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Abstract

This work gives some preliminary results related to research 

on Large Scale Composite (LSC) systems. An interconnected system model 

is considered. Each subsystem is assumed to be linear, time invariant, 

and have both local inputs and interaction inputs from other subsystems.

The main question is: "What can be done without lumping all subsystems

into one large system model, and what can be done by each subsystem using 

local observations and local control inputs alone?" Results on 

controllability, pole placement and stabilizability are given for the 

general LSC system and the "chain" structure. Both state-space and 

transfer function concepts are used. LSC systems may model various 

physical interconnected structures, e.g. power systems, economic systems 

etc. and applications of the results to these areas are presently being 

considered.
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I . Introduction

The control of large scale systems is receiving increasing 

attention in research lately. Some results related to hierarchical 

control concepts [l], controllability, stabilizability and pole placement 

in the decentralized model [2,3,4], problems of restricted information 

[5,6] and stability of interconnected systems [7,8] have been obtained.

In this paper we shall investigate a structure named the "Large Scale 

Composite (LSC) Systems" model, which may be used for large scale systems 

composed of interconnections of many subsystems. Some related work will 

be surveyed in Part II. In Part III we shall develop a canonic form 

suitable for showing any subsystem, in Part IV implications of this form 

in the areas of pole placement and local stabilizability will be 

investigated. We shall then turn to over all characteristics and give 

two necessary theorems on controllability of LSC systems. It will be 

seen that the identification of sets of subsystems forming "levels" is 

useful for analysis purposes. We will then investigate in Part VI a 

special multilevel structure, namely a "chain" of tandem connected sub­

systems. Necessary and sufficient conditions for controllability of 

chains with no mutual eigenvalues will be given, and in Part VII local 

stabilizability and local pole placement in chains will be investigated.
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II. The LSC Systems Model

Let the system S be composed of m subsystems ,s2»*'',sm * The 
thj: subsystem will be modeled by,

m
s . : xJ = AJxJ + 2 B~*u~*J . , 1 1

y-3 = CJxJ + £ D^u^
i=l 1 1

i=l
m (1)

J.J

where u'?, for i ^ j , are the interaction inputs, i.e. inputs from other

subsystems, and are defined as,

ui = Hi /  for 1 ^ J ( 2 )

x~* , ui, r3 are n., r. . and q. vectors respectively, and the matrices are i J ij J
real and of proper dimension u^ is the input of s^ which is not connected 

to any other subsystem; it shall also be called "the locally available 

input" (see Fig. 1).

The study of the LSC systems model is motivated by the fact 

that a large number of interconnected systems exist in the physical world, 

e.g. power systems, economic systems, neurological systems [7,9,10,11], 

however a generalized theory of their control is lacking.

Preliminary work on controllability and observability of 

composite systems was first reported in a paper by E . G. Gilbert [l2].

This was later extended with papers by Chen and Desoer [l3,14], Chen [l5] 

and Panda [l6] and was also summarized in a book by Chen [171. In these, 

two simple system interconnection configurations were considered. These 

were the parallel and tandem arrangements as seen in Figures 2(a) and (b). 

Given that the two subsystems are controllable and observable, conditions
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(from
subsystem k)

Figure 1. The LSC system configuration.
:Bj ), uj ' £ (J' u:

[For simplicity =
0>;J \  J  â /tJ  : DJu“ ) and D m '

(b i ;=
: D^).]
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s,-------- ^u1=u °i y. 1u?=u y2So
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u=u o  S- y r u 2

(b)
S, y = y 2

t>

F P -  4044

Figure 2. The parallel and tandem arrangements for two systems.
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under which the composite system would be, were found. We shall be 

extending these results to chains of m subsystems, each one of which will 

also have local inputs.

Apart from some hierarchical optimization considerations [1], 

research has been done so far on only one aspect of LSC systems, and that 

is composite stability. Some results have been obtained by Bailey [18], 

Thompson [19], Grujic and Siljak [7], Siljak [20,21] and Michel and Porter

[8]. In this paper we shall not be dealing with the question of stability, 

apart from stabilizability of the LTI model we are using. However, it is 

interesting to note that in the papers above on stability, the subsystems 

themselves and the interconnections considered have been of a much more 

general nature than any considered in research of other problems related 

to composite systems.

We should also point out that in research on large scale systems 

some interesting results have been found for the so-called Decentralized 

Systems structure [2,3,4]. The fact that these are not directly applicable 

to LSC systems will become apparent in the following where we shall be 

introducing some concepts, tools and results related to questions of their 

controllability, stabilizability and pole placement.
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III. Controllability of the Subsystem

For notational simplicity we shall drop the index j in (1) and

define B9 = (B-j ,B9 , . . . ,B^ , ,B^ ,, , . . . ,BJ) and B = . D0 , D. , u. and un2 1 2’ J“1 j+1 m 1 j 2 1 2 1
are formed similarly to give

x = Ax + Biu i + B2U2

y = Cx + Diui + °2U2
(3)

as the equations for any one subsystem. Here u^ shows the locally 

available inputs, u^ the interaction inputs, i.e. all inputs from other 

subsystems. Some further notation will be necessary in developing a 

canonical form related to the problem of controllability using only u^ 

(local controllability).

/3 = range space of B

& 1 = {Al^} = &1 + k&l + A2̂ 1 +. . .+ An~l@1

= {a |£2}

a  = c-* ® a 1 &1 1 3 1 3

a  = c-* ®  a e* 1 02 2 3 2 3

Q1 = [B1 ABx A2B1-. . n-1 -i . .A B1J

Q~ = A2B2 .. . n ™ 1• .A B2 J

Of is the locally controllable subspace, ^  is the subspace 

controllable by interaction inputs, ^  is the subspace controllable by both.



7
Note that,3^ and represent the subspaces controllable by local inputs 

alone, and interaction inputs alone, respectively# Since we have not so 

far assumed complete controllability, we shall also define £  , the non- 

controllable subspace, so that

3* 0 3 *  © 3 „  03, = Rn .1 2  3 4

The dimensions of the subspaces are denoted as k. = dim 3  ,
i l

• i * *
i - 1,...,4; = dim 3^ i = 1,2 are equal to the ranks of their

controllability matrices, if defined. We are assuming that the reader is 

familiar with terminology and some of the results related to controllability 

subspaces. (General references are [22,23].) Therefore, the following 

fact will be given without proof.

Lemma 1: The controllable subspaces 3^ and 3^ are A invariant.

Lemma 2; is A invariant.

Proof: Let e £ <3̂  • Since 3^ ^  3^, e £ 3^. From A invariance of 3 ^ }

Ae £ 3^* On the other hand, since 3^ c  3^ e £ 32 . From A invariance of 

<̂2 Ae £ Therefore Ae £ 3^ H 32 = 3^. Therefore 3^ is A invariant.

We shall now give the "controllability-decomposition canonic 

form" for a subsystem.

Theorem 1: There exists a linear transformation x(t) = Tx'(t) such that

(3) is transformed into the controllability decomposition canonic form
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are controllable pairs.

Proof: We shall prove the theorem by actually constructing a T matrix to

satisfy the transformation. Define T as,

T = (T1 T2 T3 V *  (5)
^  si.

Let 1s columns be the k1 basis vectors of T^'s columns be
* *

the k2 basis vectors of and 's columns be the k^ basis vectors of fl- . 

Form with any choice of k^ columns linearly independent of the rest and 

among themselves. T exists since all columns of T are independent. 

Partition T 1 to be

( 6 )

such that
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P T 1 1 P T 1 2 P T 1 3 P T 1 4 I k !

IIHr—1 1H P T T 1 P T *2 2 P T 2 3 P T 2 4 —
I.  ,  0 

k2
P T 3 1 P T 3 2 P T 3 3 P T 3 4 I k 3P T 4 1 P T 4 2 P T 4 3 P T *4 4 °L K4 l

Since = 0 and spans Ci , p e = 0 for every e € 3  Since

P2T3 = ° and T3 sPans<^ 3i p2e = 0 ^or every e ^^'3 ' Therefore P2e = 0 for 
every e €3^. Columns of are in 3^ and owing to A invariance properties 

AT1 will also be in 3 ^  Therefore P2 (AT ) = 0.

Similar reasoning will give,

| l 9 - i

A 1 1
0

f

0 ■—
i

.

<

B n
0

0

f
A 2 2

f

0

|
A 2 4

f ’  T " l ß l  '

0

j > t ' S  -
B 2 2

A 3 1 A 3 2 A 3 3 A 3 4 B 3 1 B 3 2

1

O 0 0
A 4 4 _

0 0

( 8 )

Controllability properties may easily be shown.

We shall now give an algorithm for picking the necessary basis 

vectors. Basis vectors for 3^ and 3^ can be found easily enough, however 

we have to make sure that the k„ vectors in associated with <3 are the ̂ -L J
same as k^ vectors in 3^ associated with 3 .

Step 1. Using the Gram-Schmidt procedure find a set of orthonormal basis 

vectors from k^ independent columns of Q^.

Step 2 . Continue the Gram-Schmidt procedure with k^ independent columns 

from Q9 . The basis vectors found in this step alone will span CZ. This 

assertion can be proved in the following way: The basis vectors found

in Step 1 will span 3 .̂ The basis vectors found by the completion of
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Step 2 will span . But . Therefore the basis
Vfvectors found in Step 2 alone will span .

Step 3. Starting with the (now available) k  ̂ basis vectors that span go 

through the Gram-Schmidt procedure with the k2 independent columns from Q . 

The-.new basis vectors will span Cr •

Step 4 . Starting with the (now available) k^ basis vectors that span (3̂

to through the Gram-Schmidt procedure with the k^ independent columns from
•kQ^. The new basis vectors will span Q, .

Step 5 . Generate a vector orthogonal to all those that have been found so 

far. Repeat this step until T^ is filled.

IV. Implications of the Controllability Decomposition Canonic Form

The controllability decomposition canonic form will be of great

help in analyzing LSC systems. Considering each subsystem as controllable
•fwe shall use as the model of each subsystem

*1 A n 0 0 X1 rHt—1
PQ 0

*2 = 0 A22 0 x2 + 0 U1 B22

.X3_ f JSl A32 A33. *3. B31. _B32_

We have to point out that Aoki has previously used this model in an 
entirely different context [2,3]. He has considered the above as the 
complete model for a large scale system with two "control agents". An 
extension of the decomposition for m control agents would be fairly 
complicated requiring all pairwise controllable subspaces, triply 
controllable subspaces etc. Note also that Aoki's results are not directly 
applicable since the inputs u^ are not locally available in our model.
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Consider the local linear state feedback:

which will give

u. (K1 K2 K3) ( 10)

*1 An +Bn Ki B11K2 B11K3 X1 0

x2 = 0 CMCM
< 0 x2 + B22 u2 . ( I D

x3 A31+B31K1 A32+B31K2 A33+B31K3 X3 B32
Denoting the new A matrix as A, we observe that

det(sl - A) = det(sl - det
S I‘An  '  Bn Ki - B11K3

"A3 l ’ B31Kl sI -A3 3 -B31K:
( 12)

(11) and (12) will give,

Theorem 2 : Let Eq. (9) show any subsystem in a LSC system S.

a) Eigenvalues related to A ^  can be arbitrarily place by local 

linear state feedback, without any constraints because of interconnections.

b) Eigenvalues related to k^  cannot be shifted by local feedback.

c) If there is no feedback through the interconnections the LSC 

system is locally stabilizable by local linear state feedback if and only 

if eigenvalues of A^  are *-n t îe left half complex plane (for every 

subsystem).
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This last fact warrants some further comments. If no feedback 

exists through the interconnections all subsystems preceding s can be 

lumped together as x = Ax + Bu, Y = Cx + Du so that u2 = Hy. After local 

state feedback U =Kx the equations for the composite system are,

X A+BK 1 0 X

il
___ __  __  _ _  ___ _______

0 • 
i X1

X2 b22h (c+d k )| a 
1 x2

_x3_ b32h (c+d k )[ .x3.

i.e. eigenvalues of A ^  have not been changed at all. Also note that 

eigenvalues related to A , can be placed at will by local feedback.

V. The Effect of Predecessors in LSC Systems 

Having looked at the subsystems at the local level, we can now 

address the question of overall characteristics in more detail. For this, 

some definitions and some new concepts will be used.

Definition 1: Let s^,s2 »...,s be the component subsystems of a LSC

system S. s. is a predecessor of s . if the output of s. is used as part i J i r
of the input to s .. In other words, s. is a predecessor of s if H ^ 0.J 1 j i j

In this section we shall consider the restricted case where 

D? = 0 for all i,j. The concepts may be extended to the nonzero case but 

it is doubtful whether this will bring any more insight.
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Consider s^'s interaction inputs

m . m . .
B0u 0 = 2 B^H. . yL = 2  B^H. . c V " .  (14)2 2 . , i iy . , l ij 'i=l J i=l J

Using only the existing predecessors that enter the sum in (14), form 

the matrix

CP(j) = block diag (H,.C1 H_.C2 ... H ,Cm)lj 2 j mj (15)

and the related predecessor states vector,

pa) _ (16)

’mx

where P(j) denotes "predecessors of Sj-" Note that this could be used 

in Eq. (13). It can be seen now, that a "predecessor subsystem's
P(i)observability" can be defined. If A is the block diagonal matrix 

formed from the A matrices of predecessor subsystems, the predecessor 

subsystem's observable subspace is spanned by independent rows of

cp(j)

CP ( j ) AP ( j )

CP(j)[AP(j)]2 (17)

cp(j)[Ap(j)]n (j)"1

where n(j) is the total number of states in sj's predecessors (see 

Fig. 3).



14

Figure 3. Subsystem j and its predecessors.
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If KL /s are unity matrices for all existing connected system 

pairs, it can be shown that observability of each subsystem implies 

predecessor subsystem observability. On the other hand if ^ 0, 

controllability of s^ is going to depend on whether its predecessor 

subsystem observable subspace is controllable by its predecessors. Before 

formalizing we shall repeat some more related concepts.

Definition 2: The number of input degrees of freedom 6 of a system is the

minimum number of inputs required for state controllability of that system.

Referring to (9) and considering 6 only for interaction inputs, 

we can state:

Lemma 3: Min i-s the maximum number of Jordan blocks associated with

any eigenvalue of ; max 6  ̂ is equal to the rank of B^ .

Proof: According to a theorem by Kalman [24] a necessary and sufficient 

condition for controllability, assuming the Jordan form, is linear 

independence of rows in related to the last rows of Jordan blocks 

of the same eigenvalue. Since we need at least the same number of 

independent columns for linear independence, this will give the lower 

bound. For the upper bound consider the controllability matrix. The 

linearly dependent columns of B^  will not span any subspace that cannot 

also be spanned by using the linearly independent columns of

In LSC systems we are interested in subsystems controlling 

other subsystems, rather than any particular input. Therefore we shall 

now address the problem of identifying the class of necessary predecessor 

sets. Two methods for this are given in Appendix I. Note that because of 

the interconnection structure a mode in s. may have to be controlled by mpre
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than one predecessor. Also note that the minimum number of predecessors 

controlling might be turning part of C,̂  over to the local inputs.

Denote the class of necessary predecessors by L. Each j£€l shows 

a set of numbers identifying the predecessors.

Theorem 3: A necessary condition for controllability of a subsystem is

that for at least one XGl , its predecessor subsystems observable subspace 

is within the controllable subspaces of its predecessors.

- , .1 Ai 1 . _1 1Example 1: Let s^: x = A x + B u

i i y = x for i = 1,2,3,4
(18)

5  0  0 r —t
1 7

" l  o " . 3 3  0 . 4 00 o

A  = 0  6  0 A  = A  = A  =
_ 0  2 _ - °  4 . _ 0  9 _I-'-oo

V
b l =

1 o 1
1

1
for i = 2,4 B3 =

01

(19)

Let these be the predecessor subsystems of s^, s^ being the system given

in Appendix I. It was found there that L = {(1,3),(1,4),(2,3)}. Let the

H. . be unity matrices. It is seen that only for JL = (1,4) is the 
ij
predecessor observable subspace within the controllable subspaces of the 

predecessors.

We shall now show by another example that Theorem 3 does not

also give a sufficient condition.
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than one predecessor. Also note that the minimum number of predecessors 

controlling <3-2 might be turning part of over to the local inputs.

Denote the class of necessary predecessors by L. Each L shows 

a set of numbers identifying the predecessors.

Theorem 3: A necessary condition for controllability of a subsystem is

that for at least one X6l , its predecessor subsystems observable subspace 

is within the controllable subspaces of its predecessors.

•i .1 1 , „1 1Example 1: Let s^ï x - A x  + B u

y1 = x1 for i = 1,2,3,4
(18)

5 0 0
2 o" .3 3 o“ .4

o00

— 0
0

6
0

0 A =
0 2_

A =
_0 4.

A =
_0 9_7_

(19)

BX = B1 = for i = 2,4 b3 =

Let these be the predecessor subsystems of s_., s^ being the system given

in Appendix I. It was found there that L = {(1,3),(1,4),(2,3)}. Let the

H.. be unity matrices. It is seen that only for X = (1,4) is the 
iJ
predecessor observable subspace within the controllable subspaces of the 

predecessors.

We shall now show by another example that Theorem 3 does not

also give a sufficient condition.
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Example 2 : Consider the three interconnected subsystems, (see Fig. 4)

where

A*

.1 *1 1 + 1 1 + 1 1X = A.x B,u. B_u.1 1 1 2 2

.2 . 2 2 2 2 2 2X = A x + B0u. + B_u_2 .2 3 3

.3 *3 3 3 3 + „3 3X = A x + B0u„ B-U-3 3 1 1

1 0 o" r*

k =
~4 0~ 6 0

0 2 0 Ao =
0 0

2 _0 5_ 3 0 73_

( 20 )

( 21 )

Y
1

"o
1

0
2 „3 Y 2 3 Jol0

0
B2 = 1

0
B4 ' 0

A B2 = B3 “ p_ B3 " B1 -fj

1 1 2 2 3 3y = x2 y = x2 y = x2 = H32 = H13 = 1

and uj shows a connection with other subsystems. Each subsystem is 

completely state controllable. Taken in pairs they would also be 

controllable. However since the controllability-observability relations 

form a loop the composite system is not controllable.

We have used the term loop in a literal sense though an exact 

definition using graph theoretic concepts is also possible. This is done 

in Appendix II to which we shall have more reason to refer in the next 

section. The example given makes the following theorem, with important 

implications in LSC systems, obvious.

Theorem 4 ; A necessary condition for controllability of a LSC system is 

the nonexistence of a loop of interaction input controllable subspace-
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(local)

(local)

Figure 4. System configuration for Example 2.

rO rO



19

predecessor observable subspace pairs.

It has to be pointed out that not all loops of interconnections 

will cause uncontrollability. Again, the use of modal control concepts 

would make the above easier to check, as the example has shown.

VI. The Multilevel Structure

Refer to Theorem 4 and consider the set of subsystems {s, ...s }.l m
It is apparent that if this can be divided into disjoint sets such that the 

interconnections do not form any loops between the sets, controllability 

conditions will be simplified and Theorem 4 will only have to be applied 

within each set. The sets will show a multilevel structure (or a 

hierarchy) within the LSC system. A simple algorithm, using graph 

theory, to identify these sets has been given in Appendix II.

We shall now analyze the controllability of the multilevel 

structure considering each level as a single subsystem. This special 

structure shall be called a "chain." We shall first consider a chain of 

m controllable subsystems with no local inputs (Fig. 5a) then extend the 

results to the case with local inputs (Fig. 5b). Let the systems be:

.1 l l , 1 1
V X h > i X! i + B u

1 l l 1 1
y = C x + D u

s . : xj = a V + BJuJ
J

3
y = Cjxj + D^u^

uj
= V l . Z ' 1

(22 )

(23)

m.for j= 2,3,...,



(a) (b)
F P - 4 0 4 8

Figure 5. A chain of subsystems, with and without local inputs.
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For simplicity of notation and presentation we shall consider 

the case where the subsystems have no eigenvalues in common. We shall 

find conditions under which the composite system is controllable using the 

inputs of the first subsystem in the chain. Form the state equations of 

the first j subsystems:

r.iX.2X.3X• =• . •
.j-1X
.jX
— —

A 1 o 0 ___0

b V 1 A2 0___0

3h 23d 2H i2c1 b 3h 23c 2 a 3___o

j"1(^n^H . Dk_1)H C1.k-3 k-l,k 12

j(kïï3V l . k Dk‘1)H12cl BJ(kn4Hk-i.kDk'1)H23c2....... [

r „i i

4-

B

bV 1

b3h23d2Hi2d1 (24)

"^kfeW”
where the matrix product TT is assumed to be with index increasing leftwards 

Assume that all subsystems were originally in Jordan form and consider the 

transformation:

x = Px (25)

where
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I 0 0 ... ............. 0

P21 I o ... .............. 0
p = P31 p32 I ...

•
•

•
9

9
pj! P^2 ...

9
p j ( j “ 1 ) •£

(26)

to change (24) into Jordan form. (This method is an extension of a proof
1 2  3 *due to Panda [16].) The new matrix has to be block diag(A ,A jA"3,. .. ,AJ) , 

from which we get the conditions,
2 21 21 1 2 1A T  -P V  = BTl C1
3 32 32 2 3 2A T  -P-3 AZ = B^H (T
3 31 31 1 32 2 1 3 2 1A T 1 - P ^ V  = P3T H 12Ci + B^H 3DTI C1

(27)

The new B matrix is

B1
21 1 2 1P B + >B H 12D x

31 1 , 32 2P B + P B H 12] 3 2 1
! H23D H 12D (28)

P ^ B 1 + pJ2B2H12D2 +...+ Pj ( H ) Bi'1( f e . lik»W ) +

For controllability we need linear independence of rows in the B

matrix related to the last rows of Jordan blocks for the same eigenvalue.
k 21 1 2 2Let A show the set of eigenvalues of subsystem k. Let P .B + b H,_D bejfci & i 12
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the rows related to X^GA2; P ^ B 1 + P ^ ^ H ^ D 2 + b ^ J î ^ D ^ ^ D 1 be the

3 ^
rows related to A ^ A  . The rows P^ can be obtained from equations (27).

Defining k = l,2,...,j to be the transfer function matrices of

the subsystems, from the above we will get as a condition of controllability:

for each A.GA linear independence of b. .H^G. (A. ) ; for each X.€A linear l r Z i 12 r  i ’ i3
independence of ^^^23^2^ i ^ l 2 ^ 1 ^ °  ̂ ’ etc* can 8eneralize to get the
following theorem:

Theorem 5 : A necessary and sufficient condition for controllability of

a chain of j subsystems where A^TlAr = 0 for k ^ r k,r€{1,2,.. ., j } is 

that: for r = 1, 2,...,j and for each A^GA , the rows

hZi k=2 Hk-l,kGk-l(V (29)

have to be linearly independent.
r

Note that . rr0H, _ .G, , (X) is the overall transfer functionk=z k-l,k k-1
matrix from input to s^.

We shall now consider the case with local inputs. To simplify 

notation, assume that multiplication by the H matrices have already been 

made when defining the transfer function matrices. Consider the chain of 

three systems in Fig. 6(a). Theorem 5 could be applied if this configura­

tion is represented as in Fig. 6(b). If the augmented subsystems have 

transfer-function matrices and the controllability condition would be:

For each A_̂ GA , linear independence of b^G^(A^) and for each
3 3 — — —2 . 2A^GA , linear independence of b^^^ (X^)G^ (A^), where b ^  = (0 ! b^.).
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Figure 6. A chain of subsystems with local inputs considered as a chain 
of augmented subsystems with no local inputs.
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that G„ =

Partition G^ to show its local and interconnection inputs, such 
2 2(Gi G^) from which

G2 "
and

G i  ■

Therefore for X.€A 1

r-2
'¿i'V'V

should be linearly independent. For X^€A~

I 0 0
0 G1 g\ (30)

1 2

I 0 0 '
0 I 0 (31)

10 0 G__

9 I 0"
= b

X i 0 G1 (32)

bL G2Gl - bii
0

G ^ G 1
(33)

should be linearly independent. Now for each subsystem use the canonic 

form (9) where we shall assume that local and interconnection inputs do

not share any eigenvalues. The Jordan form will give A = 0, A ̂  = 0.
2 2 . 2  2 . 2  1 Noticing that = ( b ^ i  b2^ )  (32) will be changed to ( b ^ j  b2^1° )

2 2 2 2 For X. an eigenvalue of A,, (to be denoted as X.6A ), b_.. = 0  and b 1 11 1 11 2Xi Hi

are by assumption independent. For X^€A^> since mode X^ is controllable
2by both local and interaction inputs b ^  are aSain independent. For

2 2 2 i
N .^22 ’ ^lXi = ^ an<̂  l̂-near independence of b^^CT (X^) is still required.
A similar argument will show that (33) is reduced to linear dependence for
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of a. [Ĝ. (X. ) ! G^(X. )G1(\. )] . Define G .(X) to be the transfer l 22 2^i1 lv l . 2' i l kj
function matrix from the local input of subsystem k to the related

interconnections input of subsystem j in the chain (j > k by assumption).
2

The above conditions would be: for X É A ^ , linear independence of

b2^iG12^ i ); f°r Xi€A22’ linear ^dependence of b ^  [G^ (XJ ! G ^CXJ]. 

Generalizing we get the following theorem.

Theorem 6 : 

with Ajfl A^ 

j = 2,...,m

A LSC system, composed of a chain of m controllable subsystems

= 0 j ^ k j, k = l...m is controllable if and only if for
, and for each X.^A^_ the rows ’ i 22

b~a.[G. .(X.) . G. r. .(X.) . .... G- .(X.)]2*i j-l,j i . J-2,JN l . . l,j l (34)

are linearly independent.

Theorem 6 leads to various interesting observations. Note that 

we need only A22 in Jordan form in each subsystem and not the whole A matrix. 

It is seen that controllability of its predecessor is neither necessary nor 

sufficient for the controllability of any subsystem. The Jordan form will 

identify the uncontrollable modes. These may occur in any one subsystem 

along the chain and since the remaining modes will still be controllable 

subsystems further down the chain may also be. Another point is that 

given the necessary number of inputs, any subsystems local inputs may be 

sufficient for controllability of a subsystem. Or a number of "higher 

level" subsystems may cooperate in controlling one lower in the hierarchy.

It has to be pointed out here that the concept of controllability in LSC 

systems plays a more important role than usual, in that it is also



concerned with the effect of the control action through the inter­

connections. By analyzing controllability insight into local pole- 

placement, stabilizability etc. is gained. We shall consider this 

question in Part VII.

VII. Stabilizability and Pole Placement in Chains 

We shall now apply our remarks related to (9) and Theorem 6 to 

the stabilizability and pole placement properties of the chain structure.

Theorem 7: A LSC system, composed of a chain of m controllable subsystems

with fl A^ = 0 j ^ k j, k = l...m, and A^, fl A ^  = 0 i ^ ^ i ,  ¿ = 1,2,3 

is locally stabilizable with linear state feedback if and only if
m j
U hz Q C , where C is the left-half complex plane. 
j=2
Proof; Theorem 7 is actually an application of Theorem 2c. Apply the 

local feedback

= k W  + k ; W  + k^Xo to s . 1 1 1  2 2  3 3  j
tt1 , 1 1U = k x to s^.

(j = 2,...,m) and

Denoting the new A matrix for the composite system as A, we get, 

after some manipulation,

det(?vI-A) = det (\I-A^-B^K'S tt det (\I-A99)*det
j=2

m Xl‘A n ‘BiiKi -b !ik!

'A2l"B32Kl Xi-a!3-b:

(35)

I



from which two facts are seen: a) eigenvalues of the have not been

affected, b) the local feedback of the x^ have been of no use. The 

following corollary can therefore be stated:

Corollary: In the LSC system described in Theorem 7, the local linear
_ * -j-

feedback of any xcC^ will have no effect on pole placement.

The chain structure admits some more comments to be made, and

that is in answering the questions: If the system cannot be locally

stabilized, then which states should be fed back to which subsystems; and

how many levels higher in the hierarchy must feedback be made to shift a

certain pole that cannot be shifted by local feedback?

Assuming Jordan form, the answer to the first part is "those

states related to the mode in question." For an answer to the second

question consider Theorem 6 and equation (34). Check linear independence

of b i If they are not linearly independent go to

b^,.[G. , G. „ .(V)] then b;j.. [G. , .(V) : G „ (X.) : G „ (\.2*1 j - l . j  J • j - 2 , j  i ' J 2 * i 1 j - l , r  i  • j - 2 , j V i  • j - 2 , r  i
etc. until a linearly independent set is found. Other combinations can

be tested to see if a subset of these systems are also sufficient. If a

single subsystem is required through which feedback is to be made, a

certain independent set h^ ^  . (?0 has to be found. Note that some of
j P

the eigenvalues U A may also be changed in the process. 
p=k

m i
Note that U would be the "fixed modes" defined by Wang and Davison

[4]. However, owing to the LSC system structure, their determination is

very much simplified.



29

Example: Consider the following three systems:

.1 _ 1 , 1 1 1 1V x = -3x + u y = X + u

.2 0 2 , 2 2 1
S2 * X1 = -2x^ + u^ U2 = y

.2 2 2 2 2 0 2 2x2 -x 2 + u2 y = xi+ 3x2 ' U2

.3s3: xx

.3
X2
.3
X3

3 , 3  
x i + ui

3 32x2 + ul
, 3 , 3 , 33x3 + u + u2

3 2
u2 = y

(36)

A ^  - [l}> A ^  ~ {3} and these can be shifted to the left half complex 

plane by local linear state feedback. However, 2 = {2} and this pole 

must be shifted by the local inputs of s^ or s^• The controllability 

condition will give:

[Gi(X) i ^(X)g i(x) ] x=2 - - i) + i) ] x=2

= [| j 0] (37)

which means A=2 is not effected by the input of s^, i.e. feedback has to
2 3be made to u^, and the state to be fed back is x̂ .

VIII. Conclusions

The LSC systems structure has been proposed as a model for 

certain large scale systems. Certain properties of this structure have 

been considered. A constructive proof for the existence of the controlla­

bility decomposition canonic form and an algorithm to get a system into this 

form was given. The canonic form was shown to be very useful in drawing
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conclusions about controllability, pole placement and stabilizability of 

LSC systems. It was shown that necessary conditions for controllability 

of LSC systems are that; for any subsystem, for at least one set of 

necessary predecessors, the predecessor subsystems observable subspace 

is within the controllable subspaces of the subsystems predecessors; and 

also loops of interaction input controllable subspace-predecessor 

observable subspace pairs should not exist. Necessary and sufficient 

conditions for controllability of the chain structure were given and 

conclusions were reached relating to the pole placement and stabilizability 

properties of chains.

Algorithms for determining necessary predecessors for control­

lability of a subsystem, and for determining the existence of a multilevel 

structure in a LSC structure, using graph theory are given in the two 

appendices.
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Appendix I. Identifying the Class of Necessary Predecessor Sets

The problem of identifying the class of necessary predecessor 

sets is an extension of the problem of finding the class of necessary 

inputs to a system such that controllability is preserved. This has been 

considered previously [25] but the results obtained seem to be erroneous.

A detailed description and related problems may be found in [26] . We 

shall now give two different algorithms to find the necessary predecessor 

sets. The second assumes availability of the Jordan form for the system.

In (9) partition B^  into such that each B^ is

associated with interaction inputs from subsystem i. (Note that B^ is not 

equal to B^ of (1) since a transformation has been made to get (1) into

(9).) Start with B^. Find ^22^1' ^  this gives at least one column

independent of those in B^ go on premultiplying by . Each time check 

independence with previously found columns. When, at any step, no new 

column is found, further multiplication will give nothing new, since the 

^22^i^ Pa^rs are ^22 ^nvar^ant* Then go to B^ and repeat procedure.

With all new B̂, ' s check columns generated by previous B's. Each step
— *

with a new B^ will span a part of the subspace controlled by predecessor

i. (It may also span a part already spanned by previously considered
*

predecessors.) Terminate the procedure when k^ independent columns are 

obtained. If this termination occurs before there are k  ̂ independent 

columns, this means a part of the subs pace ̂  -̂s being turned over to the 

local inputs. So far one set of necessary predecessors have been found. 

Repeat procedure until all possible combinations with B^ are exhausted, 

then start again with B2• There exists various algorithms to accomplish 

this enumeration in a systematic manner, e.g. see [27].
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For a different method, assume availability of the Jordan form. 

We are interested only in those rows in that are related to the last 

rows of Jordan blocks of equal eigenvalues. If for X p blocks exist, 

we need p linearly independent rows. It is a simple matter to find for 

each the combinations of inputs that would be sufficient to control it

Example 3: Consider the subsystem s^ with interaction input only,

= Ai?,x  ̂ + S bW2 22 2 . , i ii=l (38)
i^j

where

A22 = blo°k dia§
1 0 O'
0 10 
0 0 1

2 3, *• > )
4 0 
0 4 (39)

B^ =l

1 0 0 "1 o ' "1 0 "0 0“
0 1 0 0 0 0 1 0 0
0 0 1 # 0 1 # 0 0 # 0 0
0 1 0 B2 = 1 0 B3 = 0 0 B4 = 1 0
0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 1

For controllability of X = 1 it is seen that predecessor 11,2,3
is enough. Or predecessors 2 and 3 could also cooperate in controlling

the mode. For X^ = 2 predecessor 1 or 2 or 4 would be necessary, etc.

Denote the predecessors by a, b, c, d respectively. Writing as a Boolean

function, for X̂  £ 3 : aU(bHc), for X̂ : aUbUd, for X :̂ bUcUd and

for X : cUd. To find complete c o n t r o l l a b i l i t y  minimization of the o,7
expression

[aU (bflc)]fl[aUbUd]f1 [bUcUd]fl[cUd] (40)
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is required. This gives

(anC)U(and)U(bnC) (4i>

which means (1,3), (1,4) and (2,3) are the sets of predecessors that can

control s ..
J
This is an extension of the so-called "minimal covering problem" 

in switching theory [28].
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Appendix II. Identifying a Multilevel Structure 

We shall first give some concepts related to graph theory which 

we believe to be useful in the analysis of LSC systems. We assume the 

reader is familiar with the basic terms node and edge. Showing subsystems 

as nodes and interconnections as edges the graph will show the connection 

structure of the LSC system. There are various books that can be referenced 

in graph theory e.g. see [29]. A paper by Warfield [30] also exposes 

related concepts.

If a sequence of edges { (i,j),(j,k),(k,X)...(p,q)} exist, with 

no repetition in the nodes (i,j,k etc.) this is called "a path from i to 

q.M A node 9 is said to be reachable from i if there exists at least one 

path from i to q. If a node is reachable from itself, along a path the 

path is called a loop.

The main cause to refer to graph theory in LSC systems arises 

from the fact that the existence of a path in the graph, would imply 

control actions being transmitted through all subsystems along the path. 

Another reason would be considerations of "information flow" (see Ref. [5]).

Definition: The mXm matrix E is named the adjacency matrix and shows all

interconnections among subsystems, such that e.. = 1 if H . . ^ 0, e = 0
iJ iJ iJ

if H.. = 0. We shall further assume e =0. 
iJ ii

For the system in the examples given by equations (20) and (21)

the adjacency matrix is:
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(42)

and the loop is obvious. In more complicated systems loops may not be 

easy to detect just by inspection of the matrix E, but there are various 

algorithms for path and loop enumeration that one can refer to [e.g. 31, 

32, 27]. In LSC systems, however, the identification of levels is a 

slightly different problem, in that two loops sharing a node, are assumed 

to be in the same level. We give the following algorithm to identify 

levels in a LSC system, given its adjacency matrix.

It is well known in graph theory that E , where all operations 

are Boolean, will show the nodes that are reachable in k steps, i.e. if 

the element (i,j) is 1, there exists a path from node i to node j which 

passes through k-1 nodes. Define
k &M. = U E . (43)

R i=l

This will show all nodes reachable in k steps or less.

1. Set i = 1, = E and r^ = number of l's in M^.
a

2. Set i = Z+l and find E , and r^«

3. Check r0 -r . If not zero go back to step 2. If zero stop.

Note that the end might come before & = m (number of nodes).

4. Consider each element on the main diagonal of the final M, the 

reachability matrix. If it is 1 the related node is within a loop. For 

each such nonzero element take its column and row and perform a bit by bit 

AND operation on them. Form a matrix L whose rows are the results of the



above operation. The ith row will show the nodes from which node i is 

reachable and which are reachable from node i.

5. Redundant rows of L will show the required sets of nodes that 

correspond to the levels in the LSC system.
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