
June 1987 UILU-ENG-8 7-2235
ACT-78

COORDINATED SCIENCE LABORATORY
College of Engineering

EFFICIENT
PARALLEL CIRCUITS
AND ALGORITHMS
FOR DIVISION

Narayan Shankar
Vi jay a Ramachandran

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

mCLASSIFIED
E C U R IT Y C L A S S IF IC A T IO N OF T H IS PAGE

REPORT DOCUMENTATION PAGE
1a. R E PO R T S E C U R IT Y C L A S S IF IC A T IO N

J n c l a s s i f i e d
lb . R E S T R IC T IV E M A R K IN G S

N one
¡2 *. S E C U R IT Y C L A S S IF IC A T IO N A U T H O R IT Y

N /A
I 2b. O E C L A S S IF IC A T IO N /O O W N G R A O IN G S C H E D U L E

N /A

3. O IS T R IB U T IO N /A V A IL A B IL IT Y O F R E P O R T

A p p r o v e d f o r p u b l i c r e l e a s e ;
d i s t r i b u t i o n u n l i m i t e d

|4 . P E R F O R M IN G O R G A N IZ A T IO N R E PO R T N U M B E R (S)

A C T -78 UILU-ENG-87-2235
5. M O N IT O R IN G O R G A N IZ A T IO N R E P O R T N U M B E R (S)

N /A
16a. N A M E OF P E R F O R M IN G O R G A N IZ A T IO N

C o o r d in a te d S c i e n c e L a b .
lU n iv e r s i t y o f I l l i n o i s

6b. O F F IC E S Y M B O L
(If applicable)

N /A

7a. N A M E O F M O N IT O R IN G O R G A N IZ A T IO N
N ational S cience Foundation, Sem iconductor
Research C orporation , J o in t S erv ice E le c tro n ic

----------------- P rog ra m —
Ióc. AOORESS (City, State and ZIP Code)

SUOI W. S p r i n g f i e l d A venue
[U rb an a , IL 61801

7b. AD O R ESS (City, State and ZIP Code)

1800, G. S tr e e t , NW, Washington, DC 20550
P.O. Box 12053, Res. T rian gle Park, NC 27709
800 N. Quincy S t w A r lin g ton , VA 22217

¡8a. N A M E OF F U N O IN G /S P O N S O R IN G
O R G A N IZ A T IO N NSF, SRC, JSEP

8b. O F F IC E S Y M B O L
(If applicable)

N /A

9. P R O C U R E M E N T IN S T R U M E N T ID E N T IF IC A T IO N N U M B E R

ECS 840-4866, SRC 86-12-109, N00014-84-C-0149
______________________________________ (JSEP)

I 8c. AOORESS (City, State and ZIP Code)

see 7b.
10. SO U R CE OF F U N D IN G NOS.

11. T IT L E (Include Security Classification) E f f i c i e n t P a r a i l e 1

¡ C i r c u i t s and A lg o r i t h m s f o r D i v i s i o n
12. P ER S O N A L A U T H O R (S)

P R O G R A M PROJECT TA S K W O R K U N IT
E L E M E N T NO. NO. NO . NO .

N /A N /A N /A " n7 a

Shankar, Narayan and Ramachandran, V ij aya
1 13a. TYPE OF R EPO R T

[T e c h n ic a l
13b. T IM E C O V E R E D

FR O M TO

14 . D A TE OF R EPO R T (Yr„ Mo., Day)

Ju n e 1987
15. PAGE C O U N T

1 1

1 16. S U P P L E M E N T A R Y N O T A T IO N

N /A
17. C O S A TI COOES

F IE L O G RO UP SUB. GR.
18. S U BJEC T T E R M S (Continue on reverse if necessary and identify by block number)

d i v i s i o n , b o o le a n c i r c u i t s , PRAM a l g o r i t h m ,
e f f i c i e n t c o m p u t a t io n

119. A B STR A C T (Continue on reverse if necessary and identify by block number)

We im p ro v e t h e s i z e b ou n d f o r p a r a l l e l c i r c u i t s and a lg o r i t h m s f o r
t h e d i v i s i o n p r o b le m .

20. O IS T R IB U T IO N /A V A IL A B IL IT Y OF A B S T R A C T

lU N C L A S S IF IE D /U N L IM IT E D QC SAME AS RPT. G O T IC USERS □

21. A B S TR A C T S E C U R IT Y C L A S S IF IC A T IO N

U n cla ss ifie d

□i
2a. N A M E OF R ESPO NSIBLE IN D IV ID U A L 22b. T E L E P H O N E N U M B ER

IInclude Area Code)
22c. O F F IC E S Y M B O L

Nòne
O FORM 1473, 83 APR E D IT IO N OF 1 JAN 73 iS O B SO LETE. UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H IS P A G E

Efficient Parallel Circuits and Algorithms for Division
Near ay an Shankar

Vi jay a Ramachandran

Coordinated Science Laboratory
University of Illinois

Urbana. IL 61801

ABSTRACT

We improve the size bound for parallel circuits and algorithms for the
division problem.

Keywords: division, boolean circuits. PRAM algorithm, efficient computation

This work was supported by the National Science Foundation undeT Grant ECS 8404866, the Semicon
ductor Research Corporation under Grant SRC 86-12-109, and the Joint Services Electronics Program
under N00014-84-C-0149.

1. Introduction

In this paper we consider the problem o f finding the n-bit result o f dividing one «-b it number by

another. W e present circuits with asymptotically small size and depth for this problem and we derive from

them, efficient PRAM algorithms for division in the bit model. Our primary result, which is a size-efficient

implementation o f the circuits in R eif [Re86], is a logspace uniform family o f circuits for division o f depth

D (n)—0 (logn-loglogn) and size S (n)=0 ((1/54)*n1+i), for any 8>0. This translates into a uniform parallel

algorithm on a shared memory machine (PRAM) with bit operations and exclusive memory writes with

parallel time D (n) using O (S (/»)) processors. It also translates into a parallel algorithm for a concurrent

write PRAM with parallel time 0 (D (n)/loglogn) using 0 (S (n)) processors. Finally, we apply the results

o f Beame, Cook and Hoover [BeCoHo86] to obtain a polynomial-time uniform family o f circuits for divi

sion o f depth 0 ((l /82)-logn) and size 0 (S(n)).

2. Parallel M odels o f Com putation

A (bounded fan-in) boolean circuit is an acyclic labeled digraph. Nodes are labeled as input, con

stant, AND, OR, NOT, or output nodes. Input and constant nodes have zero fan-in, AND and OR nodes

have fan-in o f 2, NOT and output nodes have fan-in o f 1. Output nodes have fan-out zero.

Let B = {0 ,1). A boolean circuit with n input and m output nodes computes a boolean function

The size o f a boolean circuit is the number o f nodes in the circuit excluding input and output

nodes. The depth o f the circuit is the length o f the longest path among all paths from input to output nodes.
/

Given a sequence o f circuits C 1,C 2. • • • we denote the size o f the n -th circuit by SIZECC,) and its depth

by DEPTH(C*). If there exists a function S(n) such that SIZE(C„)£S (n) for each n then we say that the

size o f the sequence is 0 (S («)). Similarly we may define the depth O(D (n)) o f the sequence. W e say a

sequence is in S1ZE-DEPTH(<S (n)JD (n)) if it is simultaneously bounded in size by 0 (5 (/*)) and in depth

by 0(D (n)). A sequence o f boolean functions will be referred to as a problem, and a sequence o f circuits

such that the n-th circuit realizes the n-th boolean function is an algorithm to solve the problem. We will

say that an algorithm gives circuits o f small size for a problem if S (n)=0 (f (8)*n1+a), for any 8>0 and for

some function /. Small size circuits are desirable since they lead to low hardware costs. For parallel com

putation, we also want D (n) to be small, since D (n) gives the parallel computation time.

- 2 -

A sequence o f circuits is logspace uniform for a problem if there exists a logspace-bounded turing

machine that computes a suitable binary encoding o f the n-th circuit on being input the number n in unary.

For theoretical reasons logspace uniformity is a desirable property in a sequence o f circuits (see, e.g.,

[Ru81]).

A PRAM in the bit model is a parallel RAM with access to a global memory and with each processor

capable o f a bit operation in unit time. A CREW PRAM is a PRAM allowing concurrent reads but only

exclusive writes on the global memory. A CRCW PRAM allows concurrent reads and writes. A PRAM

algorithm is uniform if the algorithm is parametrized by n and works in the parallel time bound for all

values o f n.

3. Previous Work on Circuits for Basic Arithmetic Operations

For the problem o f adding two n-bit numbers Krapchenko [Kr70], and Ladner and Fischer [LaFi80]

present algorithms which achieve asymptotically optimal delay o f logn and a linear size bound which are

the best possible in this model (see [Sa76]).

For adding n n-bit numbers Ofman [Of62] and Wallace [Wa64] have 0(logn) depth circuits with

0 (n2) gates, which is linear in the size o f the input

The best known circuits for the multiplication o f two n-bit numbers are due to Schonhage and

Strassen [ScSt71]. These have 0 (logn) depth and 0(nlognloglogn) size.

In the division problem, we need to compute the n-bit quotient u /v where u and v are n-bit numbers.

Since u /v=u*(l/v), and multiplication can be done efficiently by the Schonhage-Strassen algorithm, atten

tion has been concentrated on the computation o f the n-bit reciprocal o f an n-bit number. The first good

circuits for the reciprocal problem are due to Cook [C066]. The method used in [Co 66] to compute the

reciprocal is to first normalize v to a number in the interval [1/2,1), set x = l-v , and compute

l/(l-x)= l+ x -h x 2+x3+... where the first n terms o f the series give sufficient precision. The problem is thus

reduced to that o f efficiently computing x " where x is an n~bk number. [Co66] presents a OQog^n) depth

polynomial size family o f circuits for this problem. Recent attempts to obtain better circuits for division

have all concentrated on the powering problem.

- 3 -

A log depth polynomial size circuit for division has been obtained in [BeCoHo86], which solves the

powering problem by using a combination o f Chinese remaindering and taking logarithms over finite fields.

The algorithm does not appear to be logspace uniform, though the circuits are polynomial time computable.

R eif [Re86] has logspace uniform 0(logn loglog /i) depth division circuits o f polynomial size, parametrized

only by n, so that the algorithm translates into a uniform CREW PRAM algorithm. The division circuits in

both [Re86] and [BeCoHo86] are worse than quadratic in size. Thus while there are known small size cir

cuits for addition and multiplication o f 0 (log/i) depth, this is not the rasa for division.

In the next section we present circuits o f size 0 ((1 /54) ti 1+*), for any 5>0, that achieve the same

depths as in [Re86] and [BeCoHo86], thus obtaining small size circuits o f small depth for the division

problem.

We close this section with a brief discussion o f the DFT, presenting the definitions and theorems that

we need (for further details and proofs see [AhHoU174])

Let R be a commutative ring with identity 1. Then the set o f all infinite sequences firom R with only

finitely many non-zero terms forms a commutative ring with identity 1 under componentwise addition, and

multiplication defined by convolution. This ring is called the ring o f formal polynomials over R and is

denoted by R[t], and the sequence whose (k+l)-th term is non-zero and whose later terms are all zero is

denoted simply by (a0tai,...tak) and also often written as ao+ait+a2t2+...+aktk.

Let R have a primitive n-th root o f 1 (denoted by co), where n is a unit in R, i.e. n has an inverse in

R. Let the n x n matrix M = (m,v) be defined by ¿¿= 0 ,1 n -1 . The matrix M is invertible. If A

is an n-vector, define DFT„(A) = MA and DFT? (A) = M~lA. Note that DFT? (.DFTH(A)) = A. [CoTu65]

introduced an algorithm which translates into a size 0 (n2logn), depth 0 (logn) circuit for computing the

DFT o f n n-bit numbers. If we further assume that there exists y in R such that y* = -1 and y 2 = co, then

with any (n -l)-d eg ree polynomial A (t)=aQ+alt+a2t2+...+aH_lm -1 we can associate A* =

(a o .^ y .a jy 2. . . . , j „ _ ly * '1). W e now state

The negatively wrapped convolution theorem: Let A ,(0 , i= l,2 ,...,r be (n -l)-degree polynomials, and B (/)

r

= m (0 , this being the ring product in R(t]. L etD (r) sB (t) mod r*+1. Then D * = DFT? (JJDFT^A*))

- 4 -

where the multiplication in the transformed domain is componentwise.

4. The R eciprocal Problem

Let x be an n-bit number in [1/2,1). W e wish to compute v=l/x correct to n places to the right o f the

point Let u=l-x, where 0< u £ l/2 and u has n bits. Then l/x = l/(l-u)= l+ u + u 2+u3-h... W e would obtain

1 !x sufficient precision if we compute l,u ,u 2,u 3, . . . ,u n-1 exactly (each o f these numbers can be
9
represented exactly using at most n 2 bits since u has only n bits), and add them up and truncate the sum to

n bits to the right o f the point Since in this method the powers are computed to n2 bits o f precision, the

resulting circuit has size Q (n2). However, the computation o f the powers to n2 bits is unnecessary, as is

shown in [MePr86], Consider the factorization:

1+“ +u2+...+u*~l=(l+u+u2+ ...+ u '_1)(l+ u , +u2'+ ...+ u (,-1>') ...(1 + u '""1 +...+U (•»“ D*1""1)

where s=nVm,m being a fixed integer. Denote the i-th factor (l+u'^+u2*'"1* • • • +u(,“ 1>" 1), by

i==̂ ’ 1). W e can compute each factor <j>/, and then multiply the m factors and truncate the result to

n+2 bits to get 1/x. Note that 0 / is actually the sum o f the powers (us‘~Xy for ; =0,1,2..... (j -1) . It is proved

in [MePr86] that if we use an n+log(12m) bit approximation to u*1 1 (which we denote by 0 ,), compute Q{,

j=Q,...,s-l exactly, i.e. to ns bits, and add these s numbers to get an /ty-bit approximation <J>,- to <J)/, then the

product o f the m <t>, truncated to n bits gives an n-bit approximation to 1/x. The 6* are obtained as follow s:

90 is initialized to « , and 6,- is obtained by computing 0f_j and truncating to n+log(12m) bits. Note that no

computation involves more than ns bits. Though the above factorization is not valid if n l/m=s is not an

integer, this algorithm for computing the reciprocal is still good with s = \ny" [, since this only means that

we compute even more than n terms in the series.

Let Si(s,n) and T{(s,n) denote the size and time o f computing each If SQ(n) is the size o f

reciprocation, then SQ(n) = 0(mS i(s,n}+mM (ns)), where the first term on the RHS is the cost o f comput

ing m fo , and the second term is the cost o f multiplying them together. If we denote the depth for comput

ing reciprocal by TQ(n) then T0(n) = 0(mTx (s,n)+\ogmlogns), where the first term is the depth for comput

ing m <(>,• and the second term the depth for multiplying them together. Since <J),- is the sum o f 0 f,

7=0, l , . . . , j - l , with 0,- being o f 0 (/i) bits, if we denote the size o f computing the j-th power o f an n-bit

- 5 -

number by 5 2(i',/i), we find that Si(s,ny=sS2(s,n)+ns2, where the first term is the cost o f computing the s

powers o f 0, and the second term is the cost o f adding them up. Similarly Tx (s,ny=T2(s,n)+\ogns, where

the first term is the depth o f computing the s powers o f 0; in parallel, and the second term the depth o f

adding them up. From the above it follow s that

and

So(n)=smS2(s,n)+nms2+mM (ns) 1

T 0(n)=mT 2(stn)+m\ogns 2

We now develop an efficient algorithm for computing the s-th power o f an n-bit number and determine its

size S2(s,n) and time T2(s,n). W e actually describe an algorithm that computes the j-th power o f an r-bit

number modulo 2r+ l. This will be used to compute the r-th power o f an n-bit number exactly, by treating

the input as an ns-bit number and computing its s-th power mod 2W+1. Our algorithm is based on the

modular product algorithm in [Re86] and uses the DFT. W e first introduce some notation. The ring Z^+i

has k as a unit, (0=4 as a primitive fc-th root o f unity and y= 2 satisfies \j/*=-l and \|^=o). Hence DFT and

inverse DFT o f ¿-sequences can be defined in this ring and by the notation DFTk(x0pcu...pck- l) mod 2*+l

we mean the DFT (as previously defined) in the ring Z^+i with (0=4. Denote by mod 2*+l the

vector (r 0,...,*jk-i) with each o f its components reduced modulo 2*+l. W e now state the algorithm and fol

low it up with a discussion.

The modular power algorithm

Input Cr-2 * * * Co is o f r bits, the least significant bit being Co and the most significant bit being Cr-i-

r is a power of 2. Output is x* mod 2r+l, where s=rz, 0<e£1/2.

Function Modpower (x,rys)

begin
if r<A

Modpower<—x* mod 2r+ l; (* compute directly by constant depth, constant size circuit
since r<A and s<2; this is the base step o f recursion *)

else
begin

case r^s2 do
begin

/< -(l/2)(V r/J);

- 6 -

end
end.

Remarks on the algorithm

The main idea in the algorithm is to split x into k blocks, k=2^rs, and construct the vector

S (0-aQ+a\t+a2t *. If l—r Ik, then g(2*)=x. If we let d(jt)a(g(jt)Y mod tk+1, then

^(2) s (g (2))s mod (2/)*+l = x* mod 2r+ l. Finding d(t) would solve the problem, since its value at 2l is

the desired xs mod 2r+ l. The polynomials above are over the ring o f integers Z but we do calculations over

the finite ring Z^+l. Apply the convolution theorem to get d0̂ DFTil(PFTk(^ y) mod 2*+ l, where the

powering is componentwise in the transformed domain. Notice that there are k powerings in the

transformed domain, each o f ¿-bit numbers mod 2*+l, where k is smaller than r, and we do these power

ings recursively. W e need to be sure that the d computed as above (in Zp) gives the correct d (in Z). This

will be so if the coefficients o f d are small enough Le., *. This can be arranged by requiring s—r'E,

‘md by choosing k=2 îrs as we have done. (It is shown in [Re86] that it is sufficient to choose s

and k so that 2s (r/¿+ l+ lo g £)< £ -l is satisfied. The above choices o f s and k satisfy this inequality for

sufficiently large r.) Essentially what we are doing is making each coefficient o f g small enough by split

ting x into sufficiently many pieces. Since the ring Z^+i grows with k (the number o f coefficients in g), if

we have a sufficiently large number o f coefficients and we make the power s small enough, we can expect

g* to have small enough coefficients, so that it can be represented without error in Z* +,.

kir-2irs\
divide x into k equal blocks o f / bits each and form the vector (xq.x j , . . . ,x*_i)
where x, = Cr-ii—i * * * Cr-{i+i)/I (* this is the vector g (/) in the discussion below
*)
(x 0,X i,X2, . . . ,* * -i)< -(xo,x 12,x 222, . . . ,x*_i2*-1) m od2*+l;
(* this is g* *)
(*oXi-{)*-DFTk{xQt . . . ,x*_i) m odZ 2*+1; (* \hisisDFTk(g*) *)
par do Xi*-Modpower(xi,kts)', (* this is the componentwise powering o f k
smaller numbers in the transformed domain, done recursively in parallel *)
(x0,...,x*_1)<-D F7^1(x0,. . .^ _ 1) m odZ2*+i; (* th isisd* *)
(xo,x i ,x 2,...,Xk_i)<—(x o ,x !2-1 ,x 22-2,x * .^ * - ”) mod 2*+ l;
(* this is (r) *)
Modpower<-(xo+x1(2,)+x2(2í)2+...+x*_1(2,)* -1) (* this is d (2l), which is what
we want *)

end
case r<s2 do
begin

x<r-x* mod 2r+ l (* compute by the modular product algorithm in [Re86] *)
end

- 7 -

Choice (1) o f the case statement o f the algorithm is entered recursively log (l/e) times on first calling

the program. W e start with k—r and in each subsequent application ki—2Mks\ and we keep going until

k<s2. W e set up the recurrence kQ=r, k ^ k ^ s and solve to get ^ = (4 ly)1“<1/2)V cly2)/. In about log (l/e)

steps ki<s2.

At this point we need the s-th power o f an f^-bit number. Now choice (2) o f the case statement is

executed. Since s=re is small compared with r, we do not attempt to be efficient with this residual compu

tation, but simply apply the algorithm in [Re86]. The size complexity o f the algorithm is dominated by

choice (1) o f case, as our analysis will show.

5. Gate Count

As already mentioned the exact value o f x* may be found by treating x as an ns-bit number and com

puting xs mod 2W+1. This is accomplished by calling Modpower(x,ns,s). W e now compute the size and

depth for this problem. W e solved a recurrence for kt above with initial condition kQ=r. With initial condi

tion kQ=ns (which is the case in the exact powering problem), kl=Al~i i a) l s. Recall that we denoted by

S2(s,n) the size needed for computing the j-th power o f an n-bit number. If S (s,n) denotes the size o f com

puting the i-th power o f an n-bit number mod 2*+l then S 2{s,n)=S (stns) as seen above.

From choice (1) o f case in the algorithm we obtain

S(s,ns)=S (s,kQ)=cki\ogki+kiS(stki)

The first term on RHS is the cost o f taking DFT o f a ¿-vector in Z^+i by the Cooley-Tukey algorithm

[CoTu65]. The second term is for the recursive computation o f kx smaller powerings. (Computing g * from

8 and d from d* in the algorithm needs 0 (^ 0 per entry and hence 0 (k f) overall, which follow s from

lemma 7.6 pp 266 [AhHoU174]. Computing g(2l) is like adding two n-bit numbers, and needs only

0(k2). These steps in the algorithm are all dominated by the cost o f computing the DFT.) Now replace

S (s,k i) by an expression in terms o f k2 and keep doing this for / steps to get

5 (a 0M cI(TO)AltogklH n^>S (a,)
»■1 y* 1 i*l

YlkH ’h u m fni^ s ‘
4*1

Using the formula for kt we get

- 8 -

Also we have

aiw w «“
i=l

and lo g ^ c lo g n since s=n* with e^ l/2 . This gives

i==l y* 1 i*l
i

Using our previous formula for Y\k} we get
y=i

S (s,k<,)=c"n4‘s Mlog n U ' - W W ^ s ' S
With /= log (l/e) and s=ne this becomes

S(nSn1« H c',/£2)nlwd»«(1''>logn+(l/e2)n1- « lo«<1'e>S(«‘,n2t)
S (n '.n 28) is the size complexity o f choice (2) o f case, which is 0 (n 4‘). This gives us

S2(n‘ ,n)=S (n‘ ,n My=c"(llt?)n

Using this in equation (1) we find that the size for computing reciprocal is

So(n\n)=c"(l/z3)n 1+4e+cto*1/e>

(W e have omitted the second term on the RHS o f eqn (1) since it is dominated by the first.) From this it

follow s that for any S>0, there are circuits for computing the reciprocal that have size 0 ((l/5 4) /i1+5). Sup

pose 8>0 is given. W e solve for 6 using the equation 8=4e+elog(l/e), and construct circuits as above with

this e. Clearly e<8 and since for small e, 8<e3/4, the above result is true.

Recall that we denoted by Ti{nz,n) the depth for computing the ne-th power o f an n-bit number.

Note that choice (1) o f case is entered log (l/e) times, and each application is dominated in depth by the

DFT computation. The total contribution from all this to the depth is 0 (log (l/e)logn). As for choice (2), the

[Re86] algorithm needs O (logrloglogr) depth to compute the r-th power o f an r bit number mod 2r+ l.

Using this with n=n£ we see that choice (2) o f case contributes 0(elognloglogn) to the depth. Hence we

have

T2(n£,n)= log(l/e)logn+elogn loglogn

Using this in equation (2) we get the depth complexity o f division

T o(«)= (l/e)(log(l/e))logn+ logn loglogn = 0 (log/iloglogn)

- 9 -

W e observe that the additional factor loglog/i for the depth in the above algorithm arises from the

final application o f the [Re86] algorithm directly in choice (2) o f case. W e can avoid this at the cost o f los

ing logspace uniformity by using one application o f the [BeCoHo86] algorithm to complete the computa

tion once we get to the point where we need to compute the ne-th power o f an n^ -b it number. Until this

point we have used depth o f log(l/e)logn and with the additional depth o f elogn o f the [BeCoHo86] algo

rithm. the nz-\h power o f an n-bit number can be computed in depth 0 (log (l/e)logn). Substituting this in

place o f T2(n£,n) in equation (2) we find that the depth o f the division algorithm incorporating the

[BeCoHo86] circuit is 0 ((l/e)log (l/e)log n) = 0 ((l/S 2)logn). The size o f this application o f the

[BeCoHo86] circuit is CKn4*), so the size result previously obtained for the algorithm based purely on

[Re86] is not affected.

For PRAM implementation, we note that Modpower is parametrized only by r and is logspace uni

form, so our division circuit translates to a 0 (log/iloglog/t) time algorithm on the CREW PRAM (with bit

operations) using 0 ((l/5 4)n 1+s) processors, for any 8>0.

Using standard techniques, (see [ChStVi84]), our logspace uniform 0(log/iloglogn) depth division

circuit can be compressed in depth to 0 ((l/£)log n) for any k>0, with an increase in size o f a factor o f

2bgt"- W e let ¿=1/2 and translate the resulting unbounded fan-in circuits to a CRCW PRAM algorithm in

the bit model running in time O(logn) and using 0 ((l/5 4)n 1+i) processors, for any 8>0.

REFERENCES

[AhHoU174] A . V . Aho, J. E. Hopcroft, J. D. Ullman, Design and Analysis of Computer Algorithms
Addison-W esley, 1974.

[BeCoHo86] P.W. Beame, S. A . Cook, H. J. Hoover, "Log depth circuits for division and related prob
lems,” SIAM J. Comput., voL 15, no. 4 ,1986, pp. 994-1003.

[ChStVi84] A. K. Chandra, L. Stockmeyer, U. Vishkin, "Constant depth reducibility," SIAM J. Comput
v o l 13, no. 2 ,1984, pp. 423-439.

[Co66] S. A . Cook, Ph. D. thesis, Harvard University, Cambridge, M A, 1966.

[CoTu65] J. M. Cooley, J. W . Tukey, "An algorithm for the machine calculation o f com plex Fourier
series," Math. Comput., vol. 19, pp. 297-301.

pCr70] A . N. Krapchenko, "Asymptotic estimation o f addition time o f a parallel adder," English translation
in Syst. Theory Res., vol. 19,1970, pp. 105-122.

[LaFi80] R. E. Ladner, M. J. Fischer, "Parallel prefix computation," JACM, vol. 27, no. 4, 1980, pp. 831-
838.

[MePr86] K. Mehlhom, F. Preparata, "Area-time optimal division for 7 '=Q ((logn)1'Hi)," tech, report, 1986,
Coordinated Science Lab., Univ. o f Illinois, Urbana, EL.

- 1 0 -

[Of62] Y . Offman, "On the algorithmic complexity o f discrete functions," English translation in Soviet
Phys. Dolci., voi. 7, no. 7 ,1963, pp. 589-591.

[Re86] J. H. Reif, "Logarithmic depth circuits for algebraic functions," SIAM J. on Comput, voi 15 no 1
1986, pp. 231-242. ' * *

[Ru81] W. L. Ruzzo, "On uniform circuit
383.

com plexity," Jour. Comput. Syst. Sci., voi. 22, 1981, pp. 365-

[Sa76] J. E. Savage, "The Complexity of Computing", John W iley, 1976.

[ScSt71] A. Schonage, V. Strassen, "Schnelle multiplikation grosser zahlen," Computing, vol. 7, 1971, pp.
281*292«

[Wa64] C. S. W allace, "A suggestion for a fast multiplier," IEEE Trans. Comput., vol. EC-13, no. 1, pp.

