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1. Introduction

In this paper we consider the problem o f finding the n-bit result o f dividing one «-b it number by 

another. W e present circuits with asymptotically small size and depth for this problem and we derive from 

them, efficient PRAM  algorithms for division in the bit model. Our primary result, which is a size-efficient 

implementation o f the circuits in R eif [Re86], is a logspace uniform family o f circuits for division o f depth 

D (n)—0  (logn-loglogn) and size S (n)=0 ((1/54)*n1+i), for any 8>0. This translates into a uniform parallel 

algorithm on a shared memory machine (PRAM) with bit operations and exclusive memory writes with 

parallel time D (n) using O (S (/»)) processors. It also translates into a parallel algorithm for a concurrent 

write PRAM with parallel time 0  (D (n)/loglogn) using 0  (S (n)) processors. Finally, we apply the results 

o f Beame, Cook and Hoover [BeCoHo86] to obtain a polynomial-time uniform family o f circuits for divi­

sion o f depth 0 ( ( l /82)-logn) and size 0  (S(n)).

2. Parallel M odels o f Com putation

A (bounded fan-in) boolean circuit is an acyclic labeled digraph. Nodes are labeled as input, con­

stant, AND, OR, NOT, or output nodes. Input and constant nodes have zero fan-in, AND and OR nodes 

have fan-in o f 2, NOT and output nodes have fan-in o f 1. Output nodes have fan-out zero.

Let B = {0 ,1 ). A  boolean circuit with n input and m output nodes computes a boolean function 

The size o f  a boolean circuit is the number o f  nodes in the circuit excluding input and output

nodes. The depth o f the circuit is the length o f the longest path among all paths from input to output nodes.
/

Given a sequence o f  circuits C 1,C 2. • • • we denote the size o f the n -th  circuit by SIZECC,) and its depth 

by DEPTH(C*). If there exists a function S(n) such that SIZE(C„)£S (n) for each n then we say that the 

size o f the sequence is 0  (S (« )). Similarly we may define the depth O(D (n )) o f the sequence. W e say a 

sequence is in S1ZE-DEPTH(<S (n)JD (n )) if it is simultaneously bounded in size by 0 (5  (/*)) and in depth 

by 0(D (n )). A  sequence o f  boolean functions will be referred to as a problem, and a sequence o f  circuits 

such that the n-th circuit realizes the n-th boolean function is an algorithm to solve the problem. We will 

say that an algorithm gives circuits o f small size for a problem if  S (n)=0 (f  (8)*n1+a), for any 8>0 and for 

some function /. Small size circuits are desirable since they lead to low hardware costs. For parallel com ­

putation, we also want D (n) to be small, since D (n) gives the parallel computation time.



- 2 -

A  sequence o f  circuits is logspace uniform for a problem if there exists a logspace-bounded turing 

machine that computes a suitable binary encoding o f the n-th circuit on being input the number n in unary. 

For theoretical reasons logspace uniformity is a desirable property in a sequence o f  circuits (see, e.g., 

[Ru81]).

A  PRAM in the bit model is a parallel RAM  with access to a global memory and with each processor 

capable o f a bit operation in unit time. A  CREW PRAM is a PRAM allowing concurrent reads but only 

exclusive writes on the global memory. A  CRCW PRAM allows concurrent reads and writes. A  PRAM 

algorithm is uniform if the algorithm is parametrized by n and works in the parallel time bound for all 

values o f n.

3. Previous Work on Circuits for Basic Arithmetic Operations

For the problem o f adding two n-bit numbers Krapchenko [Kr70], and Ladner and Fischer [LaFi80] 

present algorithms which achieve asymptotically optimal delay o f logn and a linear size bound which are 

the best possible in this model (see [Sa76]).

For adding n n-bit numbers Ofman [Of62] and Wallace [Wa64] have 0(logn ) depth circuits with 

0 (n2) gates, which is linear in the size o f the input

The best known circuits for the multiplication o f two n-bit numbers are due to Schonhage and 

Strassen [ScSt71]. These have 0 (logn ) depth and 0(nlognloglogn) size.

In the division problem, we need to compute the n-bit quotient u /v where u and v are n-bit numbers. 

Since u /v=u*(l/v), and multiplication can be done efficiently by the Schonhage-Strassen algorithm, atten­

tion has been concentrated on the computation o f the n-bit reciprocal o f an n-bit number. The first good 

circuits for the reciprocal problem are due to Cook [C066]. The method used in [Co 66] to compute the 

reciprocal is to first normalize v to a number in the interval [1/2,1), set x = l-v , and compute 

l/(l-x )= l+ x -h x 2+x3+... where the first n terms o f the series give sufficient precision. The problem is thus 

reduced to that o f  efficiently computing x "  where x  is an n~bk number. [Co66] presents a OQog^n) depth 

polynomial size family o f circuits for this problem. Recent attempts to obtain better circuits for division 

have all concentrated on the powering problem.
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A  log depth polynomial size circuit for division has been obtained in [BeCoHo86], which solves the 

powering problem by using a combination o f Chinese remaindering and taking logarithms over finite fields. 

The algorithm does not appear to be logspace uniform, though the circuits are polynomial time computable. 

R eif [Re86] has logspace uniform 0(logn loglog /i) depth division circuits o f polynomial size, parametrized 

only by n, so that the algorithm translates into a uniform CREW PRAM algorithm. The division circuits in 

both [Re86] and [BeCoHo86] are worse than quadratic in size. Thus while there are known small size cir­

cuits for addition and multiplication o f 0 (log/i) depth, this is not the rasa for division.

In the next section we present circuits o f size 0 ((1 /54) ti 1+*), for any 5>0, that achieve the same 

depths as in [Re86] and [BeCoHo86], thus obtaining small size circuits o f small depth for the division 

problem.

We close this section with a brief discussion o f the DFT, presenting the definitions and theorems that 

we need (for further details and proofs see [AhHoU174])

Let R be a commutative ring with identity 1. Then the set o f  all infinite sequences firom R with only 

finitely many non-zero terms forms a commutative ring with identity 1 under componentwise addition, and 

multiplication defined by convolution. This ring is called the ring o f formal polynomials over R and is 

denoted by R[t], and the sequence whose (k+l)-th  term is non-zero and whose later terms are all zero is 

denoted simply by (a0tai,...tak) and also often written as ao+ait+a2t2+...+aktk.

Let R have a primitive n-th root o f 1 (denoted by co), where n is a unit in R, i.e. n has an inverse in

R. Let the n x n matrix M = (m,v) be defined by ¿¿= 0 ,1 ..... n -1 . The matrix M is invertible. If A

is an n-vector, define DFT„(A) =  MA and DFT? (A ) =  M~lA. Note that DFT? (.DFTH(A)) = A. [CoTu65] 

introduced an algorithm which translates into a size 0 (n2logn), depth 0 (logn) circuit for computing the 

DFT o f n n-bit numbers. If we further assume that there exists y  in R such that y*  = -1  and y 2 = co, then 

with any (n -l)-d eg ree  polynomial A (t)=aQ+alt+a2t2+...+aH_lm -1  we can associate A* = 

(a o .^ y .a jy 2. . . . ,  j „ _ ly * '1). W e now state

The negatively wrapped convolution theorem: Let A ,(0 , i= l,2 ,...,r  be (n -l)-degree polynomials, and B ( /)

r

= m ( 0 ,  this being the ring product in R(t]. L etD (r) sB (t)  mod r*+1. Then D * = DFT? (JJDFT^A*))



- 4 -

where the multiplication in the transformed domain is componentwise.

4. The R eciprocal Problem

Let x be an n-bit number in [1/2,1). W e wish to compute v=l/x correct to n places to the right o f the 

point Let u=l-x, where 0< u £ l/2  and u has n bits. Then l/x = l/(l-u )= l+ u + u 2+u3-h... W e would obtain 

1 !x sufficient precision if we compute l,u ,u 2,u 3, . . .  ,u n-1 exactly (each o f these numbers can be
9
represented exactly using at most n 2 bits since u has only n bits), and add them up and truncate the sum to 

n bits to the right o f the point Since in this method the powers are computed to n2 bits o f  precision, the 

resulting circuit has size Q (n2). However, the computation o f the powers to n2 bits is unnecessary, as is 

shown in [MePr86], Consider the factorization:

1+“ +u2+...+u*~l=(l+u+u2+ ...+ u '_1 )(l+ u , +u2'+ ...+ u (,-1>')  ...(1 + u '""1 +...+U (•»“ D*1""1)

where s=nVm,m  being a fixed integer. Denote the i-th factor (l+u'^+u2*'"1*  • • • +u(,“ 1>" 1), by 

i==̂ ’ 1). W e can compute each factor <j>/, and then multiply the m factors and truncate the result to

n+2 bits to get 1/x. Note that 0 /  is actually the sum o f the powers (us‘~Xy  for ;  =0,1,2..... ( j -1 ) . It is proved

in [MePr86] that if  we use an n+log(12m ) bit approximation to u*1 1 (which we denote by 0 ,), compute Q{, 

j=Q,...,s-l exactly, i.e. to ns bits, and add these s numbers to get an /ty-bit approximation <J>,- to <J)/, then the 

product o f the m <t>, truncated to n bits gives an n-bit approximation to 1/x. The 6* are obtained as follow s: 

90 is initialized to « , and 6,- is obtained by computing 0f_j and truncating to n+log(12m ) bits. Note that no 

computation involves more than ns bits. Though the above factorization is not valid if  n l/m=s is not an 

integer, this algorithm for computing the reciprocal is still good with s = \ny" [ , since this only means that 

we compute even more than n terms in the series.

Let Si(s,n) and T{(s,n) denote the size and time o f computing each If SQ(n) is the size o f 

reciprocation, then SQ(n) = 0(mS i(s,n}+mM (ns)), where the first term on the RHS is the cost o f comput­

ing m fo , and the second term is the cost o f  multiplying them together. If we denote the depth for comput­

ing reciprocal by TQ(n) then T0(n) = 0(mTx (s,n)+\ogmlogns), where the first term is the depth for comput­

ing m <(>,• and the second term the depth for multiplying them together. Since <J),- is the sum o f 0 f, 

7=0, l , . . . , j - l ,  with 0,- being o f 0 (/i) bits, if  we denote the size o f computing the j-th power o f an n-bit
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number by 5 2(i',/i), we find that Si(s,ny=sS2(s,n)+ns2, where the first term is the cost o f computing the s 

powers o f 0, and the second term is the cost o f adding them up. Similarly Tx (s,ny=T2(s,n)+\ogns, where 

the first term is the depth o f computing the s powers o f 0; in parallel, and the second term the depth o f 

adding them up. From the above it follow s that

and

So(n)=smS2(s,n)+nms2+mM (ns) 1

T 0(n)=mT 2(stn)+m\ogns 2

We now develop an efficient algorithm for computing the s-th power o f an n-bit number and determine its

size S2(s,n) and time T2(s,n). W e actually describe an algorithm that computes the j-th  power o f an r-bit 

number modulo 2r+ l. This will be used to compute the r-th power o f  an n-bit number exactly, by treating 

the input as an ns-bit number and computing its s-th power mod 2W+1. Our algorithm is based on the 

modular product algorithm in [Re86] and uses the DFT. W e first introduce some notation. The ring Z^+i 

has k as a unit, (0=4 as a primitive fc-th root o f unity and y= 2  satisfies \j/*=-l and \|^=o). Hence DFT and 

inverse DFT o f ¿-sequences can be defined in this ring and by the notation DFTk(x0pcu...pck- l) mod 2*+l 

we mean the DFT (as previously defined) in the ring Z^+i with (0=4. Denote by mod 2*+l the

vector (r 0,...,*jk-i) with each o f its components reduced modulo 2*+l. W e now state the algorithm and fol­

low it up with a discussion.

The modular power algorithm

Input Cr-2 * * * Co is o f  r bits, the least significant bit being Co and the most significant bit being Cr-i- 

r is a power of 2. Output is x* mod 2r+l, where s=rz, 0<e£1/2.

Function Modpower (x,rys) 

begin
if r<A

Modpower<—x* mod 2r+ l; (* compute directly by constant depth, constant size circuit 
since r<A and s<2; this is the base step o f recursion *) 

else 
begin

case r^s2 do 
begin

/< -(l/2 )(V r/J );
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end 
end.

Remarks on the algorithm

The main idea in the algorithm is to split x into k blocks, k=2^rs, and construct the vector 

S (0-aQ+a\t+a2t *. If l—r Ik, then g(2*)=x. If we let d(jt)a(g(jt)Y mod tk+1, then

^(2 ) s  (g (2 ))s mod (2/)*+l = x* mod 2r+ l. Finding d(t) would solve the problem, since its value at 2l is 

the desired xs mod 2r+ l. The polynomials above are over the ring o f  integers Z  but we do calculations over 

the finite ring Z^+l. Apply the convolution theorem to get d0̂ DFTil(PFTk(^ y )  mod 2*+ l, where the 

powering is componentwise in the transformed domain. Notice that there are k powerings in the 

transformed domain, each o f ¿-bit numbers mod 2*+l, where k is smaller than r, and we do these power­

ings recursively. W e need to be sure that the d computed as above (in Zp) gives the correct d (in Z ). This 

will be so if  the coefficients o f d are small enough Le., *. This can be arranged by requiring s—r'E, 

‘md by choosing k=2 îrs as we have done. (It is shown in [Re86] that it is sufficient to choose s 

and k so that 2s (r/¿+ l+ lo g £ )< £ -l is satisfied. The above choices o f  s and k satisfy this inequality for 

sufficiently large r.) Essentially what we are doing is making each coefficient o f g small enough by split­

ting x into sufficiently many pieces. Since the ring Z^+i grows with k (the number o f  coefficients in g), if  

we have a sufficiently large number o f coefficients and we make the power s small enough, we can expect 

g* to have small enough coefficients, so that it can be represented without error in Z* +,.

kir-2irs\
divide x into k equal blocks o f / bits each and form the vector (xq.x j , . . .  ,x*_i) 
where x, = Cr-ii—i * * * Cr-{i+i)/I (* this is the vector g ( /)  in the discussion below 
*)
(x 0,X i,X2, . . .  ,* * -i)< -(xo,x 12,x 222, . . .  ,x*_i2*-1) m od2*+l;
(* this is g* *)
(*o .........Xi-{)*-DFTk{xQt . . .  ,x*_i) m odZ 2*+1; (* \hisisDFTk(g*) *)
par do Xi*-Modpower(xi,kts)', (* this is the componentwise powering o f  k 
smaller numbers in the transformed domain, done recursively in parallel *) 
(x0,...,x*_1)<-D F7^1(x0,. . .^ _ 1) m odZ2*+i; (* th isisd* *)
(xo,x i ,x 2,...,Xk_i)<—(x o ,x !2-1 ,x 22-2, . . .  .x * .^ * - ” ) mod 2*+ l;
(* this is (r) *)
Modpower<-(xo+x1(2,)+x2(2í)2+...+x*_1(2,)* -1) (* this is d (2l), which is what 
we want *) 

end
case r<s2 do 
begin

x<r-x* mod 2r+ l (* compute by the modular product algorithm in [Re86] *) 
end
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Choice (1) o f  the case statement o f the algorithm is entered recursively log (l/e ) times on first calling 

the program. W e start with k—r and in each subsequent application ki—2Mks\ and we keep going until 

k<s2. W e set up the recurrence kQ=r, k ^ k ^ s  and solve to get ^ = (4 ly)1“<1/2)V cly2)/. In about log (l/e ) 

steps ki<s2.

At this point we need the s-th power o f  an f^-bit number. Now choice (2) o f  the case statement is 

executed. Since s=re is small compared with r, we do not attempt to be efficient with this residual compu­

tation, but simply apply the algorithm in [Re86]. The size complexity o f the algorithm is dominated by 

choice (1) o f case, as our analysis will show.

5. Gate Count

As already mentioned the exact value o f x* may be found by treating x as an ns-bit number and com ­

puting xs mod 2W+1. This is accomplished by calling Modpower(x,ns,s). W e now compute the size and 

depth for this problem. W e solved a recurrence for kt above with initial condition kQ=r. With initial condi­

tion kQ=ns (which is the case in the exact powering problem), kl=Al~i i a ) l s. Recall that we denoted by 

S2(s,n) the size needed for computing the j-th power o f an n-bit number. If S (s,n) denotes the size o f com ­

puting the i-th power o f an n-bit number mod 2*+l then S 2{s,n)=S (stns) as seen above.

From choice (1) o f case in the algorithm we obtain

S(s,ns)=S (s,kQ)=cki\ogki+kiS(stki)

The first term on RHS is the cost o f taking DFT o f  a ¿-vector in Z^+i by the Cooley-Tukey algorithm 

[CoTu65]. The second term is for the recursive computation o f kx smaller powerings. (Computing g * from 

8 and d from d* in the algorithm needs 0 (^ 0  per entry and hence 0 (k f) overall, which follow s from 

lemma 7.6 pp 266 [AhHoU174]. Computing g(2l) is like adding two n-bit numbers, and needs only 

0(k2). These steps in the algorithm are all dominated by the cost o f computing the DFT.) Now replace 

S (s,k i) by an expression in terms o f k2 and keep doing this for / steps to get

5 (a 0M cI(TO)AltogklH n^>S (a,)
»■1 y* 1 i*l

YlkH ’h u m fni^ s ‘
4*1

Using the formula for kt we get
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Also we have

aiw w «“
i=l

and lo g ^ c lo g n  since s=n* with e^ l/2 . This gives

i==l y* 1 i*l
i

Using our previous formula for Y\k} we get
y=i

S (s,k<,)=c"n4‘s Mlog n U ' - W W ^ s ' S
With /= log (l/e ) and s=ne this becomes

S(nSn1« H c',/£2)nlwd»«(1''>logn+(l/e2)n1- « lo«<1'e>S(«‘,n2t)
S (n '.n 28) is the size complexity o f choice (2) o f  case, which is 0 (n 4‘ ). This gives us

S2(n‘ ,n)=S (n‘ ,n My=c"(llt?)n

Using this in equation (1) we find that the size for computing reciprocal is

So(n\n)=c"(l/z3)n 1+4e+cto*1/e>

(W e have omitted the second term on the RHS o f eqn (1) since it is dominated by the first.) From this it 

follow s that for any S>0, there are circuits for computing the reciprocal that have size 0 (( l/5 4) /i1+5). Sup­

pose 8>0 is given. W e solve for 6 using the equation 8=4e+elog(l/e), and construct circuits as above with 

this e. Clearly e<8 and since for small e, 8<e3/4, the above result is true.

Recall that we denoted by Ti{nz,n) the depth for computing the ne-th power o f an n-bit number. 

Note that choice (1) o f case is entered log (l/e ) times, and each application is dominated in depth by the 

DFT computation. The total contribution from all this to the depth is 0 (log (l/e )logn ). As for choice (2), the 

[Re86] algorithm needs O (logrloglogr) depth to compute the r-th power o f an r bit number mod 2r+ l. 

Using this with n=n£ we see that choice (2) o f case contributes 0(elognloglogn) to the depth. Hence we 

have

T2(n£,n )= log( l/e)logn+elogn loglogn 

Using this in equation (2) we get the depth complexity o f division

T o(«)= (l/e)(log(l/e))logn+ logn loglogn = 0 (log/iloglogn)



- 9 -

W e observe that the additional factor loglog/i for the depth in the above algorithm arises from the 

final application o f the [Re86] algorithm directly in choice (2) o f case. W e can avoid this at the cost o f  los­

ing logspace uniformity by using one application o f the [BeCoHo86] algorithm to complete the computa­

tion once we get to the point where we need to compute the ne-th power o f an n^ -b it number. Until this 

point we have used depth o f log(l/e)logn  and with the additional depth o f elogn o f the [BeCoHo86] algo­

rithm. the nz-\h power o f an n-bit number can be computed in depth 0 (log (l/e )logn ). Substituting this in 

place o f T2(n£,n) in equation (2) we find that the depth o f the division algorithm incorporating the 

[BeCoHo86] circuit is 0 ((l/e )log (l/e )log n ) = 0 ((l/S 2)logn). The size o f this application o f  the 

[BeCoHo86] circuit is CKn4*), so the size result previously obtained for the algorithm based purely on 

[Re86] is not affected.

For PRAM implementation, we note that Modpower is parametrized only by r  and is logspace uni­

form, so our division circuit translates to a 0 (log/iloglog/t) time algorithm on the CREW PRAM  ( with bit 

operations) using 0 ((l/5 4)n 1+s) processors, for any 8>0.

Using standard techniques, (see [ChStVi84]), our logspace uniform 0(log/iloglogn ) depth division 

circuit can be compressed in depth to 0 ((l/£ )log n ) for any k>0, with an increase in size o f a factor o f 

2bgt"- W e let ¿=1/2  and translate the resulting unbounded fan-in circuits to a CRCW  PRAM  algorithm in 

the bit model running in time O(logn) and using 0 ((l/5 4)n 1+i) processors, for any 8>0.
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