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Abstract

A passive damping method for aligning the instantaneous 

spin, symmetry and angular momentum axes of a solid, axially 

symmetric almost spherical satellite gyro is analyzed. Damping is 

accomplished by the dissipation of energy due to cyclic strains in 

the gyro body caused by its torque-free precession. Damping time is 

calculated for a particular gyro design.



PASSIVE DAMPING OF THE GENERAL 
RELATIVITY SATELLITE GYRO

1. Damping Mechanics of Precessing Body

The demands on a gyro spin axis readout system based on a 

preferred moment of inertia axis are simplified if the gyro symmetry 

axis angular momentum vector h and instantaneous spin axis <£ are 

colinear. In general, when a spinning gyro is suddenly released in 

free fall, these three axes will not be colinear as shown in Fig. 1, 

resulting in a torque-free motion of the gyro about its angular 

momentum vector.'*' Even if these axes were colinear, an environmental 

disturbance such as a micrometeorite collision could cause cratering,

thereby shifting the symmetry axis with respect to the angular
2momentum axis, resulting in a torque-free motion. For an axially 

symmetric gyro this motion is a steady precession of its instantaneous 

spin axis ^ and symmetry axis about its angular momentum axis h, 

as shown in Fig. 2 from the point of view of an observer fixed in 

inertial space. In this figure the outer cone (body cone), whose 

axis is y3g, rolls without slipping on the inner cone (space cone), 

whose axis is h, and the line of intersection is the instantaneous 

spin axis u>_. This precession of the symmetry axis about h compli­

cates the readout problem; consequently, a damping mechanism which 

aligns the three axes within a reasonable time is required. This 

report analyzes a passive damping scheme in which energy is dissipated

by virtue of cyclic strains in the gyro body caused by its torque- 
3free precession. The gyro will be considered an axially symmetric
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solid, spherical in shape except for two diametrically opposite flats, 

which give a preferred moment-of-inertia C (polar). The moment of 

inertia about the perpendicular axis is A. The case for a thin,
/i /» qspherical shell has been analyzed. ’

The analysis of the combined effects of gravity gradient,

centrifugal distortion and the statistics of micrometeorite cratering

leads to an optimum gyro diameter of about one foot.5 For a gyro of
£

this diameter the analysis of micrometeorite cratering gives a 

relationship between the number of hits per year, each of which 

could cause an angular disturbance of 0.6 arc sec per year, versus 

(C-A)/C. For one hit per year the ratio (C-A)/C .01. Assuming a

Poisson distribution for the meteorite flux, this gives a probability 

of 0.92 for having one month of undisturbed data. It is important, 

then, that the damping time be quite smaller than one month in order

to separate the effects of such cratering from the spin axis orienta-
«

tion data.

The quantities h, and in Fig. 1 are coplaner, and the 

angles 9 and & are related by"*-

tan 9 = ^ tan & (1-1)

so that if A = C, then h and w become colinear and loses its signi­

ficance. For (C-A)/C = .01 the angle £ between h and w will be small 

and is given approximately as £ «  [(C-A)/C] tan Oi. For example, if 

= 0.4 degrees, € ̂  14 arc sec. During initial gyro spinup attempts will
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be made to keep Qt as small as possible, but there will be some

misalignment error. The maximum allowable error is determined by

the tolerance within which the satellite spin axis must lie in its

orbital plane, which is of the order of 0.4 degrees for the present 
5gyro parameters. This means that must be known with respect to

the gyro body to better than 0.4 degrees.

For axially symmetric bodies the rate Y at which and oo

precess about _h for the case of free precession (zero torque) is 
. 1given by

; = _c____
A-C cosG ( 1- 2 )

where 0 is the angle between (jd̂  and h. The quantity 0, (later 

referred to as the elastic vibrating frequency) is the angular rate 

at which the cu vector moves about the body as viewed by an observer 

stationed on the body. Therefore, if the spinning body is centri- 

fugally distorted, an observer stationed along will see the body 

undergo periodic deformation at a fundamental rate 0 corresponding 

to the rotation rate of the U) vector about the observer. This is 

shown rigorously in Section 3. Equation (1-2) can be rewritten with 

the aid of Fig. 3, which shows the geometrical relation of the involved 

quantities. Since o)q = Y + 0/cos0 eliminating Y gives

0 = A-C
A U) COS0o (1-3)

where cu is the initial gyro satellite angular velocity.
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The periodic deformation of an anelastic body gives rise to

a rate of energy dissipation which, among other things, depends upon

the fraction of the elastic energy which is dissipated in each
3deformation or strain cycle. This fraction, y, is called the 

hysteretic damping factor, and is a measure of the internal friction 

of the anelastic body. Metallurgists who measure internal friction 

usually state results in terms of logarithmic decrement D, quality 

factor Q, or angle 6 by which strain lags stress.7 The logarithmic 

decrement is the logarithm to the base e of two successive amplitudes 

of a freely oscillating body. The various factors which measure 

internal friction are related as follows, for Q > 10:

Q 2tt

Y
nD tañó . (1-4)

The effect of internal energy dissipation is to decrease 

the angle 9 between the symmetry axis u)̂  and which is shown as 

follows. The kinetic energy T of the axially symmetric body in 
Fig. 1 can be written as

2 2 1 9T = 2  A(cdxZ + u>2 ) + j  CW f . (1-5)

Also,
A A Ah = iAo)̂  + jAu)2 + kCoû

2 2 2 2 2 9h'h = h = A (u^ + tu2 ) + C U) ( 1- 6)
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Multiply Eq. (1-5) by 2A and subtract from Eq. (1-6) to get
2AT = C(C-A)u) .

Since - Cu^ cosG - hcosG, solving for T givei

T = -rr2A L
, , C-A) 2 ‘1 - f — ) cos G

For a finite dissipation, with constant h, the time rate of 
change of kinetic energy is

m  __ h
A

C-A cosG sinG G . (1-7)

For the case C > A, and for a negative value of T (energy 
dissipation), dG/dt is negative; therefore, G decreases.

It is shown later that the total gyro elastic strain energy 

can be classified into two parts. The first part is independent of 

0 and is represented as a dc or constant term. Strictly speaking, 

it is dependent upon G and G and hence slowly changing with time, but 

this change is negligible compared with the second part. The second 

part of the elastic strain energy varies with time at a rate 0, and 

all higher harmonics of 0 up to the fourth. It is this time varying 

part which is responsible for the hysteretic damping of precession.

If we call W that portion of the gyro elastic strain energy per cycle 

of stress (whose fundamental frequency is 0), then the fraction of 

this energy which is dissipated per cycle of stress is YW and the 

rate of dissipation is yW0/2n. This must be equal to the rate of
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decrease in kinetic energy T as given by Eq. (1-7). We then have

‘ W 0  '
W = 2tt = ' T •

Substituting 0 from Eq. (1-3), letting h = CU)q and solving 

for 0j one obtains

e vw
2tt Cud sin0 o

( 1- 8 )

Sections 2 and 3 describe the method of determining W for 

a solid, spherical body with preferred moment-of-inertia axis C, such 

that C/A «  1.01. There it will be shown that W is a function of gyro 

radius a, gyro material, spin speed and angle 0 as in the following 

equation for small values of 0.

W
, 2d2 4 7q24tt P 0) a 0 o_____

E (1-9)

where T is a dimensionless quantity which is a function of gyro 

geometry and material. Substituting this into Eq. (1-8), with sin0 6 

and C ^  (2/5)Ma2 = (8/15)na5p gives

9 = 7 -  yP(JD 3 a2 T0 4E Y o
( 1- 10)

The solution of (1-10) for the damping time t for an initial 

angle 0^ and a final angle 0^ is

„ 4E_____ _ _ L ( I t
s 15 T L 1 ( 1- 11)
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It remains to determine I\ which is obtained from the strain 

energy W for a rotating solid sphere in torque-free precession.

2. Inertia Force Field

Consider a solid sphere rotating about an instantaneous 

axis u> as in Fig. 3. The instantaneous axis of rotation j  is 

misaligned with the angular momentum vector h due to some disturbance 

which has also shifted the symmetry axis ^  from the momentum axis h 

by a small angle 6 according to Eq. (1-1). if 0 is assumed to be 

small m  comparison with the spin velocity 0 and the precession Y, 
then the angular velocity uj can be written as

^ = iY sin6cos0 + jY sin9sin0 + k(0+Y cosG) (2-1)

where 0, Y, 0 are Euler angles defining the orientation of the body 

axes x,y,z with respect to the space axes X,Y,Z as shown in Fig. 4
A A A

and i, j, k are unit vectors along the axes x, y, z respectively.
The angular acceleration u) is

duj
® = ^  +  «2 X jw .

Assuming that 0, 0 and Y are constant,

U) = 0Y sinG (- £ sin0 + j cos0)

Substituting (2-1) and (2-2) into the equation for linear
acceleration
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3 = i !0 + 3 ' +  UJ X ((¿¿xr ) +  ¿xr + 2a)X v ' (2 -3 )

1 3and noting the following approximations ’

a,Q = a_' = v/ = 0 (2 -4 )

2?r / 2 2 2“ = ® + 7Y sin Qsin 0M i
c\2 . 2sin 9sin0cos0

+ jsin0cos6cos0 + zfl - ^ sin9cos9cos0

2^r C2 2 / 2 c2 2 2 \+ sin 0sin0cos0 - y|cos 9 + —j  sin 0cos 0j
(2 -5 )

c / c \ c+ z — sin9cos9sin0 + zil - ~ j— sin9cos9sin0

2* c . c or 2+ x ~ sin9cos9cos0 + y — sin0cos9sin0 - z —^ sin 9
A

- x (i ■ f j f  sin9cos9cos0 + y ML “ ^ sin0cos9sin0

Under the assumption that 0 is negligible compared with 0 

and Y, the only time-varying quantity in (2-5) is 0 = ¿t and the 

inertia force varies harmonically at a rate 0 and 20 as can be seen 
from the above equation.

If it is assumed that the body can be approximated by a
r«

homogeneous sphere so that the ratio ^ is equal to unity, then the 

above acceleration becomes
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C" 2i 2 2 2 2— = -̂CU0Ĵ "X (C0S ® + sin 9sin 0) + y sin 9sin0cos0 + z sin9cos9cos0

- 2 . 2q .+ juT|_x sin"9sin0cos0 - y(cos29 + sin29cos20)+ z sin9cos9sin0

^ 2\ o
+ ku) I x sin9cos9cos0+y sin.9cos9sin0 - z sin 9

( 2 - 6)

The problem is now reduced to finding the displacement field in a 

sphere subjected to an inertia force F = -p a .

A general method of solution for a sphere subjected to body
g

force was given by Chree who, as an example, has worked out the 

displacement field of a sphere rotating about a diametric axis. In 

that case the problem becomes axisymmetric but such a symmetry is 

lost when the body force field is that due to acceleration (2-6) 

which takes into account the influence of precession of the spin 

axis. In the following, a brief account of Chree's method and its 

application to the present non-axisymmetric case will be given.

_2. Displacement Field in a Sphere Subjected to Inertia Force

Chree's method mentioned above is essentially based on the 

existence of a body force potential which is expanded in spherical 

harmonics. Consider Navier's equation of equilibrium

p(X+ii)VV-u + pV u + pF = 0

where X and p, are Lame's constants, u is the displacement and F is 

the inertia force per unit mass due to the acceleration a(= - F/p)
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expressed by (2-6). Thls may be written in indiclal
tion as

ft+ti)A’i + “ui,kk + Pfi ■ 0 (3-1)

A ~ V-u is the dil _ dPatation, P, = -2£_ 9 Q rri dx. ’ 1 ~ 1j2 j3 fo any function P
and the triad x,y,z becomes x1,x2 ,x3 . If f . and u. are derivabl<
from potentials V^an order spherical harmonic) 
such that

and $, respectively,

F. = V . 1 n,i
u = $ i ’i

(3-2)

then (3-1) become?

(A.+|i)$ + pV_ = 0 (3-3)

Because of the identity

^ ^ n ^ ’kk = m m̂ + 2n + l)rm"2 V (3-4)

where m and n are positive integers Ea ( 7, •e§ers, Eq. (3-4) 1S satisfied by

§ ----------- -E- r2
2 (X+2|i) (2n+3) n ‘ (3-5)

(3-6)
The displacement 

and (3-3),
field corresponding to this $ is, from

u.l • P
2 (X+2|i) (2n+3)

(r
V  )  5 .n ’i

(3-6)
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which is accompanied by a surface traction

T. =l
OU

r (X+2|i) 2n+3 r2vn,i + + ^ (3-7)

across any spherical surface r = constant. If a body is bounded by 

the surface r - a „here the surface traction is Zero, the d i s p l a c e s

"  13 deter“ined *  to (3-6) the displacements corresponding
to to- and f-type solutions.9 This yields surface tractions

rT.
~n = (2n+cv )r̂ ou . + M* n n, i

T  " 1(n+3) ? + (n+2)) Xi“n

(3-8)
Oi = -2 — n -̂ + (3n+l)[i, 
n (n+ 3)X + (n+5)|i

and

rT.
“ T = 2 ( n - 1 ) $  .M- n , i (3-9)

respectively, where, in thi: case, ton and §n are to be taken as

'  PB1 

■ PV n
(3-10)
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For the case T\ - 0 on r = a, these constants and B2 
are given by

ĵ (2n+3)A. + (2n+2)|ij' ĵ (n+3)\ + (n+5)(jbj\
2 (2n+3) (A.+2|i)|j, j{̂ (2n +4n+3)A. + 2(n2+n+l'>M-j

B2 "
n|(n+2)A. + (n+l)|ij- a2 

2(n — 1) )j l  ĵ (2n +4n+3)A. + 2(n2+n+l)|j,j-

(3-11)

where n is the order of the spherical harmonic, V .n
It can be shown easily that the inertia force field due to 

(2-6) is derivable from the potential

V = r2V + V, (3-12)

where Vq and V2 are spherical harmonics of zeroth and second order 
given by

200
Vo = - f  and

u, 2
v2 = -g- (3cos 9 + 3sin20sin20 - 2)x2

U)q2
+ ~g“ (3cos 9 + 3sin 9cos20 - 2)y2

% 2 ' 2 2 H— ~  (3sin 0 - 2)z +

(3-13a)

2 2- ooo sin 9sin0cos0 xy
2- ooq sin9cos0sin0 yz
2- ooq sin9cos9cos0 xz . (3-13b)
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It is interesting to note that the potential given by 

(3-12) and (3-13) reduces, as it should, to that of a spinning sphere
g

given by Chree when the misalignment 9 is set to zero.

By substituting (3-12) into (3-6) and superposing the 

displacements due to ud̂ - and i^-type potentials given by (3-10) and 

(3-11) to ensure the satisfaction of the boundary condition on r = a, 

after considerable amount of algebra, one obtains the following 

expressions for the components of the displacement.

ui =

2 2p cd a (5X+6|i) 
15 (A.-h2jjL) (3X+2|i)

2B
2 2 2 2 2 2 2 a) + B„cd cos 9 + B0uo sin 9 sin 02 o 2<jj

o

2 2B2 (Do sin 9 sin0 cos0 y - B0od . 2 o sin9 cos9 cos0

+ 2 1 B1M 1 2 
’ 3 B1 + L + ~  i ^o

+ { Bx - j  L - y  m| odo2 c o s29

, i R 1 , B1 2 . 2ft -2+ | B^ - y L - —  MJ“ (jd s m  9 sin 0 x

+ [' B1 + T4 LJ
2 2 3(JD sin 9 sin0 cos0 y

t X ] 2 3- B^ + —  l J (jd sin9 cos9 cos0 z

+ + 77 L + B.M 14 1 J
2 2(D̂  sin 9 sin0 cos0 2

X y
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+

+

+

1 + Î4 L + Bi

!  Bi + è L +

1 T B l M " 7 L " ~2~ M

M 2
(JO  sinQ c o s ©  C O S 0 

o

2X z

+

+

sin ö 2COS 0 2y X

1 1 2  2 2 B, + —  L 0) sin 0 cos© cos0 y z 1 14 J o

2 2 2 ou + B co cos 0 o l o
®1 2 2 

- —  M (jo sin 0 z o

+ 1 1 2  2 2 
—  Lr (JO  sin 0 sin 0 14 J o

2z X

sin 0 sin0 cos0 2z y

+ L + Bx M (jo sin© cos© sin0 o xyz (3-14a)

2 2= "^2 ^ 0  s -̂n ® sin0 cos0 X

+ + P a2 (5\+6u)_ \ 2
15(X+2y,)(3X+2y,)J o V o 2fl cos 0
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2 2 2 + B0(Jü sin 9 cos 0 2 o ^
2y - ^2 ^ 0  cos© sin0 z

+ [- Bi + à  L~
2 2 3U) sin 9 sin0 cos0 x

{' 3 B1 + 35 L + 31 M} “o2 + {B1 ' 7 L - 21 M} “o2

g
+ {B1 " 7 L " 2^ M} œ02 Sin20 COs2^ y3 + ["Bl + U  L] X

2 3 Judq sin9 COS0 sin0 z

+ {- 3 B1 + è L + 11 M) % 2 + {B1 - 7 L - r  M) “o2 cos2e

1 T 2 . 2q-  TT L a) sin 9 14 o

. Í« 1 M i 2 . 2 ö . 2+ - —  Mj cô  sin 9 sin 0 2x y

+ h + 1414 LJ
2 2 U) sin9 COS0 sin0 x z

+ ['Bi + u  L + Bi M_
2 2u) sin 9 sin0 cos0

+ ['Bl + U  L + B! M. cjü̂ sin9 COS0 sin0

+ ['Bl + 14 L"
2 2 2 a>o sin 9 sin0 cos0 z x

2y x

2y z
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+ 2 3 B1
3 B1 " 70 L + ~

2 2 2 
cw +  B..(Jü cos 0 o lo

+ ~ 0)q sin“0 cos^02 . 2. 22 y

+ B l + bi M U)q sin0 cos© COS0 xyz
«

(3-14b)

U3 ” ' B2 o sln6 cos0 cos0 x ' B2m02 si"9 cos8 sin0 y

+
B 9
- 1  +  P a (5X+6u,  ̂ 1 2 2 2
3 15(X+2u,)(3X+2n)J “o '  V o  cos 9

sin0 cos© COS0 x 3 + X

20)o sin0 cos© sin0 3y

+ f 12 , , B1 1 2 1' i 'i
1" 15 L + f  M; “o + \- 7 L - Bi Mj

+ •' B1 + Î4 LJ
2 ot«o sin© cos© sin0 x y

+ { 31 • ™ L + 31 M} œo2 - K + r Mj wo2 cos20

(u . z~ . z sin 0 sin 0 2
x  z
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+ sin9 COS0 COS0 2y x

+ 2 2 go cos 9 o

2 2 2
(JO  sin 9 cos 0 o ^

2y z

+ L + B M (JO  sin9 cos9 cos0 o ^
2Z X

+ l -b i + u L + Bi Mj (joq sin9 cos9 sin0 2z y

+ L + B. M (JÔ sin9 sin0 cos0 xyz (3-14c)

where
X + 2\i

4X + 14m. 
5X + 7(i (3-15)

Terms in these components of displacement can be classified 

into three categories, the first group being the steady part which 

does not depend on 0 at all, the second those which vary with time at 

a rate 0, and lastly those which pulsate at a rate 20. The last two 

categories which vary with time are responsible for the hysteretic 

damping of precession.
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4. Elastic Strain Energy of Solid Sphere

The time varying part of the elastic strain energy can be 

computed by first taking one half the dot product of the force field 

- Pa ,  where a is given by (2-6), and the displacement field u, given 

by (3-15), to give the strain energy density W* such that

W  = -k-Pa.)u. (4-1)2 l l

and then dropping all the steady terms which are independent of 0. 

The amount of alternating strain energy W per cycle of precession is

2tt

W IIo fì W  dQ d0 (4-2)

where Q is the volume of the sphere. By substituting (2-6) and

(3-14) into (4-1) and (4-2), and dropping terms of the order of
4 2sin 9 in comparison with those proportional to sin 9, it is not hard,

although tedius, to obtain

TT . 2 2 4 7q2W = 4tt p ( ju  a 9 
r o { 5a

_ , 20 
2 63 B1

9
980 L - I (4-3)

as the fundamental component of the alternating part of elastic strain 

energy per unit cycle of precession. Designating the quantity within 

brackets as T', one has

r*
20B1
63

19
630 B M (4-4)
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Equation (4-4) may be simplified by first substituting

* “ int° the exPressi-°ns for L and M of (3-15) and B and B of
(3-11), to get 2

L = H+v)(l-2v)
E(l-v)

and
M = IIZ+IOVI 

7-4v

B = -(3fv)(7-4v)n+v-l 
1 7E(l-v)(7+5v)

B = (3+2v)(l+Via2 
2 E(7+5v)

for n = 2.

to get
These values of L, M, and B2 are substituted into (4-4)

r* 1 f 3+2v 
E 1 5(7+5v)

9(l-2vl 
980(l-v)

(3+v)(7-4vl 
(l-v)(7+5v) 19(7-1 Ov") 

2205(7-4v)

= L (4-5)
E

which is now only in terms of Poisson's 

Equation (4-3) may be rewritten as
ratio v and Young's modulus E.

w = 4TT2p2«> V e 2 I 
O E

where T is a function of v only. This value of T, substituted in 

(1-11) determines the damping time t for a given gyro.
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5. Numerical Calculations
The expression, for damping time (1-11) may be rewritten in

the form

t _4_ E______
15 2 2n vu) r (pa) a )1 o o

(5-1)

From elasticity theory, the maximum stress at the center of a solid, 

spinning sphere is approximately given by®

CTmax
2 2poo a o

/ 3 + 2v\
v  + 5V/

(5-2)

2 2where v is Poisson's ratio. Hence, the term pU)Q a in the denominator 

of (5-1) is proportional to the maximum allowable stress for the 

selected gyro material. Since the optimization study referred to in 

Section 1 fixes the value of a to be approximately six inches, for 

a given material follows from equation (5-2), giving due allowance 

for a safety factor.
Volume electrical resistivity requirements severely restrict 

the choice of materials to those between the good conductors 

(p > 10J ohm cm) and good insulators (p < 10 ohm cm). The materials 

germanium, silicon and titanium dioxide, when properly doped, and 

certain glasses are among those which appear to satisfy the electrical 

resistivity requirements. At present, the hysteretic damping factor 

y has been obtained only for certain glasses. Among other things,
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l/Q is a function of the elastic vibrating frequency 0 given by 

equation (1-3). Present gyro parameters indicate a vibration fre­

quency of about 1 to 3 cps. Fortunately, glass has a maximum value 

for 1/Q(= Y/2TT) Of about 4 X 10"3 in this range of frequencies7,11’12 
at room temperature. This makes it a promising high damping factor 
material.

In order to determine experimentally the approximate value 

°f °max’ thin §lass disks were spun to the bursting point in a motor- 
driven test fixture. For such disks, the maximum stress is also at 
the center and is, to good approximation

amax
2 2 pa) a 3 + v (5-3)

For glass, v 0.16 so that the bracketed factors in (5-2)

and (5-3) become 0.425 and 0.395 for the sphere and disk, respectively.

Hence, the maximum stresses are nearly the same for identical

materials, diameters, and spin speed, therefore justifying the use of

disks for this test. These tests indicated an upper value of uo ofo
about 630 rad/sec for plate glass, with an adequate safety factor.

For C/A = 1.01 and 9 of the order of half degree, the elastic 

vibrating frequency 0 is about one cps, as seen from equation (1-3).

Using glass as the gyro material, the following parameters 
have been determined:
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v = f  =-025

p = 2.5 X 10^ kgm/m^

au = 630 rad/sec o

a =7.5 cm = . 0 7 5 m

= 0.1 arc sec

9^ = 0.5 degree

„  ̂ _ 10 . 2 E = 7 X 10 newtons/m

v = 0.16

The value of T from equation (4-5) becomes T = -0.071. 

Substituting this and the above values into equation (1-11), the 

damping time t becomes 8.2 hrs, a reasonable time.

6. Conclusion

Using glass as a possible gyro material, the passive 

damping method for aligning the gyro instantaneous spin axis, angular 

momentum axis and symmetry axis has been shown to be feasible, 

requiring about 8% hours to damp from 9 =0.5 degree to 9 = 0.1 arc sec. 

The damping time constant T = 0.83 hours. This value of damping time 

is probably required only during the initial gyro spin up. The 

statistics of micrometeorite collisions with this gyro show that
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there will be a probability of 0.92 for no collisions within the 

period of one month which could cause an angular disturbance of 0.6 

arc sec per year. The effect of such a collision, however, would 

require only (0.83) (1.8) = 1.5 hours, a reasonable time.
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General Relationship of Angular Momentum, Symmetry 
and Instantaneous Spin Axes of Axially Symmetric Gyro.



Body and Space Cones of Axially Symmetric 
Gyro in Torque-Free Precession.
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Angular Velocity Relationships of Axially-Symmetric 
Gyro in Torque-Free Precession.
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Figure 4.

Satellite Gyro Coordinates 
with Respect to an Inertial Frame.
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