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REDUCTION OF DEPTH OF BOOLEAN NETWORKS WITH A FAN-IN"CONSTRAINT

F. P. Preparata, D. E. M uller, and A. B. Barak

December 15, 1975

Abstract

In th is  paper we present a fam ily o f  techniques fo r  the design 

o f  com binational networks whose o b je c t iv e  is  the reduction  o f  the 

number o f  le v e ls ,  su b ject to  a constra in t on the fa n -in  o f  the lo g ic  

gates. We show that a boolean expression  w ith n l i t e r a ls  and in vo lv in g  

the connectives AND and OR can be restructured  so that the resu ltin g  

network has depth at most C^log2n + 6 , where <5 < 0.415 and is  

1 .81 , 1 .38 , 1 .17 , and 1 fo r  maximum fa n -in  % o f  2 , 3, 4, and 5, 

re sp e c tiv e ly . I f  we a d d ition a lly  require that the amount o f  equip

ment o f  the resu ltin g  network be bounded by a lin ea r  function  o f  n, 

i t  is  p o ss ib le  to bound the depth by 2 lo g 2n with a fa n -in  o f  at 

most 3.

Index terms: boolean expressions, com binational networks, network
depth, number o f  le v e ls ,  computational com plexity, 
design algorithm s, p a r a lle l  computation.



Reduction o f  Depth o f  Boolean Networks with a Fan-In Constraint#

F. P. P reparata,* D. E. M uller,**  and A. B. Barakt

1. Introduction

In the design o f d ig ita l  systems i t  is  very important to  use combin

a tion a l networks with small propagation delay in  order to take f u l l  

advantage o f  the speed o f  the lo g ic a l  elem ents. Reduction o f  propagation 

delay is  achieved by designing networks with sm all numbers o f  le v e ls ,  or 

depth, s in ce  depth and propagation delay are p rop ortion a l. O bviously, any 

given boolean function  can be re a lize d  as a tw o-leve l network, i f  unlim ited 

fan -in  o f the lo g ic  gates is  allowed. However, fa n -in  lim ita tion s  are a 

very severe tech n o log ica l con stra in t and must be accounted fo r  by any 

design method.

In th is  paper, we sh a ll describe a fam ily o f  techniques fo r  the design 

o f  boolean networks, whose p r in c ip a l o b je c t iv e  is  the' reduction o f  network 

depth. S p e c i f ic a l ly ,  we assume that a boolean function  be given as an

//This work was supported in part by the Joint Services E lectron ics  Program 
(U.S. Army, U.S. Navy, and U.S. A ir Force) under Contract DAAB-07-72- 
C-0259.

C oord in ated  Science Laboratory and Department o f  E le c t r ic a l  Engineering, 
U niversity o f  I l l in o i s  at Urbana, I l l i n o i s .

**Coordinated Science Laboratory and Department o f  Mathematics, U niversity 
o f I l l in o i s  at Urbana, I l l i n o i s .

fDepartment of Computer S cience, The Hebrew U niversity , Jerusalem, Is r a e l.
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expression E in vo lv in g  the connectives AND and OR, w ith complements 

appearing only on the va ria b les . The design methods are procedures fo r  

restructuring  the given expression E in to  equivalent expressions whose 

corresponding networks have bounded depth. D ifferen t methods w i l l  be 

proposed depending on the maximum allow able fa n -in  o f  the lo g ic  gates used.

A main property o f /o u r  techniques is  that a l l  l i t e r a ls  o f  an expression 

E, i . e . ,  a l l  appearances o f  variables in E, are treated  as d is t in c t  

v a ria b les ; th ere fo re , the relevant performance parameters, such as depth 

and equipment, w i l l  be bounded in terms o f  the number o f  l i t e r a ls  rather 

than o f  the number o f  va ria b les . I t  must a lso  be pointed out that our 

methods are more appropriately  app licab le  tc  the restru ctu rin g  o f  expressions 

where each va riab le  appears a small number o f  tim es.

Related to  th is  problem is  the construction  o f  design schemes d f 

boolean networks whose number o f  le v e ls  is  bounded by a function  of the 

number o f  va ria b les . The la t t e r  problem was studied  some years ago by 

Spira [1] and Preparata and Muller [2 ] ,  among oth ers, and the best known 

resu lt is  a recent construction  due to  McColl and Paterson [3 ]. The 

techniques described in  th is  paper, however, are in sp ired  by those used fo r  

the restructuring  o f arithm etic expressions [ 4 ] , [ 5 ] , [ 6] .  Brent e t  al. [5]
S  '.

were the f i r s t  to  suggest that th e ir  scheme fo r  the p a r a lle l  evaluation  o f 

d iv is io n -fr e e  expressions could be applied to lo g ic a l  design, based on the 

analogy which makes addition  and m u ltip lica tion *o f numbers correspond to
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d is ju n ction  and con ju n ction /o f boolean v a r ia b le s , re sp e ctiv e ly . They 

showed that when employing gate networks with a fan -in  o f  two, the 

minimum depth o f  any network fo r  the re a liz a t io n  o f  the function  associated  

with E, is  no larger than C lo g 2n, where n is  the number o f  l i t e r a ls  in  E 

and C = 2 .4 6 5 .. .  . Subsequently, the constant C was reduced to 2 by 

Barak and Shamir [7] and to 1.81 by Preparata and Muller [ 8J. Some 

reservations were expressed in  [ 8] about the p r a c t ic a l s ig n ifica n ce  o f  

r e s t r ic t in g  the fan -in  to  the value o f  two, s in ce  larger values are 

te ch n o log ica lly  qu ite  fe a s ib le ,  but i t  was f e l t  that the techniques 

presented there could be app licab le  to the p r a c t ic a l problem. I t  is  the 

purpose o f th is  paper to substantiate that exp ecta tion , by showing that 

in creas in g ly  sm aller values o f  C can be achieved by le t t in g  the maximum 

gate fan -in  grow.

In the next section  we s h a ll describe restructuring  procedures fo r  

depth reduction , using various maximum fan -in  va lues, and ca lcu la te  an 

upper-bound to the depth achievable in  each case. In Section 3 we sh a ll 

describe  a procedure fo r  upper-bounding network depth su b ject to the 

add ition a l cond ition  that network s iz e  be a lin ea r  function  o f  the number 

o f  l i t e r a ls  in the o r ig in a l expression .
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2. Design methods fo r  depth reduction

We s h a ll now describe  a fam ily o f design algorithm s which can be used 

to restructure a given boolean expression , so that the resu ltin g  equivalent 

expression has as sm all depth as p o ss ib le . The choice o f  algorithm  w i l l  

depend on the maximum allow able fan -in  o f  the lo g ic a l  gates to  be used 

in  the network con stru ction .

Let E be a boolean expression  in volv in g  the connectives AND and OR, 

denoted re sp ectiv e ly  by the symbols and The weight o f  E,

denoted by |EI, is  the number o f  l i t e r a ls  in  E. During restructuring 

we s h a ll trea t the o r ig in a l l i t e r a ls  o f  E as d is t in c t  v a ria b les . Let 

ci(E ) denote the minimum depth o f  any com binational network with two 

outputs E' and E" so that (E* + EM) is  equivalent to E. S im ilarly , 

l e t  C2 (E) be the minimum depth o f  any com binational network with two 

outputs E* and E** so that E* • E** is  equivalent to E. We then define 

^2 (E) A m a x (c i(E ),c2( E ) ) . F in a lly , we le t  t(E) denote the minimum 

depth o f  any network r e a liz in g  the function  represented by E. The 

in teger £ denotes an upper-bound to the perm issib le  fan -in  o f  the 

lo g ic  gates used.

We s h a ll now give three design algorithms which are ap p licab le  to 

& = 3, £ = 4, and £ > 5 , r e sp e c t iv e ly . The techniques we make use o f  are 

qu ite  general, and restru ctu rin g  algorithms can be developed fo r  la rger  values
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o f  i  along s im ila r  l in e s , although very large fan -in s  are not p r a c t ic a l . 

Without loss  o f  g en era lity , an expression E is  assumed to  be given as a 

binary tree . Given any subexpression F o f  E, suppose we replace F in  E 

with a fr e e  variable x and le t  G be the resu ltin g  expression . We then 

define the composition o f  G and F with respect to  x , w ritten  E = G <> F, as the 

expression obtained by su b stitu tin g  F fo r  x in  G. The expression G can 

be expanded around x as GAx + Gz or as (G3 + x) • Gi*, where 02, 62, 63, and 

Gi+ are boolean expressions and | Gj | < |G| fo r  j  = 1 , . . . , 4 .  Define the 

sequences L x , . . . ,L r and T o ,...,T jp  o f  subexpressions o f  G according to  the 

fo llow in g  recursive equations:

( i )  Tq = G;
* '

( i i )  TjL = , with 0̂  e {* ,+  } and T-^+i is  the subexpression

containing x fo r  i  = 1., . . . , r - l ,  and Tr = x.

Note that the sequence 0q„,. . . ,  0r_ j  defines a path from the root to  x in 

the binary tree  associated  with E. As we pointed  out in  [8 ] ,  we have

G1 “  T  L1+i G 3 = l  L±+J
0± = • 0 i = +

that i s ,  the expressions G2 and G2 contain no common l i t e r a l .  I t  fo llow s 

that e ith e r  |Gi‘| < \G\/2 or |G3| < |G|/2. Without lo ss  o f  gen era lity  and 

fo r  s im p lic ity  o f  presen tation , assuming that E is  expressed as 

A o (b e C) with 0 e {• ,+ } ,  in  the sequel we s h a ll designate as "+" 

the operation which allows us to w rite  E = A2(B 0 C) + A2 , with 

IAi| < |A|/2.
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Since E may be regarded as a binary t r e e , we s h a ll make extensive use 

o f  a decom position technique i l lu s t r a te d  in  the fo llow in g  lemma on binary 

tre e s , and o r ig in a lly  due to Brent e t  a l . [ 5 ] ,  which we adapt to our case 

and s ta te  w ithout p ro o f,

Lerrma 1 . Let E be a boolean expression and q a rea l number in  the 

range 1 < q < |E|. Then E can be a lgorith m ica lly  expressed as A o (B 0 C) 

Where A, B, and C are expressions with no common l i t e r a l ,  (B 0 C) denotes 

one o f  the expressions (B • C) or (B + C ), and |b | < |c| < q w hile 

IB| + |C| > q.

We s h a ll now describe three design procedures, associa ted  with 

Lemmas £, 3, and 4, corresponding to  the cases £ £ 5 , £ = 4, and £ = 3,

re sp e c tiv e ly . The case £ > 5 is  l ik e ly  to have the h ighest p r a c t ic a l 

value s in ce  lo g ic  gates with a fan -in  o f  5 are commonly a v a ila b le . The 

other algorithms are o f  in te re s t  fo r  design s itu a tion s  with more 

strin gen t fan -in  con stra in t, s in ce  they y ie ld  a n oticea b le  delay improvement 

over the resu lt t(E) < 1.81 lo g 2 lE| which we estab lish ed  in  the past fo r  

£ = 2 [ 8] .

Each o f  the fo llow in g  design procedures achieves in  a con stru ctive  

way the extensions o f two inductive  hypotheses, re ferred  to in  each case 

as PI and P2, which resp e ctiv e ly  sp e c ify  upper-bounds to t(E ) and t 2 (E ).

The v a lid ity  o f  the procedures is  proved in  "a sse rtio n s"  fo llow in g  the 

in d iv id u a l step s.
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Lerrma 2. Let E be a boolean expression with |E| > 1. Then fo r  i  > 5 

t(E) < lo g 2 1E| + 65, where 65 = log 24/ 3 .

P roof: We assume in d u ctive ly

PI. I f  |E| < n , then t(E ) < m ax(log2 |e | + <$5 , 0) .

P2. I f  |E| < n , then t 2 (E)< m ax(log2 IE|,0 ) .

By constructing a few cases i t  is  e a s ily  seen that the induction  may 

be sta rted  with n = 4. The extension o f  PI is  provided by the fo llow in g  

algorithm , where |E| = n.

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with IB 0 CI > n /3

and |B| < |CI < n / 3 .

A ssertion : |A| = |E| -  |B 0 C| £ 2n/3. We express E as Aj(B 0 C) + A2 .

Since IB| < |C| < n /3 and | Â  I  ̂ |A|/2 < n /3 , by P2 we see that 

t-2 (^ l ) »̂ 2 (E) , t2 ( C) < lo g 2 (n /3) = lo g 2n - 2  + 65. S im ilarly  | A2 |  ̂ |a | < 2n/3 

y i e ld s ,  by P2, t 2 (A2) < lo g 2n -  1 + 65.

Step 2 . I f  0 is  "+ " , w rite  A2 = Ajk '[ , B = B’ B", C = C’ C", and 

A2 = A2 + A2 and restructure E as

E = A}A'iB'B" + AiA’iC 'C" + Aj + A '̂; h a lt .

A ssertion : Each o f  these four terms is  computable with at most [l°g 2n -  1 + S5J

le v e ls  so that t(E) < lo g 2n + 65 .
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Step 3. (0 is  I f  | B | < n /4 , w rite  Aj = A} A", C = C’ CM, and

A2 = A£ + A2 and restru ctu re E as 

E = AlA'iBC’ C" + Ai + AJ; h a lt .

A ssertion : ¡B| < n /4  im plies t(B) < lo g 2n -  2 + 65 , by P I; thus each o f  

the three terms is  computable with at most [log2n -  1 + Ó5J le v e ls  so that 

t(E) < lo g 2n + 65.

Step 4. (0 is  Ib I > n /4 ) .  Restructure E as AiB,B,,C, CM + A2 ;

h a l t .

A ssertion : |b | > n /4 im plies that a lso  |c| > n /4 , whence

I A| = IEI -  IBI -  I c| < -n -  n /4  -  n /4  = n /2 . Thus | Aj | < n /4  and 

IA2 1 < n /2 , and, by P I, we have t (A i) < lo g 2n - 2  + 65 and 

t(A 2)  ̂ lo g 2n -  1 + 65. Thus, each o f  the terms is  computable with at 

most |log2n -  1 + 6_̂ j le v e ls ,  y ie ld in g  t(E) < lo g 2n + 65 .

To extend P2 to |e | = n , we s h a ll assume that the expression  E is  

restructured  as ET + E", where the choice o f  which operation to designate 

as "+" is  a rb itra ry , a fact, we s h a ll make use o f .  The extension is  provided 

by the fo llow in g  algorithm .

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with IB 0 CI > n/2 

and IB| < |C| < n /2 .
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A ssertion : |A| = |E| -  |B 0 c| < n -  n /2  = n /2 . Since | A j  | < |a | £ n /2 and

a lso  |B| < IC| < n /2 , we ob ta in , by P2, t2 ( A ^ , t 2 (B ) , t2 (C) < lo g 2n -  X.

Step 2, I f  0 is  "+ " ,  w rite  Ai = AlA"*C * C’ C" and set E' «- AjA"C'Cn,

E" AiB + A2 ; h a lt .

A ssertion : Since t 2 ( A j ) , t 2 (C)  ̂ lo g 2n -  1, E* is  computable with at most

lo g 2n le v e ls .  N otice that AjB + A2 i s  an expression  obtained by rep lacing 

(B 0 C) with B in  the o r ig in a l E. Moreover, lA^B + A2 | = |E| -  |Cl < n -  n /4  =

3n /4 , s in ce  |C| > |B 0 c|/2 > n /4 . Thus, by P I, t(E ") < lo g 2|n + <S5 =

1o82 n = lo g 2n.

Step 3. (9 is  "•")• I f  |B| < 3n /8 , w rite  Aj = AiA'i', C -  CVC-', rand

set E' ^ A|A"BC’ C", E" <- A2 ; h a lt .

, o
Assertzon: |B| < 3n/8 im p lies,by  PI, t(B) < lo g 2 gn + 65 = lo g 2n -  1.

Since t 2 (A ) , t 2 (C) < lo g 2n -  1, we obtain  t (E ')  < lo g 2n. Also |A2 | £ |AI < n /2

y ie ld s ,  by PI, t(A 2) = t(E ") < lo g 2n -  1 + 65 < lo g 2n.

Step 4. (0 is  and |b | > 3 n /8 ) . Write B = B'Bm,C = C’ C" and set

E' AiBTB,,C 'C ", E" «- A2 ; h a lt .

A ssertion : |B| > 3n/8 im plies |c| > 3n /8 , whence |a | = |e | -  |b | -  |c| <

n -  3n/4 < 3n/8. Thus, by P I, t (A }) < lo g 2n -  1. Since t 2 (B ) ,t 2 (C) < lo g 2n -  1

and t(A 2) < lo g 2n, we obtain  t (E ') , t (E " )  < lo g 2n.
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Since in  a l l  restru ctu rin gs the required fa n -in  never exceeds 5 , 

th is  concludes the p roo f o f  the lemma.||

The p roofs  o f  the two fo llow in g  Lemmas develops in  a manner very 

s im ila r  to the p roof o f Lemma 2, except fo r  the numerical values involved .

In view o f th is  strong s im ila r ity  we s h a ll considerably abbreviate the 

arguments.

Lemma 3. Let a be the la rgest root o f  the equation z 3 = z2 + 2z -  1 

and le t  E be a boolean expression  with |e | > 1 .  Then, fo r  £ = 4,

2
t (E) < lo g  (—̂ —| E | ) / log  a 4  Ci+lo g 2 | E | + 6i+

(s in ce  a = 1.8019, we have Ci* = 1 .1 7 7 .. .  and 6  ̂ = 0 .1 3 4 . . . ) .

P roof: We assume in d u ctive ly

PI. I f  | E| < n, then t(E) < Ci+max(log2 1E| + 6^ ,0 ) .

P2. I f  | E| < n , th en .t2 (E) < Cifmax(log2 (a -  1) | E| + 6 ^ ,0 ).

I t  is  e a s ily  seen that the induction  may be sta rted  with n = 4. The 

extension o f  PI is  given by the fo llow in g  algorithm , where |e | = n.

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with

IB 0 C| > (1 -  l / a ( a  -  l ) ) n  and |B| < |C| < (1 -  l / a ( a  -  l ) ) n .

A ssertion : |A| = |E| -  |B 0 CI < na~V(oi -  1 ) ,  whence, by P2,

t2 (A2)  ̂ Citlog2n -  1 + 6^. A lso , |Aj| < | A|/2 < na- 1 /2 (a  -  1) < noT2/ ( a  -  1)
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y ie ld s ,  by P2, t 2 (Ai) < Ci+lo g 2n -  2 + 64. N otice that |B| < |C| < 

n ( l -  l / a ( a -  1 )) = na"2 , by the defin in g  equation o f  a, whence, by PI, 

t (B ) ,t (C )  < C4lo g 2n -  2 + 6^.

Step 2. I f  0 is  "+ " , w rite  A} = A^A", A2 = A£ + A2 and restructure 

E as E = AlA'fB + AlA'iC + Â  + A%; h a lt .

A ssertion : Each o f  the four terms requires at most |Ci+lo g 2n -  1 + le v e ls ,

whence t(E) < Ci+log 2n + Si*.

Step 3. (0 is  M#n) . W rite Aj —, AjA^, A2 = A£ + Aj> and set

E = AiA'iBC + + A2 ; h a lt .

A ssertion : Each o f  the three terms requires at most Ci+log2n -  1 + 6̂  le v e ls ,

whence t(E ) < Ci+lo g 2n. The extension o f  PI is  completed.

The fo llow in g  algorithm  extends P2 to  |E| = n. Here again we seek a 

restru ctu rin g  o f  the form E = E' + E".

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with

IB 0 C| ^ na_1 (a -  1 ) and |b | < |c| < na_1 (a -  1 ) .

A ssertion : IA| < n -  nor1( a . -  1 ) = n a -1, whence

t 2(A i) < CL*log2 (a -- l )n  -  1 + 64 and t(A2)  ̂ Ci+lo g 2na“ 1 + 6  ̂ < Ci+log 2(a -  l)n  + 6^. 

Also t(B),t(C) < Ci+log2na^1 (a ~ 1) + 6  ̂ = Citlog2 (a  -  l )n  -  1 + 64.
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Step 2. I f  0 is  w rite  Aj = A{A" and set E' «- AlA"C, E" *•* AjB + A2 ;

h a lt .

A ssertion : Since t2 (A i) ,t (C )  < Citlog^ci -  l )n  -  1 + 6^, then

t (E ')  < Ci+log 2 (a -  l )n  + 6j+. Considering now the expression  AjB 4- A2y

sin ce  | C| > | B 0 CI /  2 £ na- 1 (a -  l ) / 2 ,  we have lAjB + A2 1 < n -  naF*(a. -  1 ) /2  <

n(a -  1) (by the defin ing  equation o f  a) and t(E ") < Ci+lo g 2 (a -  l )n  + 6i*.

Step 3. (0 is  "•")• Write A} = AJAjl , and se t Ef A]A"BC, E" «- A2 ;

h a lt .

A ssertion : t2 (A i ) , t(B) , t(C) < c a o g 2 (a -  l )n  -  1 + 64 and t(A 2) <

Ci+log2 (a -  l )n  + 61+y ie ld  the desired  re su lt . This completes the extension

o f  P2.

To conclude the p roo f o f  the lemma, n o t ice  that in  no restru ctu rin g  

a fa n -in  larger than 4 has been used. | |

Lemma 4. Let 3 be the p o s it iv e  roo t o f  the equation zM = 2z2 + 2 and 

le t  E be a boolean expression with |e | > 1 .  Then fo r  l  = 3,

t(E) < log|e | /log  3 4  C3lo g 2 |E|

(s in ce  3 = 1 .6 5 2 8 .. . ,  we have C3 = 1 .3 7 9 . . . ) .
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P r o o f : We assume i n d u c t i v e l y :

P I . I f |e | < n ,  then t ( E )  < C 3 l o g 2 | E | ,

P 2 . I f |e | < n ,  then t 2 ( E )   ̂ C 3 l o g 2 ( 3 | E | / 2 ) .

In th is case i t  is  seen that the induction  can be sta rted  with n = 5, The 

extension o f  PI is  provided by the fo llow in g  algorithm , where |e | = n.

Step 1 . Using Lemma 1, decompose E as A ° (B 0 C) with

|B 0 C| > n ( l  -  2S“ 2) and |b | < |c| < n ( l  -  2S“ 2) .

A ssertion : |a | = n -  n ( l  -  2S“ 2) = 2nS“ 2 , whence |Ai| < nS“ 2 and

|A2 I  ̂ 2nS“ 2 . Thus t(A^) < C3log 2n -  2 and t 2 (A2)  ̂ C3lo g 2 ^  2nS~2 =

C3lo g 2n *- 1. A lso , s in ce  (1 -  2S“ 2) = 23” i+ < S'"2 , we have

t(B) ,t(C )  ̂ C3lo g 2n -  2 and t 2 (C) < C3lo g 2 2nS_1+ = C3lo g 2n -  3.

Step 2. I f  0 is  w rite  A2 = A£ + Â  and se t E = A^BC + A£ + A*?;

h a lt .

A ssertion : Each o f  these three terms is  computable with at most .

|C3lo g 2n -  ]j le v e ls  whence t(E) < C3log 2n.

Step 3. (0 is  . I f  IBI < S“ 3n, then w rite  C = C’ + C” ,

A2 = A2 + AH and set E = Ai(B + C' + C") + Â  + A^; h a lt .

A ssertion : IB| < S "3n im plies t(B) < C3lo g 2n -  3, and, s in ce  t 2(C) £ C3lo g 2n -  3

we obtain t(B + C' + CM)  ̂ C3log 2n -  2. This and the upper-bounds to t(A j)
. i

and t2 (A2) y ie ld  t(E) < C3lo g 2n.
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Step 4. (0 is  "+" and |B| > $” 3n ). Set E = Â B + AjC + A2 and h a lt .

A ssertion : |B| > $“ 3n im plies |c| > $“ 3n and |a | < n -  23” 3n < n3- 1 , 

by the defin in g  equation o f  3 , whence t(A2)  ̂ C3lo g 2n -  1. Also 

|Ai| < |a |/2 < n3~I /2  < n3~2 y ie ld s  t(A 2) < C3lo g 2n -  2. Therefore each

o f  the terms requires no more than C3lo g 2n -  1 le v e ls ,  so that

t(E ) < C3lo g 2n. This completes the extension o f  PI.

The fo llow in g  algorithm  extends P2 to |e | = n.

Step 1. Using Lemma 1, decompose E as A q (B 0 C) with 

|B 0 Cl > n /2 and |BI £ |C| < n /2 .

A ssertion : |A| < n -  n /2 = n /2 , so i f  A » (B 0 C) is  w ritten  as Ai(B 0 C) + A2

then t(A i) , t(A 2) , t(B) , t(C)  ̂ C3lo g 2-|-n3_1 = C3lo g 2|- n. -  1.

Step 2. I f  |C| < n3_ 1 / 2 , se t E' + A\(B 0 C) and E" + A2 ; h a lt .

A ssertion : I Cl  ̂ n3_1 /2  im plies |BI < n3- 1/ 2 ,  whence

t (B ),t (C ) < C3lo g 2|- n -  2, so that t(B 0 C) < C3lo g 2 |  n -  1 and 

t (E ’ ) < C3lo g 2 -| n.

Step 3. ( | C| > n3- 1/ 2 ) .  I f  0 is  se t  E' «- AiBC and E" ■<- A2 ;

h a lt .

A ssertion : t ( A i ) , t (B ),t (C )  < C3lo g 2 | n -  1 y ie ld  t (E ')  < C3lo g 2 -| n.
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Step 4. ( | C| > n3 a/2 ,  0 i s  . Set E’ AaC, E" + AaB + A2 ; h a lt .

A ssertion : From t (A i) ,t (C )   ̂ C.3lo g 2 j  n -  1 we have t (E ')  < C3lo g 2 n.

With regard to the expression  AiB + A2 , s in ce  |c| > n&~1/2, we have 

|A: B + A2 | = |E| — |C| < n -  n3_ i /2  < nB/2, whence t(E ") < C3lo g 2 |  n.

This completes the extension  o f  P2.

To complete the p ro o f o f the lemma, we n o t ice  that in  no restru ctu rin g  

has a fa n -in  larger than 3 been used.||

The three preceding resu lts  and the resu lt o f  [8 ] y ie ld  the fo llow in g  

theorem.

Theorem 1 Let E be a boolean expression . Then, depending upon the 

maximum allowed fan -in  £ o f  the lo g ic  gates used, the boolean function  

described by E is  re a liza b le  by a lo g ic a l  network requiring no more than 

C£lo g 2 |E| + le v e ls  where the constant C is  1 .81 , 1 .38 , 1 .17 , and 1, 

and the constant is  0 , 0 , 0 .134 , and 0.415 fo r  £ = 2, £ »  3, £ = 4,

and £ > 5 , re sp e c tiv e ly .

I t  seems un likely  that a s ig n if ic a n t ly  sm aller constant C0 can be

obtained fo r  any p r a c t ic a l values o f  £. N evertheless, i t  can be shown

th e o r e t ica lly  that can be made to approach zero as £ approaches

in f in i t y .  To see th is , l e t  e be any p o s it iv e  number le ss  than 1. We
2/e

choose the fan -in  £ to  be the le a s t  in teger no sm aller than 3^ and
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 ̂ e lo g 23, and show that t(E) < e lo g 2i|E| + 6  ̂ using th is  fa n -in . As 

b e fo re , assume in d u ctive ly  the resu lt holds when |E| < n fo r  some given 

in teger n. This can ce rta in ly  be v e r if ie d  i n i t ia l l y  when n = 4. Next, 

take |E| -  n and use Lemma 1 with q = n2-2 / G to decompose E as A ° (B 0 C) 

where ¡B 0 C| > n2 2 / £ and |B| < |C| < n2-2 / e . W riting E as Â BC + A2

i f  0 is  • or as AjB + A^C + A2 i f  0 is  "+ " , we can furth er decompose 

A} and A2 i f  e ith e r  or both have weights as great as n2“ 2 / £ * For these 

decom positions, we use the same q in  Lemma 1 as b e fo re . Continuing in 

th is  way, we see that i t  is  p o ss ib le  to w rite  E as a sum o f  products in  

which each fa c to r  has weight le ss  than n2“ 2/ e . We check that the number

o f products and also the number o f  terms in each product can be no greater
2  2/ e

than 3 < £, so the products can be formed sim ultaneously in  one le v e l

and the sum, in a second le v e l .  Hence, t(E) < e lo g 2n2_2/ e: + 6  ̂ + 2 =

e lo g 2n + 6  ̂ and the inductive  hypothesis is  ju s t i f ie d .

Before c lo s in g  th is  s e c t io n , we consider the determ ination o f  the 

upper-bound to the amount o f  equipment required by the design methods 

ou tlined  above. This determ ination can be carried  out by techniques which 

have been described elsew here[5 ,6] and w i l l  only be sketched here. As a 

measure o f  the amount o f  equipment we may consider e ith e r  the number o f 

gates or the number o f  gate inputs; i t  is  e a s ily  seen, however, that the 

bounds we would obtain fo r  these two measures have the same rate o f  growth 

as a function  o f  |e |. R eferring to any o f  the algorithm  pairs  associated  

with Lemmas 2, 3, and 4, we assume in d u ctive ly  that, fo r  a given in teger n
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I I  i i £and IE| < n, the equipment required to re a lize  E is  at most k 1 1E| or 

k2 1E|̂ y depending upon whether E is  restructured as one or as two expressions, 

with constants k i > 0 , k2 > 0, £ > 1. We then take |e | = n, and, fo r  each 

o f  the restructuring  forms presented in the algorithm s, we obtain an 

in equ a lity  in volv in g  k j ,  k2 , and £. For example, i f  E is  restructured  as 

AiA'iBC’ C" + A2 + A2' (Step 3 o f  the algorithm  fo r  PI in  Lemma 2) we have 

the in equ ality

k2 |Ai|C + k2 |A2 |̂  + k ! |B|C + k2 |c|^ < ki|E|^

where the l e f t  s ide must be maximized in the domain o f  | Aj | , | A2 1 , |b |, and 

1Cj , treated  as rea l va ria b les . The exponent £ may then be chosen as the least 

one fo r  which a l l  the in e q u a lit ie s  produced by an algorithm  p a ir  are 

s a t is f ie d .  For example, fo r  the case o f  Z > 5, an upper-bound to the 

amount o f  equipment is  0(|e ( 1,55) ,

In general, s in ce  in  a l l  cases separate subnetworks appear to be 

necessary fo r  r e a liz in g  Ai and A2 ., the resu ltin g  overlap y ie ld s  a bound 

in the equipment which is  superlinear: in |e |. In the next section  we 

s h a ll present a design algorithm  which y ie ld s  networks whose equipment 

is  guaranteed to be 0(|e |), but whose delay is  greater than that fo r  the

u n restricted  case
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3. A design method y ield in g  equipment 0 (\e \)

Let E be a boolean expression , and le t  dj (E) denote the minimum depth 

o f  any com binational network with two outputs E* and E ", so that (E1 + E") 

is  equivalent to E, and with no more than 6 |E| -  6 gate inputs. S im ilarly , 

le t  d2 (E) denote the minimum depth o f  any network with two outputs E* and 

E**, so that E* • E** is  equivalent to E, and with no more than 6 |E| -  6

gate inputs. We then define 12(E) 4  m ax(d i(E ), ¿2 (E )) .

In an analogous manner, le t  G be a boolean expression with a free  

variable x so that we may restructure G in to  the form Gjx + G2 . Then define 

x(G) as the minimum number such that a network can be constructed which 

simultaneously re a lize s  the functions Gj and G2 using no more than 

t (G) -  1 and t (G) le v e ls ,  r e sp e c t iv e ly , and with no more than 6 |G| -  6 

gate inputs.

We can now prove the fo llow in g  lemma:

Lemma 5. Let E and G be boolean expressions and le t  G contain a 

free variable  x . Then fo r  fan -in  i  = 3 we have

( i )  12 (E) < max(21og2 |E| -  1 , 0)

( i i )  t (G) <: 2 lo g 2 |g| + 1 .

P roof: P roposition s ( i )  and ( i i )  are seen to  hold  when |E| < 4

and |G| < 4 .  We form ulate the fo llow in g  inductive hypotheses, s ta rtin g  with

n = 4.
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PI. I f  |E| < n, then t2 (E) max(2 l° g 2 1E| •- 1 , 0) .

P2. I f  |G| < n, then x(G) < 2 lo g 2 |g | + 1 .

To extend PI to |E| = n , we s h a ll assume that E is  rea lized  as E' + E" 

and leave free  the designation o f  which operation is  We s h a ll then use

the fo llow in g  algorithm :

Step 1. Using Lemma 1, decompose E as A o (b 0 C) with |B 0 C| > n /2 ,

IB| < |C| < n /2 .

A ssertion : |A.| = |e | -  |B 0 C| < n /2 . The expression  A can t 3 

be restructured  as A}X + A2 . Then, by P2, x(A) < 2 log  n -  1.

Also | B | < | C| < n/2 im ply, by PI, t2 (B ) ,t2 (C) < 2 lo g 2n -  3.

Step 2. I f  |B| < n (t/2)- 3 , w rite  B = B’ B", C = C' 0 C", and set 

E' «- AiCCB* B") 0 C’ 0 C") , E" «- A2 ; h a lt .

A ssertion : | B | < n ( /2 ) -3 im p lies , by PI, t2 (B) < 2 log 2n -  4. Since

t2 (C) < 2 lo g 2n -  3, (B ’ B") 0 C* 0 C" has depth no more than 2 lo g 2n -  2, 

so that E’ has depth no more than 2 lo g 2n -  1; a ls o , the depth o f  E" is  

at most 2 lo g 2n -  1. Let Q (E ',E ") be the number o f  gate inputs o f  the 

network re a liz in g  E' and E", with analogous d e fin itio n s  o f  Q(B’ ,B " ) , 

Q (C ',C "), and Q(Ai,A^).. Since at most 7 gate inputs are required to 

combine A j,A 2 ,B ’ ,B ",C ’ , and C" in to  E' and E ", and by the inductive
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assumptions PI and P2, Q(Ai ,A2)  ̂ 6 1 A| -  6 , Q (B ',B ") < 6 1BI -  6 , and 

Q(C’ ,C")  ̂ 61 CI -  6 , we have

Q(E’ ,E") = Q(A2,A2) + Q(B’ ,BM) + Q(C*,CM) + 7

< 6 1 A| -  6 + 6 1B| -  6 + 6 1C| -  6 + 7 =  6(|a | + |B| + |c|) - 1 8 + 7

= 6 |E| -  11 < 6 |E| -  6.

In order to abbreviate subsequent analogous arguments, we n o tice  that a l l

that is  needed to prove the upper-bound on the number o f  gate inputs

is  that no more than 12 gate inputs are used in the restructuring  com bination.

Step 3. ( |B| > n (^ 2 )“ 3) .  Write B = B 'B ", and C = C’ C" and set

E" «- A2 . I f  9 is  "+" set E' ^ AiC’ C" + A]B’ BM, e lse  set 

E’ + (AjC*C")B’ B "; h a lt .

A ssertion : [B j > n ( /2 ) ” 3 im plies | Gj 2 n ( /2 ) “ 3, whence | Ai = |E| -

-  | B | -  | C| < n ( l  -  2 C ^ ) " 3) < n ( /2 ) “ 3. Thus, by P2, t (A ) < 2 lo g 2n -  2.

I t  fo llow s that AjC'C" and A]B'BM both have depth at most 2 log 2n -  2; 

s im ila rly  (AiC’ C'^B’ B" has depth at most 2 log2n -  1 , whence in a l l  cases 

E' has depth at most 2 lo g 2n -  1. We a lso  note that EM = A2 has depth at 

most 2 lo g 2n -  2 , and that at most 8 gate inputs are needed fo r  the 

restrucuring com bination, thus completing the extension o f  PI.

To extend P2 to |g| = n we need a simple lemma on binary tre e s , a lso  

due to Brent [ 4 ] ,  which we sta te  w ithout p ro o f:
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Let G be a boolean expression with a free  variab le  

x and le t  q be a rea l number in  the range 1 < q ,<  |G|t Then G can be 

a lgorith m ica lly  expressed as A <> (B 0 C) so that |b 0> c| > q, C contains 

the free  variab le  x and j C| < q.

We can now con stru ctive ly  extend P2.

Step 1. Using Lemma 6 , decompose G as A ° (B 0 C) with |b 0 c| > n /2 , 

x in  C, and |c| < n /2 .

A ssertion : |A| = |g| -  ¡B 0 c| < n /2 . Thus, by P2, x(A ) < 2 lo g 2n -  1.

Restructuring C as C^x + C2 > by hypothesis P2 we a lso  have 

x(C) < 2  log 2n -  1. However, we can only bound (B| as |b | < n, whence, by 

PI, 12(B) < 2 lo g 2n -  1.

Step 2. I f  0 is  "+ " , w rite  B as B’ B", set G} <- A }C i, G2 A1C2 + 

AiB'B" + A2 ; h a lt .

A ssertion : Since both Ai and Ci have depth at most 2 lo g 2n -  2, Gj has

depth at most 2 lo g 2n -  1. As to G2 , each o f  the three terms in  i t s  

expression has depth at most 2 log 2n, whence G2 has depth 2 lo g 2n + 1 .

Since only 10 gate inputs are needed by the restru ctu rin g  combination 

we have x(G) < 2 lo g 2n + 1.
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Step 3. (0 is  I f  j B! < n ( /I) ~1, w rite  B = B’ B" and set

Gi «- (A iC ^ B 'B ", G2 «- A1C2 (B 'B") + A2 ; h a lt .

A ssertion : | BI < nCv̂ ) “ 1 im p lies , by PI, t2(B) < 2 lo g 2n -  2. S ince, by

the assertion  on Step 2, A^C] has depth no more than 2 lo g 2n -  1, Ĝ  

has depth bounded by 2 lo g 2n. We a lso  recognize that G2 has depth at 

most 2 lo g 2n + 1 , and sin ce  exactly  12 gate inputs are used fo r  the 

restru ctu rin g  com bination, we conclude that x(G) < 2 lo g 2n + 1.

Step 4. (0 is  |B| > n ( /2 ) “ 1) .  Write B = B'B" and set

Gi + (A iC i) B’ B ", G2 ^ (A1C2)B , B" + A2 ; h a lt .

A ssertion : |b | > n ( / 2)_1 im plies |c| < |g | -  |b | < n ( l  -  (v^ )“ 1) < n ( / 2) “ 3,

i . e . , by P2, t (C) < 2 lo g 2n -  2. From this and t (A) < 2 lo g 2n -  1, 

t2 (B) < 2 lo g 2n -  1 we conclude that Gj and G2 have depth at most 

2 lo g 2n and 2 log 2n + 1, re sp e c tiv e ly . Since 12 gate inputs are used fo r  

the restructuring  com bination, we have proved t (G) < 2 log  n + 1, thereby 

completing the extension o f  P2 and the proof o f  the lemma.|

We now have the fo llow in g  theorem:

Theorem 2. a boolean expression E can be rea lized  

by a network having at most 2 lo g 2 |E| le v e ls  and 6 |E| -  6 gate inputs, and 

using a fan -in  o f at most 3 .
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Proof: S ince, by the extension  o f  PI in  Lemma 5,

12 (E) < 2 log 2 IEI -  1 , and one more le v e l is  needed to r e a liz e  the 

expression  in E’ + E ", the theorem follow s.||

A re la ted  resu lts  was obtained by Brent [9 ] ,  who showed that 

fo r  fan -in  o f  2 the c o e f f ic ie n t  o f  lo g 2 |E| need not be larger 

than 3 i f  equipment lin ea r  in  |e | i s  desired . Thus, a s iza b le  

penalty in depth appears to  be necessary when the fan -in  r e s t r ic t io n  

is  tightened. An in te re stin g  open question is  whether by relax in g  

the fan -in  r e s t r ic t io n  to  4, 5, or more i t  is  p o ss ib le  to obtain a 

c o e f f ic ie n t  s ig n if ic a n t ly  lower than 2 w hile maintaining equipment 

lin ea r  in  IEI .
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