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1. Introduction

In this paper we consider the problem of finding the n-bit result of dividing one «-bit number by
another. We present circuits with asymptotically small size and depth for this problem and we derive from
them, efficient PRAM algorithms for division in the bit model. Our primary result, which is a size-efficient
implementation of the circuits in Reif [Re86], is a logspace uniform family of circuits for division of depth
D (n)—B (logn-loglogn) and size S(N)=0 ((1/54)*n1+i), for any 8>0. This translates into a uniform parallel
algorithm on a shared memory machine (PRAM) with bit operations and exclusive memory writes with
parallel time D (n) using O (S(/»)) processors. It also translates into a parallel algorithm for a concurrent
write PRAM with parallel time O (D (n)/loglogn) using O (S(n)) processors. Finally, we apply the results
of Beame, Cook and Hoover [BeCoH086] to obtain a polynomial-time uniform family of circuits for divi-

sion of depth O((1/82-logn) and size 0 (S(n)).

2. Parallel Models of Computation

A (boundedfan-in) boolean circuit is an acyclic labeled digraph. Nodes are labeled as input, con-
stant, AND, OR, NOT, or output nodes. Input and constant nodes have zero fan-in, AND and OR nodes

have fan-in of 2, NOT and output nodes have fan-in of 1. Output nodes have fan-out zero.

Let B={0,1). A boolean circuit with N input and M output nodes computes a boolean function

The size of a boolean circuit is the number of nodes in the circuit excluding input and output

nodes. The depth of the circuit is the length of the longest path among all paths from input to output nodes.

/

Given a sequence of circuits C1,C 2. === we denote the size of the n-th circuit by SIZECC,) and its depth
by DEPTH(C*). If there exists a function S(n) such that SIZE(C,)ES (n) for each N then we say that the
size of the sequence is 0 (S(«)). Similarly we may define the depth O(D (n)) of the sequence. We say a
sequence is in S1ZE-DEPTH(<S (N)JD(n)) if it is simultaneously bounded in size by 0(5 (/*)) and in depth
by O(D (n)). A sequence of boolean functions will be referred to as a problem, and a sequence of circuits
such that the n-th circuit realizes the n-th boolean function is an algorithm to solve the problem. We will
say that an algorithm gives circuits of small size for a problem if S(n)=0 (f (8*n1+a), for any 8>0 and for

some function/. Small size circuits are desirable since they lead to low hardware costs. For parallel com-

putation, we also want D (n) to be small, since D (n) gives the parallel computation time.



A sequence of circuits is logspace uniform for a problem if there exists a logspace-bounded turing
machine that computes a suitable binary encoding of the n-th circuit on being input the number n in unary.
For theoretical reasons logspace uniformity is a desirable property in a sequence of circuits (see, e.g.,

[Ru81]).

A PRAM in the bit model is a parallel RAM with access to a global memory and with each processor
capable of a bit operation in unit time. A CREW PRAM is a PRAM allowing concurrent reads but only
exclusive writes on the global memory. A CRCW PRAM allows concurrent reads and writes. A PRAM
algorithm is uniform if the algorithm is parametrized by n and works in the parallel time bound for all

values of N.

3. Previous Work on Circuits for Basic Arithmetic Operations

For the problem of adding two n-bit numbers Krapchenko [Kr70], and Ladner and Fischer [LaFi80]
present algorithms which achieve asymptotically optimal delay of logn and a linear size bound which are

the best possible in this model (see [Sa76]).

For adding N n-bit numbers Ofman [Of62] and Wallace [Wa64] have 0(logn) depth circuits with

0(n2) gates, which is linear in the size of the input

The best known circuits for the multiplication of two n-bit numbers are due to Schonhage and

Strassen [ScSt71]. These have 0(logn) depth and O(nlognloglogn) size.

In the division problem, we need to compute the n-bit quotient u/v where Uand v are n-bit numbers.
Since u/v=u*(l/v), and multiplication can be done efficiently by the Schonhage-Strassen algorithm, atten-
tion has been concentrated on the computation of the n-bit reciprocal of an n-bit number. The first good
circuits for the reciprocal problem are due to Cook [CO66]. The method used in [Co 66] to compute the
reciprocal is to first normalize v to a number in the interval [V2,1), set x=1-v, and compute
1/(1-x)=1+x-hx2+x3+... where the first n terms of the series give sufficient precision. The problem is thus
reduced to thato fefficiently computing X " wherex is an n~bk number. [Co66] presents a OQog”n) depth
polynomial size family of circuits for this problem. Recent attempts to obtain better circuits for division

have all concentrated on the powering problem.



A log depth polynomial size circuit for division has been obtained in [BeCoH086], which solves the
powering problem by using a combination of Chinese remaindering and taking logarithms over finite fields.
The algorithm does not appear to be logspace uniform, though the circuits are polynomial time computable.
Reif [Re80] has logspace uniform 0(lognloglog/i) depth division circuits of polynomial size, parametrized
only by N, so that the algorithm translates into a uniform CREW PRAM algorithm. The division circuits in
both [Re86] and [BeCoH086] are worse than quadratic in size. Thus while there are known small size cir-

cuits for addition and multiplication of O (log/i) depth, this is not the rasa for division.

In the next section we present circuits of size 0((1/54)ti 1#), for any 5>0, that achieve the same
depths as in [Re86] and [BeCoH086], thus obtaining small size circuits of small depth for the division

problem.

We close this section with a briefdiscussion of the DFT, presenting the definitions and theorems that

we need (for further details and proofs see [AhHoU174])

Let R be a commutative ring with identity 1. Then the setof all infinite sequences firom R with only
finitely many non-zero terms forms a commutative ring with identity 1 under componentwise addition, and
multiplication defined by convolution. This ring is called the ring of formal polynomials over R and is
denoted by R[t], and the sequence whose (k+I)-th term is non-zero and whose later terms are all zero is

denoted simply by (a0tai,...tak) and also often written as ao+ait+a2t2+...+aktk

Let R have a primitive n-th root of 1 (denoted by co), where Nnis a unitin R, i.e. N has an inverse in
R. Let the N X N matrix M = (m,v) be defined by (¢=0,1....n-1. The matrix M is invertible. 1fA
is an n-vector, define DFT,(A) = MA and DFT? (A) = M~IA. Note that DFT? (DFTHA)) = A. [CoTu65]
introduced an algorithm which translates into a size O(n2ogn), depth O(logn) circuit for computing the
DFT of N n-bit numbers. If we further assume that there exists y in R such thaty* =-1 andy 2= co, then

with any (n-lI)-degree polynomial A (t)=aQralt+a2t2+..+aHIm-1 we can associate A* =

(ao.Ny.ajy2....,j,_ly*'1]). We now state

The negatively wrapped convolution theorem: LetA,(0, i=1,2,...,r be (n-l)-degree polynomials, and B (/)

r

=m (0, this being the ring product in R(t]. LetD (r) SB(t) mod r*+1. ThenD* = DFT? (JJDFT"A%))



where the multiplication in the transformed domain is componentwise.

4. The Reciprocal Problem

Let X be an n-bit number in [1/2,1). We wish to compute V=I/X correct to n places to the right of the
point Let u=I-x, where O<u£l/2 and U has n bits. Then I/x=1/(I-u)=1+u+u2+u3-h.. We would obtain
Ux sufficient precision if we compute l,u,u2,u3,... ,un-l exactly (each of these numbers can be
represented exactly using at most n 2 bits since U has only n bits), and add them up and truncate the sum to
N bits to the right of the point Since in this method the powers are computed to n2 bits of precision, the
resulting circuit has size Q(n2). However, the computation of the powers to N2 bits is unnecessary, as is

shown in [MePr86], Consider the factorization:
1+ +u2+. tur~l=(l+u+u2+ .+ u' 1) (I+u, +u2+.. +u(-1>) ... (L+u™" 1+ .+U (@ D*1"1)

where s=nMMm being a fixed integer. Denote the i-th factor (I+u'M+u2¥'T* eeetu(,“1>" 1), by

=\ 1). We can compute each factor <>/, and then multiply the mfactors and truncate the result to
n+2 bits to get 1/x. Note that 0 / is actually the sum of the powers (US> for;=0,1,2.....(j-1). Itis proved
in [MePr86] that if we use an n+log(12m) bit approximation to U*11 (which we denote by 0,), compute @,
j=Q,...,s-1 exactly, i.e. to NS bits, and add these S numbers to get an /ty-bit approximation <J to <Jy, then the
product of the m < truncated to N bits gives an n-bit approximation to 1/x. The 6* are obtained as follows:
90 is initialized to «, and 6- is obtained by computing 0f_j and truncating to n+log(12m) bits. Note that no
computation involves more than NS bits. Though the above factorization is not valid if nlA¥Fs is not an
integer, this algorithm for computing the reciprocal is still good with S = \ny" [, since this only means that

we compute even more than n terms in the series.

Let Si(s,n) and T{(s,n) denote the size and time of computing each If S@n) is the size of
reciprocation, then S@n) = O(MSi(s,n}+mM (ns)), where the first term on the RHS is the cost of comput-
ing Mfo, and the second term is the cost of multiplying them together. If we denote the depth for comput-
ing reciprocal by TQn) then TO(n) = 0(MTX(s,n)+\ogmlogns), where the first term is the depth for comput-
ing M <$= and the second term the depth for multiplying them together. Since <} is the sum of Of,

7=01,...,j-1, with O- being of 0(/i) bits, if we denote the size of computing the j-th power of an n-bit



number by 52(i',/i), we find that Si(S,ny=sS2(s,n)+Ns2, where the first term is the cost of computing the S
powers of 0, and the second term is the cost of adding them up. Similarly TX(s,ny=T2(s,n)+\ogns, where
the first term is the depth of computing the S powers of 0; in parallel, and the second term the depth of
adding them up. From the above it follows that

So(n)=smS2(s,n)+nms2+mM (ns) 1

and

TO(N)=mT 2(stn)-+m\ogns 2
We now develop an efficient algorithm for computing the s-th power of an n-bit number and determine its
size S2(s,n) and time T2(s,n). We actually describe an algorithm that computes the j-th power of an r-bit
number modulo 2r+1. This will be used to compute the r-th power of an n-bit number exactly, by treating
the input as an ns-bit number and computing its s-th power mod 2W+1. Our algorithm is based on the
modular product algorithm in [Re86] and uses the DFT. We first introduce some notation. The ring Z™+i
has K as a unit, (0=4 as a primitive fc-th root of unity and y=2 satisfies \j/*=-1 and \|*=0). Hence DFT and
inverse DFT of ;-sequences can be defined in this ring and by the notation DFTK(xOpcu ...pck- 1) mod 2*+1
we mean the DFT (as previously defined) in the ring Z~+i with (0=4. Denote by mod 2*+1 the
vector (rO0,...,*jk-i) with each of its components reduced modulo 2*+1. We now state the algorithm and fol-

low it up with a discussion.

The modular power algorithm

Input Cr-2 ***Co is o f r bits, the least significant bit being Co and the most significant bit being Cr-i-

ris a power 0f 2. Output is X* mod 2r+1, where s=rz, 0<e£1/2.

Function Modpower (x,ns)

begin
ifr<A
Modpower<—x* mod 2r+1; (* compute directly by constant depth, constant size circuit
since <A and s<2; this is the base step of recursion *)
else
begin

case r\s2 do
begin
1<-(12)(Vr1I);



kir-2irs\

divide x into K equal blocks of / bits each and form the vector (xq.xj,... ,X*_i)
where X, = Cr-ii—+ ***Cr-{i+i)/l (* this is the vector g (/) in the discussion below
*)

(XO,Xi,X2, ... **-i)<-(xox 12,x222,... X*_i2*-1) mod2*+I;

(* thisisg* *)

(%0 Xi-{)*-DFTKXQt ... x*_i) modz2+1; (* \hisisDFTk(g*) *)

par do Xi*-Modpower(xi,kts)', (* this is the componentwise powering of k
smaller numbers in the transformed domain, done recursively in parallel *)
(x0,...x*_1)<-DF771(x0,...~ _1) modZ2+i; (* thisisd* *)

(xo,xi ,x2,...,Xk_i)<—(xo,x!2-1,x22-2, LW X E ATy mod 2%+,

(* thisis (r) *)

Modpower<-(Xo+x1(2,)+x2(20)2+..+x*_1(2,)*-1) (* this is d(2l), which is what

we want *)
end
case r<s2do
begin
X<r-x* mod 2r+1 (* compute by the modular product algorithm in [Re86] *)
end

end
end.

Remarks on the algorithm

The main idea in the algorithm is to split x into K blocks, k=2rs, and construct the vector
S(0-aQ+a\t+a2t * 1f |—Ik then g(2*)=x. If we let d(jt)a(g(jt)Y mod tk+1, then
~2)s (@(2))s mod (2/)*+1 = X* mod 2r+1. Finding d(t) would solve the problem, since its value at 2| is
the desired XS mod 2r+ 1. The polynomials above are over the ring of integers Z but we do calculations over
the finite ring Z™+1l. Apply the convolution theorem to get dO®DFTil(PFTK(”y) mod 2*+1, where the
powering is componentwise in the transformed domain. Notice that there are K powerings in the
transformed domain, each of ¢-bit numbers mod 2*+1, where K is smaller than r, and we do these power-
ings recursively. We need to be sure that the d computed as above (in Zp) gives the correct d (in Z). This
will be so if the coefficients of d are small enough Le., *. This can be arranged by requiring S—¥E

‘md by choosing k=2"Nirs as we have done. (It is shown in [Re86] that it is sufficient to choose S
and K so that 2s(r/¢+1+log£)<£-l is satisfied. The above choices of S and K satisfy this inequality for
sufficiently large r.) Essentially what we are doing is making each coefficient of g small enough by split-
ting X into sufficiently many pieces. Since the ring Z+i grows with K (the number of coefficients in ), if
we have a sufficiently large number of coefficients and we make the power S small enough, we can expect

g* to have small enough coefficients, so that it can be represented withouterror in Z* +,.



Choice (1) of the case statement of the algorithm is entered recursively log(l/e) times on first calling
the program. We start with K—F and in each subsequent application Ki—2M&\ and we keep going until
k<s2. We set up the recurrence KG&r, K N K ' s and solve to get ~=(4l)I'</2)V cly2). In about log(l/e)

steps Ki<s2,

At this point we need the s-th power of an fA-bit number. Now choice (2) of the case statement is
executed. Since S=re is small compared with r, we do not attempt to be efficient with this residual compu-
tation, but simply apply the algorithm in [Re86]. The size complexity of the algorithm is dominated by

choice (1) of case, as our analysis will show.

5. Gate Count

As already mentioned the exact value of X* may be found by treating X as an Ns-bit number and com -
puting XS mod 2W+1. This is accomplished by calling Modpower(x,ns,s). We now compute the size and
depth for this problem. We solved a recurrence for Kt above with initial condition K@r. With initial condi-
tion K@&ns (which is the case in the exact powering problem), KI=AI4 i a ) | s. Recall that we denoted by
S2(s,n) the size needed for computing the j-th power of an n-bit number. 1f S(s,n) denotes the size of com-

puting the i-th power of an n-bit number mod 2*+1 then S2{s,n)=S (SNs) as seen above.

From choice (1) of case in the algorithm we obtain
S(s,ns)=S (s,kQ=cki\ogki+kiS(stki)
The first term on RHS is the cost of taking DFT of a ¢-vector in Z~+i by the Cooley-Tukey algorithm
[CoTu65]. The second term is for the recursive computation of KX smaller powerings. (Computing g* from
8 and d from d* in the algorithm needs 0 (~0 per entry and hence 0(kf) overall, which follows from
lemma 7.6 pp 266 [AhHoU174]. Computing g(2l) is like adding two n-bit numbers, and needs only
0(k2). These steps in the algorithm are all dominated by the cost of computing the DFT.) Now replace

S(s,ki) by an expression in terms of k2 and keep doing this for / steps to get

5(alM °>'.STy8)A ItogkiH ri]*;\> S(a,)

Using the formula for kt we get

YIkHhumfni® s *

4*1



Also we have

a__IiWW(<“

and log”~clogn since S=N* with e~1/2. This gives

= y*1 i*l
i
Using our previous formula for YNK} we get
y=i
S (sk<)=c'nd'sMdg n U " - W w
With /=log(l/e) and s=ne this becomes

S(nSn]« Hc' ,/£2)nde>x<(l'>logn+(lle2)nl « Io«<]!e>S(«‘ ,n2t)

S(n'.n 28) is the size complexity of choice (2) of case, which is0(n 4). This gives us

S2(n' ,n)=S(n' ,nMy=c"(llIt?)n

Using this in equation (1) we find that the size for computing reciprocal is

So(n\n)=c"(l/z3)n l+etdo* le>
(We have omitted the second term on the RHS of eqn (1) since it is dominated by the first.) From this it
follows that for any S>0, there are circuits for computing the reciprocal that have size 0 ((1/5 4)/i1+5). Sup-
pose 8>0 is given. We solve for 6 using the equation 8=4e+elog(l/e), and construct circuits as above with

thise. Clearly e<8 and since for small e, 8<e3/4, the above result is true.

Recall that we denoted by Ti{nz,n) the depth for computing the ne-th power of an n-bit number.
Note that choice (1) of case is entered log(l/e) times, and each application is dominated in depth by the
DFT computation. The total contribution from all this to the depth is 0(log(l/e)logn). As for choice (2), the
[Re86] algorithm needs O(logrloglogr) depth to compute the r-th power of an r bit number mod 2r+1.
Using this with N=n£ we see that choice (2) of case contributes 0(elognloglogn) to the depth. Hence we
have

T2(n£n)=log(l/e)logn+elogn loglogn

Using this in equation (2) we get the depth complexity of division

To(«)=(l/e)(log(l/e))logn+lognloglogn=0 (log/iloglogn)

N



We observe that the additional factor loglog/i for the depth in the above algorithm arises from the
final application of the [Re86] algorithm directly in choice (2) of case. We can avoid this at the cost of los-
ing logspace uniformity by using one application of the [BeCoH086] algorithm to complete the computa-
tion once we get to the point where we need to compute the ne-th power of an n~-bit number. Until this
point we have used depth of log(l/e)logn and with the additional depth of elogn of the [BeCoH086] algo-
rithm. the nz-\h power of an n-bit number can be computed in depth 0(log(l/e)logn). Substituting this in
place of T2(N£N) in equation (2) we find that the depth of the division algorithm incorporating the
[BeCoH086] circuit is 0((l/e)log(l/e)logn) = 0((lI/S2)logn). The size of this application of the
[BeCoH086] circuit is CKn4*), so the size result previously obtained for the algorithm based purely on

[Re86] is not affected.

For PRAM implementation, we note that Modpower is parametrized only by r and is logspace uni-
form, so our division circuit translates to a O(log/iloglog/t) time algorithm on the CREW PRAM ( with bit

operations) using 0 ((1/5 4)n 1+s) processors, for any 8>0.

Using standard techniques, (see [ChStVi84]), our logspace uniform O(log/iloglogn) depth division
circuit can be compressed in depth to 0((I/£)logn) for any k>0, with an increase in size of a factor of
2bgt"- We let (=1/2 and translate the resulting unbounded fan-in circuits to a CRCW PRAM algorithm in
the bit model running in time O (logn) and using 0 ((1/5 4)n 1+i) processors, for any 8>0.
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