
D ecem ber 1988 UILU-ENG-88-2267
CSG-97

COORDINATED SCIENCE LABORATORY
College o f Engineering

A CACHE
DIAGNOSTICS
METHOD

Ramachandra P. Kunda
Jeffrey Hamilton
Dongjae Lee
Bharat Deep Rathi

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
^¿uftlTyTLA ^lPK^A tlO N 'Ö F THIS PAC#

la. REPORT SECURITY CLASSIFICATION
Unclassified___________

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

i 4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2267 (CSG-97)

REPORT DOCUMENTATION PAGE
1b. RESTRICTIVE MARKINGS

None
3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBERS)

Form Approved
OMB No. 0704-0188

I 6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
T T n i v e r s i t v o f Illinois

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

IBM/SRC/DARPA

I 6c AOORESS (City State, and ZIP Code)
1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)
IBM: Yorktown Heights SRC: Research Triangle

NY 10598 Park, NC 27709
^ ^ o v e r ^

I 8a. NAME OF FUNDING/SPONSORING
ORGANIZATION
IBM/SRC/DARPA

8b. OFFICE SYMBOL
(If applicable) IBM 1249006; DARPA N00039-87-C-0122;

SRC 87-DP-109
I 8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

See 7b.
PROGRAM
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Includo Security Classification)

A Cache Diagnostics Method

16. SUPPLEMENTARY NOTATION

17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

test diagnostics, test generation, system-level test,
functional test

This paper describes a functional diagnostics method to test the cache of a computer system. This

method was used to develop the cache diagnostics for the Research Parallel Processor Prototype (RP3), a

highly parallel computer that is being prototyped at the Watson Research Center. The RP3 has a 32

KBytes "write-through" direct mapped cache architecture. This cache is used to cache both instructions

and data. This cache supports both a random replacement policy and also a SANF (store-allocate-non-

fetch) cache management policy designed especially for RP3. Besides the traditional caching functions,

this cache also supports new features like temporarily cacheable data types and single instruction invalida- (over)

22a. NAME OF RESPONSIBLE INDIVIDUAL

0 0 Form 1473, JUN 86 Previous editions are obsolete.

UNCLASSIFIED

UNCLASSIFIED

7b. Continued

DARPA: Arlington, VA 22209

19. Abstract (continued)

tion of the whole cache or the lines of a specified page.

The RP3 cache is a multiple chip design. Conventional scan-based test methods could not be used to

test, because the LSSD rules were only foUowed at the chip level. The functional diagnostics approach

suggested in this paper diagnose the cache via the system’s instruction set. This method uses a divide and

conquer philosophy to reduce the diagnostics complexity and size. We have used this diagnostics metho

dology to develop diagnostics for the RP3 cache. Besides being used in the system, these diagnostics are

also being used by the engineers in the lab. They have allowed us to test the cache functionally and detect

faulty hardware and timing problems in the logic.

A CACH E DIAG NO STICS M ETH O D

Ramachandra P« Kunda
Computer Systems Group

Coordinated Science Laboratory
University of Illinois

1101 W. Springfield Ave
Urbana, Il 61801

Jeffrey Hamilton
Dongjae Lee

Bharat Deep Rathi
IBM Research Division

T. J. Watson Research Center
Yorktown Heights, N.Y. 10598

Acknowledgement: This research is sponsored in part by the Semiconductor Research Corporation under Contract 87-DP-109,
in part by Defence Advanced Research Projects Agency under contract N00039-87-C-0122, and in part by the IBM Corporation under
Contract 12490066.

ABSTRACT

This paper describes a functional diagnostics method to test the cache of a computer system. This

method was used to develop the cache diagnostics for the Research Parallel Processor Prototype (RP3), a

highly parallel computer that is being prototyped at the Watson Research Center. The RP3 has a 32

KBytes "write-through" direct mapped cache architecture. This cache is used to cache both instructions

and data. This cache supports both a random replacement policy and also a SANF (store-allocate-non-

fetch) cache management policy designed especially for RP3. Besides the traditional caching functions,

this cache also supports new features like temporarily cacheable data types and single instruction invalida

tion of the whole cache or the lines of a specified page.

The RP3 cache is a multiple chip design. Conventional scan-based test methods could not be used to

test, because the LSSD rules were only followed at the chip level. The functional diagnostics approach

suggested in this paper diagnose the cache via the system’s instruction set. This method uses a divide and

conquer philosophy to reduce the diagnostics complexity and size. We have used this diagnostics metho

dology to develop diagnostics for the RP3 cache. Besides being used in the system, these diagnostics are

also being used by the engineers in the lab. They have allowed us to test the cache functionally and detect

faulty hardware and timing problems in the logic.

1.0 Introduction

This paper describes a Functional Diagnostics Method (FDM) to test the cache of a computer
system. We are using this method to develop the cache diagnostics for the Research Parallel
Processor Prototype (RP3), a highly parallel computer that is being built at the Watson Research
Center. The RP3 is architected to have 512 processors, 2 GBytes of memory, 192 MBytes/sec I/O
and an interconnection network that has a peak bandwidth of 13 GBytes/sec. A prototype is being
built which has 64 processors. The organization of a 64-processor RP3 system is shown in
Figure-1. The main motivating reason behind building this machine is to conduct research in the
highly parallel processing area. In order to facilitate this research, the RP3 architecture supports
many interesting features. For example, the machine can support both the shared memory and
distributed memory models of parallel computing. It also supports a user controllable cache. A
more detailed description of this system is given in [PFIS85]

This system uses the ROMP microprocessor [ROMP86], an IBM RISC processor, as its main
computational units. In order to support the various functions defined by the RP3 architecture
[PFIS85], the support chips for the ROMP processor could not be used. Therefore, the project
designed its own memory management unit (MMU), cache unit (CU), memory controller (MC),
the network (NI) and switch (SI) interfaces. Figure-2 shows the organization of the Processor-
Memory element/subsystem (PME). The MMU in this PME organization is responsible for virtual
memory management and also controls the cacheability at a page level. The actual cache man
agement is done by the CU. The CU supports a 32K-byte common instruction/data cache. This
is a software-managed cache, that is: (1) software maintains cache coherence without hardware
support; and (2) cacheability is defined at the page level, this information is stored along with the
virtual memory management data. On each memory reference, the CU decides to cache the infor
mation, only if the MMU indicates that the page is cacheable. A more detailed description of the
PME operations is given in [BRAN85, RP3P88]

In order to build any system successfully, a method to test the system must be defined. One
or more methods may be needed to test the system at all levels of integration. That is, different
methods may be needed for chip, card, subsystem, and system level testing. These test methods
must not only be able to diagnose the system well (in terms of fault coverage), but they should be
able to do this fast (in terms of time). For parallel processor systems which have a large number
of subsystems, we find that these test requirements are even more stressed. For the RP3 system,
we tested the chips using scan-based tests. The other levels of integration were tested using the
Functional Diagnostics Method (FDM) discussed in [RATH88]. The FDM approach uses the
system's instruction set to test the system.

In this paper, we discuss the use of FDM to test RP3's cache unit. Using this approach allowed
us to develop the cache diagnostics quickly and use these diagnostics to test the CIJ beyond the chip
level. Our experience with this approach has shown that these diagnostics can detect functional
design errors, logic errors and some timing errors. They can even be used to qualify the cards and
subsystems on a volume basis. In fact, these diagnostics have been used for system test, integration,
and qualification of the RP3.

The paper is organized as follows: in the next section, our motivation to use the FDM approach
to test the cache is discussed. The RP3 cache unit organization is described in scction-3 and the
cache memory topology in section-4. In section-5, an overview of the cache unit diagnostic method
is given, while the fault model and test generation are described in section-6. The test patterns used
by these tests are presented in section-7. Finally, the last two sections discuss our experience with
these diagnostics and our conclusions.

1

2.0 Motivation

Test methods based on Level Sensitive Scan Design (LSSD) [EICH78] are often used to test
logic chips. LSSD provides better control and observation during testing. Scan-based test methods
have also been extended to test cards and to do system integration. Although these test methods
are effective, they are also time consuming because of the large number of test patterns used. In
systems like the RP3, which have a large number of components, using scan based test methods
at all levels can be a formidable task. Therefore, other test techniques must be considered.

For RP3, testing issues were complicated further by several other system design/integration is
sues. First, the LSSD rules were only followed at the chip level. They were not followed at the
card or subsystem level. Second, besides LSSD no other test support logic was provided in the
design. The chips/cards did not provide any test points to interface test equipment. Therefore, the
ability to control and observe during card or subsystem testing was limited. This issue was aggra
vated further because it was not possible to connect any test equipment to the subsystems assem
bled in the RP3 frame. Finally, it was not possible to single cycle or multiple cycle the system.

Due to these limitations and because we wanted to support testing at system speed, we decided
to use functional testing to test the cache unit. The chips used by the cache unit were individually
tested using scan-based tests, before they were integrated into a cache unit. 'Hie diagnostics to test
the cache units were developed using the system's instruction set only. Only one set of diagnostics
was developed. These were used to debug the hardware in the lab and during subsystem test, sys
tem integration, and system qualification.

To develop these diagnostics, we started with the high-level, functional description of the cache
unit and the system. The description of the cache unit's functions was in the system's Principles
of Operations (POPs) manual. We supplemented this with discussions with the engineers whenever
the POPs manual did not offer enough information. Details of the logic design had to be studied
only when timing sensitive or pattern sensitive faults were found during system debug in the lab.
Working with this high level design information has the following advantages: (1) it verifies the
functions of the design; (2) checks the correctness of the information in the POPs manual; and
most of all (3) makes the diagnostics portable across technology upgrades. This last point is im
portant because of the large effort usually invested in developing diagnostics.

3.0 Cache Unit Organization

Each RP3 processor has a 32 KBytes, direct-mapped, "write-through" cache. A single cache is
used to cache both instructions and data. This cache is organized as a 2-way set associative cache.
Each set has IK lines, where each line is 4 words (16 Bytes). This cache supports a random re
placement policy and a SANE (store-allocate-non-fcctch) cache management policy specific to RP3
[BRAN85]. In addition to the usual cache functions, this cache supports new features, like

« temporary cacheable data,

• single instruction invalidation of the whole cache, and

• single instruction invalidation of a set of lines belonging to a specific page.

Although the RP3 system contains mutiple processors, it docs not have any hardware cache co
herence mechanism. In this system, the software is responsible for keeping the cache coherent.

The cache unit is physically organized as shown in Figure-3. The cache control unit is a byte-
sliced design, which consists of four copies of a cache control chip. Each copy of this chip operates
on its byte of data. Special I/O lines have been defined on this chip to coordinate the cache look-up
and control between the four chips. Each chip is informed about the byte it controls during
processor initialization time. All busses shown in Figurc-3 arc 32-bit wide and have parity

2

checking/generation on each byte. The directory (DIRMEM) and data memories (DATMEM)
of the cache are packaged as separate memories.

The logical layout of the cache's directory and data memories is shown in Figure-4. The fields
in the directory memory are:

KEY
INTLV
MD
U/S
X
F

RO to R3

the most significant 18-bits of the real (translated) address;
the interleave factor for the memory reference's page;
indicates that this line contains temporary data;
indicates if the memory page is a User or Supervisor page;
not used;
informs the cache that the data words associated with this line are currently being
fetched from memory;
indicate if the line's data word-0 to word-3 respectively are resident in the cache's data
memory.

The CU generates the values of the E and R fields, while the contents of the other fields are supplied
to the CU by the MMU.

The RP3 cache uses the real address to tag its data. The MMU unit does the virtual-to-real
address translation for every memory reference. In order to reduce the time to determine a cache
hit, the virtual address generated by the processor is simultaneously presented to both the MMU
and the CU. The CU uses this address to fetch the directory entry and the associated word in the
data memory (see Figure-5). The MMU, in the mean time, translates this address and determines
if the memory reference is cacheable (in RP3 cacheability is defined on a page basis [RP3P88]).
If it is cacheable, the MMU presents the most significant 18 bits of the translated address to the
cache, along with the other relevant information. The cache uses this information to compare
against the Key, Interleave, MD and U/S fields of the selected line. If they match and the required
data word is resident (i.e. the respective R bit is set), then a cache hit is declared. The cache does
this comparison for both its sets. Set-A is processed in the first half of a processor cycle, and Set-B
in the second half. If a cache hit takes place, the cache transfers the data directly to the processor,
in the following cycle. If the above match does not occur in either of the sets, then a cache miss
is processed by the cache. If both the sets match, then a cache double mapping error is flagged.

If a cache miss occurs during a processor LOAD reference, the CIJ selects a set, initializes the
directory entry, sets the F-bit and generates a set of two double word fetch requests to the memory,
to fetch the cache line. These memory fetches are asynchronous. 'ITiat is, the CU is not locked
from receiving further requests. The F-bit is used to avoid generating an unnecessary cache line
fetch, if one has been requested earlier. In the case of two successive memory accesses to the same
cache line, the cache stops accepting any further requests until the first request is completed. The
F-bit is reset when the data memory has been updated. If a cache miss occurs during a STORE
reference, a set is selected and the directory is initialized. But due to the SANE policy, the cache
does not prefetch the line's data, it only stores the STORE reference's data (in both DATMEM
and the main memory) and sets the appropriate R-bit. The other R-bits are reset. A random se
lection policy is used to select the set, when both sets arc used or available.

The RP3's architecture also .supports read-modify-write (RMW) (e.g. Ectch&Add instructions
[BRAN85]) and partial-word-store (PWS) type memory references, which are executed atomically.
To guarantee this atomic execution, the cache implements these operations as follows: whenever
the MMU indicates that a RMW is cacheable and there is a cache hit, the CU invalidates the word
in the cache and passes the request to the main memory. The main memory atomically executes
this request and the cache word is not updated. On a cache hit for a PWS request, only the bytes
that need to be stored are updated in the cache. This operation is also "written-through" to the
memory, which updates the memory atomically.

3

4.0 Cache Memory Topology

The DIRMEM and DATMEM memory arrays are implemented using 2Kx9 hit static memory
modules. The layout of a word in each of these memories is identical, except for the number of
words in each line. The DATMEM line consists of four 32-bit words, with parity per byte. There
is one line per set. This gives us 32K bytes for cached data. The DIRMEM line consists of one
32-bit word, with parity per byte. There is one such line per set. This gives us 8K bytes for di
rectory information.

The layout of the DATMEM array is shown in Figure-6. It should be noted that each byte
of each word is assigned to a unique memory module. The parity for a byte is stored in the same
memory module as its data. In this arrangement, the upper 1K addresses of each memory module
are assigned to Set-A; while the lower IK addresses are assigned to Set-B. The CU generates the
address bit that selects the set. This enables it to control the set to be replaced. The line selection
address bits and word selection bits are taken from the processor generated address. Note that at
any time, only one word of one line is selected. The layout of DIR MEM's array is similar, but
with one row of memory modules used.

5.0 Overview of Diagnostic Method

The basic idea in the EDM approach is to divide the functions of the module to be diagnosed,
into smaller functional blocks. Tests are then written for these functional blocks. Dividing the
module's function tends to divide the hardware into individually testable sections. During test
generation for these functional blocks, all other functional blocks are considered to be fault free.
This reduces the test complexity. In order to generate the tests, a block's function and fault model
is defined, the test patterns are derived and, finally, the instruction sequence needed to test the
function is identified. The tests are then combined into a diagnostics program.

In order to diagnose the cache unit, we can divide it into the following functional blocks:

• Memory arrays
• DIRMEM arrays
* DATMEM arrays

® Address/Data busses
• Comparator
• Error detection logic
• Status registers
• Control logic

* Caching function
• Cache Invalidation

6.0 Fault Model and Test Generation

While generating the tests, our aim was to detect permanent

1. Stuck-at faults
2. Pair-wise coupling faults
3. Transition faults
4. Functional faults

Due to the limited ability to control and observe at the instruction level, some tests were unable to
detect some of these faults. In the following sections, test generation for each of the cache func
tional blocks is discussed and where appropriate limitations on using this test strategy is identified.
In the discussion below, it is assumed that the MMIJ is appropriately set to support these tests.

4

6.1 M emory Arrays

For testing, we treat the cache DIR MEM and DATMEM arrays as simple RAMs; ignoring the
type of information they store. In order to test any RAM, it is important to be able to consistently
access the same location for a given address. That is, it should support a one-to-one address-data
mapping. The direct-mapped cache organization supports such a mapping and allows it to be done
from the instruction level, because it guarantees that a memory reference is always associated with
the same line and word of the cache. Notice that any associative cache organization will not sup
port this one-to-one, address-data mapping at the instruction level. In order to provide this one-
one control, some hardware support would be needed.

It has been shown by [NAIR78] that any failure in a RAM is equivalent to failures in the
memory cell array. This significantly reduces the RAM fault model. Several methods have been
defined to test RAMs [ABAD83] and can be classified as those that detect stuck-at faults and those
that detect coupling faults. We found the methods defined in [NAIR79] and [NAIR78] to be at
tractive, because they could be used for any RAM design. This is important for the functional di
agnostics approach suggested here. The complexities of these RAM tests are:
• 5N-2 for the MATS + [NAIR79] test, where "N" is the number of words in the RAM. Only

stuck-at faults can be detected.
• 30n for the [NAIR78] test, where " n " is the number of bits in the RAM. Both stuck-at and

coupling faults can be detected.

We selected M ATS+ to test the RP3 cache arrays because addressing limitations restricted us
from using the coupling test. For example, the coupling test requires each bit of the RAM array
be independently addressable. The cache arrays only support access to 9 bits (data plus parity) at
a time.

The basic MATS + algorithm is shown in Figure-7. For the RP3 cache we modified it in two
ways:
1. Selecting the set to be used is not under processor control; it is done by the CU. A set is

chosen randomly if both the sets are used or available for the addressed line. Although this
modifies the ascending/descending addressing defined by the algorithm in Figure-7, it does not
corrupt the correctness of the algorithm. This is because after the first initializing sequence,
the sets are assigned randomly, but a logical ascending/descending addressing order is main
tained for the rest of the algorithm.

2. To detect transition faults and some coupling faults, we used the test patterns defined in
section-7. These test patterns detect coupling between any two bits of a cache byte. Inter-byte
coupling does not need to be tested, because each byte of a cache word is packaged in separate
memory modules (Figure-6). The algorithm is executed for each pair of test patterns.

6.1.1 DATMEM Arrays

The DATMEM array can store the contents of two RP3 memory pages (16K bytes per page).
In order to test this array four virtual pages were selected. Two of them were made cacheable and
were mapped to distinct real pages, while the other two were made non-cachcable and were mapped
to each of the real pages. The cacheable pages were used for all the accesses required by the
MATS+ algorithm. The non-cachcable pages were used to modify the main memory word with
the complement of the test pattern after each cache write operation. This was done to guarantee
that the contents of the cache array and the main memory array were different. This allowed us to
verify whether the data was from the cache or main memory arrays. If a non-test pattern was ob
tained, then DATMEM was considered to be faulty for the addressed entry. If the main memory
pattern was read, then the comparator, the array decoder or the DIR MEM was suspected to be
faulty. If the test pattern was read, then the array was assumed to be functional for the entry.

5

6.1.2 DIRMEM Arrays

The DIRMEM arrays were more difficult to test, because they required a more elaborate virtual
memory mapping than the DATMEM test. In order to use the test patterns defined in section-7,
the tag information (Figures 4 and 5) for this memory needs to be appropriately set. For the RP3
cache, this information resides in the MMU. It was not possible to generate all the test patterns.
For example, we could not set the F-bit, because of lack of direct control at the instruction level.
The total amount of real memory in the prototyped system also restricted the Key field dependent
test patterns.

Therefore, we modified the test patterns to enable us to use the MATS + algorithm. For each
pattern in a pair of test patterns, a bit in the Key field was identified and set to 0 for half of the cache
lines and set to 1 for the other half. The-remaining bits were set as required by the test pattern.
Since the Key field identifies the real page being used, this modification identifies two cacheable
memory pages. Two cacheable pages are needed to address all the DIRMEM words. The test
setup required two virtual pages to be mapped to each of these real pages. One of these virtual
pages was allowed to be cached, while the other was not. These four virtual pages were used as
described in the DATMEM test.

The MATS + algorithm was executed as explained in the DATMEM array test. The only
difference was that the test patterns now defined the real pages to be selected and not the data to
be written. Also, for each line, only one data word needed to be accessed. In order to identify a
cache hit from a miss, a complementary pair of patterns was used for the data word pattern. One
such pattern was written to the cache, while the other was used to update the memory word. If
an expected cache hit or miss was seen, then the DIRMEM was considered to be functional. If
an unexpected cache hit or miss took place, then the comparator or the DIRMEM array was sus
pect.

6.2 Address!Data Busses

The CU is connected via a set of 32-bit address/data busses, as shown in Figure-3. In this test,
we only check the busses to the cache memories. The other busses are tested by our main memory
diagnostics. Although the cache memory array tests use these busses, they do not fully test them,
because the array test patterns only detect coupling between the lines belonging to a byte and not
across bytes. The additional test patterns defined in section-7 need to be used to detect coupling
between bytes. This test selects the appropriate virtual-real pages and uses them in a similar fashion
as the DATMEM array test. The test patterns need to be asserted only once since no decoder logic
is involved.

6.3 Comparator

In order to test the comparator for all possible stuck-at faults, we need to define more test pat
terns. To do this, we need to know the implementation details of the comparator. The test patterns
derived for the comparator's logic can then be mapped to appropriate DIRMEM Tag values
(Figure-5). A test sequence similar to the Bus tests can then be used to assert these fag values.

For simplicity, we decided to avoid implementing the full comparator test for RP3. The CIJ's
comparator is used to identify a cache hit (Eigure-5). The comparator's cache hit function is tested
during the DIRMEM array tests. In RP3's CIJ comparator test, we only tested the cache miss
function. Phis test can be easily derived from the procedure defined for the DIRMEM array test.

6

6.4 Error Detection Logic

For data/address lines/storage, the main error detection method used by the CU is parity
checking. Parity is checked for all information coming into the CU and generated for all informa
tion leaving the CU. Parity is also stored along with the cache information in both the memory
arrays. The memory arrays and their bus parity logic is tested during their respective tests. This
is done by selecting the test patterns carefully (discussed in section-7). The parity logic for the other
paths are checked in a similar fashion in other diagnostics (e.g. main memory).

For the cache, we also need to detect double mapping errors. This error occurs when a line of
a page is cached in both the sets. The RP3's CU does not provide any support for doing this in
tentionally; therefore, this logic cannot be tested using the FDM approach. Some testability sup
port is needed to test this function.

6.5 Status Registers

The status register stores information regarding the errors seen by the CU. If these registers
could be read and written, then a simple read-write test using the test patterns defined in section-7
would be sufficient. But since these registers could only be read, it was not possible to test them,
since it was not possible to assert all the error conditions intentionally.

6.6 Control Logic

This section defines the procedures used to test the functions of the CU.

6.6.1 Caching Function

We need to test the following functions of the cache: the "write-through" policy, the "store-
allocate-non-fctch" (SANF) policy, partial word stores (PWS) and read-modify-write (RMW) ref
erences. In all these cases, we use the "two virtual pages mapped to one real page" scheme used in
the DATMEM array test.

We can test the "write-through" policy using one test pattern. A word in the test's virtual pages
is selected. The cache entry and the memory location for this word are cleared and verified. Then
a test pattern is written into the cache entry. If the cache and memory do not store the test pattern,
then an error is flagged.

The SANF policy is similarly tested. A cache line is selected and a pattern containing all zeros
is written in the line. A test pattern is then written to only the memory words corresponding to this
line. Following this, a complementary test pattern is written to a word in the cache line and then
the whole cache line is read. If any other word besides this modified one is non-zero, an error is
flagged. Notice that the "write-through" test can be coupled with this test.

The RP3 architecture supports PWS references that operate on any byte and any half of a word.
The cache implements these as cache store operations. But it only enables the required cache
DATMEM array modules (sec Figurc-6). Therefore, in order to test the byte PWS function of the
cache, we need 16 test patterns. We need to verify if the cache can selectively enable the memory
modules one at a time (Figurc-6). The half-word tests require 8 such test patterns. Testing is
started by selecting a cache line and initializing it to zero. A test pattern is then written to only the
memory words corresponding to this line. Following this, byte PWS arc done to each of the 16
bytes of the lines. The test pattern used for each byte must be unique. At the end of the stores,
the corresponding memory locations arc read and verified. If they do not match the test patterns,
an error is flagged. These memory locations are then cleared and the cache line is read. If the cache
line contents do not match the test patterns, an error is flagged. The half-word PWS test is similar.

7

The RMW reference caching is tested by selecting a cache line and writing all zeros in its words.
A test pattern is then written to only the corresponding words in memory. Following this, a
cacheable RMW reference is made to a word of this line. The corresponding memory word is then
read and checked to see if the memory executed the RMW correctly. This word in memory is then
modified with its complemented data. The word accessed by the RMW reference is then read from
the cache. A cache miss should normally occur; therefore, the main memory pattern should be
read. If this does not happen an error is flagged.

6.6.2 Cache Invalidation

The CU supports the following cache invalidate functions: .line, page, full-cache and
temporary-cacheable-data (TCD) invalidates. Special "opcodes" are defined for these functions by
the RP3 architecture. A line is invalidated by specifying a word of the page that is mapped to this
line. A page'invalidation is done by specifying a word of the required page. Full-cache and TCD
invalidation are done by executing the required operation code. It should be noted that these op
erations are User/Supervisor mode sensitive. For example, if the processor is executing in User
mode when it requests a full cache invalidate, then only the User space lines are invalidated. In
validation is done by resetting the residency bits in DIR MEM (Figure-4). This forces a cache miss
on a following reference to an invalidated cache line. To test these functions, the "two virtual page
mapped to one real page" scheme of the DATMEM array test is used.

To test line invalidation, a cache line is selected and initialized with a test pattern. The com
plementary test pattern is written in the corresponding memory words. The cache line is then in
validated. This invalidation is verified by reading the caching line and checking if the data read
matches the pattern written in the memory. If they do not match, an error is flagged.

The page and full-cache invalidation is similarly tested. The difference here is that the whole
cache is initialized and the whole cache is read and checked after invalidation. This verifies that the
invalidation did not incorrectly invalidate a line (e.g. one belonging to a different page). Since these
operations are User/Supervisor mode sensitive, these tests are executed in both these modes. Also
the cache is initialized so that lines for both user and supervisor pages are resident in it.

Temporary, cacheable data is identified by the MMU. When the cache stores temporary
cacheable data, it sets the MD bit in the DIRMEM (Figure-4). During TCD invalidation the cache
only invalidates lines that have this MD bit set. The test to check this operation is similar to the
full-cache invalidation test.

7.0 Test Patterns

The test pattern used to verify the memory arrays are shown in Figure-8(a). These test patterns
can detect stuck-at and pair-wise coupling faults within the bytes of a word [TIIAT79]. They test
both the data bits and the parity bits. The sequence in which these test patterns are used detects
transition faults in memory arrays. For busses and registers that arc a word wide, additional test
patterns are used to check coupling between bytes. These additional test patterns are shown in
Figure-8(b).

8.0 Experience

When we started this work, our goal was to develop a set of diagnostic programs which could
verify the functions of the RP3. The diagnostics were supposed to be executed each time the ma
chine was powered on. At the end of this execution a simple GO/NOGO answer and some indi
cation of which subsystem failed was considered to be acceptable. But, while defining the
diagnostics strategy for the machine, wc saw that we could detect and isolate the faults within the
subsystems. Therefore, we aimed our efforts to diagnose faults at the module level.

8

Although functional diagnostics have been used by many systems, we only found literature on
testing microprocessors and random access memories functionally when we started this work. Re
cently, some work on testing the MC68030 caches was published [BAST87]. It is interesting to
note that the approach used by [BAST87] is similar. The main difference in our approaches is that
they use microcode to test the on-chip cache, while we use the system's instruction set. They also
assume that automatic test equipment will be used to execute their tests. The cache architectures
are also different.

While developing our diagnostics, we found that it was not always possible to test the cache as
thoroughly as we desired. This was due to the lack of control, at the instruction level, over some
logic of the cache. In these cases, we adapted the test to suit the ability to control the logic. For
example, the directory memory test had to be adapted to suit the real memory available in the
machine. We also noticed that the directory memory and the comparator tests could have been
substantially simplified, if some testing support was provided by the cache design.

Even though we had to compromise on some of the tests, we found that the cache diagnostics
were very effective. They have been used to debug the cache units in the lab and when integrated
into the system. They have also been used to qualify the cache cards on a volume basis. The di
agnostics have helped identify design errors and faulty hardware. They have also been able to detect
the known timing errors in the cache design. These timing errors were pattern sensitive and were
initially identified in the lab while executing system and application programs. The diagnostics had
to be upgraded to detect them, after the underlying conditions to assert these timing errors were
understood.

It took us about 3 man months to design, develop and debug these diagnostics. The diagnostics
were written in ROMP assembly. They were debugged using the RP3 instruction level simulator
on an IBM 3084 system.

9.0 Conclusions

Our experience with the diagnostics method proposed here has shown that cache units can be
very effectively tested, at system speed, using a functional diagnostics approach. This method de
fines one set of diagnostics that can be used to test the hardware in the lab and when integrated into
the system. These diagnostics have been able to detect permanent hardware faults and known
timing errors in the cache logic. They have also been useful in verifying the information in the
principles of operation type of documentation of the RP3 system.

This testing approach allows the diagnostics to be developed rapidly using a small number of
people. The tests can be developed using only the system's instruction set. Although some control
on testing is compromised at this level, we find the overall effectiveness is not lost. Further, this
approach allows porting these diagnostics across technology upgrades of a system.

Acknowledgments

We would like to acknowledge the RP3 project team for their suggestions and support. We also
would like to thank Ton Ngo for this assistance with the cache unit's logic.

References

[PFIS85] Pfistcr, G.F., Brantley, W.C.,* George, D.A., Harvey, S.A., Kleinfcldcr, W.J.,
McAuliffe, K.M., Melton, F.A., Norton, V.A. and Weiss, .1.; "The IBM Research
Parallel Processor Prototype (RP3): Introduction and Architecture"; Proc. of the
International Conference on Parallel Processing; St. Charles, IT; August 1985, pp
764-771.

9

[ROMP86]

[BRAN85]

[RP3P88]

[RATH88]

[EICH78]

[ABAD83]

[NAIR78]

[NAIR79]

[THAT79]

[BAST87]

"IBM RT Personal Computer Technology"; IBM Form No. SA23-1057; IBM
Austin, Texas; 1986.

Brantley, W.C., McAuliffe, K.P. and Weiss, J.; "RP3 Processor-Memory Element";
Proc. of the International Conference on Parallel Processing; St. Charles, IL; August
1985, pp 764-771.

'The RP3 Principles of Operation"; RP3 Project; IBM, T. J. Watson Research
Center, Yorktown Heights, NY; 1988.

Rathi, B.D., Kunda, R.P. and Hamilton, J.; "A Functional Diagnostics Methodol
ogy"; Proc. of the IBM TEST ITL; Burlington, VT; Fall 1988.

Eichelberger, E.B. and Williams, T.W,; "A Logic Design Structure for LSI
Testability"; J. Design Automation and Fault-Tolerant Computing; Voi. 2, No. 2;
May 1978; pp 165-178.

Abadir, M.S. and Reghbati, H.K.; "Functional Testing of Semiconductor Random
Access Memories"; Computer Surveys; Voi. 15, No. 3; September 1983; pp 175-198.

Nair, R., Thatte, S.M. and Abraham, J.A.; "Efficient Algorithms for Testing Semi
conductor Random Access Memories"; IEEE Trans. Computers; Voi. 27, No. 6;
June 1978; pp 572-576.

Nair, R.; "Comments on an Optimal Algorithm for Testing Stuck-at Faults in Ran
dom Access Memories"; IEEE Trans. Comput; Voi. 28, No. 3; March 1979; pp
258-261.

Thatte, S.M.; T es t Generation for Microprocessors"; Ph.D. Dissertation; University
of Illinois at Urbana-Champaign; Urbana, IL; May 1979.

Basto, L., Ilarrod, P. and Bruce, W.; Testing the MC68030 Caches"; Proc. of the
International Test Conference; Washington D.C.; September 1987; pp 826-833.

10

Figure 1.64 Processor Prototype of RP3.

Address/Data Buses

Processor

Memory Mapping Unit

Data and Instruction Cache

Network Interface

Memory Controller

Switch Interface

Floating Point Unit

I/O Interface

Performance Monitor

IOI PM ROMP

MMU

Cache

NI

MC

Sì

FPU

IOI

PM

Figure 2. Processor-Memory Element (PME) of RP3.

PROCESSOR

FIGURE » 3 RP3 Cache Unit

Key Interleave MD v/s F X RO to R3

—

— ---------

(a) D irectory Memory

1
WORD 0 WORD 1 WORD 2 WORD 3

1

!

(b) Data Memory

FIGURE - 4: Cache Memory Organization

WS = (A28 a 29)

BS = (A30 A31)

FIGURE - 5: Cache Unit Organization

B yte 0 B yte 2 B yte 3

Byte

Byte

Byte

Byte

Byte 1

FIGURE - 6: Cache Data Memory Layout

\ St en
V

. . . 3n - S ân-J an - 5 Sn-2

RO

R1 WrO

R1

RO = Read 0
RI = Read 1

WrO = Write 0
Wrl = Write 1

FIGURE - 7: MATS+ Algorithm [NAIR79]

0 0 0 0 0 0 0 0
FFFF FFFF
OFOF OFOF
FOFO FOFO

007F 7FOO
7F 00 0 0 7 F

3333 3333
CCCC CCCC
5333 5555
AAAA AAAA

(a) Memory T est Patterns

OOOO FFFF
FFFF OOOO

7F 00 OOOO
007 F OOOO
0 0 0 0 7 F 0 0
OOOO 0 0 7 F

OOFF OOFF
FFOO FFOO

(b) Additional Patterns for bus

Data Patterns (Even Parity)

Parity Patterns (Odd Parity)

Data Patterns (Even Parity)

Data Patterns (Even Parity)

Parity Patterns (Odd Parity)

Data Patterns (Even Parity)

FIGURE - 8: T est Patterns

