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REDUCTION OF DEPTH OF BOOLEAN NETWORKS WITH A FAN-IN'CONSTRAINT
F. P. Preparata, D. E. Muller, and A. B. Barak

December 15, 1975

Abstract

In this paper we present a family of techniques for the design
of combinational networks whose objective is the reduction of the
number of levels, subject to a constraint on the fan-in of the logic
gates. We show that a boolean expression with n literals and involving
the connectives AND and OR can be restructured so that the resulting
network has depth at most C~™log2n + 6, where $ < 0.415 and is
1.81, 1.38, 1.17, and 1 for maximum fan-in % of 2, 3, 4, and 5,
respectively. If we additionally require that the amount of equip-
ment of the resulting network be bounded by a linear function of n,
it is possible to bound the depth by 2 log2n with a fan-in of at

most 3.

Index terms: boolean expressions, combinational networks, network
depth, number of levels, computational complexity,
design algorithms, parallel computation.



Reduction of Depth of Boolean Networks with a Fan-In Constraint#

F. P. Preparata,* D. E. Muller,** and A. B. Barakt

1. Introduction

In the design of digital systems it is very important to use combin-
ational networks with small propagation delay in order to take full
advantage of the speed of the logical elements. Reduction of propagation
delay is achieved by designing networks with small numbers of levels, or
depth, since depth and propagation delay are proportional. Obviously, any
given boolean function can be realized as a two-level network, if unlimited
fan-in of the logic gates is allowed. However, fan-in limitations are a
very severe technological constraint and must be accounted for by any
design method.

In this paper, we shall describe a family of techniques for the design
of boolean networks, whose principal objective is the' reduction of network

depth. Specifically, we assume that a boolean function be given as an
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expression E involving the connectives AND and OR, with complements
appearing only on the variables. The design methods are procedures for
restructuring the given expression E into equivalent expressions whose
corresponding networks have bounded depth. Different methods will be
proposed depending on the maximum allowable fan-in of the logic gates used.

A main property of/our techniques is that all literals of an expression
E, i.e., all appearances of variables in E, are treated as distinct
variables; therefore, the relevant performance parameters, such as depth
and equipment, will be bounded in terms of the number of literals rather
than of the number of variables. It must also be pointed out that our
methods are more appropriately applicable tc the restructuring of expressions
where each variable appears a small number of times.

Related to this problem is the construction of design schemes df
boolean networks whose number of levels is bounded by a function of the
number of variables. The latter problem was studied some years ago by
Spira [1] and Preparata and Muller [2], among others, and the best known
result is a recent construction due to McColl and Paterson [3]. The
techniques described in this paper, however, are inspired by those used for
the restructuring of arithmetic expressions [4],[5],[6]. Brent et al. [5]
were the first to suggeststﬁat their scheme for the parallel evaluation of
division-free expressions could be applied to logical design, based on the

analogy which makes addition and multiplication*of numbers correspond to



disjunction and conjunction/of boolean variables, respectively. They
showed that when employing gate networks with a fan-in of two, the
minimum depth of any network for the realization of the function associated
with E, is no larger than C log2n, where n is the number of literals in E
and C= 2.465... . Subsequently, the constant C was reduced to 2 by
Barak and Shamir [7] and to 1.81 by Preparata and Muller [8J. Some
reservations were expressed in [8] about the practical significance of
restricting the fan-in to the value of two, since larger values are
technologically quite feasible, but it was felt that the techniques
presented there could be applicable to the practical problem. It is the
purpose of this paper to substantiate that expectation, by showing that
increasingly smaller values of C can be achieved by letting the maximum
gate fan-in grow.

In the next section we shall describe restructuring procedures for
depth reduction, using various maximum fan-in values, and calculate an
upper-bound to the depth achievable in each case. In Section 3 we shall
describe a procedure for upper-bounding network depth subject to the
additional condition that network size be a linear function of the number

of literals in the original expression.



2. Design methods for depth reduction

We shall now describe a family of design algorithms which can be used
to restructure a given boolean expression, so that the resulting equivalent
expression has as small depth as possible. The choice of algorithm will
depend on the maximum allowable fan-in of the logical gates to be used
in the network construction.

Let E be a boolean expression involving the connectives AND and OR,
denoted respectively by the symbols and The weight of E,
denoted by |EI, is the number of literals in E. During restructuring
we shall treat the original literals of E as distinct variables. Let
ci(E) denote the minimum depth of any combinational network with two
outputs E' and E" so that (E* + EM is equivalent to E. Similarly,
let Q(E) be the minimum depth of any combinational network with two
outputs E* and E** so that E* e E** is equivalent to E. We then define
~"2(E) A max(ci(E),c2(E)). Finally, we let t(E) denote the minimum
depth of any network realizing the function represented by E. The
integer £ denotes an upper-bound to the permissible fan-in of the
logic gates used.

We shall now give three design algorithms which are applicable to
&= 3, £=4, and £ > 5, respectively. The techniques we make use of are

quite general, and restructuring algorithms can be developed for larger values



of i along similar lines, although very large fan-ins are not practical.
Without loss of generality, an expression E is assumed to be given as a
binary tree. Given any subexpression F of E, suppose we replace F in E

with a free variable x and let G be the resulting expression. We then

define the composition of G and F with respect to x, written E= G < F, as the
expression obtained by substituting F for x in G. The expression G can

be expanded around x as GA&X + & or as (G3 + x) < Gi*, where 02,62,63, and

G+ are boolean expressions and |G | < |G for j = 1,...,4. Define the
sequences Lx,...,.Lr and To,...,Tjp of subexpressions of G according to the

following recursive equations:

(i) Ta=G
(ii)  TL = , with O™ e {*,+} and T+ is the subexpression
containing x for i = 1,...,r-1, and Tr = x.
Note that the sequence O0g,,..., Or_j defines a path from the root to x in

the binary tree associated with E. As we pointed out in [8 ], we have

GL“ T Ll+i G3 =1 L++J
0= 0i =+
that is, the expressions G2 and & contain no common literal. It follows

that either |Gi'] < \G\WV2 or |G| < |G]/2. Without loss of generality and
for simplicity of presentation, assuming that E is expressed as

Ao (b e C) with 0 e {=,+}, in the sequel we shall designate as "+"

the operation which allows us to write E= A2(B 0 C) + A2, with

IAI] < JA]/2.



Since E may be regarded as a binary tree, we shall make extensive use
of a decomposition technique illustrated in the following lemma on binary
trees, and originally due to Brent et al. [ 5], which we adapt to our case

and state without proof,

Lermma 1. Let E be a boolean expression and q a real number in the
range 1 < q < |E]. Then E can be algorithmically expressed as A o (B 0 O
Where A, B, and C are expressions with no common literal, (B 0 C) denotes
one of the expressions (B « C) or B+ C), and o] < [c] < g while
B] + | > qg.

We shall now describe three design procedures, associated with
Lemmas £, 3, and 4, corresponding to the cases £ £ 5, £ = 4, and £ = 3,
respectively. The case £ > 5 is likely to have the highest practical
value since logic gates with a fan-in of 5 are commonly available. The
other algorithms are of interest for design situations with more
stringent fan-in constraint, since they yield a noticeable delay improvement
over the result t(E) < 1.81 log2IlE] which we established in the past for
£=2 18]

Each of the following design procedures achieves in a constructive
way the extensions of two inductive hypotheses, referred to in each case
as Pl and P2, which respectively specify upper-bounds to t(E) and t2(E).
The validity of the procedures is proved in "assertions" following the

individual steps.



Lerrma 2. Let E be a boolean expression with |JE] > 1. Then for i > 5

t(E) < log21F] + 65, where 65 = log24/ 3.

Proof: We assume inductively

Pl. If J§ <n, then t(E) < max(log2le| + $,0).

P2. If |JE| <n, then t2(E)< max(log2IE],0).

By constructing a few cases it is easily seen that the induction may

be started with n = 4. The extension of Pl is provided by the following

algorithm, where |E] = n.

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with IB 0C > n/3

and |B] < | <n/3.

Assertion: JAl = |§| - B0 { £ 2n/3. We express E as Aj(B 0 C) + A2.
Since IB] < |C] <n/3 and A1 ~ JA]/2 < n/3, by P2 we see that
2(™M) Y2(E) ,t2(C) < log2(n/3) = log2n -2 + 65. Similarly JA2] " Ja] < 2n/3

yields, by P2, t2(A2) < log2n - 1 + 65.

Step 2. If 0is "+", write A2 = Ajk'[, B=B'B", C= C'C", and
A2 = A2 + A2 and restructure E as

E = AJA'IB'B" + AIAIC'C" + Aj + A halt.

Assertion: Each of these four terms is computable with at most [I°g2n - 1 + S&J

levels so that t(E) < log2n + 65.



Step 3. (0 is If Bl <n/4, write Aj = A}JA", C=CCM and
A2 = AE + A2 and restructure E as

E = AIA'IBC'C" + Ai + AJ; halt.

Assertion: B] < n/4 implies t(B) < log2n - 2 + 65, by PI; thus each of
the three terms is computable with at most [log2n - 1 + G& levels so that

t(E) < log2n + 65.

Step 4. (0 is Ibl >n/4). Restructure E as AiB,B,C,CM+ A2;

halt.

Assertion: o] > n/4 implies that also |c] > n/4, whence

IAN = IElI - 1Bl - ICJ<=n- n/4 - n/4 =n/2. Thus JAj| <n/4 and

IA21 < n/2, and, by PI, we have t(Ai) < log2n -2 + 65 and

t(A2) ~ log2n - 1+ 65. Thus, each of the terms is computable with at

most Jlog2n - 1 + 6% levels, yielding t(E) < log2n + 65.

To extend P2 to Je] = n, we shall assume that the expression E is
restructured as ET+ E", where the choice of which operation to designate
as "+" is arbitrary, a fact, we shall make use of. The extension is provided

by the following algorithm.

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with IB 0Cl > n/2

and IB] < |C] < n/2.



Assertion: JAl = |E| - BOc] <n - n/2 =n/2. Since Al < Ja] £ n/2 and

also |B] < IC] <n/2, we obtain, by P2, t2(A™,t2(B),t2(C) < log2n - X

Step 2, If O is "+", write Ai = AIA"™*C * C'C" and set E' « AjA"C'Cn,

E" AiB + A2; halt.

Assertion: Since t2(Aj),t2(C) ™ log2n - 1, E* is computable with at most
log2n levels. Notice that AjB + A2 is an expression obtained by replacing

(B 0 © with B in the original E. Moreover,IA™B + A2|=]E] - | <n- n/4 =
3n/4, since |C] > |BOc]/2 >n/4. Thus, by PI, t(E") <log2]ln + & =

1082 n = log2n.

Step 3. (9 is "e")e If |B] < 3n/8, write Aj = AiA'i", C- CVC-,rand

set E' ~ AJA'BC'C", E" < A2; halt.

1 0
Assertzon: IBl < 3n/8 implies,by PI, t(B) <log2 gn + 65= log2n - 1.
Since t2(A),t2(C) < log2n - 1, weobtain t(E') < log2n. Also 2] £ JA < n/2

yields, by PI, t(A2) = t(E") < log2n - 1 + 65 < log2n.

Step 4. (0 is and |p] > 3n/8). Write B= BBmC = C'C" and set

E' AiBTB,C'C", E" « A2; halt.

Assertion: |B] > 3n/8 implies |c] > 3n/8, whence Ja]l= Jel- |- Ic] <
n - 3n/4 < 3n/8. Thus, by PI, t(A}) < log2n - 1. Since t2(B),t2(C) < log2n - 1

and t(A2) < log2n, we obtain t(E'),t(E") < log2n.
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Since in all restructurings the required fan-in never exceeds 5,

this concludes the proof of the lemma.]]

The proofs of the two following Lemmas develops in a manner very
similar to the proof of Lemma 2, except for the numerical values involved.
In view of this strong similarity we shall considerably abbreviate the

arguments.

Lemma 3. Let a be the largest root of the equation z3 =22 + 2z - 1

and let E be a boolean expression with Je] >1. Then, for £ = 4,

2
t(E) < log ~—E]/log a4 GCHog2|E] + 61+

(since a = 1.8019, we have G* = 1.177... and 6~ = 0.134...).

Proof: We assume inductively

Pl. If JE <n, then t(E) < G#nax(log21E] + 6~,0).

P2. If | <n, then.t2(E) < Cifmax(log2(a 1) |§l + 67,0).

It is easily seen that the induction may be started with n = 4. The

extension of Pl is given by the following algorithm, where Je] = n.

Step 1. UsingLemma 1, decompose E as A ° (B 0 C) with
IBOC>(1- Il/la(a - I))n and |B] < [] <(1-1la(a -1))n.
Assertion: JA] = |§- IBO d < na~V(oi - 1), whence, by P2,

t2(A2) ~ Citlog2n - 1+ 6~ Also, JAl < JAl2< na-1/2(a - 1) <noT2/(a - 1)
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yields, by P2, t2(Ai) < GHog2n - 2 + 64. Notice that |B] < | <
n(l- lI/a(a- 1)) = na"2, by the defining equation of a, whence, by PI,

t(B),t(C) < C4log2n - 2 + 6"

Step 2. If O0is "+", write A} = AMA", A2 = AE + A2 and restructure

E as E = AIAfB + AIA'IC + A~ + A% halt.

Assertion: Each of the four terms requires at most |[dHog2n - 1 + levels,

whence t(E) < CHog2n + Si*.

Step 3. (0 is M#n). Write Aj —AJAN, A2 = A£E + A> and set

E = AIA'IBC + + A2: halt.

Assertion: Each of the three terms requires at most Ci+log2n - 1 + 6“levels,

whence t(E) < GHog2n. The extension of Pl is completed.

The following algorithm extends P2 to |E|] = n. Here again we seek a

restructuring of the form E=E' + E".

Step 1. Using Lemma 1, decompose E as A° (B 0 C) with

IBOQ “na_l(a - 1) and Jo] < el <na_l(a - 1).

Assertion: 1A] < n - norl(a.- 1) = na-1, whence
t2(Ai) < CL*log2(a - I)n - 1 + 64 and t(A2) ~ GHogZ2na“l + 6” < CiHog2(a - I)n + 6/

Also t(B),t(C) < GHog2na™l(a ~ 1) + 6~ = Citlog2(a - I)n - 1 + 64.
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Step 2. If Ois write Aj = A{A" and set E' « AIA"C, E" ® AjB + A2;

halt.

Assertion: Since t2(Ai),t(C) < Citlog”~ci - I)n - 1 + 62, then
t(E') < GHog2(a - I)n + 6j+ Considering now the expression AjB 4 A2y
since | > B0 d/2 £ na-1(a - 1)/2, we have IAjJB + A21 < n- naF*@a. - 1)/2 <

n(a - 1) (by the defining equation of a and t(E") < GHog2(a - I)n + 6i*

Step 3. (0 is "eMe Write A} = AJAjl, and set Ef A]JA"BC, E" « A2;

halt.

Assertion: t2(Ai),t(B),t(C) < caog2(a - I)n - 1+ 64 and t(A2) <
Citlog2(a - I)n + @+tyield the desired result. This completes the extension

of P2.

To conclude the proof of the lemma, notice that in no restructuring

a fan-in larger than 4 has been used. ||

Lemma 4. Let 3 be the positive root of the equation IM = 222 + 2 and

let E be a boolean expression with Je] >1. Then for | = 3,

t(E) < loglel/log 3 4 C3log2|H

(since 3 = 1.6528..., we have C3 = 1.379...).
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Proof: We assume inductively:
pi1. If Je] <n, then t(E) < C3log2]|E],
p2. If Je] <n, then t2(E) ~ C3I0g2(3|E|/2).

In this case it is seen that the induction can be started with n = 5, The

extension of Pl is provided by the following algorithm, where Je] = n.

Step 1. Using Lemma 1, decompose E as A ° (B 0 C) with

BOd >n(l - 25*2) and ] < f] <n@ - 25%2).

Assertion: lal] = n- n(l - 25“2) =2nS“2, whence JA] <nS*2 and
IA21 ~ 2nS“2. Thust(A”) < C3log2n- 2 and t2(A2) ™ C3log2 ™ 2nS~2 =
C3log2n *= 1. Also, since (1 - 2S"2) = 23"# < S™2, we have

t(B) ,t(C) ~ C3log2n - 2 and t2(C) < C3log2 2nS 1+ = C3log2n - 3.

Step 2. If 0 is write A2 = AE + A" and set E = ANBC + AE + A*

halt.

Assertion: Each of these three terms is computable with at most .

IBlog2n - ]j levels whence t(E) < C3log2n.

Step 3. (0 is . If IBl <S*3, then write C=C +C',

A2 = A2+ AH and set E= AiB + C' + C") + A + Anhalt.

Assertion: IB] < S"3 implies t(B) < C3log2n - 3, and, since t2(C) £ C3log2n - 3

we obtain t(B + C' + CM ~ C3log2n - 2. This and the upper-bounds to t(Aj)
|

and t2(A2) yield t(E) < C3log2n.
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Step 4. (0 is "+" and |B] > $"3). Set E= AB + AJC + A2 and halt.

Assertion: Bl > $“3 implies Jc] > $“3n and o] <n - 23”3 <n3-1,
by the defining equation of 3, whence t(A2) ™ C3log2n - 1. Also

Al < Ja]l/2 < n3~1/2<n3~2 yields t(A2) < C3log2n - 2. Therefore each
of the terms requires no more than C3log2n - 1 levels, so that

t(E) < C3log2n. This completes the extension of PI.

The following algorithm extends P2 to E |= n.

Step 1. Using Lemma 1, decompose E as A g (B 0 C) with

IBOC >n/2 and Bl £ |C] < n/2.

Assertion: JA] <n - n/2 =n/2, so if A»(B 0 C) is written as Ai(B 0C + A2

then t(Ai) ,t(A2),t(B) ,t(C) ™ C3log2]-n3_1 = C3log2]-n. - 1.
Step 2. If |C] < n3_1/2, set E' + A\(B 0 C) and E" + A2; halt.

Assertion: I ~ n3_1/2 implies Bl < n3-1/ 2, whence
t(B),t(C) < C3log2]-n - 2, so that t(B 0 C) < C3log2 | n- 1 and

t(E’) < C3log2 -] n.

Step 3. (I >n3-1/2). If Ois set E' « AIBC and E" & A2;

halt.

Assertion: t(Ai),t(B),t(C) < C3log2 | n - 1 yield t(E') < C3log2 -] n.
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Step 4. (I >n3 a/2, 0is . Set E’ AaC, E" + AaB + A2; halt.

Assertion: From t(Ai),t(C) ~ C3log2j n - 1 we have t(E') < C3log2 n.
With regard to the expression AiB + A2, since |c] > n&-1/2, we have
JAB+ A2 = Bl —IC] <n - n3_i/2 <nB/2, whence t(E") < C3log2 | n.
This completes the extension of P2.
To complete the proof of the lemma, we notice that in no restructuring

has a fan-in larger than 3 been used.||

The three preceding results and the result of [8 ] yield the following

theorem.

Theorem 1 Let E be a boolean expression. Then, depending upon the
maximum allowed fan-in £ of the logic gates used, the boolean function
described by E is realizable by a logical network requiring no more than
CElog2 JH] + levels where the constant C is 1.81, 1.38, 1.17, and 1,
and the constant is 0, 0, 0.134, and 0.415 for £ =2, £ » 3, £ = 4,
and £ > 5, respectively.

It seems unlikely that a significantly smaller constant CO can be
obtained for any practical values of £. Nevertheless, it can be shown
theoretically that can be made to approach zero as £ approaches
infinity. To see this, let e be any positive number less than 1. We

e
choose the fan-in £ to be the least integer no smaller than 3" and
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~  elog23, and show that t(E) < elog2i]g] + 6~ using this fan-in. As
before, assume inductively the result holds when |JE| <n for some given
integer n. This can certainly be verified initially when n = 4. Next,
take |E] - n and use Lemma 1 with g = n2-2/ Gto decompose E as A ° (B 0 O
where B 0 > n2 2/£ and |B] < |C] <n2-2/e. Writing E as ABC + A2
if Ois e or as AB + AAC+ A2 if 0O is "+", we can further decompose
A} and A2 if either or both have weights as great as n2“2/£* For these
decompositions, we use the same q in Lemma 1 as before. Continuing in
this way, we see that it is possible to write E as a sum of products in
which each factor has weight less than n2“2/e. We check that the number
of products and also the number of terms in each product can be no greater
than 322/e < £, so the products can be formed simultaneously in one level
and the sum in a second level. Hence, t(E) < elog2n2_2/e + 6™~ + 2 =
elog2n + 6" and the inductive hypothesis is justified.

Before closing this section, we consider the determination of the
upper-bound to the amount of equipment required by the design methods
outlined above. This determination can be carried out by techniques which
have been described elsewhere[5,6] and will only be sketched here. As a
measure of the amount of equipment we may consider either the number of
gates or the number of gate inputs; it is easily seen, however, that the
bounds we would obtain for these two measures have the same rate of growth
as a function of Je]. Referring to any of the algorithm pairs associated

with Lemmas 2, 3, and 4, we assume inductively that, for a given integer n
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and |é| < n, the equipment required to realize E is at most k15E|i£ or

k2 1EJ)Y depending upon whether E is restructured as one or as two expressions,
with constants ki >0, k2 >0, £ > 1. W then take Je|] = n, and, for each

of the restructuring forms presented in the algorithms, we obtain an
inequality involving kj, k2, and £. For example, if E is restructured as
AIA'IBC' C" + A2 + A2 (Step 3 of the algorithm for Pl in Lemma 2) we have

the inequality
k2 JAi|C+ k2|2 ™ + k! |B|C + k2 ]c]™ < KI|]EI®

where the left side must be maximized in the domain of JAj ], |A21, |pb], and
1G , treated as real variables. The exponent £ may then be chosen as the least
one for which all the inequalities produced by an algorithm pair are
satisfied. For example, for the case of Z > 5, an upper-bound to the
amount of equipment is 0O(]e(1,55),

In general, since in all cases separate subnetworks appear to be
necessary for realizing Ai and A2. the resulting overlap yields a bound
in the equipment which is superlinear: in Je]. In the next section we
shall present a design algorithm which yields networks whose equipment
is guaranteed to be O(]e]), but whose delay is greater than that for the

unrestricted case
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3. A design method yielding equipment 0(\e\)

Let E be a boolean expression, and let dj(E) denote the minimum depth
of any combinational network with two outputs E* and E", so that (El + E")
is equivalent to E, and with no more than 6|E] - 6 gate inputs. Similarly,
let d2(E) denote the minimum depth of any network with two outputs E* and
E**, so that E* e« E** is equivalent to E, and with no more than 6| - 6
gate inputs. We then define 12(E) 4 max(di(E),¢2(E)).

In an analogous manner, let G be a boolean expression with a free
variable x so that we may restructure G into the form Gjx + &. Then define
X(G) as the minimum number such that a network can be constructed which
simultaneously realizes the functions Gj and & using no more than
t(G) - 1 and (G) levels, respectively, and with no more than 6] - 6
gate inputs.

We can now prove the following lemma:

Lemma 5. Let E and G be boolean expressions and let G contain a
free variable x. Then for fan-in i = 3 we have
(i) 12(E) < max(2log2|g - 1,0)

(ii) t(G) < 2 log2lg] + 1.

Proof: Propositions (i) and (ii) are seen to hold when |g <4
and |§g <4. We formulate the following inductive hypotheses, starting with

n = 4.
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Pl. If J§| < n, then t2(E) max(2 |°g21E] - 1,0).

P2. If | <n, then x(G) < 2 log2]g] + 1.

To extend PI to |JE| = n, we shall assume that E is realized as E' + E"

and leave free the designation of which operation is We shall then use

the following algorithm:

Step 1. Using Lemma 1, decompose E as Ao (b 0 C) with |BO C] > n/2,

B] < I < n/2.

Assertion: W] = lel- B0 Jd < nJ/2. The expression A can t3
be restructured as A}X + A2. Then, by P2, x(A) <2 log n - 1.

Also Bl < I9 <n/2 imply, by PI, t2(B),t2(C) < 2 log2n - 3.

Step 2. If |B| < n(t/2)-3, write B= B'B", C=C' 0 C", and set

E' « AB*B") 0C 0C", E" « A2; halt.

Assertion: Bl <n(/2)-3 implies, by PI, t2(B) < 2 log2n - 4. Since
t2(C) < 2 log2n - 3, (B'B") 0 C- 0 C" has depth no more than 2 log2n - 2,
so that E' has depth no more than 2 log2n - 1; also, the depth of E" is
at most 2 log2n - 1. Let Q(E'\E") be the number of gate inputs of the
network realizing E' and E", with analogous definitions of Q(B' ,B"),
Q(C'C™), and Q(Ai,AM).. Since at most 7 gate inputs are required to

combine Aj,A2,B’,B",C’', and C" into E' and E", and by the inductive



20

assumptions Pl and P2, Q(Ai ,A2) ~ 614 - 6, Q(B''B") < 61Bl - 6, and

QEC',cmH ~ 61a - 6, we have

Q(E' ,E") = Q(A2,A2) + Q(B’ ,BN) + Q(C*CM + 7
<614 - 6+ 618 - 6+ 61 - 6+ 7= 6(lal] + IBl+ Ic]) -18+7

= 6|E|] - 11 <6]|E| - 6.

In order to abbreviate subsequent analogous arguments, we notice that all
that is needed to prove the upper-bound on the number of gate inputs

is that no more than 12 gate inputs are used in the restructuring combination.

Step 3. (Bl > n(*2)*3). Write B=B'B", and C= C'C" and set
E" « A2. If 9is "+" set E' ~ AiC’'C" + A]B'BM else set

E' + (AjC*C")B’B"; halt.

Assertion: [Bj >n(/2)”3 implies |G 2 n(/2)“3, whence JAI = |g -
- BEF IA <n(l- 2C™)"3) <n(/2)*3. Thus, by P2, t(A) <2 log2n- 2.
It follows that AjC'C" and A]B'BMboth have depth at most 2 log2n - 2;
similarly (AiC'C'~B’B" has depth at most 2 log2n - 1, whence in all cases
E' has depth at most 2 log2n - 1. We also note that EM= A2 has depth at
most 2 log2n - 2, and that at most 8 gate inputs are needed for the
restrucuring combination, thus completing the extension of PI.

To extend P2 to |g] = n we need a simple lemma on binary trees, also

due to Brent [ 4], which we state without proof:
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Let G be a boolean expression with a free variable
x and let g be a real number in the range 1 < q,< |G|t Then G can be
algorithmically expressed as A (B 0 C) so that |b O C| > g, C contains
the free variable x and jg < g.

We can now constructively extend P2.

Step 1. Using Lemma 6, decompose Gas A ° (B 0 C) with |p O C| >n/2,

x in C, and |c] < n/2.

Assertion: JA = lgl- B 0C] <n/2. Thus, by P2, x(A ) <2 log2n - 1.
Restructuring C as C™ + C> by hypothesis P2 we also have
x(C) <2 log2n - 1. However, we can only bound (B] as [b] < n, whence, by

PI, 12(B) < 2 log2n - 1.

Step 2. If O0is "+", write B as B'B", set G} < A}Ci, & AlC2 +

AiB'B" + A2: halt.

Assertion: Since both Ai and Ci have depth at most 2 log2n - 2, Gj has
depth at most 2 log2n - 1. As to &, each of the three terms in its
expression has depth at most 2 log2n, whence & has depth 2 log2n + 1.
Since only 10 gate inputs are needed by the restructuring combination

we have x(G) < 2 log2n + 1.
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Step 3. (0 is If jB! < n(/1)~1, write B = B'B" and set

Gi « (AICA"B'B", & « AlQ(B'B") + A2; halt.

Assertion: Bl < nC)“1 implies, by PI, t2(B) < 2 log2n - 2. Since, by
the assertion on Step 2, A™C] has depth no more than 2 log2n - 1, &
has depth bounded by 2 log2n. We also recognize that & has depth at

most 2 log2n + 1, and since exactly 12 gate inputs are used for the

restructuring combination, we conclude that x(G) < 2 log2n + 1.

Step 4. (0 is IBl >n(/2)“1). Write B= B'B" and set

Gi + (AICi)B'B", @ ~ (ALC2)B,B" + A2; halt.

Assertion: | >n(/2)_1 implies o] < lgl- bl <n( - (v™)*“1) <n(/2)*“3,
i.e., by P2, £t(C) < 2 log2n - 2. From this and t(A) < 2 log2n - 1,

t2(B) < 2 log2n - 1 we conclude that Gj and & have depth at most

2 log2n and 2 log2n + 1, respectively. Since 12 gate inputs are used for
the restructuring combination, we have proved t(G) < 2 log n + 1, thereby

completing the extension of P2 and the proof of the lemma.]

We now have the following theorem:

Theorem 2. a boolean expression E can be realized

by a network having at most 2 log2|E] levels and 6]E] - 6 gate inputs, and

using a fan-in of at most 3.
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Proof: Since, by the extension of Pl in Lemma 5,
12(E) < 2 log2IEl - 1, and one more level is needed to realize the

expression in E' + E", the theorem follows.| |

A related results was obtained by Brent [9], who showed that
for fan-in of 2 the coefficient of log2 |E] need not be larger
than 3 if equipment linear in Je] is desired. Thus, a sizable
penalty in depth appears to be necessary when the fan-in restriction
is tightened. An interesting open question is whether by relaxing
the fan-in restriction to 4, 5, or more it is possible to obtain a
coefficient significantly lower than 2 while maintaining equipment

linear in IEI.
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