
April 1991 UILU -EN G-91-2223 
DC-130

Decision and Control Laboratory

ON THE STABILITY AND ROBUSTNESS OF AN ADAPTIVE NONLINEAR CONTROL SCHEME

I. Kanellakopoulos P. V. Kokotovic R. Marino

Coordinated Science Laboratory College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.



unc lass ified
« f l  .BITV ¿!LA«IEI¿Ari0WttE THIS ¿Ä<5f

REPORT DOCUMENTATION PAGE Form Approved 
O M t No. 0704418*

? 7  report security  c lassification  

Unclassified .___
1b. RESTRICTIVE MARKINGS 

None
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; 
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-91-2223 
DC-130

5. MONITORING ORGANIZATION REPORT NUMBER«)

6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab.
University of Illinois

6b. OFFICE SYMBOL 
(If eppUceble)

N /A

7a. NAME OF MONITORING ORGANIZATION

National Science Foundation
6 c  ADORESS (City, Sfata, and ¿IF Codi) 

1101 W. Springfield Ave. 
Urbana, IL 61801

7b. ADDRESS (City, S t it t ,  and ¿IF Cod#)

Washington, DC 20050

6a. NAME OF FUNDING/SPONSORING 
ORGANIZATION

National Science Foundation

8b. OFFICE SYMBOL 
(If tp p lto b k )

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NSF ECS-87-15811

8c  ADORESS (City; S t i t t ,  and ¿IF Coda) 10. SOURCE OF FUNOING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Washington, DC 20050 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Oessifketion)

ON THE STABILITY AND ROBUSTNESS OF AN ADAPTIVE NONLINEAR CONTROL SCHEME
12. PERSONAL AUTHOR(S)

KANELLAKOPOULOS, I., P. V. KOKOTOVIC AND R. MARINO
13«. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yeer, Month, Dey) IS. PAGE COUNT

Technical FROM TO 1991 April 24
16. SUPPLEMENTARY NOTATION

17. COSATI COOES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continui on raver» if  necessery end identify by block number)
Exponentially , parameter-dependent,
Lyapunov arguments

19. ABSTRACT (Continue on reverse If  necessery end identify by block number)

We study the stability and robustness properties of an adaptive nonlinear regulation 
scheme. For the case where the equilibrium of the nonlinear system depends on the 
unknown parameters, we prove the robustness of the adaptive scheme to unmodeled dynamics 
using converse Lyapunov arguments. We also show that under some additional conditions, * 
the closed-loop adaptive system has an exponentially stable parameter-dependent equilibrium, 
and is robust not only' to small bounded disturbances and unmodeled dynamics, but also to 
slow time variations of the unknown parameters.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 
Q9UNCLASSIFIED/UNUMITED □  SAME AS RPT. □  OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION 
Unclassified

22«. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Aree Code) I 22c OFFICE SYMBOL

DO Form 1473, JUN 86 Previous editions ere obsolete. SECURITY CLASSIFICATION OF THIS PAGE



I

On the Stability and Robustness of an 
Adaptive Nonlinear Control Scheme*

I. Kanellakopoulos P. V. Kokotovic
Coordinated Science Laboratory Dept, of Electrical and Computer Engineering 

University of Illinois University of California
Urbana, IL 61801 Santa Barbara, CA 93106

R. Marino
Dipartimento di Ingegneria Elettronica 

Seconda Università di Roma “Tor Vergata” 
via 0 . Raimondo, 00173 Rome, Italy

Technical Report DC-130 
Coordinated Science Laboratory 

University of Illinois at Urbana-Champaign 
April 1991

Abstract

We study the stability and robustness properties of an adaptive nonlinear 
regulation scheme. For the case where the equilibrium of the nonlinear system 
depends on the unknown parameters, we prove the robustness of the adaptive 
scheme to unmodeled dynamics using converse Lyapunov arguments. We also 
show that under some additional conditions, the closed-loop adaptive system has 
an exponentially stable parameter-dependent equilibrium, and is robust not only 
to small bounded disturbances and unmodeled dynamics, but also to slow time 
variations of the unknown parameters.
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1 Introduction

In the rapidly growing literature on adaptive control of nonlinear systems (see [1] for a recent 

survey) the only results dealing with robustness issues are those found in [2,3,4], where 

the proposed adaptive nonlinear regulation schemes are shown to be robust to fast stable 

unmodeled dynamics. The robustness analyses there are carried out under the simplifying 

assumption that the vector fields multiplying the unknown parameters vanish at the origin, 

which implies in particular that the origin is an equilibrium of the nonlinear system for any 

value of the unknown constant parameters. However, in the absence of unmodeled dynamics, 

the extended direct adaptive scheme of [4] is shown to achieve stability and regulation even 

when the equilibrium depends on the unknown parameters.

In the present paper, we focus our attention on the case of parameter-dependent equi

librium. In Section 2 we show that, in the absence of unmodeled dynamics, the adaptive 

scheme of [3,4] does not only achieve stability of the closed-loop system and regulation of 

the original state to the equilibrium, but in fact renders a parameter-dependent linear vari

ety of the state space exponentially attractive. Then, in Section 3, we combine these results 

with a converse Lyapunov argument to show that the stability properties of the closed-loop 

adaptive system are robust to fast stable unmodeled dynamics.

As a corollary of the main result of Section 2, we show that, when the number of unknown 

parameters is less than or equal to twice the number of independent control inputs, and, in 

addition, a rank condition is satisfied, the aforementioned linear variety collapses to a single 

point. This point is then an exponentially stable equilibrium of the closed-loop adaptive 

system, whose stability properties are therefore inherently robust to unmodeled dynamics 

and small bounded disturbances. In Section 4 we combine this result with yet another 

converse Lyapunov argument to show that, in the presence of slow time variations of the 

unknown parameters, and under the above conditions, the adaptive scheme of [3,4] achieves 

convergence of the closed-loop system state to a small residual set. This is the first available 

result on adaptive control of nonlinear systems with time-varying parameters.
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2 Stability Properties Without Unmodeled Dynam
ics

The extended direct adaptive scheme developed by Kanellakopoulos, Kokotovic and 

Marino [3,4] is applicable to full-state feedback linearizable nonlinear systems that satisfy 

the so-called extended matching condition (EM C). Consider the system

p m
* =  fo(z) ± Y , 0ifi(z) +  Y j3 i(z )uj » (2-l)

i=i j=i

where z € lRn is the state, u — [i«i,. . . ,  tfm]T £ IRm is the input, 9 =  [9\,. . . ,  9P]T E IRP is 

the vector of unknown constant parameters, and /,-, 0 <  i <  p, <?»•, 1 <  j  <  m, are smooth 

vector fields with /o(0) =  0. The following result is proven in [3,4]:

Proposition  1. There exist neighborhoods Bz C IRn and 5$ C 1RP of z =  0 and 0 =  0, a 

state-feedback control

u =  a(z) -j- J3(z)v , (2-2)

with B (z) an m x m matrix nonsingular in Bz, and a state diffeomorphism x =  (j)(z) with 

0(0) =  0, such that the system (2.1) with the control (2.2) becomes in the x-coordinates

¿J =  4 + i, 1 <  i <  kj — 2

¿4 _i =  +  J ^ u r ^ x )  =  4 ,  +  0T4 ( 4  1 < J < m (2-3)
l=1 
p

4 , =  Vj +  =  vj +  0T4 ( 4
J ¿=i

if and only if the following conditions are satisfied in a neighborhood Uz of the origin z =  0:

(i) Feedback linearization condition [5,6]: The distributions

Gi =  span { $ ! , . . .  ,gm, adfogu . . .  ,gm, . . . ,  ad‘/o^ i ,. . . ,  ad*/o$rm}  , 0 < i <  n -  1 (2.4)

are involutive and of constant dimension rrii, with m0 =  m, mn_i =  n 

( kj =  card {r,- > j , i  >  0}, j  =  1, , m,  r0 =  mo,  r; =  m,- — mt+1, « >  1).
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(ii) Extended matching condition (EM C)

f i Z G u  1 < i < P - (2.5)

□

The scheme of [3,4] employs parameter estimates 0,- of the unknown parameters 0t- to 

design an implementable adaptive controller. The first step in this direction is to replace the 

states x3kji 1 <  j  <  m, with the new states

=  xkj +  2  Qtwu (x )i 1 <  J < 171 • (2-6)
e=i

In order to guarantee that the mapping x —> x is one-to-one, onto and continuous, where

(2.7)

it is assumed that there exists a constant 8 > 0 such that

det(7 +  J(x, ê)) >  8 , Wx e  Bx , WO (E Be ,

where Bx =  <t*(Bz) and

fel axkj
Then, the last two equations of each of the m subsystems of (2.3) are rewritten as

4 ,-1  =  4 ,  +  (0 - i ) Tu>i(*)
m

Xkj =  [Vj +  Otwj2(x )\ +  Jij(x >
1=1

+ . T  - ,  ( g  * ÿ l X'(+i +  3 ^ » | ( * ) t î | +  ¿T4 ( * )
i=i \ i=i eta —1

-1

7™Xj> +  . . .  +  7?* ¿J* +  ¿Tu)S*(x) +  0T< * (z )0 +  ^ ¡ " ( x )  .

(2.8)

(2.9)

(2.10)

=  [I +  J(x,0)] j[v+ Wi(x)$] +d'-wKx) +  9l wl(x)0 +  9 w { (x ) . (2.11)

The certainty-equivalence control 

v =  — w2 (x )0

7i x i +  . . .  +  +  ^ ^ ( ¡ r )  +
(2.12)
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results in the error system

where

x — Ax  4- W(x, 9)(9 — 9) , (2.13)

Ai 0
' 0

I,
A =

0 Am _
) — 0

. - 7 { •• 1 
-

»

(2.14)

W {x ,§ )  =
W \ x ,9 )

. W m(x,9) .
, W i ( x J )  =

0 . . .  0

0 . . .  0
iyi(x)T

I  +  J{x , 0)] . w^ix) +  9Tw{(x)

(2.15)

and the gains 7/, 1 <  i <  kj, 1 <  j  <  m, are chosen to place the eigenvalues of Aj at some 

desired stable locations.

The “error form” (2.13) suggests the following parameter update law:

9 =  TWt {x ,9 )P x , (2.16)

with r = rT > 0 and

P =
‘  Pi 0

1 o PmM m
, Pj =  Pj>0 , PjAj +  A ]  Pj =  - h n 0 (2.17)

The stability of the equilibrium x =  0, 9 =  9 of the adaptive scheme (2.13)—(2.16) is then 

established using the quadratic Lyapunov function

V{x,9)  =  xTP i  +  ( $ -  0)Tr - 1(0 -  9 ), (2.18)

whose derivative along the solutions of (2.13)—(2.16) is

V(x,9)  — —||x||2 <  0. (2.19)

This implies that x =  0, 9 =  9 is stable and its region of attraction contains the set

Clv =  { { x , 9 ) : V ( x , 9 ) < c } ,  (2.20)
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where c is the largest constant such that

Clv =  {(* ,$ ) : V{x,9)  < c } c B x x B e . (2.21)

The invariance theorem of LaSalle now guarantees that (x(t),9(t)) tends to the largest in

variant set of (2.13)—(2.16) contained in the set where V  =  0., An immediate consequence of 

this fact and (2.19) is that

lim x(t) =  0, lim x(t) =  0 , lim 9(t) =  0 . (2.22)t—*■ OO t—►OO t—► oo

The equilibrium x =  0, 9 =  9, is expressed in the (:r, 0)-coordinates as

x =  xe, 9 =  9 , (2.23)

where the 0-dependent xe is defined by

* ' - [ o , . . . , o , * l ; , . . . , o , . . . , o , * a  (2-24)

+  9Tw{(xe) =  0, 1 <  j  <  m . (2.25)

Note that the system (2.25) has, because of (2.8), a unique solution for each 0 E Be. 

Since 1 <  j  <  m, can be expressed as smooth functions of i  and it follows from

(2.22) that

lim x{ _i(t) =  lim[x{ +  9Tw{(x)] =  0 , 1 <  j  <  m . (2.26)i—1-00 j t—►OO J

Combining (2.22), (2.25) and (2.26) with the fact that w{(x), 1 < j  <  m, are smooth 

vector fields., we conclude that

lim x(t) =  a;e. (2.27)i—► oo

We are now ready to state and prove the main result of this section:

T heorem  1. The equilibrium x =  0, 9 =  9 of the adaptive scheme (2.13)-(2.16) is stable 

and a subset of its region o f attraction is the set Qy defined in (2.21). Furthermore, its state 

(x(t),9(t)) converges exponentially to the linear variety

M  = { ( x ,0 ) - .x  =  0, W .(0 -9 )  =  O}, (2.28)
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where

W * = w \ ( x ° ) , . . . , W ? ( x ° )  , w\ . . . , U)J‘ ( l e ) ] T  . (2.29)

Proof. The first part of the theorem is already proven in (2.18)-(2.27). For the proof of the 

second part, we must first find the largest invariant set of (2.13)—(2.16) contained in the set 

where V  =  0, i.e., in the set x =  0, or equivalently, x =  xe. Setting x =  0,x  =  a:e, i  =  0 in 

(2.13)—(2.16), we obtain 0 =  0 and

W(xe,0 ) ( 0 - 0 )  =  0.

Substituting (2.15) into (2.30) we obtain the equivalent expression

u^(a:e)T(0 — 0) =  0 , 1 <  j  <  m

I  +  J(xe,0) . w j(z e) +  0i wJ4(xe))T {0 — 0) =  0 , 1 < j  <  m .

But from (2.11) and (2.31) we have

w i(x')($
dx

tu{(xe)T(0 - ^ )  =  O.
,=1 1

Substituting (2.33) in (2.32) and using (2.8), we see that (2.32) is equivalent to

u£(xe)(0 -< ?) =  O.

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

Thus, the largest invariant set of (2.13)—(2.16) contained in the set where =  0, is the 

set Mdefined by (2.28)-(2.29):

M  =  { ( x , 0 ) : x  =  O, W ' ( 9 - § )  =  0 } .

Since We is a constant 2m x p matrix with rank r, the set M  is a linear variety of dimension 

p — r that contains the equilibrium x =  0, 0 =  0. By LaSalle’s invariance theorem, the state 

(x(t),0(t)) of (2.13)-(2.16) tends asymptotically to the set M.  To complete the proof of the 

theorem, we now need to show that the rate of convergence to the set M  is exponential, i.e., 

that for every compact set S C Hy there exist constants K  > 0, A > 0 such that

S ) “ (6S M s <“ >
7



Towards this end, we first replace 0 by the new states <p and of dimension r and p — r, 

respectively, which are defined as

M _ " W e  '
w .  T « .

( 9 - 9 )  =  -  9). (2.36)

In (2.36), We is an r x p matrix that has the same nullspace as We (recall that r is the. rank 

of We), so that

Wc{0 -  0) =  0 <=> Wc{0 - 0 )  =  O4=>v? =  O, (2.37)

and Te is a (p — r) x p matrix chosen so that the transformation matrix T in (2.36) is 

nonsingular. Due to the definitions (2.36)-(2.37), (2.35) can now be equivalently expressed 

as
^ ( 0 ) v

^ ( 0 ) ,
6 S

x{t)
¥>(<)

< K ie -Xit
¿(0)
VO)

(2.38)

with K i, Ai some positive constants that depend on S. In the (:£,</?, ^-coordinates, the 

adaptive scheme (2.13)—(2.16) becomes

V \x =  Ax +  Ue(x,<p, x/>) 

' j )  =  V ,U j (x ,9 , i ; )P x ,
(2.39)

where

Ua(x,y,i>) =  W \ x , 9 - T - 1

i\ =  t v t t v j  > o .

We have already shown (cf. (2.30)—(2.34) ) that V €

W (xe, 9°)(9 -  9) =  0 «=*■ W'{9 -  9) =  0 .

(2.40)

(2.41)

(2.42)

From (2.36) and (2.40) we conclude that for all (<p°,ip°), ((fi,ip) corresponding to 6°, 

0 6 Bq, we have

Ue(x\ <p°, t/>°) M =  0 *=* W(x',  0°)(9 -  9) =  0 , (2.43)

which, combined with (2.37) and (2.42), results in

Ue(x\<p°,i>0) ( A  =  0 ^ i »  =  0.

8
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In particular, (2.44) implies that

U9(x\  0 , W ^ )  =  0 4 = ^  =  0. (2.45)

Hence,

Ue(x\  0 ,^°) = Ui 0
u2 o =  Ue , rank U ,

U 2
— r (2.46)

Let us now examine the linearization of (2.39) around x =  0, (f =  0, ip =  •0° =  const, 

(equivalently, x =  ze, 6 =  const., We(9 — 9) — 0):

V |

(2.47)
Sx =  A8x +  Ue

8xl>
'8 p

=  TilfJPSx

Using (2.46) and the decomposition

T i  =
Tu r i2
r ?2 r 22

(2.48)

we can rewrite (2.47) as

8x =  ASx -f U i

U2
8<p

8<P =  Tu [U ?U j]P8x
(2.49)

s i  =  rUu?u?]P6x.

The stability properties of this linear system are established using the quadratic Lyapunov 

function
_  _  _  /  /w /l\

(2.50)Vi(8x , 8(p,8ip) =  8 x t P 8 x  +  (8(pT8rpT)T11 ' ^
8 i> )  ’

whose derivative along the solutions of (2.47) is

Ve(8x i8(pi8xl;) =  —||̂ i||2 <  0 (2.51)

Thus, the equilibrium 8x =  0, 8<p =  0, 8tp =  0 of (2.49) is stable. Furthermore, the largest 

invariant set of (2.47) contained in the set where Vt =  0 is, by (2.45), the set

Mi =  {(££, 8<p, 8ij)) : 8x =  0, 8ip =  0} . (2.52)

9



Hence, the linear system (2.49) is stable and its state converges to the (p — r)-dimensional 

linear subspace Mg. Moreover, by (2.45) again, every point of Mg is an equilibrium of (2.47):

¿ ¿ (0) =  0 , <fy?(0) =  0 => ¿¿(t) =  <$£(0) , 6ip(t) =  ¿<¿>(0) 5 — ^ ( 0) •

We can now conclude that the state matrix of (2.47)

Ag =

(2.53)

A c/i 0 '
A u . ' U2 0

V1UjP 0- V n{U ?U ?]P 0 0
r u [0 ?  u? ] p 0 0

(2.54)

has n +  r of its n +  p eigenvalues in the open left half plane and the remaining p — r at the 

origin 5 =  0. The LHP eigenvalues are the eigenvalues of the submatrix

-Tlhp =
A  U '

U 2r n [U ? U j )P  0
(2.55)

' 8 xwhich corresponds to the I 1 -subsystem. From (2.52) we see that this subsystem is not
w

affected by Sip:
'6x s

,s v .
=  4̂lhp © ■

Hence, there exist constants K q > 0, A0 > 0 such that

<  I< 0 e ~ Xot
8x(t) Sx(0)

M  0)

(2.56)

(2.57)

This proves that the linear variety M  defined by (2.28)-(2.29) is an equilibrium manifold of 

(2.13)—(2.16) that is not only stable and attractive with a region of attraction that contains 

the set fty defined by (2.21), but also exponentially attractive. Hence, for every compact set 

S C Hy there exist constants K  >  0, A > 0 such that (2.35) is satisfied. □

C orollary 1.1. For every compact set S C Hy there exist constants K\ > 0, \\ > 0 and a 

class-K, function a(-) such that for every (a:(0), 0(0)) € S, the solutions of the transformed 

adaptive scheme (2.39)

x =  Ax +  Ue(x1<p,'ip) j

10



starting from the corresponding (x(0),<p(0), satisfy the following inequalities Vt >  0:

x(t)
¥>(<)

< K ie~Xl‘ x ( 0 )

V>(°)

(

IÎ WII < *

(2.58)

(2.59)

□

Corollary 1.2. If r — p, that is, if'the rank of We is equal to the number of unknown 

parameters, the equilibrium x =  0,9 =  9 o f the adaptive scheme (2.13)-(2.16) is exponentially 

stable with a region o f attraction that contains the set fly. Thus, the stability of x =  0, 

9 =  0 is robust with respect to both fast stable unmodeled dynamics and small disturbances.

Proof. If rank(Wg) =  p, then

WJfi - 9 )  =  0 < = > 9  =  9, (2.60)

which implies that the linear variety M  defined by (2.28) collapses to the single point x =  0, 

9 =  9. By Theorem 1, this point is an exponentially stable equilibrium of (2.13)—(2-16). (In 

the coordinates of (2.39), r =  p implies that the (p — r)-dimensional 0  vanishes, and thus 

the state (x(t),(p(t)) satisfies (2.58).) The robustness with respect to fast stable unmodeled 

dynamics and small disturbances follows from standard results on singular perturbations 

(see, e.g., Corollary 7.2.3 in Kokotovic, Khalil and O’Reilly [7]) and total stability (see, e.g., 

Theorems 56.1-56.3 in Hahn [8]). a

Remark 1.1. Since We is a matrix of dimension 2m x p, its rank can be equal to p only if 

p <  2m. This means that the adaptive scheme (2.13)—(2.16) can have x =  0, 9 =  9 as an 

exponentially stable equilibrium only if the number of unknown parameters is less than or equal 

to twice the number of independent control inputs. □

Remark 1.2. It is of interest to compare the stability properties established in this section 

for the adaptive scheme of Kanellakopoulos, Kokotovic and Marino [3,4] with those estab

lished by Isidori and Byrnes [9] and Huang and Rugh [10] for their non adaptive schemes.
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Rewriting the system (2.3) as

x =  Aqx +  Bqv +  W(x)0
è =  o, (2.61)

with the obvious definitions for Aq, B0 and W (x ), one may try to use the schemes of [9] and 

[10] to regulate the measured state x to the equilibrium x =  xe and reject the unmeasured 

constant disturbance 0. It is straightforward to verify that for this particular problem, 

Assumption (H3) of [9] and condition (3.11) of [10] are both equivalent to

r =  rank(W (a:*)) =  p , (2.62)

which is exactly the assumption of Corollary 1.2. Furthermore, the system (2.61) satisfies all 

the remaining assumptions of [9] and [10] if iir[(0) =  0, j  =  1 ,.. . ,m , in which case xe =  0.

Assuming that all these conditions are met, we are in the case where all three schemes are 

applicable. While the nonadaptive schemes of [9,10] employ a full-order linear observer based 

on the linearization of (2.61) around the point x =  0, 6 =  0 [9] or x =  0, 9 =  const.[10], 

the update law (2.16) of the adaptive scheme of [3,4] can be interpreted as a reduced-order 

nonlinear observer. Finally, while the schemes of [9,10] are based on linearized designs and 

hence provide only local stability properties, the scheme of [3,4] results, in the case of the 

system (2.61), in a closed-loop system with a globally asymptotically stable equilibrium. □

3 Stability in the Presence of Unmodeled Dynamics

In the case where r =  p, Corollary 1.2 states that the stability of the equilibrium of (2.13)— 

(2.16) is robust with respect to fast stable unmodeled dynamics. In this section, we prove 

that this statement is true even when r < p. We first prove the following converse Lyapunov 

result:

Lemma 1 .  Consider the composite system

x =  / ( * ,y )  
y = g(x,y),

(3.1)

where x G IRni, y E IRn2, and the vector fields /(•), g(-) have continuous first-order partial 

derivatives that are bounded on a compact set Sq. Assume that this system has a stable

12



equilibrium at x =  0, y =  0 and that the subspace x =  0 is an equilibrium manifold of (3.1), 

that is, /(0 , y) =  0, g{0,y) =  0. Moreover, assume that there exists a compact set Si C So 

such that

fx(to)' x0

<yo,

ll*WII <  fce-“ (*-*>)||*o||
€  S i x0

Vo

\/t >  t0 (3.2)
l|y(*)ll ^  *

with k > 1, a > 0 constants, and <r(-) a class-K function. Then there exists a Lyapunov 

function V (x , y) that provides Qy C Si as an estimate o f the region o f attraction and satisfies

V{x ,y)  <  -ai\\x\\2 

dV(x,y)
dx

<  ot 2 a;

(3.3)

(3.4)

for some positive constants oci, 0L2, and for all (x,y)  G Llv-

Proof. Let px(t — to, x0, yo) denote the x-part of the solution of (3.1) which passes through 

(xo» yo) at time t0. Then the function

rt+T
V(x ,y )  =  J \\P x ( t  -t,x ,y )\ \ 2dr + x0

Vo
(3.5)

with T >  0 a finite constant to be determined later, is a Lyapunov function for (3.1) which 

satisfies (3.3) and (3.4). To prove this claim, we first note that because of the boundedness 

of their first-order partial derivatives and the fact that f ( 0,y) =  0, g(0,y ) =  0, the vector 

fields /(•,•) and #(•,•) are Lipschitz continuous with respect to x uniformly in y on that

is, there exists a constant b >  0, such that for all

7 (* i> yi)\ _  /7(*2,y2)'
M x ^yi)J  U (* 2,y2),

X i X-2
e S i :

yij \y2j

< b \\xi — x2\\. (3.6)

In particular, this implies that

||x||e~6(T_t) <  \\px(r -t,x,y)\\ <  ||x||eb(T_i).

Also, from (3.2) we have
Xo

yo (IIj/WII)

(3.7)

(3.8)

13



(3.9)

Combining (3.7) and (3.8) we see that (3.5) is a locally positive definite function:
r t+ T

V{x ,y )  >  jf ||z||2e -26(T- i)dT +  <7"1(||2/||) =  ao||ar||2 +  <t“1(||2/||) 
l  _  e -2b T

with ao =  ---- —----- > 0. The rest of the proof is almost identical to the proof of Theo-
26

rem 56.1 in [8]. The derivative of (3.5) along the solutions of (3.1) is

V(x ,y )  =  -|bx(0,a;,i/)||2 +  ||px(T,a:,7/)||2. (3.10)

Using (3.2) and the identity px(0,a;,?/) =  x , we obtain from (3.10)

V (x ,y )  < -| | i||2 +  f c V 2“ r ||x||2. (3.11)

Thus, if we choose
_  2 In k +  In 2 (3.12)

2a
in (3.11), we obtain (3.3) with ai =  | :

V(x ,y )  <  -l||x||2. (3.13)

The inequalities (3.9) and (3.13) prove that (3.5) is a Lyapunov function which satisfies (3.3) 

and provides the following estimate of the region of attraction:

Civ =  {(x ,y ) : V(x,y) < c] , (3.14)

where c is the largest positive constant such that Cly C Si. Finally, in order to obtain (3.4), 

we note that
d
—px{ t - t o , x 0,yo) = f ( p x( t - to ,xo ,yo) ,y ) .  (3.15)

Since /(•) has continuous and bounded first partial derivatives on 5, we can differentiate 

(3.15) to obtain

711 dfi
qij = -  *0, *0, Vo), y) Vkj, 1 < i, j  < n i ,

fc=1 dxk
(3.16)

where qij denotes the partial derivative dpXi /dx0j . From (3.16), the compactness of So and 

the boundedness of dfi /dxk on So, we obtain the following estimate, with ki > 0 a constant 

and 6 > 0 as defined in (3.6):

x
G Civ

dpxjjr - t , x , y )  
dxj

<  /fc1e6<T- i>, ! < • , > < 7Î1 (3.17)

14



From (3.5) we have

dV(x,y )  0 f t+T^ _  x _ ,dpXj(T - t , x , y )_ 9 r 1 v '  # ̂  
dxi ~ 2 Jt p ,  ’ y)- d x i

dr. (3.18)

Combining (3.18) with (3.17) and (3.2), we obtain

dV{x,y )
d x i

rt+T
< 2  J riikkie^~a+b^T~^dr||x|| =  k2\\x\\ , (3.19)

which implies (3.4) with a 2 =  ^1^2- □

Let us now assume that the system (2.1) is actually the reduced-order system obtained 

by neglecting the fast unmodeled dynamics of the composite system

z = fz{z,0) + F1(z)£ + G1{z)u
pi -  fi(z,0) + F2{z)Z + G2{z)u,

(3.20)

where £ 6 IR* is the state of the unmodeled dynamics, fi >  0 is a small constant, and F2(z) 

is such that

R e {A (F 2(z ) ) }< -< 7 i ,  V z € # z , (3.21)

for some constant (T\ > 0. The change of variables

f  = £(z,u,$) +  ri1 (3.22)

which exhibits the function

£(z,u,0) = —F2 1(z)[fi(z,0) + G{z)u] (3.23)

as the quasi-steady-state of £, and rj as its fast transient, transforms (3.20) into the standard 

singular perturbation form

i = f{z,6) + G(z)u + Fi (z)rj 
M  = F2(z)rj -  ¡it

with

/ M )  =  A ( M )  -

G(z) =  Gl( z ) - F 1(z)F2 1(z)G2(z).

(3.24)

(3.25)

(3.26)

15



Assuming that

/ ( M W o ( * )  +  E  *.-/«(*), (3-27)
1=1

and neglecting the fast unmodeled dynamics of (3.24) by setting 77 =  0, we obtain the 

reduced-order system (2.1). Furthermore, assuming that the conditions (2.4), (2.5) and 

(2.8) are satisfied, we can apply the procedure of Section 2 to design an adaptive scheme for 

the reduced-order system. Using the diffeomorphism x =  <j>(z) of Proposition 1 followed by 

the change of coordinates (2.6), and applying the control defined by (2.2), (2.12) together

with the update law (2.16), we obtain the perturbed adaptive scheme

x =  Ax -f W{x, 9)(9 — 9) -f R(x)t]

9 =  TWt{xJ ) P x (3.28)

M  = Q{x)ri -  fAh(xJ,ri,$),

where

R(x) =  <f>z ( r ‘ ( i ) )  F1{ r \ x )), Q(x) =  F M ~ \ x ))  (3.29)

h(x,0,$)  =  l  ^ - 1(x),ct(^_1(x)) +  B(<j>~1(x))v(x,d),dsj (3.30)

h(x,$,e) = h(u>(x,e),e,6)(3.31) 

h(x,9,ri, 0) =  h±x +  hgO , (3.32)

where to is such that x =  o ;(i,^ ). In order to investigate the stability of the equilibrium 

x =  0, 9 =  9, T) =  0 of (3.28), it is convenient to first apply the change of coordinates (2.36), 

which transforms (3.28) into

x =  Ax +  Uo(x,(p,\l>) +  R(x)rj

t ì  =  I\ U j (x ,V,i>)Px (3.33)

m  =  Q{x)rj -  fiC(x^,i/;,r],9)

with the obvious definition for ((x,y>,ift,9), and then investigate the stability of the equilib

rium x =  0, (p =  0, i/> =  0, rj =  0 of (3.33).

16



From Corollary 1.1 we know that the adaptive scheme (2.39), which is the reduced-order 

system we obtain if we set 77 =  0, y. =  0 in (3.33), satisfies the hypotheses of Lemma 1, 

with (x,ip) and ip playing the roles of x and y, respectively, in (3.1). Thus, from Lemma 1, 

there exists a Lyapunov function V(x,ip,xp) that provides fiy  as an estimate of the region

of attraction of the equilibrium £ =  0, </? =  0, ip — 0, and satisfies the inequalities
2

V(2J39){x,<P,1p) < -CL  1

dV(x,<p,\p)
<  a 2

x
V

X

(3.34)

(3.35)
d{x,p)

for some positive constants ai, «2 and for all (x,<p,xp) 6 Oy.

The stability properties of the perturbed adaptive scheme (3.33) can then be investigated 

using the composite Lyapunov function

Vc(x,<p,xp,ri) =  ci i>) +  , (3.36)

where C\ and c2 are positive constants and P{(x) is the positive definite solution of

P,(x)Q(x) +  QT(x)P,(x) =  - / .  (3.37)

The time derivative of Vc along the solutions of (3.33) is 

V c = V(2.39 )(x,(p,1p) +  ------gr-------R{x)r]

+ c 2 - - r j Trj +  T)TP{(x, <p, xp, 77, 0)tj -  2r)TP{(x)( (x ,  p, ip, 77, 9) 
L V-

(3.38)

The function A, as defined in (3.32), vanishes on the linear variety

Mc =  { ( ¿ ,  7) : x =  0 , 0 , ij =  0}  .

Thus, from the definition of £ and (2.37), we have for all admissible xj)-.

and, hence,

C(O,O,tM,0) =  0 ,

C * ( 0 ,0 ,V > ,0 , t f )  =  0

(3.39)

(3.40)

(3.41)

17



We conclude that £ is bounded by

X
+ /»2lkll. (3.42)

provided that for all x € Bx, 9 € Bg, 77 € 9 e  Bg the following inequalities hold:

< ± ( * , ¥ M M ) Ax +  Ug(x,<p,r/>) +  <P, 0>9)T1Uj(x,  v?, -0)Px < Pi
x
<P

||C*(*,¥b^MWE)l| <  P2 -

Using (3.42) and, in. addition, requiring that for all x € Bx, 0 € Bg, 77 € Bv, 9 £ Bg

^-||'Pf(i)||pi <  Cl 
«1

^ 11^)11 <C 2

2II#(*)IIP2 +  ||Pf(x,V?, ,̂?/, )̂|| < C3 ,

we obtain from (3.34), (3.35) and (3.38):

K  <  - a  1

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

X
M l

T Ci — C1C2 
/ 1 \

X

IMI<p _ -C 1C2 [ -  -  c3J c2
(3.48)

From (3.48) we see that for every (i satisfying

0 <  n  <  \ C  —
1 (3.49)

ClC2 +  c3

the matrix in (3.48) is positive definite, and hence Vc is negative semidefinite. This implies 

that for every satisfying (3.49) the equilibrium x =  0, ip =  0, ip =  0, 77 =  0 of (3.33), or, 

equivalently, the equilibrium x =  0, 9 =  0, 77 =  0 of (3.28), is stable. Furthermore, a subset 

of its region of attraction is the set

=  { ( z ,0,77) : Uc(x,v?,7̂ ,77) <  c} , 

with c the largest constant such that

Hc C fti x Bv , fii =  {(x ,0 ) : G fiy } D Bx x Bg .

(3.50)

(3.51)

18



From LaSalle’s theorem we know that the state of (3.33) converges to the largest invariant 

set contained in the set where Vc =  0, that is, in the set {(x,p,ip,r/) : x =  0, ip =  0, rj =  0}, 

which is itself an invariant set of (3.33) by virtue of (2.45). Hence, the linear variety (3.39) 

is an attractive equilibrium manifold of (3.28). Furthermore, this equilibrium manifold is 

exponentially attractive for small enough p. To prove this claim, we linearize (3.33) around 

x =  0, p  =  0, ip =  0°, r) =  0, using (3.41) (cf. (2.47)—(2.50)):

Sx

Sp

Sip

pSrj

=  ASfc -f Sp +  ReSr)U i

u 2
=  rn [u? uJ]PSx  
= r?2[t/1T u?)P6x  
=  QeSri -  n[Zi8x +  Z28ip + Z38rf\,

(3.52)

where

R, =  R(x ' ) , Qc =  Q (x ') (3.53)

Zx =  Ci(0, o, 0 ° ,8) A +  C(J)(0, o, 0°, 0)Y-iU ]P  (3.54)

=  Ci(0,0, 0 °, 0) ^  (3.55)

Z3 =  a ( 0 ,0, V°, (3.56)

Since Qe is a Hurwitz matrix, by Theorem 3.1 of [7] the first n +  p eigenvalues of the system 

matrix of (3.52) are within O(p) of the eigenvalues of the reduced-order-system matrix At 

(cf. (2.54)), while the remaining v are open-left-half-plane eigenvalues that are within 0 (1) of 

the eigenvalues of j^Qe- This implies that there exists a p** >  0 such that for all p € (0,/z**) 

the n +  r +  v eigenvalues corresponding to the (Sx,Sp, ¿^-subsystem of (3.53) have negative 

real parts, while the remaining p—r eigenvalues are within 0(p) of the origin 5 =  0. However, 

in this case we can actually show that these eigenvalues are at the origin, since

det

sln .4 -t/l
- u 2

0
0

r„ [t?  uj]p Sir 0
O T  UJ]P 0 Slp-r

Zx 2̂ 0

f?e

0

0

S h  — j ; Q e  +

19



=  5p" r det
sln — A Re-Ur  

- U 2
- r u[U? U?]P sir 0

Z\ Z2 s lu — j-Qe -}• Z3

(3.57)

Thus, the exponential attractivity of the manifold Mc is established for every p satisfying

0 < p < p0 =  min{p*,p**}. (3.58)

We summarize these results in the following:

Theorem  2. For every p satisfying (3.58), the equilibrium x =  0, 0 =  0, rj =  0 of the 

perturbed adaptive scheme (3.28) is stable and a subset of its region of attraction is the set 

Qc defined in (3.50). Furthermore, its state (x(t),0(t),rj(t)) converges exponentially to the 

linear variety Mc defined in (3.39) for all (i(0 ), ¿(0), r/(0)) € Hc. n

C orollary 2.1. If r =  p, that is, if the rank of We is equal to the number of unknown 

parameters, the equilibrium x =  0, 0 =  0, rj =  0 of the perturbed adaptive scheme (3.28) 

is exponentially stable for every p satisfying (3.58), with a region o f attraction that contains 

the set Qc. □

4 Stability with Slowly-Time-Varying Parameters

The result established in Corollary 2.1 can be used to show that in the case where r =  p, the 

adaptive scheme of [3,4] is robust not only to unmodeled dynamics, but also to slow time 

variations of the unknown parameters.

Let us consider the case where the unknown parameters 0 are not constant, as was 

assumed in the previous sections, but evolve slowly with time according to the differential 

equation

( ) ( t ) = e F ( 8, t ) ,  (4.1)

where F(-, •) is continuous and £ is a small positive constant. We now make the following 

assumptions:
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A ssum ption 1. There exist compact sets Sg, Sg with Sg C Sg C Bg such that for every 

to >  0, the solutions of (4.1 ) starting from any 0(0) £ Sg, remain in Sg for all t >  t0.

A ssum ption 2. For every 0 £ Sg, the system (2.25) has a twice continuously differentiable 

isolated root, that is, the mapping 0 —*- xe is C2 on Sg .

A ssum ption 3. For every 0 £ Sg, the corresponding W (x e) =  We ¿as rank p.

The main result of this section is: *

Theorem  3. Under Assumptions 1-3 and for every p satisfying (3.58), the solutions of the 

perturbed adaptive scheme with slowly-varying parameters

x =  Ax +  W(x, 0)(0 — 0) -f R(x)rj 

0 =  T W T( x J ) P x
A A

pi] =  Q(x)r] — ph(x, 0, r], 0)

0 =  eF(0 ,t ) ,

(4.2)

starting from any (x(0) ,^(0) ,77(0), ^(0)) € Hc x S], remain bounded. Furthermore, for any 

6 >  0 there exists an £0(8) > 0 such that for all e £ [0,£o];

lim sup
t—*oo

x(t)
m  -  m

v(t)
< s. (4.3)

Proof. From Corollary 1.2, we know that the equilibrium x =  0, 0 =  0, 77 =  0 of the system

x =  Ax  +  W(x, 0)(0 — 0)

0 =  TWT(x,0)Px  (4.4)

pi] =  Q(x)rj -  ph(x,0,r],0)

is exponentially stable for every fixed 0 £ Bg. Since Sg is a compact subset of Bg, the 

equilibrium x =  0, 0 =  0, 77 =  0 of (4.4) is exponentially stable uniformly in 0 £ Sg. It 

is then straightforward to prove that there exist a constant ¿1 and a Lyapunov function 

V(x,0,T],0) for (4.4) with the following properties for all 0 6 Sg and for all (x,0,rj) such
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that
x

ê - e <  ki’.

«  i
x

ê - e <  V(x,  ¿ ,77, 0) <  0:2

V(4.4 )(z ,M ,0 ) <  - a 3 

dV

x
ê - e

v
2

d(x,e,rj)
( x ,0,T},0) < Ot4

X

ê - e  
v

X

ê - e
v

(4.5)

(4.6)

(4.7)

dV, 5
X

0,^,9) <  OL 5 ê - e
V

(4-8)

for some positive constants a,-, 1 <  « <  5. The proof of (4.5)-(4.7) is identical to the proof 

of Theorem 56.1 in [8], while (4.8) can be proven in the same way as (4.7), using the fact 

that the partial derivative with respect to e of the right-hand side of (4.4) is bounded for all
x

ê - e
V

< k\. The time derivative of V(x,0,ri,0) along thee G S$ and (£, 0, 77) such that 

solutions of (4.2) is

V(4.2)(®,0, 71, 0) =  V{4A)(x, 0,77, e) +  ^ - ( z ,  0, rj, 0)eF(0, t) . 

Using (4.6), (4.8) and Assumption 1, (4.9) leads to

dV (4.9)

X
2

X

V(4'2){x,ê,r),e) <  - a 3 ê - e + £&oO!5 ê - e
V e

Thus
x

ê - e
1

> ^  =* V(4,) <  0 ,OÌ3

(4.10)

(4.11)

which, combined with (4.5), proves the boundedness of (x(t), 6(t), 77(2)), and, moreover, shows 

that

lim sup
t—KX>

x(t)
m  -  m

v(t)
< «5^0 i 02\ *
“  Û3 \ai,

(4.12)
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Hence, (4.3) is proven with £0(<$) =  ( —- ) S. n
OC5KQ

5 Concluding Remarks

We have shown that when the vector fields multiplying the unknown parameters do not 

vanish at the origin, the adaptive scheme of [3,4] achieves more than stability and regulation: 

the parameter estimate errors also converge to a linear subspace. Moreover, the state of the 

closed-loop adaptive system converges exponentially to the resulting linear variety.

Even though the robustness analysis becomes now much more complicated than in the 

case where the above vector fields vanish at the origin, these additional properties enhance 

the robustness of the adaptive scheme. This is obvious in the special case where the linear 

variety collapses to a single point: the closed-loop adaptive system has then an exponentially 

stable equilibrium, and is thus inherently robust not only to unmodeled dynamics, but also 

to small bounded disturbances and, as shown in Section 4, to slow time variations of the 

unknown parameters.
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