
February 2004 UILU-ENG-04-2202
CRHC-04-02

SEMI-PASSIVE REPLICATION IN THE
PRESENCE OF BYZANTINE FAULTS

HariGovind V. Ramasamy, Adnan Agbaria
and William H. Sanders

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University o f Illinois at Urb ana-Champaign

S F 2 9 8 MASTER COPY KEEP T H IS COPY FOR REPRODUCTION PURPOSES

R E P O R T D O C U M E N T A T IO N P A G E Form Approved
OMBNO. 0704-0188

P u b lic re p o rtin g b u rd e n fo r th is c o lle c t io n o f in fo rm a tio n is e s t im a te d to a v e ra g e 1 h o u r p e r re sp o n se , in c lu d in g th e tim e fo r re v ie w in g in s tru c tio n s , s e a rc h in g e x is tin g d a ta so u rc e s ,
g a th e r in g a n d m a in ta in in g th e d a ta n e e d e d , and c o m p le tin g an d re v ie w in g th e c o lle c t io n o f in fo rm a tio n . S e nd c o m m e n t re g a rd in g th is b u rd e n e s tim a te s o r a n y o th e r a s p e c t o f th is
c o lle c tio n o f in fo rm a tio n , in c lu d in g s u g g e s tio n s fo r re d u c in g th is b u rd e n , to W a s h in g to n H e a d q u a rte rs S e rv ic e s , D ire c to ra te o f in fo rm a tio n O p e ra tio n s a n d R e po rts , 1 2 1 5 J e ffe rs o n
D a v is H ig h w a y , S u ite 1204 , A rlin g to n , V A 2 2 2 0 2 -4 3 0 2 , a n d to th e O ff ic e o f M a n a g e m e n t a n d B u d g e t, P a p e rw o rk R e d u c tio n P ro je c t (0 7 0 4 -0 1 8 8), W a s h in g to n . DC 2 0 5 0 3

1. A G EN C Y U SE O NLY (Leave blank) 2. R EP O R T DATE
F e b r u a r y 2 0 0 4

3. REPO R T TYPE AND D AT ES C O V ER ED

Semi-Passive Replication in the Presence of Byzantine Faults

6. AUTHOR(S)
HariGövind V. Ramasamy, Adnan Agbaria, and William H. Sanders

5. FUNDING N U M B ERS

F30602-00-C-0172

7. PER FO RM IN G ORGANIZATION NAM ES(S) AND A D D R E S S (E S)

Coordinated Science Laboratory
University of Illinois
1308 West Main St.
Urbana, IL 61801

8. PERFO RM IN G ORGAN IZAT ION
R EPO R T NUM BER

UILU-ENG-04-2202
(CRHC-04-02)

9. S PO N SO R IN G / MONITORING AG EN C Y NAM E(S) AND A D D R E S S (E S)
DARPA
3701 North Fairfax Drive
Arlington, VA 22203-1714

10. SPO N SO R IN G / M ON ITOR ING
A G EN C Y REPO RT N U M BER

11. SU PP LEM EN T A R Y NO TES

12a. D ISTR IBUTION / AVAILABILITY STATEM ENT 12 b. D ISTR IBUTION C O D E

A p p ro ve d fo r pub lic release; d istribution unlim ited.

13. A BSTR A CT (Maximum 200 words)

Semi-passive replication is a variant of passive replication that does not rely on a group membership service. Defago, Schiper,
and Sergent defined the semi-passive replication concept in the crash fault model and described a semi-passive replication
algorithm based on a lazy consensus algorithm. In this paper, we consider semi-passive replication and lazy consensus for a
Byzantine fault model. We present lazy Byzantine consensus algorithms for two system models: 1) a system with synchronous
communication and partially synchronous processing, and 2) an asynchronous system augmented with unreliable fault detectors
for Byzantine faults. We prove that our algorithms provide safety and liveness. Our algorithms are optimal in good runs, having
a latency degree of 2. We describe how our algorithms can be tuned to obtain the desired levels of fault resilience or efficiency
in the presence of faults. We also present optimizations to improve the performance of the algorithms.

14. SU BJEC T T E R M S
1. Byzantine fault tolerance; 2. Replication techniques; 3. Consensus
algorithms; 4. Fault tolerant protocols

15. NU M BER IF PA G ES
2 4

16. PR ICE CODE

17. SEC U R IT Y CLASSIF ICAT IO N
O R R EPO R T

UNCLASSIFIED

18. SEC U R IT Y CLASSIF ICAT IO N
OF TH IS PAGE

UNCLASSIFIED

19. SEC U R IT Y CLASSIF ICAT IO N
OF A BSTRACT

UNCLASSIFIED

20. LIMITATION OF A BSTR A CT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Semi-Passive Replication in the Presence of Byzantine Faults *

HariGovind V. Ramasamy Adnan Agbaria William H. Sanders
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana IL 61801, USA
{ramasamy, adnan, whs}@ crhc.uiuc.edu

Abstract

Semi-passive replication is a variant o f passive replication that does not rely on a group membership

service. Defago et al. [4] defined the semi-passive replication concept in the crash fault model and described

a semi-passive replication algorithm based on a lazy consensus algorithm. In this paper, we consider semi

passive replication and lazy consensus for a Byzantine fault model. We present lazy Byzantine consensus

algorithms for two system models: 1) a system with synchronous communication and partially synchronous

processing, and 2) an asynchronous system augmented with unreliable fault detectors for Byzantine faults.
We prove that our algorithms provide safety and liveness. Our algorithms are optimal in good runs, having

a latency degree o f 2. We describe how our algorithms can be tuned to obtain the desired levels of fault

resilience or efficiency in the presence o f faults. We also present optimizations to improve the performance
of the algorithms.

1 Introduction

Replication of critical components is a widely used approach for achieving tolerance of faults. However,

general approaches to replication are not simple, because of the need to maintain replica consistency. The

replica consistency problem deals with ensuring that the internal states of all correct replicas in the system

are consistent with each other. The techniques that have been proposed to solve this problem fall into two

fundamental classes: active and passive. In active replication (also called the state machine approach),

e.g., [13], all replicas start with the same initial state, and process client requests in the same order, thus

maintaining identical internal states. In passive replication (also called the primary-backup approach), e.g.,

[1], only one primary replica processes the client requests and updates the other backup replicas. If the

primary is faulty, one of the backup replicas is selected to be the new primary.

Both active and passive replication techniques have their advantages and disadvantages. While active

replication maintains good performance in the presence of failures, it requires that all replicas process each

T his research has been supported by DARPA contract F30602-00-C-0172.

request and that operations on the replicas be deterministic. (Determinism means that the result of an oper

ation depends only on a replica’s initial state and the sequence of operations that the replica has completed

so far.) Passive replication, on the other hand, requires less processing power than active replication and

does not require determinism, but can suffer from poor performance (relative to active replication) in the

presence of failures. This potential drawback of passive replication has been attributed to its reliance on a

group membership service to detect failures and reselect the primary replica. To understand this, consider

that a group membership service excludes the primary from the group whenever it is suspected to have

crashed and selects a new primary. This reconfiguration of the group can be quite expensive, resulting in

poor response times to the client. If a conservative failure detection mechanism is used, in order to avoid

unnecessary reconfigurations, then when the primary does crash, the responsiveness will be poor.

Defago, Schiper, and Sergent defined the semi-passive replication concept in [4, 5,3]. Semi-passive repli

cation is a technique that retains the principal advantages of passive replication (reduced processing power

and the no-determinism requirement) and removes the main disadvantage (reliance on a group membership

service). An additional advantage of semi-passive replication is that the client is oblivious to which server

replica is the primary replica. The client sends its request to all the replicas, and the failure of the primary

(or any replica) is transparent to the client process. Hence, in semi-passive replication, there is no need for

the client to re-issue its request. Defago et al. also presented an algorithm that implements semi-passive

replication using a sequence of lazy consensus operations. Lazy consensus is similar to standard consensus

except for one difference: in standard consensus, all processes start with an initial value, whereas in lazy

consensus, a process obtains its initial value only when necessary. When there are no faults, only the pri

mary will obtain its initial value. Since obtaining of an initial value is equivalent to a replica’s processing of

a request, the “laziness” of the consensus results in the “passiveness” of the replication technique.

Defago et al.’s definition of semi-passive replication and lazy consensus, and their algorithms were for the

fault model in which processes can fail only by crashing. In this work, we consider semi-passive replication
and lazy consensus for a Byzantine fault model.

The key observation that we used to provide semi-passive replication in the presence of Byzantine faults

was that having only one primary replica (as in the crash fault model) is not possible, because a Byzantine

primary process could faithfully send the reply to the client, and send the updates to the backups in time,

but perform the wrong processing to obtain the reply and the updates. Our solution is based on having a

primary committee that consists of (t + 1) replicas (where t is the maximum number of replicas that could

be Byzantine-faulty) and uses authenticated message exchanges. When there are no faults, only the primary

committee executes requests and updates backups. Such a solution involves much less processing power

than Byzantine fault-tolerant active replication techniques such as the PBFT algorithm [2], in which all

correct replicas execute the requests. However, a consequence of using more than one replica to execute

the request (which is necessary to tolerate Byzantine faults) is that deterministic processing is necessary (as

in all active replication techniques). We first present a solution that requires determinism, and then later
discuss how we can do away with that requirement.

2

Our approach to providing a Byzantine fault-tolerant semi-passive replication algorithm is to use a se

quence of lazy Byzantine consensus algorithms. The lazy Byzantine consensus algorithm requires only the

primary committee to obtain values and reach a decision when there are no faults. When faults do occur, the

primary committee is reselected, and the new primary committee tries to reach a decision.

We provide lazy Byzantine consensus algorithms for two system models: 1) the synchronous communi

cation and partially synchronous processing model [4], and 2) the asynchronous system model augmented

with unreliable fault detectors for Byzantine faults [10]. Our solutions require only the minimum number

of processes needed to solve consensus under each of those models. However, the efficiency of the solution

depends on the number of processes (above the minimum number required) and the policy for reselecting

the primary committee under faults. We present a few examples to illustrate this fact. We also prove that
our algorithms satisfy the properties of lazy Byzantine consensus.

2 Semi-Passive Replication in the Byzantine Fault Model

In this section, we define the concept of semi-passive replication in the Byzantine fault model. We also

define the lazy Byzantine consensus concept, and present a Byzantine fault-tolerant semi-passive replication
algorithm that is based on the lazy Byzantine consensus algorithm.

2.1 Application Model and Notations

The application model that we consider is the client-server model. The service S consists of a set of n

server replicas {pi, • • • ,pn} that are deterministic and initialized to the same internal state. A maximum of

t among the n server replicas can be Byzantine-faulty. A ¿-subset of S consists of exactly ¿ distinct server

replicas. We use S k to denote the set containing all possible ¿-subsets of S. VC denotes the set containing
all the (t -f- l)-subsets of S that could constitute primary committees. VC C <Si+1.

For simplicity, we assume that there is a single, non-faulty client denoted by c. Communication between c

and the individual server replicas is asynchronous and takes place through point-to-point, FIFO, and reliable

communication channels. Conceptually, we can consider c as a serializing mechanism that accepts requests

from multiple clients, enforces a total order among the client requests, and forwards the requests to all the

server replicas. It is easy to see the similarity between c and a real-world corporate gateway.

We use reqk to denote the k th request from c at any server replica. reqk will be the same at all replicas

(by our assumption of a single, non-faulty client). We use resp\ to denote the response from pi for reqk.

The response will be signed by p*. The client c accepts a response r if it has received the identical response

r from ¿ - h i replicas. We use updk to denote the update in the internal state of p* as a consequence of

processing the request reqk.

2.2 Specification of Byzantine Fault-Tolerant Semi-Passive Replication

We now define semi-passive replication in the Byzantine fault model by the following properties:

3

Termination If a correct client sends a request, it eventually accepts a response.

Total Order For any two correct replicas pi and pj, the k th updates to their internal states, upd\ and upd{
respectively, are the same.

Update Integrity A correct replica pi executes upd\ at most once, and only if the client sent reqk.

Response Integrity For any response respk corresponding to the request reqk accepted by the client, upd\
is executed by some correct replica pi.

Weak Byzantine Parsimony For any two elements V and Q of VC and for two correct replicas p and q

such that p G V A p ^ Q and q G Q A q ^ V, if both p and q process the same request reqk, then at
least one of the following is true:

• At least one replica in V is suspected by some other replica in V.

• At least one replica in Q is suspected by some other replica in Q.

The definitions of the Termination, Total Order, Update Integrity, and Response Integrity properties have

some words in italics to highlight the differences from the corresponding properties for the crash fault-

tolerant case given in [3]. The differences are a consequence of the Byzantine fault model, in which faulty

processes may behave arbitrarily. We define a new Weak Parsimony property1 for a semi-passive replication

system subject to Byzantine faults. The Parsimony property is used to specify the characteristic that distin

guishes passive replication from active replication: reduced processing requirements. Normally, in the crash

fault model, only one replica processes the requests. Our specification for the Byzantine fault model states

that under normal circumstances, only the (t 4-1) replicas in some element of VC process the requests.

2.3 Lazy Consensus and Lazy Byzantine Consensus

In [3], the semi-passive replication algorithm is expressed as a sequence of (crash fault-tolerant) lazy

consensus operations. Lazy consensus is a generalization of standard consensus. In the standard consensus

algorithm, each process starts with an initial value. When the semi-passive replication algorithm is expressed

as a sequence of lazy consensus algorithms, the decision to be reached by the consensus algorithm is the

content of the update message that is generated after a request is processed. The contents of the update

message give the modification to the internal state of a replica as a result of processing the request. If each

process started with an initial value, then each of them should process the request. However, in that case, the

replication algorithm would no longer qualify as “parsimonous.” Hence, the computation of an initial value

is deferred until necessary (hence the name lazy consensus). In the crash-fault-tolerant lazy consensus, this

means that only the coordinator/primary process computes the initial value in the normal case (i.e., when

'The Weak Parsimony property in the crash fault model [3] states that “if the same request req is processed by two replicas p

and q, then at least one of p and q is suspected by some replica.”

4

there are no faults). Only when the coordinator is faulty (or suspected to be faulty by enough other processes)

does another process become the coordinator and try to complete the consensus.

We follow a similar approach and express the semi-passive replication algorithm as a series of Byzantine

fault-tolerant lazy Consensus (henceforth called lazy Byzantine consensus or LBC) algorithms. However,

instead of having a primary process, we have a primary committee consisting of (t -f 1) processes. (t + 1) is

the minimum strength of the primary committee required to avoid the case in which the committee consists

of all Byzantine replicas that faithfully send the required messages to other processes but carry out the

wrong processing, resulting in wrong responses to client requests and bad updates to other server replicas.

In lazy Byzantine consensus, only the primary committee computes the initial value in the normal case.

When a primary committee member suspects another committee member, a new primary committee will be

selected. The new committee members compute the initial value (if they haven’t done so already) and try to

complete the consensus. The reselection of the primary committee is the responsibility of the lazy consensus

algorithm.

Specification of Lazy Byzantine Consensus “Proposing a value” from the point of view of lazy Byzan

tine consensus is equivalent to “processing a request” from the point of view of semi-passive replication.

The lazy Byzantine consensus problem defined on the set of server replicas S is specified by the following

properties:

Termination Every correct process eventually decides on some value.

Uniform Integrity Every correct process decides at most once.

Agreement No two correct processes decide differently.

Uniform Validity If a correct process decides on v, then v was proposed by some correct process of S.

Propositional Integrity Every correct process proposes a value at most once.

Weak Byzantine Laziness For any two elements V and Q of VC and for two correct processes p and q

such that p e V A p <£ Q and q E Q A q £ V, if both p and q propose a value, then at least one of the
following is true:

• At least one process in V is suspected by some other process in V.

• At least one process in Q is suspected by some other process in Q.

As before, the words in italics highlight the differences from the corresponding properties for the crash

fault-tolerant lazy consensus given in [3]. The first five properties are known properties for any solution to

the standard Consensus problem. We define a new Weak Byzantine Laziness property to ensure the Weak

Byzantine Parsimony property of semi-passive replication. Note that it is possible to define stronger versions

of the laziness property, but satisfying those properties would require a system in which failures are always

5

correctly detected. With the weak Byzantine Laziness property, we allow for incorrect suspicions that may

lead to the processes in two elements of VC to propose a value.

2.4 The Semi-Passive Replication Algorithm

Our Byzantine fault-tolerant semi-passive replication algorithm is simple because it gives only the client-

server interaction, and delegates all the complexity in ensuring replica consistency to a lazy Byzantine

consensus algorithm. We present two LBC algorithms later in Sections 3 and 4. The semi-passive replication

algorithm is identical to the one presented in [3]; the only difference is that an LBC algorithm is invoked

instead of a crash-fault-tolerant lazy consensus algorithm. To make this paper self-contained, we briefly
describe the semi-passive replication algorithm here.

The semi-passive replication algorithm is executed by every server replica. Each replica maintains its own

receive queue that contains the requests received from the clients and a handled set that contains the requests

that have been processed. Any new client request (i.e., a request that is not already in the receive queue or in

the handled set) is appended to the receive queue. A new instance of the lazy Byzantine consensus algorithm

will be started by an invocation of a function LazyByzConsensus(giv) whenever the preceding instance has

terminated and the receive queue is not empty. The argument giv (whose name is short for get initial value) is

a function that computes the initial value and returns it. Since obtaining an initial value (at the LBC level) is

equivalent to processing the request (at the replication algorithm level), in order to satisfy the parsimonous

property of semi-passive replication, the giv function must be invoked only by current members of the

primary committee during the execution of the LBC algorithm. The function giv selects the client request at

the head of the receive queue, processes the request, and returns the initial value for the Consensus. Since

the client requests are received in the same order at all processes, all correct processes must have the same

initial value. The initial value is a 3-tuple containing 1) the selected client request, 2) the update that should

be applied to the replica state once a decision has been reached, and 3) the response that should be sent to

the client. When the consensus terminates, based on its decision, each server replica sends its response to

the client, updates its local state, removes the handled request from the receive queue, and adds the request

to the handled set. The responses sent to the client are signed by the sending server replicas. The client

waits for identical responses from (t + 1) server replicas before it accepts the response.

We need to emphasize that our semi-passive replication algorithm relies only on the Laziness property

of the lazy Byzantine consensus algorithm to satisfy the Parsimony property of semi-passive replication.

Substituting our lazy Byzantine consensus algorithm with any of the known standard Consensus algorithms

(e.g., [2, 6, 10, 11]) will not compromise replica consistency, but might lead to a violation of the Parsimony

property, so that the replication algorithm would no longer be “semi-passive.”

6

2.5 Solving the Lazy Byzantine Consensus Problem

As mentioned before, the LBC problem is a generalization of the standard Byzantine Consensus prob

lem. Hence, the FLP impossibility result [7] applies to the LBC problem. This has the implication that no

deterministic algorithm can solve LBC in an asynchronous system in the presence of a single faulty process.

To circumvent this impossibility result, we take the common approach of strengthening the timing assump

tions of the base asynchronous system model. In particular, we consider two system models: 1) the partial

synchrony model of Dwork et al. [6], and 2) the asynchronous system model augmented with unreliable

fault detectors for Byzantine faults [10]. We present a solution to the LBC problem in each of these system
models next in Sections 3 and 4.

3 Lazy Byzantine Consensus in the Partially Synchronous Processing and Synchronous
Communication Model

In this section we present an algorithm for lazy Byzantine consensus (LBC) as defined in Section 2.3.

The algorithm, which we call the LBC-Psync algorithm, is based on the partial synchrony model of Dwork
et al. given in [6]. We briefly describe the model below.

3.1 System Model

The system of n server processes, S — {pi, ■ ■ ■ ,p n}, follows the partial synchrony model of synchronous

communication and partially synchronous processing [6]. The server processes are connected by a syn

chronous network. Since we assume synchronous communication, there is a fixed upper bound A on the

time it takes it takes messages to be delivered. A is known by every process. In particular, no messages are

lost. In addition, if we assume synchronous processing, there is an upper bound 4>, which is known by every

process, on the rate at which one processor’s clock can run faster than another’s. However, since we assume

partially synchronous processing, there is a global stabilization time (GST), unknown to the processes, such
that the processing respects the upper bound $ from time GST onward.

A correct server process behaves according to its specification; a faulty process doesn’t. Up to t processes

may be corrupted by an adversary and might behave arbitrarily. We assume authenticated communication,

in which messages can be signed with the name of the sender process in such a way that the signature cannot

be forged by any other process. Hence, our fault model is the Authenticated Byzantine fault model. In it,

the minimum number of processes required to solve consensus is n > 2t [6]. Hence, we require that t < | .

As mentioned in [6], any algorithm that solves Byzantine consensus in the GST model is required to

satisfy the safety conditions, even if 4> does not hold eventually. On the other hand, the algorithm needs to
satisfy termination only in case <f> holds eventually.

7

3.2 Overview

The key idea in our algorithm is that normally only the t + 1 processes that constitute the primary com

mittee (denoted by pc) obtain the initial values and send them to all processes. When any process obtains

identical initial values from it + 1) processes, then it can decide on that value, since at least one of the

sender processes must be correct and a correct pc member always sends the correct initial value. However,

if one or more of the pc members are faulty, then the faulty pc members may not send their initial values in a

timely manner, may not send them at all, or may send the wrong initial value. In such a case, the pc will be

reselected. Primary committee reselection can be initiated only by a process that is currently a pc member.

Since at least one process in the pc is correct, if a decision is not reachable, pc reselection will occur. After

reselection, the new pc members will try to reach consensus and repeat the steps outlined above.

A correct pc member will initiate reselection if 1) it has waited what it thinks is “long enough” without

receiving the initial values of all the other pc members, 2) the initial value of another pc member differs from

this pc member’s own initial value (which is not allowed since processing is deterministic, and the client

requests are serialized in the same order at all processes), or 3) it finds that a fellow pc member has already
reselected a new pc.

A reselection policy determines what the next pc will be. In other words, the policy defines the elements

in the set VC and the ordering among them. The policy must be deterministic and identical at all processes.
We make the following assumption about the reselection policy:

Assumption 1 In an infinitely long run consisting o f infinitely many pc reselection rounds, where at most t

out o f n processes in S are faulty and n > 21, a (t \)-subset o f S consisting entirely o f correct processes
must become the pc infinitely often.

Assumption 1 has two consequences:

1. The set VC (defined in Section 2.3) should contain at least one (£+ I)-subset of S that consists entirely

of correct processes, irrespective of which processes of S are faulty, as long as no more than t of them
are faulty.

2. Each element of VC should be selected as the pc infinitely often in a infinitely long run consisting of
infinitely many pc reselection rounds.

Later, in Section 3.8, we give some examples of reselection policies that satisfy the above assumption.

Intuitively, we expect that at some point after the GST, if the pc consists only of correct members, then a
decision will be reached.

3.3 Notations and Message Types

Each process pi maintains the following data structures:

8

• Vi is an n-vector for storing the values proposed by different processes. Specifically, Vi[i\ contains

Pi s estimate of the decision value. Initially, Vi[j] =_L for all j .

• crii denotes p f s current committee number (which indicates the pc reselection round number). This

is initialized to value 0.

• pCi denotes p f s perception of the primary committee.

• decidedi indicates whether pi has decided. Initially, all processes are undecided and decidedi is, false.

The primary committee corresponding to the committee number crii is obtained by a call to a function

committee() with crii as the argument, committee(x) for a positive integer x is a deterministic function that

gives the pc for the x th round of primary reselection. The reselection policy determines the implementation

of committee(x).

We use (M)Pi to denote a message M signed by process pi. Our algorithm uses three message types:

propose: A pc member pi conveys its initial value for consensus to other processes by means of a propose

message. The message is of the form (PROPOSE, v)Pi, where v indicates the proposed initial value.

decision: When a process has received t + 1 propose messages (possibly including one from itself) that

have identical initial values, it takes this value as its own decision value. It then sends a decision message

to all the other processes. The message carries the t + 1 signed proposed values as proof. The message is

of the form (DECISION, v, proof)Pi, where v is the decision value and “proof’ is the set of signed propose
messages from t + 1 processes.

reselect: A pc member may initiate reselection of the pc (for any of the three reasons stated above in Section

3.2) by sending a reselect message to all the processes. The valid reselect message from a process pi is of

the form (RESELECT, cn^, proof)Pi, where committee(crii) is p f s newly selected primary committee and

(pi € committee (crii)) V (pi G committee(cnt - l)) . The proof field is null if pi e committee(crii-l)\

otherwise, the field should contain a valid reselect message sent by some pj e committee(crii-l). That

enforces a property of the algorithm, namely that pc reselection can be initiated only by a current pc member

and should involve the participation of only the current pc members and the next pc members.

3.4 Detailed Description of the Algorithm

We now present the full algorithm that solves lazy Byzantine consensus in the partial synchrony model

described above, provided that at least of the processes are correct and Assumption 1 holds. The

pseudocode for the full algorithm executed by a process pi is given in Figure 1. We omit details of how we

check the proper format of each received message. From the point of view of the semi-passive replication

algorithm, the algorithm in Figure 1 represents the computations at p{ and the communication that takes

place between the server replica pi and other server replicas in order to service a single client request. In

9

Block 1: Initialization
Vi [7] <— ± , for all 0 < j < n
crii <— 0, pci <— com m ittee(cni), decided, *— false

Block 2: A pc member obtains its initial value and proposes the value to all
function propose-now()

Vi[i\ <— g iv ()
send (PROPOSE, VJ[i])Pi to all
scheduleTimeout()

Block 3: pi has got propose messages from (t + 1) processes with identical value v and decides on v
function decide-now()

decide(v), decidedi <— true
send (DECISION, v, proof)Pi to all
if Pi 6 pci then, cancelTimeout()

Block 4: pc member pi moves to the next pc reselection round
function reselect-now()

cancelTimeoutf)
crii <— crii + 1, pCi committee (crii)
send (RESELECT, crii, proof)Pi to all, with proof = null
if i(Pi € pcf) A (Vi[i\ 7 ̂ J_) A (decidedi = false)] then, scheduleTimeout()

Block 5: pc member pi has not proposed or decided yet; hence it proposes
when [(decidedi = fa lse) A (p» € pcf) A (Vi [z] = _L)]
propose-now()

Block 6: pi has not decided yet and receives a propose message from p j
when [(decidedi — false) A (received (PROPOSE, v)Pj from p^)]

if Vi [7] = _!_ then
Vi\j] <- v
if pi G pc{ then

if Vi [z] — ± then, propose-now()
if [(Vi[i\ V i\j\) A (pj € pcf)] then, reselect-now()

if [at least (t+1) non-null elements of vector Vi have identical value v] then
decide-now()

Block 7: pi has not decided yet and receives a decision message from pj
when [(decidedi = false) A (received (DECISION, v, proof)Pj from p3 with valid proof)]

decide-now()

Block 8: pi receives a reselect message for the pc reselection round number cru + 1
when received (RESELECT, cn j, pvoof)Pj for pc reselection round cn3 = cni + 1

from (p j E co m m ittee(cn j-l)) V (pj E committee(cn-j)) with valid proof
if pi E pci then, reselect-now()
else

cni <— cm -p 1, pCi <— committee (cm)
if pi E pci then

send (RESELECT, cni, proof)Pi to all, with proof = reselect message received from pj
if [(Vi [z] ^ -L) A (decidedi = false)] then, scheduleTimeout()

else, forward the reselect message to all

Block 9: pc member pi has proposed but other pc members have not sent their propose messages in time
when [timeout A (pi E pcf)], reselect-now()

Figure 1. The Lazy Byzantine Consensus Algorithm at a Process pi

10

other words, given that the semi-passive replication algorithm is expressed as a sequence of lazy Byzantine

consensus problems, the following presents the details of how the k th instance of the problem (corresponding

to the k th client request received) is solved.

A when block of statements is enabled as soon as the guard condition becomes true. The enabled when

blocks are executed in the order in which they become enabled. We assume that the execution of a when

block is atomic and not interleaved with the execution of another when block (or another instance of the

same when block).

The propose-now() function (Block 2) obtains the initial value for the consensus algorithm by invoking

the giv() function. (This call to the giv function is equivalent, from the semi-passive replication algorithm’s

perspective, to the processing of a client request.) The giv() function computes a non-null initial value and

returns it. The obtained initial value is sent in a propose message to all the processes. Only pc members that

have the null value _L as their initial value and have not yet decided will invoke the propose-now() function

(from Block 5 and Block 6). To ensure liveness, a pc member that has sent its initial value schedules a

timeout by which it expects other pc members to send their respective initial values.

The decide-now() function (Block 3) is invoked by any process pi that has received at least t + 1 propose

messages with identical values (say v) either individually or collectively as the proof part of a decision

message, pi takes v as its decision value (by executing decide(v)), updates decidedi to the true value, and

sends its own decision message with correct proof to all. Additionally, if pi is a pc member, it cancels the

timeout it scheduled when it sent out its own propose message or when it switched to the current committee
number (whichever occurred last).

The reselect-now() function (Block 4) is invoked by a current pc member pi to initiate the next pc rese

lection round. Since the purpose of a scheduled timeout is to initiate the next pc reselection round if initial

values have not been received in time from other pc members, a timeout previously scheduled but hasn’t

yet expired is now unneeded, and is therefore cancelled. The function increments the committee number

crii, updates the primary committee p c and sends a reselect message with the new committee number to

all the processes. Since pi was a pc member when invoking the function, the reselect message does not need

any proof. Additionally, if Pi is a member of the new pc as well, and has already sent its initial value, it

schedules a timeout by which it expects to receive the initial values from the members of the new pc.

In Block 5, pi invokes the propose-now() function if it is a pc member, and has not yet decided or

proposed.

Block 6 describes the actions taken when pi has not yet decided and receives a propose message from

process pj for the first time, pi updates the j th element in the Vi vector. If pi is a pc member and has not

yet sent its propose message, it does so now; it then checks whether its initial value and p j’s initial value

are the same. If the values are different (indicating that pj is faulty) and pj is currently a pc member, p{

initiates the next pc reselection round by calling the function reselect-now(). The check to see whether p0 is

a pc member prevents the situation in which a malicious pj that is not currently a pc member sends a wrong

initial value to initiate pc reselection when all the pc members are correct. Finally, pi checks whether it has

obtained (t + 1) propose messages with identical values; if it has, it invokes the decide-now function.

In Block 7, if pi receives a valid decision message with valid proof in the form of (¿ + 1) propose messages
with identical values of v, then pi invokes the decide-now() function.

As described in Section 3.3, a reselect message for a new pc reselection round cnj can be sent by process

P j only if it is a member of committee(crij), a member of committee(crij-1), or both. If pj is a member of

committee(crij) but not a member of committee (crij-1), the reselect message must carry a valid proof in

the form of another reselect message sent by some process pk that is a member of com mittee(crij-l). Block

8 describes pds reaction to a valid reselect message for a new pc reselection round crii + 1 from process pj.

If pi is currently a pc member, it invokes the reselect-now() function, which increments crii, updates pcit and

sends its own reselect message for that reselection round. If pi is not currently a pc member, it increments

crii, updates pcif and checks to see whether it is a member of the pc corresponding to the new reselection

round. If it is a member of the new pc, then pi sends a reselect message with pj's reselect message as proof.

Additionally, if Pi has already sent its propose message (in some previous reselection round in which it was

a pc member), it schedules a timeout by which it expects to hear from other members of the new pc about

their initial values. If pi is a member of neither the old pc nor the new pc, then pi immediately relays p j ’s

reselect message to all the processes. This forwarding of p / s reselect message to all the processes by pi

prevents situations in which pj is a malicious pc member sending a reselect message for a new pc reselection

round to only a subset of correct processes. The forwarding is not necessary when pi is a pc member or a

member of committee(crij), because in those cases, pi will have to send its own reselect message.

Block 9 shows that if pi is a pc member and has waited long enough but still hasn’t been able to decide on

a value (because (t + 1) propose messages with identical values have not yet been received), then pi initiates
the next pc reselection round.

3.5 Example Scenarios

Figure 2(a) presents an execution of the LBC-Psync algorithm when a client request is received at three

server processes p0, pi, and p2. The primary committee consists of p0 and pi. p0 and pi process the request

to obtain the same initial value which they send in a propose message to all the processes. Once a process

receives propose messages from both the pc members with identical values, it decides on that value, and
sends a decision message to all the processes.

Figure 2(b) presents another execution of the LBC-Psync algorithm when a client request is received at

three server processes, but in this case, one of the pc members, namely p0, is Byzantine-faulty. Both the

pc members, po and p\ process the request to obtain their initial values, but p0 sends the wrong value in

its propose message to all the processes. When pi receives this message, it initiates the next round of pc

reselection. The reselection policy is such that (in this example) pi and p2 become the pc members in that

round. After becoming a pc member, p2 processes the request and sends out its propose message. Since p2

had already received p i ’s propose message with initial value identical to its own initial value, it decides on

12

Client Request
Client Request

(a) Normal Case: No Faults and <f> Holds (b) Malicious Behavior of p0

Figure 2. Example Scenarios for the LBC-Psync Algorithm

that value, and sends out a decision message. Similarly, when p\ receives p2’s propose message, it decides,
and send out a decision message.

3.6 Safety and Liveness of the LBC-Psync algorithm

In this section, we will sketch the proofs that the LBC-Psync algorithm satisfies safety and liveness

properties. First, we observe from Figure 1 that there are only three places in the algorithm where a correct

pc member will invoke the reselect-now() function to switch to the next pc reselection round and send a

reselect message to all the processes. This observation could be stated as follows:

Observation 1 There are only three cases in which a correct pc member pi will initiate the next pc reselec

tion round. They are (1) a timeout occurs (Block 9), which means that pi has waited what it thinks is “long

enough’’ and has not yet received the initial value o f the other pc members, (2) the initial value o f some

fellow pc member differs from its own initial value (Block 6), or (3) it finds that a fellow pc member has

already reselected a new pc (Block 8).

Lemma 3.1: After GST, if the pc consists entirely of correct processes, then no further pc reselection rounds

will occur.

Proof (Sketch): We prove this lemma by showing that the three situations in Observation 1 are not

possible when, sometime after GST, the pc consists entirely of correct processes.

Case (1) will not occur since all the members will (by the algorithm specification) send their initial values

through propose messages if they have not already done so and because all pc members will receive the

initial values of other members in a timely manner, since <f> holds.

Case (2) will not occur because processing is deterministic, and the client requests are serialized in the

same order at all processes. Hence, the initial values of all correct processes will be the same.

13

Because case (1) and case (2) are not possible and since all other pc members are correct, a pc member

will have no reason to initiate a new pc reselection round. Hence, a correct pc member will not receive a

reselect message from another pc member. Thus, case (3) is also not possible. Hence, after GST, if the pc

consists entirely of correct processes, no further pc reselection will occur. □

Lemma 3.2: If GST exists, then the number of pc reselection rounds after GST is finite.

Proof (Sketch): The reselection policy (by Assumption 1) guarantees that there is at least one (t + 1)-

subset consisting entirely of correct processes (say P) that is an element of VC. The policy also guarantees

that in a run of infinitely many reselection rounds, P will become the primary committee infinitely often.

Hence, if GST exists, P must become the primary committee some time after GST. From Lemma 3.1,

it follows that once P becomes the primary committee after GST, then there will be no more reselection
rounds. Hence, the number of pc reselection rounds after GST is finite. □

Theorem 3.3: Every correct process eventually decides on some value. (Termination)

Proof (Sketch): It is easy to see that if any correct process decides, it sends a decision message to all the

processes. Since messages are not lost, eventually all correct processes will receive this message and also

decide.

Now let us consider the case in which no correct process decides. Since the pc consists of (¿+1) members,

it must have at least one correct member. This correct member will timeout (Block 9) and initiate the next

pc reselection round. By Lemma 3.1 and Lemma 3.2, it follows that the latest time when any correct process

will have to wait until before deciding would be the time when an all-correct-(£ + l)-subset becomes the pc
after GST. Hence, termination is satisfied. □

Theorem 3.4: Every correct process decides at most once. (Uniform Integrity)

Proof (Sketch): When a correct process pi decides on a value v, it updates decidedi to true. The only

place in our algorithm where this update is done is in the decide-now() function (Block 3). The function is

invoked at only two places in the algorithm: Block 6 and Block 7. Those blocks are executed only when the

value of decidedi is false. Hence every correct process decides at most once. □

Theorem 3.5: If a correct process decides on v, then v was proposed by some correct process of S.
(Uniform Validity)

Proof (Sketch): A correct process pi decides on a value v by calling the decide-now() function (Block

3). The function is invoked only after pi has received at least t + 1 valid propose messages with identical

values (say v) either individually (Block 6) or collectively as the proof part of a decision message (Block

7). In both cases, at least one of the t + 1 propose messages must be from a correct process. Thus, Uniform

Validity is satisfied. □

14

Theorem 3.6: No two correct processes decide differently. (Agreement)

Proof (Sketch): Let us assume that two correct processes pi and pj decide on different values v\ and v2,
respectively. We show by contradiction that this is not possible.

Uniform Validity states that for pi to have decided on at least one correct process must have proposed

v\. Similarly, for pj to have decided on v2, at least one correct process must have proposed v2. However,

all correct processes will propose the same value, because of the assumption of deterministic processing.

Hence v\ = v2, a contradiction. □

Theorem 3.7: Every correct process proposes a value at most once. (Propositional Integrity)

Proof (Sketch): A correct process pi proposes a value by calling the propose-now() function. The

function updates Vi[i\ to a non-null value returned by the giv() function. Once Vj\i\ is set to a non-null value,

it never becomes null again. Since the propose-now() function is invoked in Block 5 and Block 6 only if
Vi[i\ is null, it follows that pi proposes a value at most once. □

Theorem 3.8: For any two elements V and Q of VC and for two correct processes p and q such that

p & V A p £ Q and q e Q / \q V , i f both p and q propose a value, then at least one of the following is
true:

• at least one process in V is suspected by some other process in V.

• at least one process in Q is suspected by some other process in Q. (Weak Byzantine Laziness)

Proof (Sketch): Let us assume that neither (I) nor (II) is true. We prove that this is not possible by
contradiction.

In the context of the LBC-Psync algorithm, when a correct pc member “suspects” a fellow pc member,

it initiates the next pc reselection round. Hence, the situations in which a pc member suspects a fellow pc

member are the three cases given in Observation 1. Conversely, a correct pc member initiates the next pc
reselection round only if it suspects a fellow pc member due to one of those three cases.

We can assume, without loss of generality, that V precedes Q in the reselection rounds. That is, if

committee(ni) — V and committee(ri2) = Q, then n\ < n 2.

A correct process proposes a value by invoking the propose-now() function in Block 5 and Block 6 only

if it is currently a pc member. That is, p proposes its value only when V is the pc (since p £ Q), and

q proposes its value only when Q is the pc (since q ^ V). Since q proposes a value, it must be a pc

member, which means that reselection round number n 2 must have been initiated by some member of the

pc corresponding to reselection round number n 2 — 1. By induction on the difference n 2 — m , we can see

that for the reselection round number n2 to be initiated, the reselection round number m + 1 must have

been initiated some time before. However, only an element r of V can initiate the reselection round number

ni -t- 1. Depending on whether r is correct, we will have one or the other of the following two situations:

15

(i) If r is correct, then it must have initiated the reselection round number m + 1 only because it suspects

some other member of V.

(ii) If r is faulty and was the first member of V to send a reselect message for the reselection round number

n i + 1. Then, any correct process that receives this message will either send its own reselect message or

forward r ’s reselect message to all the processes. Thus, p will come to suspect r from case (3) in Observation
1.

In both (i) and (ii) above, condition (I) is true, which is a contradiction. □

3.7 Safety and Liveness of the Semi-Passive Replication Algorithm

In this section, we show that if our semi-passive replication algorithm instantiates a sequence of LBC-

Psync algorithms (one for each client request, with the next instance created after the current instance ter

minates), then the semi-passive replication algorithm satisfies the specifications given in Section 2.2.

Termination of the replication algorithm follows directly from the termination of the LBC-Psync algo

rithm. From Theorem 3.3, the client will eventually receive responses from each of the correct replicas.

From Theorem 3.6, it can be seen that all correct replicas send identical responses. Since there are at least

t + 1 correct replicas, the client will eventually receive at least t 4- 1 responses with identical result and
accept that result.

The Total Order property of the replication algorithm follows from 1) the fact that the k th client request
at all the replicas is the same, 2) and the Agreement property of the LBC-Psync algorithm.

Update Integrity of the replication algorithm can be shown as follows: A correct replica p{ will execute

upd\ only after a decision has been reached in the k th instance of the LBC-Psync algorithm. However, for a

decision to be reached, at least t + 1 processes must have proposed an initial value (they must have processed

the request reqk). At least one of those t + 1 processes must be correct. A correct process will process a

request only if it receives the request. Hence, it is clear that pi executes upd\ only if the client sent reqk.

After executing upd\, replica^ will remove reqk from its receive queue and add the request to the handled

set (see Section 2.4). Thus, the request will not be handled again, and hence upd\ will be executed at most
once by pi.

Response Integrity of the replication algorithm can be shown as follows: For any response to be accepted

by the client, at least one correct replica must have processed the request, proposed an initial value for

consensus, and decided on that value. After deciding on the value, the correct replica will update its internal

state. Therefore, for any response respk corresponding to the request reqk accepted by the client, upd\ will
be executed by some correct replica pi.

The Weak Byzantine Parsimony property of the replication algorithm follows from the Weak Byzantine

Laziness property of the LBC-Psync algorithm, since “processing a request” at the replication algorithm

level is equivalent to “proposing a value” at the LBC-Psync algorithm level.

16

3.8 Factors Influencing the Efficiency of the LBC-Psync Algorithm

As proved in Section 3.6, if at some point after the GST, the pc consists only of correct members,

then a decision will be reached. The maximum number of reselection rounds after GST (let us call this

max-rounds) required for an element of VC, say P, that consists entirely of correct processes to become

the primary committee is an important measure of the efficiency of the LBC algorithm, max-rounds gives

the upper bound on the number of reselection rounds after GST before a correct process can make a decision.

In this section, we present examples to illustrate the factors that determine max-rounds.

Consider the case in which the fault resilience is optimal, i.e., n = 2t + 1. Consider a reselection policy

such that the set VC = S t+1, \VC\ = C f+ j1, and each element of VC is chosen exactly once in C f ^ 1

reselection rounds in some order that is identical across all replicas. It can be seen that this reselection

policy satisfies Assumption 1. In this case, although the fault resilience is optimal, max-rounds is rather

large and is equal to Ci2£ |1. This value for max-rounds is obtained by considering the worst case of t faults,

where there is only one element of VC that consists entirely of correct processes, and that element is chosen
in the last of reselection rounds.

We now obtain the value of max-rounds for a more general case. Let n be any value greater than 2t. Let

/ be the actual number of faulty processes. Consider a reselection policy such that the set VC = S t+1, and

each element of VC is chosen exactly once in \VC\ reselection rounds in some order that is identical across

all replicas. Then, max-rounds = [Cj*+1 - C?+/]. Here, is the number of elements of VC that consist
entirely of correct processes. In the worst case, the reselection policy chooses all the elements of VC that

have at least one faulty process, before choosing any of the elements that consist entirely of correct
processes.

Now, consider another case in which the reselection policy is implemented by having committee(x)

return the set { P x mod n iP (x- \ -1) mod n > " >P(x-\-t) mod n } t he p c for the reselection round x. In the worst
case, the t corrupted processes could be at “distance” t from each other ({ p t , p 2t + \ , ■ ■ • , p t2+ t _ 1}) . The

minimum value of n required for the reselection policy to satisfy Assumption 1 is n = t2 + t + 1. If

/ is the number of actual faults (/ < t), then max-rounds = / • t -f / . Specifically, if f = t, then
max-rounds — t 2 -\-t.

We have presented a few examples that show that the reselection policy, the number of processes, the

maximum number of faulty processes, and the actual number of faulty processes are all factors that influence

the efficiency of the LBC-Psync algorithm. By careful selection of the reselection policy, it is possible to
tune the algorithm for desired levels of resilience or efficiency.

3.9 Latency Degree

In [12], Schiper introduced the concept of latency degree to measure the efficiency of a distributed algo

rithm. Informally, the latency degree of a consensus algorithm is the minimum number of communication

steps over all possible runs, which is typically obtained in good runs. A good run is a run with no faults and

17

no suspects. Our LBC-Psync algorithm has a latency degree of 2. There are only two communication steps

in a good run (as shown in Figure 2(a)):

1. A pc member sends its propose message with its initial value to all.

2. Once a process has received propose messages with identical initial values from all the (£+1) pc members,
it sends a decision message to all, and decides.

A latency degree of 2 is optimal [8]. Hence, our LBC-Psync algorithm is optimal in the number of

communication steps in good runs.

3.10 Optimizations

We now present some optimizations that can be used to improve the performance of the LBC-Psync
algorithm (and hence the semi-passive replication algorithm).

From the point of view of the semi-passive replication algorithm, the overhead involved to “settle” on

an all-correct-(t + l)-subset (as the pc) after GST could easily be made a one-time overhead, by carrying

over the knowledge of the latest primary committee from one instance of the consensus problem to the next
instance of the consensus problem.

A second optimization can be used to restrict the number of rounds taken to reach decision to 0{t) for

any n > 21. First, we observe that a process can make a decision as soon as it gets (t + 1) propose messages

with identical values. Second, we observe that the propose messages sent by any correct process will have

the same value as the propose message of any other correct process. These observations mean that a decision

could be reached as soon as (t -I- 1) correct processes send their propose messages. For that reason, instead

of needing to wait to “settle” on an all-correct-(£ + l)-subset, it is enough to perform the minimum number

of pc reselections required to “cover” (£ + 1) correct processes. Suppose we have a reselection policy such

that the set VC = S t+1, and each element of VC is chosen exactly once \n\VC\ reselection rounds in some

order that is identical across all replicas. It can be easily seen that irrespective of the value of n (as long

as n > 21), the minimum number of pc reselections required to “cover” (i-f-1) correct processes is only

2t + 1. Hence, if we require that a process pi upon becoming a pc member for the first time, immediately

obtain its initial value and send a propose message, then a decision can be reached at the end of (2t + 1) pc

reselection rounds. However, if the algorithm is made to terminate as soon as a decision has been reached,

then this optimization should not be used in conjunction with the first optimization, because at termination,

it may be that not all reselect messages have been delivered. Hence the pc information should not be carried

over to the next instance of the consensus problem; rather, each instance of the consensus problem should

start from the same pc.

18

4 Lazy Byzantine Consensus in an Asynchronous System with Unreliable Fault Detectors
for Byzantine Faults

In this section, we present a algorithm that solves the lazy Byzantine consensus problem in the asyn

chronous system model augmented with unreliable fault detectors for Byzantine faults [10].

4.1 System Model

The system consisting of the n server processes, S, is an asynchronous system with no bounds on message

delivery times and relative processor speeds. The server processes communicate with each other through

reliable communication channels. Reliable means that messages exchanged between correct processes are

eventually received and are not modified by the underlying communication medium. We do not consider

network partitions. Processes have access to local clocks, which are not synchronized.

Processes could be correct or faulty. A correct process conforms to its specification, and a faulty process

can behave arbitrarily. We allow up to t processes to be faulty, and require that t < | . Thus, at least |~̂ +1]

processes are correct. We assume authenticated communication so that messages can be signed with the

name of the sending process in such a way that the signature cannot be forged by any other process. Thus,
our fault model is the Authenticated Byzantine fault model [6],

4.2 Unreliable Fault Detectors for Byzantine Faults

In [10], Kihlstrom et al. defined the <>5(Byz) class of fault detectors for Byzantine faults. Here, we

briefly describe their work and propose an extension to define a new OS'(LazyByz) class of fault detectors
that can be used for solving lazy Byzantine consensus.

Kihlstrom et al. identified the following completeness and accuracy properties of fault detectors for solv
ing consensus in a Byzantine environment:

Eventual Strong Byzantine Completeness There is a time after which every process in S that has exhib

ited a detectable Byzantine fault is permanently suspected by every correct process.

Eventual Weak Byzantine (t + 1)-Completeness There is a time after which every process in S that has

exhibited a detectable Byzantine fault is permanently suspected by at least t + 1 correct processes.

Eventual Weak Accuracy There is a time after which some correct process in S is never suspected by any
correct process.

The <>W(Byz) class of Eventually Weak Byzantine fault detectors satisfies the Eventual Weak Byzantine

(t + 1 ^Completeness and the Eventual Weak Accuracy properties above. The O'S'(Byz) class of Eventually

Strong Byzantine fault detectors satisfies the Eventual Strong Byzantine Completeness and the Eventual
Weak Accuracy properties.

19

In the properties defined above, the term detectable Byzantine fault is used to indicate omission and

commission faults. An omission fault occurs when a process does not send a required message to one or

more correct processes. A commission fault occurs either when 1) a process sends messages that contain

a valid signature but are improperly formed or contain improper proofs, or 2) a process sends two or more

mutant messages. Two or more messages are said to be mutants if they are of the proper form, have proper

proofs, have the same source, and have the same round/phase, but have different contents. If a correct process

Pi has noticed that another process p j is exhibiting a commission fault, then p i will permanently suspect p j .

Process pi will also send to all other processes the proof that pj has exhibited a commission fault; then,

all correct processes will receive this proof, declare pj to be Byzantine-faulty, and permanently suspect

Pj . Detectable Byzantine faults are different from non-detectable Byzantine faults in that non-detectable

Byzantine faults cannot be attributed to a particular process and are not observable by a process based on

the messages it receives.

In [10], Kihlstrom et al. showed 1) that O ^(B yz) fault detectors are the weakest class of failure detectors

that can be used to solve Byzantine consensus in asynchronous systems, and 2) that a OkL(Byz) fault detec

tor can be transformed into a <>5(Byz) fault detector. They presented a three-phased consensus algorithm

based on the rotating coordinator (primary process) paradigm, in which termination is guaranteed by the

Eventual Weak Accuracy property. Intuitively, we can see that consensus will be reached when the correct

process that is not suspected by any other correct process becomes the coordinator.

However, in lazy Byzantine consensus, we do not have a single coordinator, but a (i + 1) committee of

primary processes. The Eventual Weak Accuracy condition stated above does not ensure termination even

if the reselection policy guarantees that an element of VC (say P) consisting entirely of correct processes

will become the pc infinitely often (as stated by Assumption 1). The reason is that the Eventual Weak

Accuracy property only guarantees that (eventually) some correct process will never be suspected by any

correct process. The other t correct members of V could be suspected forever by enough other members

such that the lazy Byzantine consensus algorithm might never terminate. Hence, we define a new Eventual
Weak Lazy Byzantine Accuracy property as follows:

Eventual Weak Lazy Byzantine (t + 1)-Accuracy There is a time after which none of the processes in

some set V € VC are ever suspected by a majority of correct processes.

We define <>5(LazyByz) to be the class of unreliable fault detectors that satisfy Eventual Strong Byzan

tine Completeness and Eventual Weak Lazy Byzantine (t + 1)-Accuracy.

4.3 A Lazy Byzantine Consensus Algorithm using OS(LazyByz)

We call this algorithm the LBC-<§>S(LazyByz) algorithm. The LBC-<>5(LazyByz) algorithm is very sim
ilar to the LBC-Psync algorithm, except for the following differences:

1. The LBC-OSiByz) algorithm does not directly employ timeouts, as the timeouts are abstracted away

20

in the unreliable fault detector. Hence, the algorithm makes no calls to the scheduleTimeout() and
cancelTimeout() functions.

2. In the LBC-psync algorithm, one of the three triggers that will cause a pc member pi to initiate the

next pc reselection round is the occurrence of a timeout before pi has received the propose message

from all the other pc members with the same initial value as its own (case 1 in Observation 1). In the

LBC-OSTLazyByz) algorithm, we use the following trigger instead: if pc member p* finds that any

other pc member is currently suspected by [^ J + l distinct processes possibly including pi (which is

equivalent to a majority of correct processes), then it initiates the next pc reselection round.

3. An additional trigger for pi to initiate the next pc reselection round is the exhibition of a commission

fault by a fellow pc member. If that happens, p* does not have to wait for suspects from |_t2±lj+]
processes.

Hence, observation 1 in the LBC-Psync algorithm could be restated for the LBC-<>5(LazyByz) algorithm
as follows:

Observation 2 There are only four cases in which a correct pc member pi will initiate the next pc reselection

round. They are (1) a fellow pc member is currently suspected by \ p ^ \ +1 distinct processes, (2) the initial

value o f some fellow pc member differs pfis own initial value, (3) a fellow pc member has exhibited a
commission fault, or (4) pi finds that a fellow pc member has already reselected a new pc.

4.4 Implementing a O-S'iLazyByz) Fault Detector

In [10], Kihlstrom et al. described the implementation of a <>5(Byz) class Byzantine fault detector under

partial synchrony assumptions [6] at each process pi that outputs a list of processes that p* currently suspects

of having exhibited a detectable Byzantine fault. We assume a similar implementation of a <>5(LazyByz)

fault detector module in each of our server replicas. We also require another easily implementable feature,

namely that when the fault detector module at a process pi begins to suspect a process pj, process pi will

send a signed added-suspect(pj) message to all processes. Later, when the fault detector module at pi

stops suspecting process pj (maybe temporarily), process p* will send a removed-suspect(pj) message to

all processes. If p* has detected that pj exhibited a commission fault, it will send an added-suspect(pj)

message, but it will never send a removed-suspect(pj) message, p* will also send the proof that p3 has

exhibited a commission fault to all the processes.

We also follow Kihlstrom’s method [9] for masking a fault in which a Byzantine process sends a message

to some correct process but not to others. We do so by requiring that any correct process that receives a

message for the first time must immediately relay it to all processes.

Additionally, we require that each process maintain a bit matrix of suspects called the suspect-matrix.

The cell suspect-matrix[i][j] of the matrix at a process pk is set when pk receives an added-suspect(pj)

21

message from process p i; the cell is reset when pk receives a removed-suspect(pj) message from process p*.

The added-suspect and removed-suspect messages will be signed by the sender and timestamped with the

sender’s local clock. That means that if an added-suspect(pj) from process pt is forwarded to process pk (by

some process other than p^, but a more recent (determined from the timestamp) removed-suspect(pj) has

been received at pk, then pk will ignore the added-suspect(pj) message. Thus, process pk can determine the

number of processes currently suspecting pj (based on the messages received so far) by checking the f h

column of the matrix. If pk and pj are current pc members, and pk, based on its suspect-matrix finds that pj

is suspected by |_ ^ J +1 distinct processes, then pk will initiate the next pc reselection round.

In the LBC-Psync algorithm, it was the responsibility of the correct member(s) in the pc to ensure progress

by initiating the next pc reselection round, if the pc member has not received the initial value from some

faulty pc member. The correct pc member relies on local timeouts to decide whether it has waited “long

enough” before it initiates the next pc reselection round. In the LBC-<>5'(LazyByz) algorithm, again, only

a current pc member p* can initiate the next pc reselection round. However, to detect omission faults of a

fellow pc member, p* relies not only on its local fault detector module, but also on the messages from the

fault detector modules at other processes. For that purpose, when any process p* (pc member or not) switches

to a new pc, it schedules a timeout by which it expects to get a propose message from all pc members that

have not hitherto sent such a message. If p* is a pc member and has not sent its propose message before, it

sends the message before scheduling the timeout. If any pc member pj does not send its propose message

before the timeout expires, then that member will be suspected by the fault detector module, and a signed

added-suspect(pj) message will be sent to all the processes. If the propose message sent by a correct pj is

delayed in reaching p*, either because pj is temporarily slow or because the message transmission is slow,

then pi may incorrectly come to suspect pj. Such incorrect suspicions are allowed by the properties of the

fault detector. If pj acts in a timely manner in later pc reselection rounds, p* will remove the suspicion for

P j. As in the LBC-Psync algorithm, a timeout set for the current pc is cancelled when a decision is reached
or when a new pc reselection round is initiated.

4.5 Safety and Liveness of the LBC-OS^LazyByz) Algorithm

The proofs to show that the LBC-OS'(LazyByz) algorithm satisfies the Uniform Integrity, Uniform Va

lidity, Agreement, and Propositional Integrity properties are identical to the corresponding proofs for the
LBC-Psync algorithm.

The termination of the LBC-Psync algorithm is conditional upon the existence of GST. Similarly, the

termination of the LBC-<>5(LazyByz) algorithm is conditional upon the Eventual Weak Lazy Byzantine

{t + 1)-Accuracy property of the OS(LazyByz) fault detector. Proceeding as we did in Lemma 3.1, we can

show using Observation 2 that if there is a time r after which all the processes in some set V e VC are

never suspected by a majority of correct processes, then no further pc reselection rounds will occur. By

Assumption 1 of the reselection policy, V must become the primary committee some time after r . This

22

implies that the number of pc reselection rounds after r will be finite. Thus, each process will eventually

decide on some value.

The Weak Byzantine Laziness property of the LBC-^S^LazyByz) algorithm can be proved much like the

LBC-Psync algorithm, but using Observation 2 instead of Observation 1.

4.6 Efficiency, Latency Degree, and Optimizations

In Section 3.8, we observed that the reselection mechanism, the maximum number of faulty processes, the

actual number of faulty processes, and the number of processes are the factors that influence the efficiency

of the LBC-Psync algorithm. The same observation applies to the LBC-O^LazyByz) algorithm (with

the exception that n must be greater than 31 for the LBC-<>S,(LazyByz) algorithm). Like the LBC-Psync

algorithm, the LBC-<>5(LazyByz) algorithm has a latency degree of 2. The optimizations presented in
Section 3.10 can also be applied to the LBC-0£,(LazyByz) algorithm.

5 Non-Determinism

One of the advantages of passive replication over active replication in the crash fault model is that passive

replication does not require the replicas to be deterministic. However, in our Byzantine fault-tolerant semi

passive replication algorithm, because we use a primary committee (instead of a single primary process as

in the crash fault model), the replicas need to be deterministic. In particular, the initial values of all correct

replicas for a particular instance of the lazy Byzantine consensus algorithm need to be the same. That is

a drawback, since there are many services that are non-deterministic. For example, if the replicas want to

reach a decision on the time at which a particular transaction took place (based on a client query), their
initial values could differ if each replica obtains the time only from its local clock.

To tackle such situations, we follow an approach similar to that of [2], and add an extra communication

step to our consensus protocol: the pc members first send their initial values (that could be different across

correct pc members) to all the processes. Then, each pc member chooses a consolidated initial value by

applying a deterministic function on the set of values obtained from all the pc members (e.g., the average

of values). This consolidated initial value will be the value that is sent in the propose message. In order to

prevent the situation in which the pc consists of t faulty members that faithfully send their messages in time,

but try to bias the consolidated initial value, a correct pc member could initiate the next pc reselection round

if it finds that the consolidated initial value is not within an e bound of its original initial value. The value
of e should be given by the service specification.

6 Conclusions

In this paper, we presented specifications for Byzantine fault-tolerant semi-passive replication and lazy

Byzantine consensus. We described an algorithm for Byzantine fault-tolerant semi-passive replication based

23

on a series of lazy Byzantine consensus algorithms. We then presented the LBC-Psync algorithm for lazy

Byzantine consensus in the partial synchrony model of [6] and the LBC-05(LazyByz) algorithm for lazy

Byzantine consensus in an asynchronous system augmented with unreliable fault detectors. We specified an

extension to Kihlstrom et al.’s OS(Byz) class of unreliable fault detectors to solve lazy Byzantine consensus.

We also proved that our consensus algorithms provide safety and liveness. Our algorithms are optimal

in good runs, having a latency degree of 2. We also used examples to show, how the reselection policy can

be appropriately chosen so as to tune the algorithm for either optimal fault resilience or efficiency in the

presence of faults. We presented optimizations to improve the performance of the algorithms.

References

[1] N. Budhiraja, F. Schneider, S. Toueg, and K. Marzullo. The Primary-Backup Approach, pages 199-216. ACM
Press - Addison Wesley, 1993.

[2] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings o f the 3rd Symposium on Operating
Systems Design and Implementation, pages 173-186, February 1999.

[3] X. Defago and A. Schiper. Specification of Replication Techniques, Semi-Passive replication, and Lazy Consen
sus. Technical Report IC-2002-07, EPFL, Switzerland, February 2002.

[4] X. Defago, A. Schiper, and N. Sergent. Semi-Passive Replication. In Proceedings o f the 17th Symposium on
Reliable Distributed Systems (SRDS-17), pages 43-50, October 1998.

[5] Xavier Defago. Agreement-Related Problems: From Semi-Passive Replication to Totally Ordered Broadcast.
PhD thesis, EPFL, Switzerland, August 2000.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the Presence of Partial Synchrony. Journal o f the ACM
(JACM), 35(2):288-323, April 1988.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus with One Faulty Process
Journal o f the ACM, 32(2):372-382, April 1985.

[8] R. Guerraoui and A. Schiper. Consensus: The Big Misunderstanding. In Proc. 6th IEEE Computer Society
Workshop on Future Trends in Distributed Computing Systems (FTDCS-6), pages 183-188, 1997.

[9] K. P. Kihlstrom. Survivable Distributed Systems: Design and Implementation. PhD thesis, University of Cali
fornia, Santa Barbara, 1999.

[10] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Solving Consensus in a Byzantine Environment Using an
Unreliable Fault Detector. In Proceedings o f the International Conference on Principles o f Distributed Systems
(OPODIS), pages 61-75, December 1997.

[11] D. Malkhi and M. Reiter. Unreliable Intrusion Detection in Distributed Computations. In Proceedings o f the
10th Computer Security Foundations Workshop (CSFW97), pages 116-124, Rockport, MA, June 1997.

[12] A. Schiper. Early Consensus in an Asynchronous System with a Weak Failure Detector. Distributed Computing
10(3): 149-157, 1997.

[13] F. B. Schneider. Replication Management Using the State Machine Approach, pages 169-197. ACM Press -
Addison Wesley, 1993.

24

