle density n. The variable n is defined implicitly by giving its 

derivative dn/dx as a function of n. The derivative is calculated by 

a numerical quadrature

dn/dx = Jt(a-bf)MC/vxa]dv (9)

where the collision integral (a"bf)MC is calculated by the Monte 

Carlo sampling. The variable n is defined by a second numerical 

quadrature

n(n) = Jf(v,n)dv (10)

over the velocity distribution function f(v,n) calculated by our Monte 

Carlo solution of the Boltzmann equation. We find that the deviation 

of n from n may be neglected except at j = 7 where it amounts to 

~0.̂ -2/o. Corresponding corrections of other computed moments of f, at 

j ~ 7, were made so that they may truly be considered to be functions 

of n rather than of n.

The three conserved moments of the Monte Carlo f's (fluxes 

of mass, momentum and energy) are constant within 0.38, 0.31 and 0.46%, 

respectively. Errors of the numerical integrations in velocity space 

are, for these same moments, at most 0.11, 0.19 and 0.26%. The near 

constancy of these moments is enforced by our (a-bf) correction method. 

If these three moments were exactly conserved, the values of each of 

the other moments might be changed by a fraction of a percent from the 

values obtained in our calculations.
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Five non-constant moments of f are;

" J
I

[*f log f dv 

r* 3„ -
the Boltzmann function (11)

>1\6 = Jv f dv1 xa
r. 2 —

(12)

IIONsrj-» V± f dv = ntjL/TT (13)

W|io J
1
fvxaf lo§ f dv
■» 4 —

the Boltzmann flux (14)

■ j v f dv xa a moment used in the 
six-moment method . (15)

We shall be interested primarily in the deviations of the Monte Carlo 

values of these moments from the Mott-Smith values. Note that, as 

usual, we are considering f and each moment to be a function of n, the 

particle density. The Mott-Smith f and the non-logarithmic moments of 

the Mott-Smith f are linear functions of n that depend only upon the 

boundary conditions and not upon knowledge of Mott-Smith!s parameter B. 

Note also that in calculation of these deviations the numerical quadrature 

error (in forming the moments) cancels out to a large extent because both 

Monte Carlo and Mott-Smith moments were calculated by the same quadrature 

process, and the integrands are very similar. For >7̂., and the 

correction, at j = 7, of n -» n (see Subsect. 1) makes each of these Monte 

Carlo moments closer, by a small but significant amount, to its equili

brium value at the hot side of the shock, and, as in the case of the f's, 

the Monte Carlo values were already closer (or as close) to the equili

brium values than were the Mott-Smith ones. The correction of n -» n 

produces no significant change in the value of because the vs n 

curve is nearly horizontal at j = 7.
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The deviations from Mott-Smith values are summarized in 

Table 5. The maximum deviations are consistently six or seven times 

larger than the likely errors of the Monte Carlo moments. Although no 

deviation is larger than 1.8%, each of the maximum deviations is statis

tically significant.

Table 5

Deviations of Monte Carlo Moments from Mott-Smith Moments

Moment
'A 9 +  10* +  11

Largest % Deviation -0.93 -0.59 +1.8 -1.6 -0.45

7o Likely Error 0.14 0.10 0,2 0,2 0.06

Plotted in Fig. 4.

The deviations between Monte Carlo and Mott-Smith moments 

show interesting properties as functions of n or j. The deviations are 

significant, for all n > \ for all of the five moments, and are signi

ficant, for n < % for all of the five moments except This one

Monte Carlo moment, which is proportional to tx , therefore behaves 

like dn/dx and the other moments of (a-bf) in being similar to Mott- 

Smith moments only on the upstream side of the shock. The deviations of 

ty)n are approximately parabolic in n. The deviations of the other 

moments are asymmetrical, with the maximums located near the hot side of

the shock wave.
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Deviations between Monte Carlo and Mott-Smith Values of the 
Velocity Distribution Function f(vx ,Vj_) for a Strong Shock 
Wave« The Monte Carlo Calculations were made for a gas of 
elastic spheres for a Mach number M]_ = 2.5. These deviations
6f = ^MC (vx ' fM-s(vx>vl) are rePresented qualitatively 
by indicating the regions I and IV, in Fig. la, in which 
6f > 0 and the regions II and III, in Fig. lb, in which 
6f < 0, The values of the parameters 0-j-, 9-q , v -̂-1- and 
other characteristics of these regions are summarized in 
Table 2 for each station in the shock wave.



De
ns

ity
 g

ra
di

en
t 

dn
/d

X
32

Fig. 2. The density gradient dn/dx as a function of reduced number
density n in a shock wave (Mach number = 2.5). The units 
are Nordsieck units.1 The symbols § indicate the 50% con
fidence limits.
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NR -  96

3. The density profile: x coordinate in the shock as function
of reduced density n. The units are Nordsieck units.^ The 
Mach number Mi = 2.5. The symbols $ indicate the 50% con
fidence limits.
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Fig. 4. The Boltzmann flux G as a function of reduced number density 
n in a shock wave (Mach number M| = 2.5). The units are 
Nordsieck units.^ The "likely error" is one-half the dif
ference between the 50% confidence limits.
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This report describes a study of the structure of a phock wave in a gas of 
hard spheres for a Mach number M^ = 2.5 The characteristics of the velocity 
distribution function f, of the collision integral, and of moments of these 
functions are discussed in detail for nine stations within the shock wave.

The structure was calculated by solving the (non-linear) Boltzmann 
difference equation by an iterative numerical method that includes Monte 
Carlo evaluation of the collision integral and a number of other new tech
niques . The 12th iterate is taken to be the solution of the difference 
equation. The average convergence error of this iterate is estimated to be 
not more than 0.5% of f.

It is found that although departures of the calculated solution from 
the Mott-Smith shock are generally small they are generally small they are 
the smallest on the upstream side of the shock. The most important specific 
results are the following:

1. The largest deviation of the calculated velocity distribution functions 
from the Mott-Smith functions occurs near the hot side of the shock and near 
the "cold peak" in velocity space and amounts to 21% of f. The rms deviations 
at any given station in the shock are from four to ten times larger than the 
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ABSTRACT (continued)

in velocity space at each station in the shock.

2. The collision integral (a-bf) calsulated by the Monte Carlo method 
smooths rapidly during the first few iterations. The residual [v (df/dx)- 
a+bf] is two to five times smaller for twelfth than for the firstX?terate. 
Earlier studies show that the random and systematic errors of the Monte Carlo 
evaluation of the collision integral lie in the range 1-3% for a Monte Carlo 
sample of the size used here.

3. The calculated reciprocal shock thickness is 0.301 + 0.009, in units 
of the reciprocal upstream mean free path, a value not signigicantly different 
from the u -moment" value obtained by Mott-Smith. The density gradient dn/dx, 
however, is an asymmetrical function of the reduced density n = (n-n )/(n -n ) 
unlike the symmetrical function obtained by Mott-Smith. Thus the m a x i m u m ^ 1 
the gradient occurs at n = 0.41 rather than 0.5; there is a significant 
difference between the upstream and downstream half-thickness of the shock; 
and the density gradient is a parabolic function of n only on the upstream 
side of the shock.

4. The calculated collision rate deviates significantly from the equi
librium value calculated from the local density and temperature in the shock, 
but never by more that 2.5%. Three moments of (a-bf) behave very much like 
dn/dx, as functions of n, which possibly suggests a source of difficulty in 
the six moment method of estimating shock structure.

5. Five moments of f including the Boltzmann flux, approach their 
equilibrium values on the hot side of the shock more rapidly than do the 
Mott-Smith values of the same moments. The maximum deviations between the 
calculated and Mott-Smith values of these moments are consistently six to nine 
times larger than the likely errors of the calculated moments. The momenta 
proportional to the lateral temperature t , shows the largest maximum deviation, 
namely 1.8% and is a quadratic function of. n on the upstream side of the shock. 
The deviations of other moments are asymmetrical, the maximum deviations occur
ring near the hot side of the shock.


