
February 2014 UILU-ENG-14-2201

DECOMPOSING GENOMICS
ALGORITHMS: CORE
COMPUTATIONS FOR
ACCELERATING GENOMICS
ANALYSES

Arjun P. Athreya, Subho S. Banerjee,
C. Victor Jongeneel, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158320079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18
 298-102

REPORT DOCUMENTATION PAGE Form Approved
 OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
February 2014

3. REPORT TYPE AND DATES COVERED

 4. TITLE AND SUBTITLE
Decomposing Genomics Algorithms: Core Computations for Accelerating Genomics
Analyses

5. FUNDING NUMBERS

NSF CNS 13-37732 (National Science
Foundation)

6. AUTHOR(S)
Arjun P. Athreya, Subho S. Banerjee, C. Victor Jongeneel, Zbigniew T. Kalbarczyk, and
Ravishankar K. Iyer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Coordinated Science Laboratory, 1308 W. Main St., Urbana, IL 61801

8. PERFORMING ORGANIZATION
 REPORT NUMBER
UILU-ENG-14-2201

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230; Infosys, Hosur
Road, Electronics City, Bangalore, 560100, India; IBM Faculty Award, 1101 Kitchawan
Road, Yorktown Heights, NY 10598; Office of the Vice Chancellor for Research,
University of Illinois at Urbana-Champaign, 4601 E. John, Champaign, IL 61820.

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

 13. ABSTRACT (Maximum 200 words)

Technological advances in genomic analyses and computing sciences has led to a burst in genomics data. With those advances, there
has also been parallel growth in dedicated accelerators for specific genomic analyses. However, biologists are in need of a
reconfigurable machine that can allow them to perform multiple analyses without needing to go for dedicated compute platforms for
each analysis. This work addresses the first steps in the design of such a reconfigurable machine. We hypothesize that this machine
design can consist of some accelerators of computations common across various genomic analyses. This work studies a subset of
genomic analyses and identifies such core computations. We further investigate the possibility of further accelerating through a deeper
analysis of the computation primitives.

14. SUBJECT TERMS
Bioinformatics; Genomic analyses; Algorithms

15. NUMBER OF PAGES
8

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

Decomposing Genomics Algorithms: Core
Computations for Accelerating Genomics Analyses

Arjun P. Athreya∗, Subho S. Banerjee†, C. Victor Jongeneel‡, Zbigniew T. Kalbarczyk∗ and Ravishankar K. Iyer∗†
∗Dept. of Electrical and Computer Engineering

†Dept. of Computer Science
‡The Institute for Genomic Biology University of Illinois at Urbana-Champaign, USA

{athreya2, ssbaner2, vjongene, kalbarcz, rkiyer}@illinois.edu

Abstract—Technological advances in genomic analyses and
computing sciences has led to a burst in genomics data. With
these advances, there has also been parallel growth in dedicated
accelerators for specific genomic analyses. However, biologists
are need of a re-configurable machine that can allow them to
perform multiple analyses without needing to go for dedicated
compute platforms for each analysis. This work addresses the
first steps in the design of such a re-configurable machine.
We hypothesize that this machine design can consist of some
accelerators of computations common across various genomic
analyses. This work studies a subset of genomic analyses and
identifies such core computations. We further investigate the
possibility of further accelerating through a deeper analysis of
the computation primitives.

I. INTRODUCTION

An unprecedented growth in genomics has created a data
deluge available for various analyses. The nature of com-
putations on these large data-sets are very complex. Several
tools exist that have accelerated or have been optimized for
performance of various genomic analyses. These optimizations
have been for specific algorithms and have been implemented
on compute platforms such as FPGA or GPU [1] [2] [3] [4].
However, the future of computations on the genomic data calls
for a re-configurable machine that can be optimized for not
one but many algorithms of genomic analyses.

In this work, we hypothesize that some core computations
are common across many algorithms of genomic analyses.
We believe that this approach is valid because mathematical
models are used to best describe the various phenomenon
in biology. Therefore, if there are several such analyses that
study similar or causal phenomenon in biology, the underlying
mathematical computations could also be similar across many
those analyses. If this belief is true, as computer scientists
we can design and build machines which support dedicated
hardware for such computations and allow for analysis specific
software libraries (“glue-code”) that pre-process data inputs
to these dedicated hardware for computations. An intelligent
programming interface or a scheduler that knows the com-
putations in the algorithm for the specific analysis schedules
those computation accelerators and the software libraries to
complete the analysis.

The advantages of such a re-configurable machine is three-
fold as illustrated in Figure 1. First, multiple analyses can be

run on one machine for the same data-sets which could use
intermediate computation’s output as inputs for other analyses
(Multiple sequence alignment algorithm’s outputs can directly
feed to a motif-finding algorithm). Second, if the computation
hardware already exists and new algorithms are proposed in
the future, only software libraries need to be developed. Else,
new dedicated computation blocks can be added when the need
arises without necessarily changing the rest of the machine’s
design. Finally, in cloud hosted services, the virtualization can
be put to best use to create instances of these software libraries
that can reuse the dedicated compute hardware.

In this work we call these common core computations of
various analyses as memory-less computations. What we mean
by memory-less in this work is, the dedicated hardware for
these computations given an input compute the output in the
same manner irrespective of what genomic analysis is using
them. A simple example to illustrate this is, if two analyses
use matrix multiplication in their pipeline and let there exists
a dedicated hardware for the same. Once the dedicated matrix
multiplier hardware is fed with its input data, it computes the
resulting matrix the same way irrespective of which of the
analysis is making it multiply two matrices. To this end, the
first half of this work studies a subset of popular genomic
analyses and identifies such core computations. We then look
at a particular example of such a decomposition. And how
it might benefit from the plethora of research dealing with
acceleration of these core-computations on several hardware
platforms (like FPGAs and GPUs) and software programming
frameworks (MPI, Charms++ etc.).

Remainder of this paper is organized as follows. In Sec-
tion II, we identify the core computations of some well used
genomic analyses. Then in Section III, we look at how the
multi-sequence alignment problem can be accelerated under
this scheme of breaking up larger genomic work-flow com-
ponents into their constituent computations and accelerating
them. In Section IV, we explore possible optimizations that
can be applied to the core computations that might be difficult
to apply to the original application. Finally, we gather our
conclusions and discuss futures avenues expanding on this
work in Section V.

Fig. 1: This figure illustrates a cloud-hosted genomics service with a re-configurable machine design. Biologists provide the inputs, choose
the analysis and the methods. The task server creates an instance of a virtual machine (VM) providing the biologist’s inputs. The VM
accesses the dedicated hardware for core computations in the hardware pool. The output is then fed to the biologists and the hardware is
released for other needing analysis.

II. CORE COMPUTATIONS OF GENOMIC ANALYSES

In this section we discuss some well-studied genomic anal-
yses and identify their core computations. We present three
classes of genomic analysis, their algorithms and computa-
tions in those algorithms. The three classes we present are
phylogeny, sequence alignment (pairwise and multiple) and
single-nucleotide polymorphism (SNP) calling.

A. Observation

We discuss numerous algorithms and methods for various
genomic analyses later in this section. However, we present a
summary of our observation of the various genomic analyses
tabulated in Figure 2. Our observation quantifies the common
computations across the analyses studied in this work. In
SectionsII-B - II-D, we analyzed 24 tools and identified their
core computations.

We group arithmetic mean and least-squares computations
as linear algebraic computations. With found that 46% (11
of 24) of the algorithms or tools comprised arithmetic means
or least-squares as their core computation while the remaining
54% (13 of 24) of had solving HMM (Hidden Markov Model)
as their core computation. About 9% of the tools comprised
both core computations, these were flexible software libraries
that allow users to specify the method of performing a par-
ticular genomic analysis. We further note that, in particular

Viterbi algorithm was used in 80% of these tools to estimate
the sequence of hidden states, while the remaining used Baum-
Welch algorithm. Our study of these analyses and algorithms
though don’t encompass the entire space of genomics, it at-
least gives us the needed insight of whether there exists such
common core computations across many analyses.

We thus show that Some core computations are common
across many genomic analyses. We next discuss how we
arrived these core computations for the genomic analyses. We
will later discuss discuss the significance of the existence of
these common core computations for re-configurable machines
for genomic analysis workflows.

B. Phylogeny

Phylogeny or the area of Phylogenetics is the study of
evolutionary relationship among a group of organisms given
their DNA or amino acid sequences. A phylogenetic tree
is used to describe the evolutionary relationship among the
organisms, which is hierarchical. The tree can be rooted or un-
rooted depending on the existence of a common ancestor. The
process of using such sequences to arrive at the phylogenetic
relationship is a two-step process. First, the tree’s structure is
established and then branch length of the trees is estimated.
The biological significance of these two steps is that, the tree’s
structure explains the ancestry of the organisms being studied

Fig. 2: This table summarizes our study of three major genomic analyses, their algorithms and our finding of their core computations.

and the branch length is an indication of the amount of genetic
changes during the evolution.

There exists three classes of methods that can be used to
construct the phylogenetic trees. These classes are 1) distance
methods, 2) parsimony methods and 3) probabilistic methods.
We discuss the distance methods and the probabilistic meth-
ods, popular algorithms in each of them and identify their core
computations.

Distance Methods

Distance methods use genetic distance between sequences
input studying their evolutionary relationships. Distances are a
function of rate of mismatches in aligned regions of the input
sequences. Several methods have been proposed to calculate
these distances, with the Jukes-Cantor distance calculation
being among the most used [5].

Generally, the distance methods use some variants of hierar-
chical data clustering algorithms. The goal of these algorithms
is to create clusters for inputs which have the least of the
genetic distances between them and then recursively reduce
the inter-cluster distances to arrive at the phylogenetic tree.
We can broadly define genetic distance as the occurrences of
nucleotide changes in regions of aligned sequences. Popular
algorithms that perform these actions are the Unweighted
Pair Group Method with Arithmetic Mean and the Neighbor-
joining [6], [7]. The assumptions in these two algorithms
differ with respect to the fact that the evolution happens at a
constant rate. There has been several works on improving the
computation speeds of neighbor-joining algorithm by speeding
up the distance calculation and the search for nucleotides to
form the cluster [8]. However, the core computation in both
these algorithms is the arithmetic mean. Tools or software
packages that use these methods with the underlying core
computation of arithmetic mean are PHYLIP, MEGA, TNT,
ClustalW, PAUP, T-REX [9] [10] [11] [12], [13], [14].

Another way of obtaining the phylogenetic tree is by min-
imizing the least-squares of genetic distances [15]. Naturally

here, the core computation is the minimization of least-
squares. It has been shown that finding a phylogenetic tree with
optimal branch lengths using this method is a NP-complete
problem. However, assumptions in constructing the distance
matrices and minimization for least-squares allow for a poly-
nomial run-time [16]. Tools or software packages that use
minimization of least-squares methods as the underlying core
computation to construct the phylogenetic trees are PHYLIP,
PAUP and DARWIN [17].

Probabilistic Methods

Maximum likelihood (MLE) method is among the most
popularly used probabilistic methods to obtain the phylo-
genetic tree. A substitution matrix is used to account for
mutations (nucleotide change at a position in one sequence
to another nucleotide in another sequence). The way MLE is
used to derive the phylogenetic tree is as follows. Each site
of a nucleotide (A, C, T or G) in a sequence has a likelihood
and is defined by a model (examples include Markov Model,
Hidden Markov Model, Poisson Model). Total likelihood of
the sequence is a product of individual likelihood of the
sites in the sequence, assuming each site undergoes mutations
independently. Now, MLE of the tree is the topology that
yields the highest likelihood for the model used to describe
the mutations [18].

Among the many probabilistic models, Hidden Markov
Model (HMM) is the most popularly used to describe the
probability of a sequence arising from another sequence. The
observed states of the HMM are the nucleotides of the known
sequence and the hidden states are the sequence of states
in the original sequence that emit the observed sequence.
Given the independence nature of mutations, Viterbi algorithm
is most popularly used to estimate the HMM’s parameters
and thereby solve the MLE. Other popular algorithm used
to estimate the parameters of the HMM is the Baum-Welch
algorithm. Variants of the HMM are also proposed to obtain
phylogenetic trees in a more computationally efficient man-

ner while still improving the accuracy [19]. Some software
packages that output the phylogenetic tree given the sequences
are PHYLIP, PhyML, mrBAYES, RAxML, MEGA5, Clustal-
Omega, ClustalW [9] [20] [21] [22] [23] [11]. Recent work has
also looked at using Markov-Chain Monte Carlo (MCMC) to
infer the phylogenetic tree and the mentioned tools are support
MCMC as well [24].

C. Sequence Alignment

Sequence alignment is a process of establishing the con-
served regions between sequences. If it is between two se-
quences, then it is called pairwise sequence alignment, or it is
called as multiple sequence alignment (MSA). We will discuss
the algorithms for sequence alignment and identify their core
computations.

Pairwise Sequence Alignment

Alignment can be local or global. In global alignment, an
attempt is made to align every residue of the two sequences.
Local alignment aligns one sequence with smaller regions of
the larger sequence which have high similarity. Both these
types of alignments are largely solved dynamic programming
problems [25] [26]. The algorithms for global and local align-
ment are popularly known as Needleman-Wunsch and Smith-
Waterman algorithms respectively. Both these methods strive
towards establish an optimal alignment that is the maximum
weight trace of the path from the originating nucleotide to
the last nucleotide visited in the sequence. The algorithm
recursively solves the problem by increasing the size of the
comparison by one nucleotide each time. On reaching the end
of the sequences, back-tracking is used to trace the optimal
alignment. Both these popular algorithms are deterministic
methods of pairwise alignment. Core computations in these
algorithms are matrix traversal with comparisons and addi-
tions. Some of the many tools which use these computations
are AlignMe, Bioconductor, Bioperl and EMBOSS [27] [28]
[29] [30]. There exists heuristics based approaches using
pattern matching which allow for searching databases which
output possible sequences that show alignment with an input
sequence such as BLAST and FASTA [31] [32]. We will not
discuss these in this work.

Multiple Sequence Alignment

We particularly discuss progressive methods for multiple
sequence alignment in this work. As the name indicates, pro-
gressive methods align multiple sequences in stages. In the first
stage, pairwise distances between sequences are computed.
Dynamic programming techniques are used to compute the
divergence between sequences. In the second stage, guide tree
similar to a phylogenetic tree for the sequences is constructed
using the distances constructed in the first stage. The hier-
archical clustering techniques discussed in Section II-B are
used in the second stage. In the third stage, the sequences are
aligned with reference to the phylogenetic tree starting with
the sequences showing least of similarity and then eventually
the most similar sequences get matched. CLUSTALW is the

most popular tool that uses this approach to align multiple
sequences. One core computation of the second stage of
progressive method is the use of HMM with Viterbi algorithm
for arriving at the guide tree. Some other tools which use this
computation to align multiple sequences are ClustalOmega,
UGENE, SAM, Phylo, Probalign and T-COFFEE [33] [34]
[35] [36] [11].

D. Single Nucleotide Polymorphism Calling

Single Nucleotide Polymorphism (SNP) is a variation in
the DNA sequence when a single nucleotide in the genome
differs between organisms. These single nucleotide mutations
are also referred to as variants, and the process of detecting
these is known as SNP calling or variant calling. SNP calling
is used heavily to for various analysis such as how prone is
an individual to a particular disease.

In this work, we do not describe the workflow or pipeline
of variant calling, which includes alignment of sequences and
other functions as error corrections. We focus only on the
algorithms or implementations of variant calling that helps
detect these mutations. GATK and SAMTOOLS are popular
tools which detect these variants and the basic idea of the
detection is as follows [37] [38]. A likelihood model is used
to estimate the best model for both the type of genome and
the variants (allele frequencies to be specific). They output
the posterior probability of the variant at each site. The model
used for the likelihood in both these tools is the Profile HMM.
Profile HMM provide the added benefit of using a well-
defined probabilistic theory and insertion scores instead of
using heuristic methods. Viterbi algorithm is used for training
and estimation of the profile HMM’s parameters in these tools.

E. Memory-less Computations

The outcome of these observations leads us to think of the
following. If there exists these core computations common
across many genomic analyses, then we could provide dedi-
cated (optimized for performance and speed) compute engines
in hardware for the same. This means that we will need
the software “glue-code” to prepare and feed the input data
to these dedicated compute engines. These compute engines
will process the input data, perform computations on them
and provide an output. Thus it brings us to a point where
these compute engines and their computations are completely
oblivious to the genomic analysis calling these computations.
We call these application oblivious computations as memory-
less computations.

The impact of identifying memory-less computations is that
it allows biologists to only write and optimize the glue-code
for genomic analysis of their interest and let the dedicated
compute engines perform action on the input data. Therefore,
as and when new genomic analysis techniques are identified,
only the glue-code has to be written and/or new compute
blocks need to be installed and the machine is ready. This
means that the same machine with a combination compute
blocks can be reconfigured for different applications with an
efficient scheduler and programming interface, on one machine

as shown in Figure 1. Thus this could reduce cost of running
genomic applications and could lead to realizing more such
applications which could be hosted on the cloud.

III. DECOMPOSING THE CLUSTAL-W ALGORITHM

In this Section, we demonstrate how an algorithm can be
decomposed into the memory-less computations described in
Section II and consequently be constructed as a streaming
computation. We use the Clustal-W algorithm for Multi-
Sequence alignment as an example.

A. The Clustal-W Algorithm

Since its publication in the late 1980s[39][40], the Clustal
family of multiple sequence aligners have seen widespread
adoption and are used routinely as parts of bioinformatics
workflows. The current set of Clustal programs all derive from
Clustal-W [41] (the ‘W’ in the name of the algorithm stands
for “weights”) , whose main contribution is a novel scoring
scheme to determine the goodness of the aligned sequence and
a weighting scheme for down weighting frequently appearing
sequence groups.

The Clustal family of algorithms are progressive aligners
which look at solving the global alignment problem using
a neighbor joining approach to reduce the multi-sequence
alignment problem to that of pairwise alignment. Like other
progressive algorithms for MSA, Clustal-W is guaranteed to
find highly conserved blocks first and outliers are added last
– together, this increases the chances that conserved blocks
survive. The specification of the algorithm can be divided into
3 logical steps, where each step carries out an unique sort of
computation (Figure 3) –

1) Building a pairwise distance metric – This step in the
algorithm computes all pair-wise alignments and store in
similarity matrix M so that,

Mi,j = sim(si, sj)

Where sim(si, sj) is a similarity metric between between
the sequences i and j. The output accuracy of the Clustal
algorithms are quite sensitive to the choice of similarity
metric.

2) Finding a guide tree such that the two most common (sets
of) sequences have a common root – The original Clustal-
W algorithms computes the distance from the ancestor
of si and sj to all other sequences as the average of the
distances to si and sj and continue this process untill
there is only one row and column in M . This is akin
to hierarchical clustering of sequences to form a tree.
We focus on the Clustal-ω variant [42] which uses a
HMM to construct the best possible neighbor tree using
priors. Several other schemes of generating the guide tree
have been suggested (using statistical models dealing with
phylogeny trees and motifs, but these are beyond the
scope of this discussion).

3) Use the neighbor-tree to guide pairwise alignments –
Perform pair-wise alignments in the order given by the

guide tree thereby reducing the problem of muti-sequence
alignment to set of pairwise alignments.

4) Sometimes an optional step of calculating the “goodness”
of the alignment is performed. We do not discuss this step
and the computations involved in this paper.

B. The Decomposition

Building upon the algorithm described in the previous sub-
section, we now look at how we map the computations of
the Clustal-W algorithm to the previously mentioned core
computations. Each of the steps of the algorithm can now be
broken down into a set of core-computations and a set of glue
codes, which convert the outputs of one core computation to
the input of the next. It is to be noted that all decompositions
of algorithms might not require this glue code.

We decompose the Clustal-W algorithm as follows (second
sequence of blocks in figure 3)–

1) Calculating the pairwise distance between all the input se-
quences – This can be accomplished by using a pairwise
alignment using the Smith- Waterman or the Needleman-
Wunsch algorithms. Whose alignment score is calculated
using the Clustal-W scoring function. We can divide this
task as a traditional Smith-Waterman algorithm block
with a glue code logic, that accumulates all pairwise
alignments and returns a matrix of containing the pairwise
scores of each alignment.

2) Constructing the best neighbor tree for pairwise align-
ments – Using the pairwise alignment matrix, a tree is
constructed in which the two most common sequences
have a common root. In our investigation of the Clustal-
ω implementation, we see that this is done by using
the Viterbi algorithm over the set of input sequences.
The glue code relating to this stage, takes the output of
the most likely sequence of hidden states of the HMM
model (this corresponds to a nucleotide sequence) and
aggregates the data into a into a tree, where the two nodes
with a common parent are most likely to be most similar.

3) Calculating the pairwise alignments taking into account
the guide tree – The final stage of the Clustal-W MSA
pipeline is a Smith-Waterman based alignment and as-
sembly by taking nodes in the order specified in the guide
tree.

C. Discussion

We envision the decomposition of bioinformatics algorithms
being used in the following ways –

1) We can use a data-streaming paradigm for defining these
analyses. In such a streaming solution, each of the core
computations and the glue codes form a set of operators.
This allows us to explore the avenue of using com-
modity software packages that allow streaming on large
distributed systems like Apache Storm or Apache Spark
to allow for migration of these genomics applications to
the cloud.

2) A framework for defining generic bioinformatics analyses
– We can use these memory-less computations to define

Fig. 3: Decomposing the Clustal-W algorithm – The first sequence of blocks shows the algorithm broken into logical blocks. The second
sequence of blocks demonstrates how each block in the first sequence is broken into a core computation and related glue code to convert
the outputs of one core computation to the input of the next.

a set of primitives which can be used as a language
to describe most current genomics algorithms. We can
reduce the problem of constructing these algorithms as
that of chaining together these memory-less computations
and necessary glue codes together.

3) In such a framework we could expect that the compu-
tationally expensive blocks (the core computations), are
actually implemented by computer scientists/engineers,
who have an understanding of the underlying hardware
and can write code that can extract optimal performance
from it by using cutting edge accelerators and program-
ming paradigms. Acceleration of these core computations
on GPUs[4][2][43] and FPGAs[3][1] is a well studied
problem. Having these resources available, the biolo-
gists/bioinformaticians , would then only have to restrict
themselves to write the glue logic for their particular
application, which in most cases is performing data
aggregation and not the “meat” of the computation.

IV. NEED OF FURTHER ANALYSIS

Building upon the decomposition of the algorithms in the
previous sections, in this section, we now look at possible
optimizations that can be applied to the core computations,
that were difficult to apply to the original problem, because
of its complexity and size.

To demonstrate our point, we consider the straightforward
example of optimizing memory access patterns in the imple-
mentation of the Viterbi algorithm in the HMMer toolset. We
compare the performance, in terms of completion times of an
alignment of short reads to a human chromosome-1 reference.
Our comparison is between a naive Viterbi algorithm and a
memory optimized Viterbi algorithm[2]. Our results (figure 4)
are interesting, because they show a large improvement in
performance for the task, when the size of the model is small,
but for larger models, a reduced but still considerable speedup.
This leads us to believe that this line of investigation, looking
at optimization patterns at the core computation level warrants
further and more detailed examination.

100 200 300 400 500 600 700 800 900 1000 1100
20

30

40

50

60

70

80

90

100

110

120

Model Size

S
pe

ed
up

Fig. 4: Comparing the speedup of the HMMer based viterbi algorithm
with model size. The values of speedup are normalized to the running
time of the naive implementation

V. CONCLUSIONS AND FUTURE WORK

We hope to use this analysis of a representative set of
algorithms and tools, to motivate our design and construction
of –

1) A single machine with re-configurable hardware which
uses these accelerated primitives to perform these anal-
yses at much higher throughput than is available in the
current generation of machines (and software).

2) Extending this concept to a cluster of machines, where
each machine is optimized for particular classes of com-
putation and we try to stream data across the nodes for
better performance.

We conclude by listing some points of discussion, which
might prove to be interesting, to pursue in the future and in
fact, it might be necessary to answer a few of these questions
before we go about implementing the system design presented
here –

1) Completeness of our set of memory-less computations
– Drawing from our analysis, we present here a set of

computations that we find occur frequently in a represen-
tative set of algorithms that we study here. However it is
not guaranteed that this set of memory-less computations
will cover the entire space of algorithms. This can be
especially problematic in dealing with the extensibility
of the current system with new algorithms.

2) Is further decomposition of these memory-less compu-
tations in yet simpler blocks possible? – Decomposi-
tion of the algorithms into memory-less computations
demonstrated in this paper, might not be the last level
of decomposition that we are interested to halt at. It
is interesting to note that decomposing these algorithms
further might be helpful, especially in making it easier
to implement some of these computations as primitive
instructions using reconfigurable hardware like FPGAs.

3) What happens in the case that the glue codes are more
computationally intensive than the memory-less computa-
tions? – Our approach of decomposing strongly coupled
algorithms into it’s constituent blocks and then assem-
bling them as weakly coupled blocks is limited by the
assumption that we are not introducing more computa-
tionally intensive blocks. From our current understanding,
this problem can avoided by using the memory-less com-
putations as gray boxes, where intermediate computation
is available as input for other stages of the computation.
This holds for our MSA example, but does this generally
hold true?

REFERENCES

[1] S. Derrien and P. Quinton, “Hardware acceleration of hmmer on fpgas,”
Journal of Signal Processing Systems, pp. 53–67, 2010.

[2] Z. Du, Z. Yin, and D. A. Bader, “A tile-based parallel viterbi algorithm
for biological sequence alignment on GPU with CUDA,” in IPDPS
Workshops. IEEE, 2010.

[3] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the smith-
waterman algorithm on a reconfigurable supercomputing platform.” in
HPRCTA, 2007, pp. 39–48.

[4] Y. Liu, B. Schmidt, and D. Maskell, “Cudasw++2.0: enhanced smith-
waterman protein database search on cuda-enabled gpus based on simt
and virtualized simd abstractions,” BMC Research Notes, p. 93, 2010.

[5] T. H. Jukes and C. R. Cantor, “Evolution of protein molecules,” 1969.
[6] P. Legendre and L. Legendre, Numerical ecology. Elsevier, 2012.
[7] N. Saitou and M. Nei, “The neighbor-joining method: a new method

for reconstructing phylogenetic trees.” Molecular biology and evolution,
pp. 406–425, 1987.

[8] I. Elias and J. Lagergren, “Fast computation of distance estimators,”
BMC bioinformatics, vol. 8, no. 1, p. 89, 2007.

[9] D. PLOTREE and D. PLOTGRAM, “Phylip-phylogeny inference pack-
age (version 3.2),” 1989.

[10] S. Kumar, M. Nei, J. Dudley, and K. Tamura, “Mega: a biologist-
centric software for evolutionary analysis of dna and protein sequences,”
Briefings in bioinformatics, pp. 299–306, 2008.

[11] M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. A. McGettigan,
H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez et al.,
“Clustal w and clustal x version 2.0,” Bioinformatics, pp. 2947–2948,
2007.

[12] D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and
Other Methods). Version 4. Sinauer Associates, 2003.

[13] A. Boc, V. Makarenkov et al., “T-rex: a web server for inferring,
validating and visualizing phylogenetic trees and networks,” Nucleic
acids research, vol. 40, no. W1, pp. W573–W579, 2012.

[14] P. Goloboff, S. Farris, and K. Nixon, “Tnt (tree analysis using new
technology).” 2000.

[15] W. M. Fitch, E. Margoliash et al., “Construction of phylogenetic trees,”
Science, pp. 279–284, 1967.

[16] D. Bryant and P. Waddell, “Rapid evaluation of least-squares and
minimum-evolution criteria on phylogenetic trees,” Molecular Biology
and Evolution, pp. 1346–1359, 1998.

[17] G. H. Gonnet, M. T. Hallett, C. Korostensky, and L. Bernardin, “Darwin
v. 2.0: an interpreted computer language for the biosciences,” Bioinfor-
matics, pp. 101–103, 2000.

[18] J. P. Huelsenbeck and K. A. Crandall, “Phylogeny estimation and hy-
pothesis testing using maximum likelihood,” Annual Review of Ecology
and Systematics, pp. 437–466, 1997.

[19] A. Siepel and D. Haussler, “Phylogenetic hidden markov models,” in
Statistical methods in molecular evolution. Springer, 2005, pp. 325–
351.

[20] S. Guindon, J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk,
and O. Gascuel, “New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of phyml 3.0,” Sys-
tematic biology, pp. 307–321, 2010.

[21] F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling,
S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck,
“Mrbayes 3.2: efficient bayesian phylogenetic inference and model
choice across a large model space,” Systematic biology, pp. 539–542,
2012.

[22] A. Stamatakis, “Raxml-vi-hpc: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models,” Bioinformatics, pp.
2688–2690, 2006.

[23] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Ku-
mar, “Mega5: molecular evolutionary genetics analysis using maximum
likelihood, evolutionary distance, and maximum parsimony methods,”
Molecular biology and evolution, pp. 2731–2739, 2011.

[24] J. A. Nylander, J. C. Wilgenbusch, D. L. Warren, and D. L. Swofford,
“Awty (are we there yet?): a system for graphical exploration of mcmc
convergence in bayesian phylogenetics,” Bioinformatics, pp. 581–583,
2008.

[25] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, pp. 195–197, 1981.

[26] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, pp. 443–453, 1970.

[27] K. Khafizov, R. Staritzbichler, M. Stamm, and L. R. Forrest, “A study
of the evolution of inverted-topology repeats from leut-fold transporters
using alignme,” Biochemistry, pp. 10 702–10 713, 2010.

[28] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling,
S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry et al., “Bioconductor:
open software development for computational biology and bioinformat-
ics,” Genome biology, p. R80, 2004.

[29] J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz,
C. Dagdigian, G. Fuellen, J. G. Gilbert, I. Korf, H. Lapp et al., “The
bioperl toolkit: Perl modules for the life sciences,” Genome research,
pp. 1611–1618, 2002.

[30] P. Rice, I. Longden, and A. Bleasby, “emboss: the european molecular
biology open software suite,” Trends in genetics, pp. 276–277, 2000.

[31] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs,” Nucleic acids research,
pp. 3389–3402, 1997.

[32] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence
comparison,” Proceedings of the National Academy of Sciences, pp.
2444–2448, 1988.

[33] K. Okonechnikov, O. Golosova, M. Fursov et al., “Unipro ugene: a
unified bioinformatics toolkit,” Bioinformatics, pp. 1166–1167, 2012.

[34] R. Hughey and A. Krogh, “Sam: Sequence alignment and modeling
software system,” 1995.

[35] U. Roshan and D. R. Livesay, “Probalign: multiple sequence alignment
using partition function posterior probabilities,” Bioinformatics, pp.
2715–2721, 2006.

[36] C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee: A novel method
for fast and accurate multiple sequence alignment,” Journal of molecular
biology, pp. 205–217, 2000.

[37] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly et al.,
“The genome analysis toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data,” Genome research, pp. 1297–1303,
2010.

[38] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,

G. Marth, G. Abecasis, R. Durbin et al., “The sequence alignment/map
format and samtools,” Bioinformatics, pp. 2078–2079, 2009.

[39] D. G. Higgins and P. M. Sharp, “Clustal: a package for performing
multiple sequence alignment on a microcomputer,” Gene, vol. 73, no. 1,
pp. 237 – 244, 1988.

[40] ——, “Fast and sensitive multiple sequence alignments on a microcom-
puter,” Computer applications in the biosciences : CABIOS, vol. 5, no. 2,
pp. 151–153, 1989.

[41] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice,” Nucleic Acids Res., vol. 22, no. 22, pp. 4673–4680, Nov
1994.

[42] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li,
R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson,
and D. G. Higgins, “Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega,” Mol. Syst. Biol., p.
539, 2011.

[43] D. R. Horn, M. Houston, and P. Hanrahan, “Clawhmmer: A streaming
hmmer-search implementation,” in Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing. IEEE Computer Society, 2005.

	UILU-ENG-14-2201 REPORT DOCUMENTATION PAGE.pdf
	 Form Approved
	 OMB NO. 0704-0188

	REPORT DOCUMENTATION PAGE
	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
	2. REPORT DATE
	1. AGENCY USE ONLY (Leave blank)
	5. FUNDING NUMBERS
	 4. TITLE AND SUBTITLE
	6. AUTHOR(S)
	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
	8. PERFORMING ORGANIZATION
	 REPORT NUMBER
	10. SPONSORING/MONITORING
	9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
	11. SUPPLEMENTARY NOTES
	12b. DISTRIBUTION CODE
	12a. DISTRIBUTION/AVAILABILITY STATEMENT
	13. ABSTRACT (Maximum 200 words)
	15. NUMBER OF PAGES
	14. SUBJECT TERMS
	16. PRICE CODE

