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STEPS INTO COMPUTATIONAL GEOMETRY
tF. P. Preparata , Editor 

Foreword

This report is a collection of results in computational geometry 

which have been recently obtained by the Applied Computation Theory Group 

at the Coordinated Science Laboratory, University of Illinois at Urbana.

The format of this report is not uncommon in this branch of 

computational complexity; notable examples are "Problems in Computational 

Geometry" by M. I. Shamos [l], and "Excursions into Geometry" by Dobkin, 

Lipton, and Reiss [2] . One of the advantages of this anthological approach 

is that a large number of results can be timely disclosed; some of these 

results are minor and yet may embody techniques which could prove very useful 

in this rapidly expanding area of research.

In this first "Notebook", results are presented on the problems of 

the minimum spanning circle and of the closest boundary point (medial axis) 

of a convex polygon, and the analogy between these problems and its common 

relation to sorting by selection are illustrated. In addition, a merge-type 

algorithm is illustrated for computing the medial axis of a convex polygon 

and its analogy to the Voronoi diagram problem is pointed out. It is also 

shown how the order-k Voronoi diagram construction can be profitably used to 

speed-up the solution of the "smallest bomb" problem discussed in [l].

This work was supported in part by the National Science Foundation under 
Grant MCS76-17321 and by the Joint Services Electronics Program (U.S. Army, 
U.S. Navy and U.S. Air Force) under Contract DAAB-07-72-C-0259.

tCoordinated Science Laboratory and Department of Electrical Engineering, 
University of Illinois, Urbana, Illinois.
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It is also shown that the two closest vertices of a convex polygon 

with n vertices can be found in time 0(n) and that k points can be collectively 

located in a planar subdivision faster than they would be one at a time.

Finally, contrary to what had been hoped for sometime ago, we show 

that the construction of the Voronoi diagram on n points in three dimensions 

may require time 0 (n ).
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1. MINIMUM SPANNING CIRCLE (F. P. Preparata)

The minimum spanning circle (MSC) of a set S of n points in the 

plane is the circle of smallest radius containing all of the points.

Algorithms for solving this problem have been proposed by Shamos [1] .

One of these algorithms is based on first finding in time

O(nlogn) the convex hull of S, and then in constructing the MSC of the

resulting convex polygon. The latter operation is carried out by
2eliminating one vertex at a time, for a total running time 0 (n ).

The second algorithm is based on the remark that the center of 

the MSC is a vertex of the farthest-^point Voronoi diagram Vn ^(S). In fact, 

a region (i=l,2,...,m ^ n) of the subdivision induced by Vn ^(S) is 

the locus of the points whose farthest member of S is some P^ € S: therefore, 

a circle with center C € passing through P contains all of the points 

in S. Thus, if the MSC is a 2-point circle, its center lies on an edge 

of 1 (S), else it is a vertex of Vn ^(S) (when three edges of ^(S) 

meet). Based on this idea, Shamos suggests to compute Vn ^(S), which can be 

done in time O(nlogn), and to check the resulting 0(n) Voronoi points; if 

one such point lies inside the triangle formed by its three determiners, 

that point is the center of the MSC, otherwise the diametral circle is minimum.

These two approaches can be combined into a single algorithm, 

which can be thought of as constructing either the MSC of S or ^(S). 

Moreover, the algorithm can be viewed as an application of sorting by 

selection, a technique which appears quite attuned to a number of 

geometric problems.

a .
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Assume, without loss of generality, that S is a convex polygon

P with n ^ 5 vertices. A circle which passes through (at least) three 

vertices of P is called a determined circle of P.  We can now prove:

Lemma. The largest determined circle of P passes through three 

consecutive vertices of P.

Proof: Let 3  be the largest determined circle of P and let v -l>v 2> anc*

v^ be its three determining vertices. The chords (v^v^), (V2V3 )> anc* (v3vi) 

determine three circular segments. Obviously <3 contains all the vertices 

of P.  If all of the remaining n-3 ^ 2 vertices of P lie in the same segment, 

then v^, v^, and v^ are consecutive. Therefore, assume that the remaining 

vertices of P belong to at least two circular segments; clearly one of these 

two segments does not contain the center of 3. We will now show that if a 

circular segment not containing the center contains vertices of P,  then 

there is a determined circle of P larger than 3. Let the chord of

a circular segment A not containing the
v

center c of 3  and let v' € A be a vertex

of P.  Let v be the intersection of 3

and of the prolongation of (v^v1), and 

let c (the center of 3) and c' be the

intersections of the perpendicular

bisector of an<* t*ie perpendicular

bisectors of (v^v) and (v^v1), respectively 

Obviously length (v^c') > length (v^c), 

i.e., the circle passing through v^, v^, 

and v' is a determined circle of P and

is larger than 3. □
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Therefore, we shall start by obtaining the largest determined 

circle 3  of the polygon P. The center of this circle is the intersection 

of the perpendicular bisectors of two adjacent edges of P; this intersection 

is a point of V (̂IP). Unless the triangle which determines 3  contains the 

center of 3, we eliminate the unique vertex which lies opposite to the 

center with respect to the chord formed by the other two vertices. Thus 

we obtain a polygon P* with one less vertex and, by a simple argument due 

to Shamos, it is guaranteed that the largest determined circle of P* 

contains all of the points of P.

The data structure to be used is a tournament tree, each leaf of which
is associated with a vertex of the polygon. In turn, the key associated with

each vertex is the radius of the circle determined by v and by its two

adjacent vertices. The tournament selects the vertex with the largest

associated radius. Thus at each iteration three leaves are deleted and two

new leaves are inserted: specifically, if (v q >v i >•••>vm ) t îe current

vertex sequence and v^ is the winner of the tournament, the leaves associated

with radius ( v ^ . v ^ . v ^ ,  radius (vi+1»vi>vi+1> > and radius ( v ^ v ^ ^ v ^ )

are deleted, while the new leaves radius (v. n,v. , ,v. ) and radiusv i-27 i-I7 l+ly
(v^_^, v^+ ,̂ are inserted. Clearly, each iteration requires O(logn)

operations and the algorithm terminates when there are only three or two 

vertices, for a total work O(nlogn) at most.
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2. MEDIAL AXIS OF A CONVEX POLYGON (F. P. Preparata)

The medial axis M(G) of an arbitrary simple polygon G is the set 

of points internal to G which have more than one closest point on the 

boundary of G.

The medial axis of a convex polygon G is a tree which partitions 

the interior of G into regions. Each region is associated with an edge of 

G and is the locus of the points internal to G whose closest point on the 

boundary of G lies on that edge. For this reason the construction of the 

medial axis has been appropriately called by M. I. Shamos ([1], probl. P0L9) 

the solution of the "closest boundary point" problem.

We shall now show that if G has n vertices, then M(G) is constructible 

in time O(nlogn). The algorithm to be considered is related to "sorting by 

selection."

Let (u,v) be an edge of G and let B(u) be the bisector of the

angle at vertex u. We shall call C(u,v) the intersection of lines B(u) and

B(v), and r(u,v) the distance of C(u,v) from (u,v). Notice that C(u,v) is

the center of the circle tangent to (u,v) and its two adjacent edges.

Assume that n ^ 4 and v1v0v0v/ be four consecutive vertices of G.1 2  3 4
By removal of edge we define the operation of replacing G by the

polygon G' constructed as follows:

(i) find the intersection v^^ of the prolongations of (v^v2) and (V3V4.) »

(ii) replace vertices v^ and v^ by the single vertex Clearly G'

is a convex polygon with one less vertex than G. We now prove the following

lemma:
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Lemma: min(r(v1,v23>, r(v23,v4>) ^ min(r(v1,v2), r(v2,v3>, r(v3,v4>).

Proof: Assume, without loss of generality, that r(v^,v23) ^ r(v23,v4^*

Clearly, C(v2>v3) lies on L(v23) (see figure 1). We now distinguish two 

cases depending upon the location of C(v2,v3). Let r = min(r(v^,v2), r(v2,v3), 

r(v3,v4)) and r' = min(r(v ,v2 ), r(v23,v )).

(1) C(v2,v3) € [v23, C(v1 ,v23)]. 

trivially (figure la);

(2) C(v2 ,v3) belongs to the half 

r = r(Vl,v2) and r ^ ^ )  ^ r(v1>v2 3>

In this case r = r(v2 ,v3> ^ r' = r(v1>v23)>

line [C(v^,v23),°°). In this case 

= r' (figure lb). □

Figure 1 - Illustration of the proof of the lemma.

If we define r(G) as the min r(u,v) over all edges (u,v) in G,

the previous lemma has the obvious consequence:
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Corollary: If G 1 is obtained by edge removal from G, then

r(G) ^ r(G').

The reverse operation of edge removal will be called vertex 

cutting and, obviously, if G' is obtained from G by vertex cutting, then 

r(G) ^ r(G'). We can now prove the following theorem:

Theorem. If r(u,v) = r(G), then C(u,v) belongs to M(G).

Proof: By contradiction. Assume that C(u,v) does not belong to M(G).

Then there is an edge (u',v') which is closer to C(u,v) than (u,v) (see 

figure 2). We now prolong (u,v) and (u',v’) until they meet in a point w. 

Without loss of generality, assume that w is closer to v than to u and is

also closer to v' than u'. Let G^ be 

the polygon obtained by replacing the 

vertex sequence uv^.v'u1 with the 

vertex sequence uwu'. Clearly, by our 

original assumption,

length (C(u,v)A) = r(u,v) > dist (C(u,v),(u',v')) = length (C(u,v)A'), 

whence the bisector of angle uwu' intersects the segment (u,C(u,v)) in a 

point F. Obviously, since length (uF) < length (u,C(u,v)), we conclude 

that r(u,w) in G is less than r(u,v) in G, i.e., r(GQ) <: r(u,w) < r(u,v).

But we may
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think of obtaining G from G through a sequence of polygons G ,G ,...,G = G,
v  vy i. ¿C

where G^ is obtained from G^_^(l ^ i ^ k) by vertex cutting. Thus, by the 

previous results

r(GQ) ^ (G1) ^ ... ^ r(Gk),

i.e., r(u,v) > r(G ) = r(G), violating the theorem hypothesis that 

r(u,v) = r(G). □

On the basis of this theorem we can now outline a recursive 

algorithm for constructing M(G) of G.

Algorithm M(G)

Input; G, sequence of vertices, and T(G), tournament tree of 

r(u,v), for every (u,v) € G.

Output; M(G).

1. Find (u,v) such that r(u,v) is minimum.

2. {G - (u,v), T(G - (u,v))} - REDUCE (T(G),(u,v))

3. M(G) «- COMBINE ((u,v),M(G - (u,v)>).

The initial preparation of T(G) clearly requires time 0(n).

Since T(G) is available, Step 1 requires constant time. Step 2 consists in 

updating both the polygon and its corresponding tournament tree; since the 

latter involves three updates, for each edge removed we have work O(logn). 

Finally, Step 3 consists of the insertion of C(u,v) in the medial axis 

M(G-(u,v)) of G - (u,v). We conclude that the bulk of the work is done in 

Step 2, for a total of O(nlogn) operations.

It is also interesting to note that the same technique is applicable 

to the problems of constructing the nearest and farthest points Voronoi 

diagrams (see Section 1 of this report).
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3. AN ALTERNATE METHOD FOR FINDING THE MEDIAL AXIS OF A CONVEX POLYGON 

(D. T. Lee)

We shall now present an alternate method for finding the medial 

axis M(G) of a convex polygon G using a "divide and conquer" technique 

similar to that used in the construction of the Voronoi diagram of n 

points [l] ,[3] .

Let the convex polygon G be given as a sequence of edges (e^»e2*•..>en)* 

Practically without loss of generality, we assume that n, the number of edges, 

is a power of 2. Divide the sequence of edges into two disjoint subsequences,

L and R, each consisting of n/2 consecutive edges, i.e., L = (e^»e2>•••,en/2^ 

and ^ = (en/2+l * * * * ,en^ * ^et ^G t*ie ^oun< âry °f the convex region formed 

by prolonging the first and last edges of the subsequence (e^>•••>en/2) 

to infinity. R is defined similarly. Let B(i,j) be the bisector of the angle 

formed by the edges (or their prolongations) e^ and e ̂ , where 1 ^ i, j ^ n.

In other words, B(i,j) is the medial axis of the two edges e^ and e ̂ .

Suppose the medial axes M(L ) and M(R ) have been obtained. If M(L ) and 

M(R ) can be merged in linear time to form M(G), then splitting the sequence 

of edges recursively will yield an 0 (n log n) algorithm.

We shall construct a polygonal line S, starting with B(n/2,n/2+l) 

and ending with B(l,n), with the property that any point to the left of S 

(oriented in the direction as we proceed) is closest to some edge in LG
and any point to the right of S is closest to some edge in R . Thus,G
after we have constructed S, the portion of M(L ) that is to the right of SG
and the portion of M(R ) that is to the left of S can be discarded and theG
resultant diagram is obtained.
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Referring to Figure 1, where L = (e^,...,eg), R = (e^,... ,e^)

and M(L ) and M ( R ) are shown in dotted and dashed lines respectively, we G G
start with B(6,7). When we meet B(5,6), we are closer to edge e,. than to

edge er . Therefore, we move off along B(5,7). Since at each step we are o
in two convex regions, one being associated with an edge in L and theG
other being associated with an edge in R we have to determine which of 

two candidate edges the polygonal line S intersects first, and then decide 

the direction in which we are to proceed. The process terminates when the 

direction of motion coincides with the angular bisector B(l,ll). Since 

the total amount of work involved is proportional to the number of edges 

and the number of "turning" points on S, which is linear in n, we have 

obtained an 0(n log n) algorithm. Detailed description of the merge process 

can be found in [3j.

Figure 1. Merge of two medial axes.
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4. THE SMALLEST BOMB PROBLEM (D. T. Lee)

Given n points in the plane, find the smallest circle that

encloses at least k of the points. This also can be restated as: given

n cities of equal strategic importance, determine the smallest bomb

and the location to drop it so that it will destroy at least k of them [1].
4

Shamos [1] proposed an 0(n ) algorithm that solves the problem

for all values of k. But for a fixed value of k there is no better
2algorithm known to date. We shall present an 0(k n log n) algorithm

for a fixed value of k. Furthermore, the same algorithm with some modifi-
3cation can solve the problem in at most 0 (n log n) for all values of k.

The fact that this problem is related to the well-known k-nearest 

neighbor problem in the Euclidean plane makes the improvement possible.

The k-nearest neighbor problem consists in determining among a set of n 

points in the Euclidean plane the k nearest neighbors to a given test point. 

To illustrate this relationship we shall introduce the notion of a very 

useful geometric construct, namely, the Voronoi diagram of order k for a 

set of n points. The Voronoi diagram of order k (or order k diagram for 

short in the following discussion) is a generalization of the classical 

Voronoi diagram. A detailed description can be found in [3] [4] #

Figure 1 shows the classical Voronoi diagram (of order 1) for a set of 8 

points in which for example, the cross lined region is the locus of points 

closest to point p^* Figure 2 is the order 2 diagram for the same set of 

points in which each region is associated with two points and is the locus 

of points closer to one of the associated points than to any other point.

In general, in an order k diagram, each region is associated with some
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subset, of cardinality k, of the given set of points and is the locus of

points closer to one of the points in the subset than to any other point

not in the subset. An iterative algorithm for constructing the order k
2diagram has been developed which runs in time at most 0 (k n log n) [3].

Figure 1. Voronoi diagram for a 
set of 8 points.

Figure 2. Order 2 diagram for 
the same set of 8 
points in Fig. 1.

It can be seen that each Voronoi point in the order k diagram 

is a circumcenter of some three points (it is assumed that no more than 

3 points are cocircular) and that the circumcircle thus determined contains 

either k-1 or k-2 points in its interior. The Voronoi point, whose
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corresponding circumcircles contain k -1 points in the interior are called 

new Voronoi points. (Those points denoted by "o" in Figure 2.) The 

remaining are called old Voronoi points. The number of new Voronoi points 

in the order k diagram has been shown to be 0(kn) [3]. We shall be

interested in the identification of the set of new Voronoi points of the 

order k -2 diagram only, since their corresponding circumcircles enclose 

exactly k points. (i.e. k-3 points in the interior plus three points on 

the circle.)

Next we shall show that the smallest circle that encloses at 

least k points must be the circle that encloses exactly k points. Suppose 

the smallest circle enclosed m > k points. There always exists a circle 

of smaller radius that encloses m - 1 > k points therefore contradicting
4

to the assumption. By a theorem of Rademacher and Toeplitz [5] the 

center of the smallest circle must lie either inside the triangle formed 

by the three determiners or on a line segment determined by two points 

as a diameter. Thus, for some fixed number k, the smallest bomb problem 

can be solved as follows.

Input: A set of n points {p^,...,Pn3 in the plane given as

ordered pairs (x.,y.) where x. and y. are the x- and r x i i  i i
y-coordinates of the point p^ respectively and an 

integer k.

Output: The center of the smallest circle enclosing k points

and its radius.
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1.

2.
3.

4.

5.

6 .

7.

Construct the order-(k-2) diagram for the given set of points 

and obtain the set of new Voronoi points V = ... ,vg] .

Let the radius of the smallest circle be r. Initially, r «- 

For each point v^ € V, l ^ i ^ s d o ;

begin If the circumcircle centered at v. has radius r. < r then — °—  l i

set r *- r. and center «- v..l ------  l
If lies outside the triangle formed by the three determiners 

of the circumcircle then do:

begin Find the diameter d of the set of the k points 

enclosed by the circumcircle.

If d < 2r then set r «- %d and update center.

end

end

2Step 1 takes 0(k n log n) time. Step 6 takes 0(k log k) time

and is executed at most s times. Since s, the number of new Voronoi

points in the order k -2 diagram, is upper bounded by 0 (ki>n), the total
2running time is 0 (k n log n). } ]

Thus, we have the following theorem:

Theorem 1: The smallest bomb enclosing k > 3 points of the given N points
2can be determined in 0 (k n log n) time.

We remark here that for k = 2 the closest-point algorithm [4] 

can solve the problem in 0(n log n) time. For all other values of k, i.e. 

3 < k < n the problem can be solved in two steps.

1. For each k, where 3 < k < n, construct the order-(k-2) Voronoi 

diagram and find the smallest circle determined by 3 points

with radius r, and center c. .k ------  k
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2. For each circle determined by any two points as a diameter,

count the number of points enclosed. If i points are

enclosed, compare the radius r of the circle with r^. If it

is smaller than r., then set r. <- r and update the center c.,1 i i

otherwise repeat this step.

3 xiStep 1 takes 0(n log n) time. Since there are (^) circles

determined by any 2 points of the given set of n points and counting the
3

number of points enclosed requires 0 (n) time, step 2 takes 0 (n ) time.
3Thus 0(n log n) time is sufficient.

Theorem 2 : The smallest bomb enclosing k points of the given n points
3

in the plane for 2 < k < n can be solved in 0(n log n) time.
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5. CLOSEST PAIR OF VERTICES OF A CONVEX POLYGON (D. T. Lee)

The problem of finding the closest pair of n points in the 

plane has been solved by Shamos [6] and the running time 0(n log n) 

is optimal. However, the lower bound cannot be applied to the problem
of finding the closest pair of vertices of a given convex polygon [lj. 

Since an obvious lower bound is 0(n), one would suspect the existence 

of an algorithm which is more efficient then that given in [6]* We 

shall show that an optimal solution to this problem indeed exists.

It is conceivable that the closest pair of vertices of a convex poly­

gon need not be adjacent to each other. This is the fact that makes the 

problem more difficult to solve than expected. But, on the other hand, 

the property of convexity of the polygon does make the lower bound 

0 (n) achievable.

Lemma. If the diameter of the convex polygon coincides with an edge

then the two closest vertices are adjacent.

Proof. Let the polygon P be denoted by a sequence of vertices

V  V ...V i  such that V. is an edge, and d(vQ ,v )

is the diameter. Suppose

v v. are the closest pair l k r
of vertices and are not ad­

jacent, i.e., k >  i+1. There 

exists a vertex v^, i < j < k

such that d(v. v ) < l k —
min^d(v., v ) , d(v^,vk)^

Thus the angle ^ v.v.v, must bel j k
less than or equal to 60°. By convexity, the vertices

v .
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v, , v0 ,..,,v. . and v#I1 v.l0,..., v 0 must lie above the1 2  J-l j+1 j + 2  n-2
chords v~. v. and v. v , respectively. The angle v^v.v0 j j n-1 r 0 j n-1
must be less than 60°, which contradicts the assumption that 

d(vQ,vn_i) is the diameter of the polygon. □

With the above lemma, one can find the closest pair of ver­

tices of the convex polygon in 0(n) time as follows:

( i) Find the diameter of the polygon. Let it be d(v ,v )
P q

where p < q. Then the diameter divides the set of

vertices into two chains C, = (V >v v , , v ]1 *- p pfl q-1 qJ
and C2 = {v^, n-1’ V ' " >  VJ -

Theorem:

q n-i' U" ' p-
( ii) Scan, respectively, the two chains of vertices and

find the nearest pairs of vertices. Let 6^ =

d(vs»vs+i) > ^2 = vt+l^ tlie c -̂osest Pairs of

vertices respectively for the two convex polygons.

Let 6 = min (6^, 62>

If the distance of the closest pair of vertices is 

less than 6 then the two vertices v^, Vj must be in 

different chains, i.e., V. f  CL, v. f  CL.l 1 j 2
(iii) Using the method given in [6] for finding the closest 

pair of points, we can determine the two closest pairs 

of vertices in time at most 0(n).

Since each step  ̂(i), (ii) or (iii)̂ ) takes 0(n) time, 

we have

The closest pair of vertices of a convex polygon can 

be found in 0 (n) time, which is optimal.



19

6. LOCATION OF A -SET OF POINTS IN A PLANAR SUBDIVISION (F. P. Preparata)

Problem. Given a subdivision determined by a planar straight line 

graph G with n vertices and a set S of k target points, for each point 

P^ € S determine to which region of the subdivision it belongs.

The elements of S can be located in the subdivision in 

time 0(kn) by a brute force approach, which for each point P. G S 

tests its inclusion in each of the regions of the subdivision. This 

is accomplished by testing, for any given region R of the subdivision, 

on which side of each boundary edge of R any selected target point lies. 

Since, due to planarity, the number of edges is 0(n) and there are k 

target points, it is immediate to conclude that the sketched algorithm 

runs in time 0(kn).

Alternately, one may use the point location algorithm due

to Lee and Preparata [7], which requires a preprocessing time O(nlogn).

With this procedure each target point can be located in time O^(logn)2^,

thus obtaining the conclusion that the total location work for S does

not exceed O(nlogn) + O^k(logn)2 .̂ Clearly this approach is preferable

to the naive one anytime lim logn = 0. However, for large k, typi-
n -4 00 0 (k)

cally when k is 0(n), there is a still faster method, which is a var­

iant of the Lee-Preparata method and which we shall now describe.

Suppose we have proprocessed as in [7 ] the given planar

straight-line graph G and obtained a complete ordered set (3 = (c1,cOJ...,c )1 2 rn
of monotone chains for G. We recall that the members of (3 are also hier­

archically ordered in a rooted binary tree T, which describes with 

its paths the sequences of chain discriminations which may occur in a 

point location search. For example for G as given in figure la, the
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set (3 of chains is given in figure lb and the tree T is illustrated in figure lc.
Llog0mJNotice that if we choose as the root of T the chain whose index is 2 ^ ,

assign all indices

Figure 1. Examples of G, <3 and T.
Llog2mJ

smaller than 2 to the left subtree and all the others to the right subtree,

and adopt an analogous criterion for each vertex, tree T can be constructed so that 

the left subtree of each nonleaf vertex is a full binary tree. As was shown in [7], 

this organization of (3 enables us to list each edge e of G only once; specifically 

if e belongs to each of chains fcj •••*ck3 “ <3*, it will be listed only in the 

chain c* € <3f which is closest to the root of T. We also assign to edge e a pair 

of integers (Imin[®] )“(J>k) and the Pair of names (L[e] ,R[e] ) of the two
regions bordering with e.

It is now rather simple to construct a recursive procedure for the location of 

the set S. As in the single-point algorithm described in [7] , with each P € S we 

associate a triplet of parameters (R(P);.C(P),r(P)), where R(P) is the region to, 

which P is tentatively assigned, and ¿(P) and r(P) are integers denoting that P 

is comprised between c^ and c? in (3. When r(P)-4(P)-l, then P € R(P). Initially, 

for each P € S, we set 4(P)»0 and r(P)*m+l. The location procedure makes use of 

a function, PARTITION (U,c), where U is a set of points and c is a chain in 3.

This subroutine partitions U into two subsets U* and U", which respectively contain 

the points of U lying to the left and to the right of c. PARTITION (U,c) relates
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to a merge algorithm as the "discrimination of a point against a chain", described

in [7] , relates to a binary search algorithm. Notationally for a point P, y(P)

denotes its ordinate; for an edge e of G, y'(e) and y"(e) denote the ordinates

of the upper and lower extremes of e. Practically without loss of generality, we
assume that max y'(e) £ y ( P ) i min y"(e), for any P. € U.e 1 e i

procedure PARTITION (U,c)

Input: a list U: (P1,P2,... »i,t,Pt+l) where 1 < i * yCPj) * y(Pj)

a list c « (el,e2* * * * ,es,es+l^ whereh < & * y"(eh > 36 y*(

Pt+1 and ®s+l are dummy sentinels, with y(Pt+1> - y'(eg+1) - y,,(eg+1) *
1. k - i - j «- 1,U' - U" - 0.
2. While k £ t+s do
3. begin If y(Pi> > y ,(e^) then
4. If ¿(P^ ^ index(c) then U" - U" Ufp^, else U ’ - U* Ufp^
5. i - i+1
6. else If y(Pt) < y"(e^) then j «- j+1
7. else If Pt lies to the right of e^ then U" «- U" UfPj],

1(V "
8- ®lse U* - U* UfPi},r(Pi) - I ^ e ^  ,R(Pt) - L[e.]
9. i - i+1 J
10. k - k+1 

end
11. return [u*,U"}
It is easily verified that PARTITION (U,c) runs in time proportional to t+s - |u|+|c|.

We can now describe the location procedure, where T(c) denotes the subtree T 
whose root is c € T.

LOCATE (S,T)
Input: S,T
Output: a set K ** f(P,R(P))|p € S,R(P) * a region of the subdivision 

containing p}

1. begin K «- 0
2. If S ** 0 then return K
3. else
4.
5«

begin c - ROOT(T)
" (S',S") - PARTITION (S,c)
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6. If RIGHTSON (c) + A then K* - LOCATE (Sf ,T(RIGHTSON(c)))
7. else K' - [(P,R(P))|P € S'}
8. If LEFTSON (c) + A then K" - LOCATE (S",T(LEFTSON(c)))
9. else K" - f(P,R(P))|P € S"}
10. K ^ K U K ’ U K"
11. return K
12. end
13. end

We now evaluate the performance of the described algorithm. The bulk of the

computational work is performed in Step 5, and we have already noted that PARTITION

(S,c) runs in time 0 ( |s |+ |c | ) .  Since the algorithm entails a visit of each vertex

of T, we may view the total work as the sum of the works performed at the vertices

of T. Specifically let S(c) C  S be the set of points to be discriminated against
c. Thus the total computational effort is

0(S|S(C)|) + 0(£|c|) ; •
c€T c€T

but, by the construction of the data structure T (see [7]), S|c| equals the number of
c€T

edges of G, i.e., it is 0(n) due to the planarity of G. Moreover, since obviously

|S(LEFTS0N (c))| + |S(RIGHTSON (c))| * |S(c)|, at any given depth in T the sum of

|S(c)| is a constant and is equal to |s | ■ k. Since T has at most flog2ml levels,

and m is at most 0(n), we conclude that S|S(c)| * O(klogn). It follows that the
c€T

total location work, including preprocessing, is 0((n-i4c)logn), whereas work 

0((n-fklogn)logn) would have been required by the original algorithm described 

in [7].

i
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7. A NEAREST-POINT VORONOI POLYHEDRON FOR n POINTS MAY HAVE (0(n2))

VERTICES (F. P. Preparata)

It is well-known that the nearest-point Voronoi diagram for 

n points in the plane has O(n) vertices and can be constructed with no 

more than O(nlogn) operations. It has also been conjectured that the 

nearest-point Voronoi partition of the three-dimensional space (for short, 

the Voronoi polyhedron) for n given points may be construetible with the

same order of effort. We now disprove this conjecture by showing that
2the Voronoi polyhedron on n points may have as many as 0(n ) vertices,

2whence 0(n ) is also a trivial lower-bound to the construction time of such 

polyhedron.

Consider the following set of n points in 3-space, where n is 

chosen to be of the form n = 4s:

1) 2s of these points are the vertices of a regular polygon in the plane 

(x,y), and are conveniently given in polar coordinate as (r,j — ), for some r

and j = 0,... ,2s - 1;

2) of the remaining 2s points, s lie on the positive part and s lie on the 

negative part of the z-axis. From the symmetry induced by the polygon, 

the portions of the Voronoi polyhedron contained in any of two cylindrical 

sectors (jrr/s , (j + 1)tt/s) , for j = 0,... ,2s - 1, are isomorphic; thus it 
suffices to consider any of these sectors, say, (0,tt/s). In the latter, 

the Voronoi vertices are contained in the plane passing through the axis

z and having azimuth tt/2s . The corresponding diagram is shown in figure 1,
and it clearly contains 0(s) Voronoi vertices. Since there are 2s such

sectors, we conclude that the Voronoi polyhedron for the current example 
2 2contains 0(s ) = 0(n ) vertices. Obviously the numbers of faces and of 

2edges are also 0(n ).



Figure 1 Voronoi vertices in the vertical plane of 
azimuth t t / 2 s  .
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