
January 1997 UILU-ENG-97-2201
DAC-57

University of Illinois at Urbana-Champaign

Architectural Support for Power Reduction in
High Performance Microprocessors
Nikos Bellas, Ibrahim Hajj, and
Constantine Polychronopoulos

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

I UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION

Unclassified
1b. RESTRICTIVE MARKINGS

None___________
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-97-2201
5. MONITORING ORGANIZATION REPORT NUMBER(S)

(DAC-57)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

Intel

6c ADDRESS (City; State, and ZIP Code)
1308 W Main St
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)

Santa Clara, CA 95052-8119

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Intel___________________

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code)

Santa Clara, CA 95-52-8119
10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT "Ta s k
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Gasification)
Architectural Support for Power Reduction in High Performance Microprocessors

12. PERSONAL AUTHOR(S)

R 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
f Technical FROM TO 97 01 30 20

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

! field GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Low power, hardware/software codesign, computer
architecture, compilers, microprocessors

I

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Prompted by demands in portability and low cost packaging, the microprocessor industry has started viewing
power, along with area and performance, as a decisive design factor in todays microprocessors. Most of the research
in recent years has focused on the circuit, gate and RT-levels of the design. In this paper, we focus on the software
running on a microprocessor and we view the program as a power consumer. Our work concentrates on the role of the
compiler in the construction of “ power-efficient” code, and especially its interaction with the hardware so that
unnecessary activity is saved. We propose a technique that effectively shuts-down the Instruction Fetch Unit (IF) of a
processor when the execution thread is caught within a loop. This mechanism can have very substantial power savings,
since the IF unit is thè main power consumer in most of todays high-performance microprocessors.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
(3 UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL J
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Architectural Support for Power Reduction in High
Performance Microprocessors *

Nikos Bellas, Ibrahim Hajj,
and Constantine Polychronopoulos

Coordinated Science Laboratory
College of Engineering

University of Illinois at Urbana-Champaign

January, 28th 1997

Abstract
Prompted by demands in portability and low cost packaging, the microprocessor

industry has started viewing power, along with area and performance, as a decisive

design factor in todays microprocessors. Most of the research in recent years has focused

on the circuit, gate and RT-levels of the design. In this paper, we focus on the software

running on a microprocessor and we view the program as a power consumer. Our work

concentrates on the role of the compiler in the construction of “power-efficient” code,

and especially its interaction with the hardware so that unnecessary activity is saved.

We propose a technique that effectively shuts-down the Instruction Fetch Unit (IF) of

a processor when the execution thread is caught within a loop. This mechanism can

have very substantial power savings, since the IF unit is the main power consumer in

most of todays high-performance microprocessors.

*This work was supported by Intel Corp.

1

1 Introduction
In recent years, power dissipation has become a major design concern for the microprocessor
industry. In CMOS and BiCMOS technologies, the chip components draw power supply
current only during a logic transition. Although this is an attractive characteristic of these
circuits, it makes the power consumption dependent on the switching activity inside these
circuits. In other words, the same circuit will dissipate a different amount of power under
different input vectors.

The problem of the power waste caused by unnecessary activity in various parts of
the CPU during code execution has traditionally been ignored in code optimization and
architecture design. Processor architects and compiler writers are concerned with system
performance/throughput and they do little, if anything at all, to eliminate energy/power
dissipation at this level. On the other hand, power dissipation is rapidly becoming the major
bottleneck in today’s systems integration and reliability. No reliable industrial packaging
technology exists nowadays that can handle more than 50 Watts. Modern microprocessors
are indeed hot: the Power PC from Motorola consumes 8.5 W, the Pentium Processor 16
W, and the Alpha chip from DEC around 30 W [1].

A new model that views power from the standpoint of the software that executes on
a microprocessor and the activity that it causes, rather than from the traditional hard
ware standpoint has been proposed [2] and tested in different architectures [3, 4]. This
methodology attempts to relate the power consumed by a microprocessor to the software
that executes on it. This is different from the often used “bottom-up” approach in which
power models are built using a layout, gate or RT-level model of each unit and the power
consumption of the whole chip is the sum of the power consumed by each component unit.

A new instruction-level power model is proposed in these studies, in which the authors
characterize each instruction of a given microprocessor in terms of the power it dissipates
when it is executed [5]. This is the linking bridge between the low-level concept of power

2

dissipation and the high-level concept of software that runs on a microprocessor. It can
also provide the means for power minimization through software techniques or through the
interaction between software and hardware which has been unexploited thus far.

During the execution of a program, each instruction activates a number of units from
the moment it is being fetched to the moment it retires. This activation causes power
dissipation which can be different for each instruction since each one activates different
modules of the CPU. Characterization of the power caused by each instruction can lead
to a better understanding of the sources of power dissipation in the microarchitectures,
to compiler techniques that generate “power-efficient” code, or even to co-design of the
microarchitecture, the instruction set and the compiler for low-power microprocessors.

There has been little research done in the field of software-based power minimization.
In [6], a brief review of some compiler techniques that are of interest in power minimization
is presented. The problem of register allocation, which is central in the code generation
phase of a compiler, is solved aiming at the minimization of switching activity in [7]. In [8],
a Gray coding technique for the program counter of a processor is presented which causes
less switching in the buses of the CPU. Also a heuristic for the scheduling of instructions in a
dynamic scheduling machine is suggested so that the instruction which causes less switching
is selected by the scheduler. These approaches, however, can achieve only a very limited
power reduction in real, complex microprocessors with millions of transistors, sometimes at
the expense of execution time.

Our approach, presented in this paper, aims at architectural level support for power
reduction, coupled with compiler techniques which take advantage of the new hardware
feature. We consider a technique which not only avoids negative impact on execution
time, but which can potentially reduce it further. The organization of the paper is as
follows: the next section gives a brief background of the problem of power minimization
and motivates our work. Section 3 describes our approach in general terms, and Section 4
discuses some subtle implementation issues. Section 5 presents experimental results on

3

SPEC95 benchmarks and the paper is concluded with Section 6.

2 Background and M otivation
The power consumed by a CMOS circuit (Figure 1) is given by the formula:

' P = \ v l dfC0Ut,(1)

where Vddt is the supply voltage, / is the clock frequency, and Cout is the physical capacitance
at the output of the circuit. However, (1) assumes that the output of the circuit switches
and charges the output capacitance in every clock cycle. This is not always the case, since
a change at the input of a circuit does not always propagate to the output. Therefore, a
more accurate formula is:

p = \vhfC mtp, (2)

where p is the probability that the output of the circuit will toggle during a clock cycle.
The term fp expresses the number of output toggles per unit time at the output of the
circuit. Therefore, the power consumed in a circuit depends on the toggling of its output
or, more generally, the power consumed by a unit depends on the activity within it.

Vdd

Figure 1: CMOS circuit

4

Larger and more active units in a microprocessor are expected to consume more power,
and should therefore be the target of power minimization. Most of the techniques that have
been investigated in the area of low power design try to minimize the physical capacitance
Cout and the probability p of switching. Different circuit design techniques, logic and high-
level synthesis techniques have been proposed that tackle the problem from the lower levels
of the design hierarchy.

An additional problem that designers have to cope with is that low power and high
performance are two conflicting goals at all levels of the design hierarchy. For example, one
of the main low power optimizations is the reduction of the supply voltage to a circuit. This
reduction, however, results in slower circuits and larger clock cycles. Higher frequencies are
desirable for high performance -but not for power. Higher activity (and thus utilization)
results in a larger throughput but higher power as well. The excessive power consumption
of today’s processors is in part the outcome of very high utilization of its components.

Our work, on the other hand, focuses on the critical aspect of hardware/software co
design which is widely accepted as an effective means for performance optimization, yet
it is so far unexploited in low power design. We are targeting the activity caused by the
Instruction Fetch (IF) unit which is the main power consumer in most of todays micropro
cessors. The reason is that the execution rate of a processor depends critically on the rate
at which the instruction stream can be fetched from the Instruction Cache (I-Cache). The
IF unit should therefore be able to provide the datapath of the machine with a continuous
stream of instructions, and has therefore very high activity. In addition to that, it has to
drive large capacitance wires to the I-Cache.

3 A rchitectural Support for Power O ptim ization
From the previous discussion, it follows that the IF unit of processors should be our main
focus for drastic power cuts. In order for such optimizations to be attractive, they should

5

not have a negative impact on performance. During the progran execution, the IF unit
frequently repeats its previous tasks over and over again: if a program is caught in a loop,
the IF unit will fetch the same instructions to the CPU core, and the ID will decode the
very same instructions. The problem is that the IF unit does not operate in an efficient way
with respect to power consumption, but it only tries to satisfy the demand of the execution
units for high throughput which is achieved through a fast first level (LI) instruction cache
and high bandwidth buses between the cache and the IF unit. This approach works for
performance but it unnecessarily performs more work than is needed, and thus it dissipates
a lot of power.

To illustrate this point, and also introduce our modification, let us refer to the following
code written in a MIPS-like format:

add rl,rO,rO

addi r2,r0,#100

labell: addi r3,r0,#20

label2: lw r4,0(r5)

add rl,rl,r4

addi r5,r5,#4

subi r3,r3,#l

bnez r3,label2

subi r2,r2,#l

bnez r2,labell

There are only ten different instructions in this program but the IF unit will fetch
100 * 20 *'5 + 100 * 3 + 2 = 10,302 instructions in the ideal case if no false branch predictions
were made. Substantial power gains could be achieved if we could reduce the amount of

6

instructions that the IF unit fetches, and subsequently disable it for all the time that is not
needed. The most usual method for disabling a unit is clock gating, i.e. not allowing the
clock ticks to propagate changes to the output of the unit.

This is the basic motivation of the architectural support that is proposed in this paper.
All the instructions that belong to the inner loop can be fetched and decoded only the
first time the thread of control passes through them. Subsequently, they can be stored in
a special internal cache which is placed between the decoder and the later stages of the
instruction pipeline. Each time the branch prediction logic instructs the IF unit to fetch an
instruction from within the loop, the already decoded instructions that reside in this cache
can be used instead. In the ideal case, the IF unit can be shut down for the duration of the
loop, as it does not need to operate, and its power dissipation can be saved. The same is
true for the on-chip I-Cache as well.

It is worth noting that no performance degradation can result from this enhancement.
On the contrary, since the time-consuming phases of fetch can be avoided, the performance
can potentially be increased. The amount by which performance can be increased depends
on how aggressively one pursues such architectural enhancements—for example how large
this cache should be. The only difference between the new microarchitecture and a conven
tional one is the source that supplies the pipeline with instructions during loop execution,
and the subsequent clock gating of the IF unit.

4 Im plem entation and C om piler Support
Let us consider, how the proposed enhancement can be implemented, and in particular how
the compiler and hardware can manage this special cache, which we refer to as Loop Cache
(L-Cache). In Figure 2, an implementation of our scheme is shown in a generic, five-stage
RISC processor. The advantages of this scheme are more prominent in CISC architectures
where variable instruction formats result in higher power consumption during the IF stage.

7

MEM

Next
Pc

Stream

LCachc

I Start Signal

Data
Memory

IR

ICachc disable

Figure 2: Block diagram of a proposed implementation

We propose a simple and flexible solution which exploits the compiler’s knowledge of the
structure of a program. In this work we describe a possible static implementation, which
relies on the capability of the compiler to detect “good” candidate loops for caching, i.e.
loops whose instructions can be stored in the L-Cache. Innermost loops with a number of
instructions that can fit in the L-Cache are our main target. It is therefore a compiler-driven,
or static method, which determines which instructions will be cached during compile-time.

The compiler inserts a special instruction in the header of such a loop to instruct the
hardware to store the instructions of the loop in the L-Cache during the first loop iteration.
In the previous example, the compiler inserts this additional instruction before the fourth
instruction (the lw instruction) which instructs the processor to store the next five instruc
tions (the inner loop) in the L-Cache. The compiler detects the most promising candidate
loops during the code generation phase using static analysis or profiling techniques from

8

previous runs. The second time that the loop is executed the instructions are fetched from
the L-Cache and not from the I-Cache. No performance or power penalty is paid except
for the execution of this additional instruction. In the general case, however, the gains are
significant, especially in CPU-intensive applications where most of the execution time is
spent in loops.

The above scheme assumes that the execution of an iteration of the loop is always
sequential without any branches, i.e. the control flow graph (CFG) of the loop is a single
node. In the general case, however, one can have a loop like the one in Figure 3. There might
be branches in the loop and therefore the first iteration of the loop might not pass through
all the instructions and store them in the cache. Even worse, today’s high performance
compilers use techniques like loop-unrolling extensively which increases the size of a loop
and creates additional basic blocks within it. Loop-unrolling makes the allocation of a
whole loop body into the L-Cache more difficult. In addition to that, many basic blocks of
the loop are not executed frequently, and therefore their caching in the L-Cache would be
inefficient.

Figure 3: CFG of a loop

9

Prompted by this observation we modify slightly our initial scheme: we now insert this
special instruction on a per basic block basis, rather than on a per loop. This greatly
simplifies the allocation and de-allocation of the L-Cache to basic blocks and makes the
bookkeeping for the allocation of more than one basic blocks in the L-Cache easier. Ideally,
the compiler detects the most frequently executed basic blocks within a loop and will inserts
the additional instruction “alloc bb.addr, n” at the beginning of the loop. The bb.addr
operand refers to the address of the first instruction of the basic block to be cached, and n
to the number of instructions in this basic block. With this scheme, all the special allocation
instructions for basic blocks located in a loop will be placed at the header of the loopa, and
will thus execute only only once per loop.

More than one basic blocks-can reside in the L-Cache at any time. The space needed
for their storage is allocated when the thread of control passes from the alloc instruction
at the header of the loop. The compiler does not allocate a basic block if the L-Cache does
not have enough entries to accommodate it. The de-allocation of all the basic blocks that
currently reside in the L-Cache is done explicitly using the instruction “dealloc” at the end
of the outermost loop that contains all the blocks currently in L-Cache.

This method of static allocation of basic blocks has some disadvantages stemming from
the fact that the decisions are taken at compile and not at execution time. It is very difficult
for the compiler to make the optimal allocation of basic blocks given a fixed L-Cache size.
This problem is NP-complete (similar to the 0-1 knapsack problem) even if the compiler
knew a-priori the execution profile of the program. In a pathological scenario the L-Cache
would fill up with rarely executed basic blocks and it would be used scarcely. However, this
whole scheme serves the purpose of power reduction. In other words, it should be simple and
clean and should avoid excessive switching. A sub-optimal solution with respect to L-Cache
hit rate can still result into a near-optimal solution with respect to power minimization.
A more intricate caching scheme with dynamic allocation and de-allocation, might have
resulted in a power consuming cache which would increase the total activity. The extra

10

activity caused by the dynamic scheme, combined with the more complex hardware support
would most likely deteriorate rather than improve the method with respect to power.

In addition to this compiler enhancement, our scheme needs extra hardware for the
implementation of the L-Cache scheme. The L-Cache itself should satisfy the following
criteria:

• It should have a small number of entries (compared to the other on-chip caches). Since
the L-Cache will only store frequently executed basic blocks which have a small number
of instructions, it is not necessary to be large. Moreover, large caches dissipate more
power since their access requires the switching of longer and more capacitive wires.
A realistic size of the L-Cache is determined experimentally in the next sections for a
specific target platform.

• It is preferable to use a cache organization that does not create much redundant com
putation for accessing a cache line. For example, in a fully associative organization, a
large number of concurrent comparisons of tags take place, although only the result
from one line is used. This concurrency is done for faster cache access but it consumes
more power. From this perspective, a set associative organization or a direct mapped
organization is preferable.

Note that the organization and the management of the L-Cache is much simpler than
the organization of the I and D-Caches. There is no need for block replacement since the
locality of the instructions of the loop will ensure that they will not be mapped into the
same block. In this case, a direct mapped cache organization suffices. If we allow the
caching of basic blocks across different subroutines, then a conflict may arise, and a set
associative cache should be used instead. Under all scenarios, the following is always true:
once an instruction is placed into the L-Cache, it cannot be removed until explicitly de
allocated using the “dealloc” instruction. Also, no optimization techniques like instruction
prefetching are useful since they will not have any effect on power dissipation.

11

These design criteria are selected because cache line replacement would likely stress
the clock cycles and increase the critical path delay: if line replacement were allowed, the
processor would have to search the L-Cache first, and then decide where to take the next
instruction from. In case of an L-Cache miss, the instruction would be fetched from the
I-Cache. In that case, the search would have to be done sequentially (that is, first check the
L-Cache and then the I-Cache) in order to have any power savings if the L-Cache access
were a hit. This double access would deteriorate the performance, especially in today’s high
clock rate processors. Using our scheme, we can save the searching of the L-Cache as we
will describe shortly.

Along with the L-Cache, we need a buffer to hold information about the basic blocks
currently stored in the L-Cache. There is an entry for each basic block in the L-Cache.
Each such entry contains the range of the addresses of the instructions of the basic block
that corresponds to this entry. In other words, the address of the first and the of the last
instruction.

4.1 D eterm in in g n ext instruction supplier

During program execution, the flow of control will reach the instruction alloc bb.addr, n just
before a loop which contains a basic block marked for caching is entered. The execution of
this instruction will cause the processor to allocate n entries in the L-Cache, as well as one
entry in the buffer that will correspond to this block. At that point, the range of addresses
of the basic block are stored in the buffer. If the basic block is located in an inner loop,
the special instruction is inserted at the header of the outermost loop that encompasses the
basic block.

The processor checks if a basic block has an entry in the buffer when it starts executing
this block. If not, then it fetches its instructions from the I-Cache as usual. When the
flow of control reaches for the first time a basic block which has an entry in the buffer, the
instructions are fetched from the I-Cache to the execution pipeline, and after decoding are

12

also stored to the L-C'ache. The processor determines the first execution of a basic block in
a loop using an extra bit in the buffer of this block. This is set when the alloc instruction
is executed, and reset the first time that the basic block is entered.

In subsequent executions of the basic block, the bit is already reset, and the processor
sets a flag to denote that the source of the instructions is now the L-Cache rather than
the I-Cache. The flag will remain set as long as the processor executes in the specific
basic block. It is reset when the Program Counter(PC), which is controlled by the branch
prediction logic, starts fetching instructions outside the basic block. As long as the flag is
set, the processor will ignore the I-Cache and will search the L-Cache. The instructions of
this basic block are guaranteed to be in the L-Cache in their decoded form. Therefore, the
I-Cache can be disabled for the duration of the basic block, resulting in large power savings.
When the thread reaches the “dealloc” instruction, the buffer is cleared and the contents of
the L-Cache are invalidated.

In high performance microprocessors the IF unit is more complex and contains buffers to
decouple the fetching of the instruction from the decoding process. The gains will be more
substantial since more units can be disabled during basic block execution. These units are
normally active every cycle and have to drive large capacitances since they read data from
the I-Cache. For example, instruction prefetching can be disabled since all the necessary
instructions are within the CPU core (in the L-Cache).

The implementation we propose using the compiler is an example of how the hardware
and the software can co-operate to reduce unnecessary activity in the CPU. The use of the
compiler can offer a very inexpensive solution to the caching of decoded loop instructions.
More elaborate solutions that offer greater flexibility can be incorporated, but the power
overhead of the extra hardware should not exceed the gains.

13

5 E xperim ental R esu lts
The method described in the previous section was tested on the SPEC95 benchmarks. We
determined whether the bechmark programs are amenable to these modifications and what
is the potential for power savings in them. We compiled, ran and profiled a set of benchmark
programs using the MIPS compiler in a R4000 microprocessor. The next figures show the
reduction in the number of instruction fetch/decode operations for each of the programs
tested.

The left four bars denote the percentage of instructions in the dynamic mix that are
cached during program execution. Each bar corresponds to a different cache size scenario.
Infinite caches, and caches with 32, 128, and 1024 entries have been tested. All experiments
assume a direct-map cache organization. The cache line size is 4 bytes, and it can store a
MIPS instruction. The right four bars denote the percentage of the clock cycles for which
the processor fetches the decoded form of instructions from the L-Cache and thus disable
the I-Cache. The experiment also assumes that the compiler will statically determine the
best basic blocks to be cached. This is an assumption which might be violated in practice.

For example, 94.83% of the executed instructions in tomcatv can be placed in the L-
Cache if the L-Cache has 1024 entries or is infinite. This corresponds to the 92.67% of the
execution time of this benchmark. The cache with 1024 entries corresponds to a 4K cache,
which is very large for our purposes. Results for infinite caches are used as a theoretical
upper bound and show the ability of the benchmark under consideration to be cached during
execution.

From the results, it turns out that a cache with 1024 entries has the same characteristics
as an infinite size cache. Smaller L-Caches have capacity conflicts and do not perform as
well. A cache with 128 or 256 entries seems to be a satisfactory trade-off between power
savings and area.

As expected, the floating point benchmarks have different behavior than the integer

14

benchmarks. Since they are more CPU-intensive, and spend most of their execution time
in loops, they are better apted to our scheme. The integer benchmarks, on the other hand,
are less sensitive to the cache size since the size of the basic blocks is smaller, and the
capacity conflicts are fewer. It is worth noting that the loop-unrolling optimization that is
performed by the compilers in machines that use static scheduling, is detrimental in schemes
with small L-Cache sizes. Machines that use dynamic scheduling to eliminate pipeline stalls
will probably need smaller L-Caches to achieve a satisfactory performance.

6 C onclusions
This paper presented a design paradigm for hardware/compiler co-design that targets ac
tivity minimization in a processor. These techniques are orthogonal to the standard circuit
or gate level techniques that are traditionally used by designers to reduce power and can
therefore be used to further reduce power consumption without impairing performance.
This paradigm describes a more judicious use of the IF unit of a processor when the flow
of control is caught within a loop.

The gains from this modifications can be very important for machines with a very high
power consumption in the IF unit. The savings are dependent on the structure of the
program, and can be maximized for scientific computations with regular loop patterns.

%
ins

tru
cti

on
s/c

loc
k c

yc
les

 sa
ved

%

ins
tru

cti
on

s/%
 cl

ock
 cy

cle
s s

ave
d

swim

su2cor

16

17

R eferences
[1] F. Najm, “A Survey of Power Estimation Techniques in VLSI circuits”, IEEE Transac

tions on VLSI Systems, voi.2, pp. 446-455, Dec. 1994.

[2] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step
towards software power minimization,” IEEE Transations on VLSI Systems, voi. 2,
pp. 437-445, Dec. 1994.

[3] V. Tiwari and T. Lee, “Power analysis of a 32-bit embedded microcontroller,” in Asia
and South Pacific Design Automation Conference, (Chiba, Japan), Apr. 1995.

[4] T. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis and low-power scheduling
techniques for embedded dsp software,” in International Symposium on System Synthe
sis, (Cannes, France), Sept. 1995.

[5] V. Tiwari, S. Malik, A. Wolfe, and T. Lee, “Instruction level power analysis and opti
mization of software,” Journal of VLSI Signal Processing, 1996.

[6] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low energy: An
overview,” in Proceedings of the IEEE Symposium on Low Power Electronics, (San
Diego, CA), Oct. 1994.

[7] J. Chang and M. Pedram, “Register allocation and binding for low power,” in Design
Automation Conference, pp. 29-35, IEEE/ACM, 1995.

[8] C. L. Su, C. Y. Tsui, and A. Despain, “Low power architecture design and compila
tion techniques for high performance processors,” in IEEE COMPCON, pp. 489-498,
IEEE/ACM, 1994.

19

