
March 1994 UILU-ENG-94-22 IO
ACT-131

Applied Computation Theory

A FAULT TOLERANT
DISTRIBUTED ALGORITHM
FOR MINIMUM-WEIGHT
SPANNING TREES

Reuben Pasquini and Michael C. Loui

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED.
SECURITY ¿UNIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3 . DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-94-2210 (ACT-131)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab.
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

National Science Foundation
6c ADDRESS (City, State, and ZIP Code)

1308 West Main Street
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20050

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

National Science Foundation

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Washington, DC 20050 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
A FAULT TOLERANT DISTRIBUTED ALGORITHM FOR MINIMUM-WEIGHT SPANNING TREES

12. PERSONAL AUTHOR(S)
Reuben Pasquini, Michael C. Loui

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical FROM TO 1993 March 11 31

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
distributed algorithm, fault tolerance,
minimum weight spanning tree

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We present a fault tolerant algorithm for construction of a minimum spanning tree (MST) over the
reliable links of an asynchronous network with n processor nodes and m fail stop links. Up to / of the links
may fail before our algorithm begins execution. Nodes communicate by exchanging messages. Our algorithm
executes in two phases: Tree Construction phase and a Tree Update phase. The Tree Construction phase
of the algorithm is a variation on the MST algorithm of Gallager, Humblet, and Spira, which constructs an
MST on the set of links known to be reliable (not faulty) by our algorithm. The Tree Update phase executes
an MST update algorithm to include in the MST links that are initially assumed to be faulty but are later
found to be reliable. Our algorithm has 0 (f n 2) message and time complexities.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
□ UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

A Fault Tolerant Distributed Algorithm for
Minimum-Weight Spanning Trees

Reuben Pasquini Michael C. Loui

March 11, 1994

A bstract

We present a fault tolerant algorithm for construction of a minimum spanning tree (MST)
over the reliable links of an asynchronous network with n processor nodes and m fail stop
links. Up to / of the links may fail before our algorithm begins execution. Nodes commu­
nicate by exchanging messages. Our algorithm executes in two phases: Tree Construction
phase and a Tree Update phase. The Tree Construction phase of the algorithm is a variation
on the MST algorithm of Gallager, Humblet, and Spira, which constructs an MST on the set
of links known to be reliable (not faulty) by our algorithm. The Tree Update phase executes
an MST update algorithm to include in the MST links that are initially assumed to be faulty
but are later found to be reliable. Our algorithm has 0 (/n 2) message and time complexities,

key words: distributed algorithm, fault tolerance, minimum weight spanning tree

1

1 Introduction
Minimum spanning tree (MST) construction is a fundamental problem for distributed sys­
tems connected by weighted links. A minimum spanning tree may be used when one node
wishes to broadcast information to all the other nodes of the network. MST algorithms can
also serve as building blocks for other distributed algorithms like network synchronization,
breadth-first-search, and deadlock resolution [5]. If two distributed problems PI and P2 are
equivalent, then an efficient algorithm to solve P I, with a number of messages M l, implies
an efficient algorithm to solve P 2, with a number of messages M2 = 0(M 1), and vice versa
[6]. Awerbuch proved that the MST problem is equivalent to a large class of problems in­
cluding leader election, spanning tree construction, and counting the number of nodes in a
network [2].

The majority of distributed algorithms for the construction of MST’s on computer net­
works follow the Boruvka algorithm. A fragment A is a subtree of an MST. A link (x, y)
is an outgoing link of a fragment X if one endpoint x is in X and the other endpoint y is
not in X. Initially each node x is treated as a fragment. Each fragment X has a unique
minimum outgoing link (x,y). Fragment X merges with fragment Y , the fragment at the
end of (x, y), to form a new fragment Z. The Boruvaka algorithm iterates this procedure on
the set of fragments in the network until only one fragment exists on the network (i.e., every
node belongs to the same fragment Z and Z defines the network MST). Naive distributed
implementations of Boruvka’s algorithms introduced by Chang, Parker, and Samadi, and by
Lavallee and Roucairol have 0{n2) message complexity [6]. Gallager, Humblet, and Spira
introduced the first MST algorithm to achieve 0(e -1- nlogn) message complexity (we call
this algorithm the GHS algorithm) [7]. Gafni [6], Chin and Ting [5], Awerbuch [2], and
Garay, Kutten, and Peleg (GKP) [8] each modified the GHS algorithm to improve its time
complexity. The Awerbuch and GKP algorithms attain linear time complexity by executing
GHS in two phases.

Tsin [16] took an orthogonal approach to the MST problem, constructing an MST by
repeatedly applying a cycle resolution algorithm to a network. This algorithm adds a link
to the current tree, removes the heaviest link from a resulting cycle, and iterates over all the
links in the network. If all the links are added to the tree and all the cycles are resolved,
then the MST results.

The development of fault tolerant algorithms for distributed networks is an active area of
research. Several papers address fault tolerant leader election and fault tolerant spanning tree
construction [1, 4, 9, 10, 13]. To tolerate faulty links, these algorithms use more messages
than non-fault tolerant algorithms to ensure that messages are received by some reliable
nodes over some reliable links [1, 9, 13].

In this paper we develop a fault tolerant MST algorithm. We do not know of any
previous fault tolerant MST algorithm. Our algorithm incorporates ideas from conventional
MST algorithms, tree update after topology change algorithms, and fault tolerant leader
election and spanning tree algorithms.

We assume a distributed network of n reliable processor nodes with m bidirectional fail
stop links where up to / links may fail before execution of our algorithm begins. Nodes
can communicate only via asynchronous message passing. Each node x initially knows the
weight of each link (x, y) incident to x , but x cannot determine whether a link (x , y) is faulty

2

or reliable unless x receives a message over (x,y), or x receives a message stating (x , y) is
reliable over a different link (x,z).

Our algorithm modifies the GHS algorithm to run in two phases (fragment merging
and cycle resolution), like the Awerbuch and GKP algorithms. We further modify the
GHS algorithm by increasing the number of messages issued during fragment merging, also
for fault tolerance. While increasing messages alone is sufficient to develop fault tolerant
spanning tree and leader election algorithms [1, 9, 13], our MST algorithm requires the cycle
resolution stage too; this gives our algorithm a high message complexity. Our algorithm has
0 (f n log n + f n 2) message and time complexities.

2 D efinitions and M odel
We assume each node x has a unique identity ID(x) and that each node knows the identity of
its neighbor nodes. We also assume that each link (x, y) is assigned a unique weight W (x , y)
before execution of our algorithm begins. The weight of a link is a parameter associated
with some cost (dollar cost, time delay, reliability) of sending a message over the link. If link
(#, y) has a smaller weight than (z, z), then (x, y) is lighter than (x, z), and (x, z) is heavier
than (x , y). Because the weight W(x,y) of each link (x , y) is unique, W(x,y) may be used
as an identifier of link (x, y).

If each link does not have a unique weight, then a unique MST may not exist [6]. A
network without uniquely weighted links may be handled by this algorithm by making the
weight of each link (x,y) a unique ordered pair: (W(x,y),(ID(x), ID(y))).

An initiator is a node which spontaneously begins executing our algorithm. A fragment
is a subtree of the MST. Initially, each node constitutes one fragment. A fail stop link is a
link that fails by not delivering any messages. If a link delivers all messages in FIFO order
without errors, then the link is reliable. An internal link is a link joining two nodes that
are members of the same fragment. An outgoing link is a link joining two nodes belonging
to different fragments. The minimum outgoing link of a node x is the lightest outgoing link
incident to x. The minimum outgoing link of a fragment X is the lightest link that is a
minimum outgoing link of a node in X. We say a node x broadcasts a message M if x sends
a copy of M to each of the children of x who in turn send a copy of M (perhaps with changes
in the parameters carried by M) to each of their children and so on.

We assume an asynchronous network with up to / fail stop links that fail before our
algorithm begins execution, not during execution. Nodes communicate by message passing.
Because the network is asynchronous, it is impossible for a node x to determine whether an
incident link (x,y) is faulty or slow unless x receives a message over (x,y), or some other
node z tells x that (x, y) is reliable. In our algorithm, x learns that (x, y) is reliable only by
receiving a message over (x,y).

3 D ata Structure
Each node x maintains a data structure which stores three types of information: link infor­
mation, update information, and fragment information.

3

3.1 Link Inform ation
The weight and the type of each link (x , y) incident on x constitute the link information.
There are four basic link types:

• BRANCH

• REJECT

• ASSUMED FAULTY (AF)

• ERROR.

If x believes that (x,y) is an outgoing link from X (the fragment to which x belongs),
then x classifies (x,y) as a BRANCH link. When x begins our algorithm, x classifies every
link incident to x as a BRANCH link.

If x believes (x, y) is an internal link, then x classifies (x, y) as a REJECT link.
If x believes (x, y) is a failed link, then x classifies (x, y) as an ASSUMED FAULTY (AF)

link.
If x classifies (x,y) as an AF link and x learns later that (x,y) is actually reliable, then

x classifies (x,y) as an ERROR link.

3.2 U p d ate Inform ation
Our algorithm executes in two disjoint phases: a Tree Construction phase and a Tree Update
phase. During the Tree Update phase, each node x initiates a cycle resolution algorithm
(CRA) on each link (x, y) that x initially assumes is faulty but x later learns is actually
reliable (i.e., the internal ERROR links incident to x). The CRA may execute on only one
link at a time. To prevent different nodes from initiating the CRA on different links at
the same time, our algorithm uses Raymond’s mutual exclusion algorithm [15]. Raymond’s
algorithm passes a token between nodes. When a node x possesses the token, then x has the
right to initiate the CRA.

To execute Raymond’s algorithm in a fragment A, each node x in X keeps TOKEN-HOLDER,
REQUEST-Q, and ASKED variables. TOKEN-HOLDER holds the name of the neighbor
of x that is the first node on the path from x to the node currently holding the token. The
REQUEST-Q is a FIFO queue that records the nodes that request the token from x. Finally,
if x has requested the token but x has not yet received the token, then x sets the ASKED
flag to TRUE.

3.3 Fragment Inform ation
Each node x maintains four variables defining the state of the fragment X to which x belongs:
FID{X), LEVEL(X) , CHlLDREN(x) , and PARENT(x) .

The variable FID(X) is the fragment identity variable; FID(X) uniquely identifies the
fragment X to which x belongs. FID(X) contains the ID(r) of the node r which is the root
of the tree X defines. Each fragment has a different root; therefore each fragment X has a
unique FID(X) .

4

The variable LEVEL(X) records the level of X. The level of X is an integer parameter
less than or equal to log2n(X) where n(X) is the number of nodes in X. The level of a
fragment is determined during the execution of the algorithm.

If the path from node x to the root r of X begins with node ?/, then y is the parent of x.
The variable PAR E N T (x) records the the parent y of x. The root r sets PAR E N T (r) =
root.

The variable CHILDREN(x) records the nodes adjacent to x in X that are not the
parent of x. We refer to the links joining x with its children and parent as MST links or
fragment links.

4 Algorithm
We present a fault tolerant algorithm for construction of a minimum spanning tree over the
reliable links of a message passing asynchronous network with n nodes and m links. Up to /
of the links may be faulty. Our algorithm tolerates links which fail by not allowing messages
to pass over them (fail stop links). A node x can not determine whether a link (x, y) is slow
or faulty unless x receives a message over (x,y). Every link failure must occur before the
algorithm begins execution. The failure of some links after the algorithm begins execution
may cause the algorithm to fail to construct a minimum spanning tree.

If the links connecting two subgraphs of the network fail, then the network becomes
disconnected. In this case our algorithm constructs a minimum spanning tree over the
reliable links of each subgraph which contains an initiator of the algorithm. We assume
through the rest of this paper that the network remains connected so that our algorithm
constructs an MST over the reliable links of the whole network.

Our algorithm executes in two phases: a Tree Construction phase and a Tree Update
phase. The Tree Construction phase of the algorithm is a variation on the MST algorithm
of Gallager, Humblet, and Spira (GHS) [7], which constructs an MST on the set of links
known to be reliable (not faulty) by our algorithm.

The Tree Update phase of the algorithm begins execution after the completion of the
Tree Construction phase. During the Tree Update phase, our algorithm modifies the MST
so that the MST is valid over links that are initially assumed to be faulty but are later found
to be reliable.

4.1 M essages
Our algorithm uses several different messages to construct the MST. We present here a
summary of each message, its format, and its function. To simplify the presentation of the
message formats, we use the following abbreviations:

• FID(X) - This expression denotes the fragment identifier of fragment X.

• L(X) - This expression denotes the level of fragment X.

• (x,y) - this expression denotes the the link joining nodes x and y. When (x,y) is
included in a message, (x, y) may be replaced with the weight of (x, y) since each link
has a unique weight.

5

Our algorithm uses the following messages:

• TEST(FID(X) ,L(X))
A node x in fragment X sends a TEST message over (x, y) to determine the link type of
(x, y). When y receives a TEST message from Æ, node y may respond with a REJECT,
ACCEPT, or WAIT message (see section 4.3).

• REJECT

If y receives a TEST message on link (x , y) from a node x in the same fragment as y ,
then y responds to the TEST message with a REJECT message. If a node y sends or
receives a REJECT message over a link (x, y), then y classifies (x, y) as a REJECT link
(see section 4.3).

• ACCEPT (FID(Y) ,FID(X))
If node y in fragment Y receives a TEST message on link (x,y) from node x in a
different fragment X and L(X) < L(Y), then y responds to the TEST message with
an ACCEPT message (see section 4.3).

• WAIT

If node y in fragment Y receives a TEST message on link (x,y) from node x in a
different fragment X and L(X) > L (Y), then y responds to the TEST message with a
WAIT message (see section 4.3).

• ERR

If node x classifies (x, y) as an ERROR link, then x sends and ERR message over (x, y)
to tell y to classify (x,y) as an ERROR link too (see section 4.3.1).

• REPORT((y, z))

If x believes (y, z) is the minimum outgoing link from x and the descendants of x in
X , then x will cite (y, z) in a REPORT message to the parent of x during a search for
the minimum outgoing link from fragment X (see sections 4.3 and 4.4).

• CHANGE_ROOT((x, y))
If (x, y) is the minimum outgoing link from fragment X , then the root r of X causes X
to merge with fragment Y over link (x,y) by broadcasting a CHANGE-ROOT message
through X. The CHANGE-ROOT message tells the nodes in fragment X to rearrange
their parent to child relationships so that the root of fragment Y becomes the new root
of fragment X (see section 4.4).

• CONNECT (FID(X) ,L(X))

If x in fragment X receives a CHANGE-ROOT((x,y)) message, then x makes its new
parent y, and x sends a CONNECT message to y. The CONNECT message lets y know
that fragment X has merged with fragment Y along link (x,y) (see sections 4.4 and
4.4.1).

6

• INITIATE(F/D(Z), L(Z))
When two fragments X and Y merge to form a new fragment Z , the root r of Z
broadcasts an INITIATE message so that every node in Z has correct values of L(Z)
and FID(Z) (see sections 4.2 and 4.4.1).

• CORRECT (FID(Y) ,L(Y) ,STATE(Y))
If fragment X becomes part of an already existing fragment Y, then a CORRECT
message is broadcast through X to make the fragment identity, level, and state variables
of the nodes in X consistent with the variables of the nodes in Y (see section 4.4.1).

• UPDATE
The root r of fragment X broadcasts an UPDATE message to each node x in X to tell
x to enter the UPDATE state (see section 4.6.1).

• U.TEST (FID(X) ,L(X))
The U.TEST message is a special version of the TEST message used during the Tree
Update phase of the algorithm (see section 4.6.1).

• REQUEST

If a node x executing the Tree Update phase of our algorithm wishes to initiate the
cycle resolution algorithm, then x must request the right to initiate the algorithm by
issuing a REQUEST message (see section 4.6.2).

• GRANT

If node x is executing the Tree Update phase and x possesses the right to initiate
the cycle resolution algorithm, then x may transfer that right to node y by sending a
GRANT message to y (see section 4.6.2).

• CRA ((»,*))

The cycle resolution algorithm removes the heaviest link from a cycle which forms in a
fragment. We use the CRA message to find the heaviest link in a cycle. Node u sends
CRA((y, z)) if (y, z) is the heaviest link in the path from u to the initiator of the CRA
(see sections 4.6.2 and 4.6.3).

• D E L E T E « ^)))
The cycle resolution algorithm issues a DELETE message to tell the nodes in a cycle
to remove the heaviest link (y,z) from the cycle (see section 4.6.3).

• CHANGE.PARENT

After the cycle resolution algorithm removes the heaviest link from the cycle, the algo­
rithm uses the CHANGE.PARENT message to update some parent child relationships
(see section 4.6.3).

7

• RESTART
If node x in fragment X is executing the Tree Update phase and x wants to re-enter
the Tree Construction phase, then x requests the right to restart the Tree Construction
phase by sending a RESTART message to the root of fragment X (see section 4.6.4).

• ROOT.RESTART

If the root r of a fragment X receives a RESTART message, then r may tell every
node in X to restart the Tree Construction phase by broadcasting a ROOT_RESTART
message through X (see section 4.6.4).

4.2 Tree C onstruction Phase
Each node x moves between four states: SLEEP, FIND, FOUND, and UPDATE. Initially,
x is in the dormant SLEEP state. At some point, x either spontaneously begins execution of
the algorithm, or x is triggered to start execution when x receives a message pertaining to
the algorithm. Node x exits the SLEEP state and begins execution of the Tree Construction
phase of our algorithm by entering the FIND state.

During the Tree Construction phase, each node x moves between the FIND state, in
which x helps to find the minimum outgoing link from fragment X, and the FOUND state,
in which x helps X merge with another fragment over the minimum outgoing link from X.
During the Tree Construction phase, each node x acts to accomplish goals for its fragment
X; therefore we say that fragment X moves between the FIND and the FOUND state with
the understanding that each node x in X moves between the FIND and the FOUND states
with X. The state of a fragment is the state of its root node.

While in the FIND state, fragment X searches for its lightest reliable (not faulty) outgoing
link, (x,y). After X identifies (x,y), X enters the FOUND state and X connects with the
fragment Y at the other end of (x,y). Eventually, the new fragment Z formed by the merger
of X and Y broadcasts an INITIATE message to each node z which is a member of Z. When
z receives an INITIATE message, z enters the FIND state. The cycle of finding the minimum
outgoing link (FIND state) and fragment merging (FOUND state) repeats until one fragment
W incorporates all n nodes. The final fragment W defines a minimum spanning tree over
all the REJECT links. Fragment W enters the UPDATE state when W believes no other
fragment exists; this is the beginning of the Tree Update phase of our algorithm.

A new fragment can be formed in one of two ways during the Tree Construction phase,
either by the awakening of a single node from the SLEEP state or by the formation of a level
L fragment by the merger of two level L - 1 fragments having the same minimum outgoing
link. A single node fragment merely enters the FIND state directly, but the multinode
fragment case is more complex.

Suppose a new fragment Z forms by the merger of two fragments X and Y over a link
(x,y). Without loss of generality, assume y has the larger I D , ID(y) > ID(x). Then y
becomes the root of Z , and ID(y) becomes the FID of Z (FID(Z) = ID(y)). The new
root y forces fragment Z into the FIND state by broadcasting an INITIATE(FID(Z), L(Z))
message to the nodes in Z. The two arguments carried by the INITIATE(FID(Z), L(Z))
message are the level L(Z) and fragment identifier FID(Z) of the new fragment Z. Upon

8

receiving the INITIATE message, each node z in Z updates its level and FID, and z enters
the FIND state after passing the INITIATE message on to its children.

4.3 FIN D state: Finding the M inim um O utgoing Link
The first difference between our tree construction algorithm and the GHS algorithm is the
process that a node x in the FIND state uses to identify its minimum outgoing link. In the
GHS algorithm, x issues a TEST message along only one link at a time when searching for
a minimum outgoing link. Because our algorithm must tolerate up to / faulty links (over
which a test message may be lost), x issues test messages along / +1 links during a minimum
outgoing link search.

When a node x begins our algorithm, x assumes each link (x,y) incident to x is an
outgoing BRANCH link (i.e., x in fragment X assumes (x,y) connects x to a node y in a
different fragment y). When x enters the FIND state, x starts looking for its minimum
weight reliable outgoing link. Node x verifies that the minimum weight BRANCH link
(x, y) is actually an outgoing BRANCH link and not an internal REJECT link by sending a
TEST(FID(X) , L(X)) message along (x , y). The TEST message carries two arguments: the
fragment identity FID(X) and level L(X) of the fragment X to which x belongs.

Upon receiving a TEST message from x , node y compares its fragment identity FID(Y)
with FID(X) in the TEST message. If F I D (Y) = FID(X) , then x and y are in the same
fragment, and y sends a REJECT message back to x. Both x and y classify (x,y) as a
REJECT link.

If y receives a TEST(FID(X), L(X)) message over link (x,y) and FID(X) / FID(Y) ,
then y responds according to the relation between L(Y) and L(X). A fragment X with level
L(X) may merge with a fragment Y with level L(Y) if Y is at the end of the minimum
outgoing link from X , and the merger obeys the following rules:

1. If L(Y) < L(X), then the merger is delayed until L(Y) > L(X).

2. If L(Y) > L(X), and X and Y don’t share a common minimum outgoing link, then Y
absorbs X , that is, X becomes part of Y.

3. If L(X) = L(Y) and X and Y share the same minimum outgoing link (x,y), then X
and y combine into a new fragment Z with new level L(Z) = L(X) + 1 = L(Y) + 1.
Node y, the node incident to link (x, y) with the larger ID (ID(y) > ID(X)), becomes
the root of Z.

These rules ensure that a large fragment X does not combine with a smaller fragment Y.
Keeping fragments as small as possible for as long as possible reduces the number of messages
our algorithm uses to find minimum outgoing links. Node y responds to the TEST message
in a way that ensures the fragment merging rules are obeyed. If L(Y) > L(X), then y
sends an ACCEPT (FI D(Y), FID(X)) message in response to the test from x. Otherwise,
y sends a WAIT message to inform x that the link (x,y) is reliable and that y will send an
ACCEPT(FID(Y)) or REJECT message when L(Y) > L(X).

If x knows all the links in the network are reliable as in the GHS algorithm, then x sends a
single TEST message on link (x, y) and x waits until x receives either a REJECT message or an

9

ACCEPT(FID(Y), FID(X)) message response on (x, y). If x receives a REJECT message on
the minimum weight BRANCH link (x , y) incident to x, then x classifies (:r, y) as a REJECT
link and x issues a new TEST message on the next lowest weight BRANCH link. If x receives
ACCEPT(FID(Y) ,FID(X)) on (x,y), then x knows (x,y) is the minimum weight outgoing
link from x.

In our algorithm, the search by x for its minimum outgoing link is complicated by the
fact that x does not know which links in the network are faulty, but if x receives a message
along a link (x,y), then x knows (x, y) is reliable. Node x may not be able to identify a single
reliable BRANCH link when x enters the FIND state. Since up to / of the links incident
to x may be faulty, x issues the message TEST(FID(X), L(X)) along the / + 1 lightest
BRANCH links incident to x. By issuing TEST messages over / + 1 links, x ensures that x
will receive an ACCEPT or a REJECT message along at least one link even though the other
/ links may be faulty. If x knows some links are reliable, then x may be able to issue TEST
messages fewer than / + 1 times and still be assured of receiving a response.

To keep a bound on the number of outstanding TEST messages (those TEST messages to
which no response has been received), each node x keeps a list of ASSUMED FAULTY (AF)
links. If x does not receive a response to a TEST issued along a link (x , y), then x classifies
(x, y) as AF. The sum of the number of TEST messages issued by a node x and the number
of AF links incident on x is not allowed to exceed / + 1. This limits to / + 1 the number of
outstanding TEST messages issued by a node x.

Consider the case of node £, a leaf node of fragment X. If x has q links in its AF list,
then x considers its (/ + 1) — q lightest BRANCH links /i,/2, • • • If none of these
links are known to be reliable, then x issues TEST messages over every link /l5 /2, • • •, //+ i~q.
If one or more of the links in /1,/2, . . . , lf+i-q are known to be reliable, then x issues a TEST
message only along the lightest known reliable link and each link with weight less than the
weight of li.

Node x considers a link (x,y) tested if x has sent a TEST message on (x,y). After x
issues the TEST messages, x waits for responses. Node x handles each response individually:

Case 1: REJECT
If x receives a REJECT message along a link (x,y), then x classifies (x,y) as a REJECT

link and x issues enough new TEST messages to ensure that x receives a new response
along at least one other link. Node x has issued enough new TEST messages if either x has
/ + 1 outstanding (i.e., no response yet received) TEST messages, or x has fewer than /
outstanding TEST messages and one of the TEST messages was sent over a link known to be
reliable. Note that x issues a TEST message along a light link (x, y) before x issues a TEST
over a heavier link (x , z).

Case 2: x receives ACCEPT(F7D(Y), FID(X)) along the lightest link (x,y) that x sent
a TEST message over.

If x receives an ACCEPT(FID(Y) ,FID(X)) response along the lightest BRANCH link,
then x has successfully located its minimum weight outgoing link (x,y). Node x sends a
message REPORT((x,y)) to its parent. After issuing the REPORT message, x enters the
FOUND state.

10

Case 3: x receives an ACCEPT(FID(Y) ,FID(Z)) message along a link (x , y) and
FID(X) # FID(Z).

If FID(X) 7̂ F I D (Z), then the ACCEPT message is a response to a TEST message
issued by £ in a previous FIND state and the ACCEPT message is out of date. FID(Z)
is the FID of the fragment x belonged to in a previous FIND state when x sent y a TEST
message. When this happens, x simply classifies (x, y) as a reliable link and x waits for the
next TEST response to arrive.

Case 4: x receives ACCEPT(jFTD(Y), FID(X)) along a link (x , y) that is not the lightest
link a TEST message was sent over and x does not know of a reliable BRANCH link (x, z)
lighter than (x,y).

If x receives an ACCEPT(FID(Y), FID(X)) message along a link (#, y) and (x, y) is the
lightest reliable BRANCH link incident to x , then x accepts (x , y) as its minimum outgoing
link and x assumes every BR ANCH link incident to x and lighter than (x, y) is faulty.

If x knows a reliable BRANCH link (x , z) exists that is lighter than (x,y) then x waits
for the response to the TEST sent over (x , z) before x selects its minimum outgoing link. If
(x, z) is an outgoing link, then (x, z) becomes the minimum outgoing link from x.

After x selects a link (x,y) as its minimum outgoing link, x sends REPORT((:r, y)) to
its parent and x classifies every BRANCH link incident to x and lighter than (x,y) as an
ASSUMED FAULTY (AF) link. Node x now enters the FOUND state.

Case 5: WAIT
If x receives a WAIT message on link (x , y), then x classifies (x , y) as a reliable link and

x waits to receive an ACCEPT or REJECT message along (x,y) or a lighter link.

Case 6: There are / or fewer BRANCH links incident to x and none of these links are
known to be reliable by x.

Suppose that when x is in the FIND state, there are b BRANCH links and q AF links
incident to x, and b + q < / . If b + q < f and none of the BRANCH links are known to
be reliable, then x sends TEST messages along the remaining BRANCH links, x reclassifies
the remaining BRANCH links as AF links, and x sends REPORT(oo) to its parent. In this
situation, it is possible for x to send TEST messages along all the BRANCH links and not
receive a reply because all the BRANCH links are faulty.

For example, if node x is incident to b — 3 BRANCH links (x, u),(x, v), and (rr,w);
and / = 3 (i.e., there are at most 3 faulty links in the network), then it is possible that
(x , u), (x , v), and (x ,w) are all faulty. Node x issues TEST messages over (x,u), (x , v), and
(x , w). If x waits for a response to the TEST messages and all the links are faulty, then a
response never comes and x deadlocks. Rather than risk deadlock, x classifies (x ,u), (x , v),
and (x, w) as AF links and x continues with the algorithm. If a link (x, u) is not faulty, then
u eventually responds to the TEST sent by x. When x receives the response, x reclassifies
(x ,u) as an ERROR link and x incorporates (x,u) into the MST during the Tree Update
phase.

11

4.3.1 A ssum ed Faulty Links

If a node x receives a message along an AF link (x , y), then x removes (x,y) from the AF
list, x classifies (x , y) as an ERROR link, and x sends an ERR message over (ar, y) to force y
to classify (x, y) as an ERROR link. When y receives the ERR response, y classifies (x, y) as
an ERROR link. If y is in the FIND state and y has issued a TEST message over (x, y), then
y issues new TEST messages as though the ERR message were a REJECT message. Node x
ignores TEST messages received over ERROR links.

By introducing the ERR message we ensure that if x classifies a link (x, y) as an ERROR
link, then y also classifies (#, y) as an ERROR link. The ERROR links are handled in the
Tree Update phase of the algorithm.

Thus each node classifies its incident links into four types.

• A REJECT link was tested and was found to connect nodes in the same fragment.

• An ASSUMED FAULTY link did not yield a response to a TEST message.

• An ERROR link was an AF link before a message was received over it.

• All other links are BRANCH links.

4.4 FO U N D state: Fragment M erging
Every node v carries out the algorithm described in section 4.3 to locate its minimum out­
going link, but if v is not a leaf node of fragment X, then v waits for REPORT messages
from each of its children before v sends a REPORT message to its parent. Node v selects
the lightest link (x,y) from among the links that the childrens’ REPORT messages cite and
the minimum outgoing link from v itself. Node v records the path to the link (x, y) and
v sends REPORT((x,y)) to its parent. In other words, v reports to its parent the lightest
link incident to either v or a descendant of v. After sending the REPORT message, v enters
the FOUND state. In this ŵ ay, the root node r is eventually able to select the fragment’s
minimum outgoing link (x, y).

After r selects the minimum outgoing link (x, y) from X, r enters the FOUND state and
r initiates the change root algorithm. The change root algorithm merges X with Y (the
fragment at the other end of (x, y)) by re-ordering the parent pointers in fragment X so that
X becomes a subtree of Y, and X is connected to Y along link (x,y).

The root r initiates the change root algorithm by sending a CHANGE-ROOT message to
the child u from which r received the REPORT message citing (#,?/), and r makes u its new
parent. When a node u receives a CHANGE-ROOT message, u sends CHANGE-ROOT along
(w, v) leading to the minimum outgoing link (x, y) of the fragment X, and u makes v its new
parent. In this way, a CHANGE-ROOT message is sent over each link on the path from the
root to the minimum outgoing link (x,y) from fragment X. Eventually node x, adjacent to
link (x , y), receives a CHANGE-ROOT message. Node x makes y its new parent, and x sends
a CONNECT (F I D(X), L(X)) message to y along (x , y) (L(X) is the level of fragment X).

When y receives a CONNECT message over (x,y), node y adopts i as a child, and y
classifies (x, y) as a REJECT link. Fragment X is now a part of Y .

12

4.4.1 R esponse to CONNECT messages

When y receives a CONNECT (F I D(X), L(X)) message from x along (x,y), node y adopts x
as a child, and y classifies (x, y) as a REJECT link. If y is in the FIND state and L(Y) = L(X),
then y treats the CONNECT message as an ACCEPT message in that y reports (x , y) as the
minimum weight outgoing link from y if (x,y) is lighter than the BRANCH links incident
to y and the descendants of y. If L(Y) > L(X), then y treats a CONNECT message like a
REJECT message. Node y may carry out other actions depending on the situation:

Case 1: L(X) < L(Y)
We must update the FID and level of X so that each node in X responds correctly to

TEST messages.
If L(X) < L(Y) when y receives a CONNECT message from x, then y broadcasts a

CORRECT(FID(Y) ,L(Y) , STATE(y)) message to the nodes that belonged to fragment X
(S T A T E i Y) is the current state of node y: FIND, FOUND, or UPDATE). When a node
z receives a CORRECT(FID(Y), L(Y), STATEÇY)) message, z updates its FID, level, and
state to F I D i Y), L(Y), and STATELY) respectively, and z broadcasts the CORRECT
message to its children.

Case 2: L(X) = L(Y)
We follow the convention adopted by the GHS algorithm [7] that the fragment identity (of

X in this case) changes only when the fragment level changes. Therefore, if L(X) = L (Y),
then no extra actions are taken by y until either fragment Y merges with fragment X over
(x,y) (i.e., y sends and receives a CONNECT message over (x,y) as described below), or y
receives an INITIATE message which y passes on to x (i.e., fragment Y merged with some
other fragment Z).

If L(X) = L(Y) and (x, y) is the minimum outgoing link of both fragments X and Y,
then X and Y merge with each other along (:r, y) to form a new fragment Z. If node y sends
and receives CONNECT messages along the same link (x, y), then y knows fragments X and
Y have merged with each other along (x, y) to form a new fragment Z.

If I D (Y) > I D (X), then y becomes the root of Z. Node y adopts r as a child, and y
broadcasts an INITIATE(F/D(Z), L(Z)) message through the new fragment Z to update the
FID and level of the nodes in Z and to force the nodes in Z to enter the FIND state. Fragment
Z has root y , fragment ID FID(Z) = ID(y), and level L(Z) = L(X) + 1 = L(Y) + 1.

If ID(Y) < I D (X), then y makes x the parent of y , and y simply idles in the FOUND
state until y receives an INITIATE message.

4.5 Sum m ary o f Tree C onstruction Phase
The cycle between FOUND and FIND states continues as the fragments merge into a span­
ning tree which corresponds to the MST over the REJECT links (i.e., the network minus
ASSUMED FAULTY and ERROR links). A fragment root learns that such a tree has been
constructed when a search for a minimum outgoing link reveals that no BRANCH links
are incident to nodes in the fragment. Our algorithm now enters Tree Update phase to
incorporate ERROR links into the MST.

13

4.6 Tree U p d ate Phase
If a node x receives a message along an ASSUMED FAULTY link (x , y), then x classifies
(x, y) as an ERROR link. Each node x ignores ERROR links while in the Tree Construction
phase of our algorithm. Our algorithm incorporates ERROR links into the MST construction
process during the Tree Update phase.

There are two types of ERROR links: internal ERROR links that join nodes in the
same fragment, and outgoing ERROR links that join nodes in different fragments. Our
algorithm reclassifies each outgoing ERROR link as a reliable BRANCH link and executes
a cycle resolution algorithm, on internal ERROR links. After executing the cycle resolution
algorithm on each internal ERROR link, our algorithm re-enters Tree Construction phase.

4.6.1 E ntering th e Tree U pdate Phase

A fragment X enters the Tree Update phase when there are no BRANCH links incident on
any node in X (i.e., all the links in X are REJECT, ERROR, or AF links). If there are
no BRANCH links in X, then X can’t merge with other fragments because X selects its
minimum outgoing link from among the BRANCH links.

If the root r of a fragment X determines that there is not an outgoing link from X
(i.e., there are no BRANCH links in X), then r tells each node in X to enter the Update
state by broadcasting an UPDATE message. When a node x receives UPDATE, x enters the
UPDATE state, and x sets its TOKEN-HOLDER variable to parent. The root r sets its
TOKEN-HOLDER variable to self. We explain the significance of the TOKEN-HOLDER
variable in section 4.6.2.

The first step of the Update phase is to classify each ERROR link as either internal or
outgoing. When node x begins the Tree Update phase, x sends a U.TEST messages along
each ERROR link (x, y) incident to x that has not had a REJECT message sent over it and
where ID(x) > ID(y). The REJECT message indicates that (x,y) is internal, and we ensure
that only one U.TEST message per link is is issued by adding the ID(x) > ID(y) condition.
Nodes x and y use the response to the U.TEST message to classify (x,y) as internal or
outgoing.

Each node y that receives a U.TEST message over an ERROR link (x,y) waits until y
enters the UPDATE state before y responds to the U.TEST message. By having y respond
to a U.TEST while y is in the UPDATE state, we avoid the situation where node x classifies
(x,y) as a reliable BRANCH link while node y classifies (x,y) as an ERROR link. This
situation where x and y do not both classify a link (x, y) as an ERROR link is dangerous
because the potential exists for fragment X and fragment Y to merge with each other over
different links and become deadlocked.

For example, suppose fragments X and Y are at the same level L(X) = L(Y) and are
connected by two ERROR links (x,y) and (x',y') where (x,y) is lighter than (x',y') and
(x,y) is much slower than (x',y'). Now suppose fragment X is in the Tree Update phase
and Y is in the FIND state of the Tree Construction phase. Since (x, y) is much slower than
(x', y'), it is possible for nodes x' and y' to reclassify link (xr, y') as a reliable BRANCH link
before nodes x and y reclassify (x,y) as a reliable BRANCH link. Fragment Y may merge
with fragment X along link (x', y') if (a;', y') is the minimum weight BRANCH link incident

14

to Y. Nodes x and y eventually reclassify (x, y) as a reliable BRANCH link. If (x,y) is the
minimum weight BRANCH link incident to X , then X re-enters the Tree Construction phase
and X merges with Y along link (x,y). In summary, Y merges with fragment X (making
the root of X the root of Y) along link (x', y') and X merges with Y (making the root of Y
the root of X) along link (x,y). When this happens, a cycle exists between X and Y and
X and Y are deadlocked.

When y is in the UPDATE state, y responds to a U.TEST message like a regular TEST
message received over a non-ERROR link except that y classifies (x,y) as a BRANCH,
REJECT, or ERROR link based on yfs own response to the U.TEST from x (i.e., y does
not issue a new U.TEST message over (x,y)). If x receives a REJECT response to a U.TEST
issued over (x, y), then x classifies (x, y) as an internal ERROR link. If x receives an ACCEPT
response to a U.TEST issued over (x,y), then x classifies (x,y) as an outgoing ERROR link.
If x receives a WAIT response, then x waits until x receives an ACCEPT or REJECT response
before x classifies (x, y) as internal or outgoing.

4.6.2 R equesting th e Cycle Resolution A lgorithm

If an algorithm removes the heaviest link from a cycle so the cycle no longer exists, then we
say the algorithm resolves the cycle. Our algorithm uses a cycle resolution algorithm (CRA)
to make the MST defined by a fragment X valid over the union of an ERROR link (x, y) with
the current set of REJECT links. The CRA adds (x, y) to X and resolves the resulting cycle
(see section 4.6.3). We must execute a CRA on (x,y) to maintain our algorithm invariant
that the MST defined by a fragment X is valid over the set of REJECT links in A'.

The CRA finds the heaviest link in the cycle formed by adding a link (x, y) to the MST
by sending CRA(MAX) messages along the paths from x and y to their least common
ancestor. The M A X parameter records the heaviest link a CRA message is sent over. When
the least common ancestor (LCA) of x and y receives the CRA messages from x and y , the
LCA identifies the heaviest link (u, v) in the cycle by comparing the M A X fields of the two
CRA messages. The LCA initiates a process that removes (u,v) from the cycle by sending
DELETER, u) messages back along the paths to x and y.

The CRA is executed on only one link at a time because each execution of CRA changes
the MST topology. Therefore, our algorithm executes CRA on each internal ERROR link
sequentially (i.e., one link at a time) by passing an ENABLE token between nodes which
request the right to execute the CRA. We ensure that the CRA executes on only one link at
a time by treating the CRA as a critical section and protecting it with Raymond’s mutual
exclusion algorithm [15].

Raymond’s algorithm is based on passing a token around a tree. If a node wishes to
execute a critical section, then the node must obtain the token from the token’s current
owner. In our algorithm, a fragment defines a tree, and a node may initiate the CRA only
when the node possesses the token.

When a fragment A enters the UPDATE state, the root of A creates a token. Each node
x in A maintains a TOKEN.HOLDER(x) variable which indicates the position of the token
relative to x by recording the ID of the node (either a parent or child of x) which begins
the path in A from x to the current location of the token. If x possesses the token, then x
sets TOKEN-HOLDER(x) to self. When the Tree Update phase begins, the root possesses

15

the token. During the Tree Update phase, each node x keeps the following invariant for its
TOKEN-HOLDER(x) variable:

• If TO KE N -H O LDER(x) = w, then w is the first node on the path from x to the
node that possesses the token.

When x possesses the token, x has the right to initiate the CRA on link (x, y) if ID(X) <
ID(Y). If x is incident to an internal ERROR link (x, y) and ID(x) < ID(y), then x requests
possession of the token so x may initiate the CRA on (x, y). Node x places self at the front
of its FIFO queue REQUEST-Q(x). If ASKED(x) = FALSE (i.e., x has not already sent
a REQUEST message), then x sends a REQUEST message to w (the node specified by the
TOKEN-HOLDER(x) variable) and x sets ASKED(x) to TRUE.

If w receives a REQUEST message from a neighbor u, then w adds u to REQUEST.Q(w).
If A S K E D = FAL SE (i.e., w has not already sent a REQUEST message), then w sends a
REQUEST message to the node cited by TOKEN-HOLDER(w).

If a REQUEST message is sent by a node, then the node z which possesses the token
will eventually receive a REQUEST message [15]. If 2 receives a REQUEST message from
a neighbor w, then z enqueues u to REQUEST-Q(z). After z completes execution of the
CRA, z passes the token to the node v at the front of REQUEST-Q(z) by sending a GRANT
message to v. After sending the GRANT, 2 removes v from the REQUEST-Q(z) , z sets
TOKEN-HOLDER to w, and 2 sets ASKED(z) to FALSE. If the REQUEST.Q(z) is not
empty, then z sends a REQUEST message to the TOKEN-HOLDER(z), and z sets ASKED(z)
to TRUE.

A node w receives the token when w receives a GRANT message. Node w sets TO-
KEN-HOLDER(w) to self. If self is at the front of REQUEST-Q(w), then w removes self
from REQUEST-Q(w) and w initiates the CRA.

It is important to note that the token is passed along the tree defined over fragment X
at the beginning of the execution of the Tree Update phase. The topology of the tree may
change during the execution of the Tree Update phase, but the token is still passed along
the links of the original tree. By using the original tree, we save ourselves the trouble of
updating TOKEN-HOLDER variables for a changing tree.

4.6.3 Cycle R esolution A lgorithm

Because every node that requests the token eventually receives the token [15], each node
x eventually initiates the cycle resolution algorithm on each incident internal ERROR link
(x,y) where ID(x) < ID(y). The CRA inserts (x,y) into the fragment tree X and removes
the heaviest link from the resulting cycle [16].

When x receives the token, x initiates the CRA on (x , y) by sending two CRA (MAX)
messages: one CRA message to y and another to the parent of x. Node x classifies (x,y)
as a REJECT link and x adopts y as a child. When y receives the CRA(x, y) message over
(x,y), node y also classifies (x,y) as a REJECT link and y adopts x as a child. When x
and y make (x,y) a REJECT link and adopt each other as children, they add (x, y) to their
fragment A, forming a single cycle in X.

Each node v that receives a CRA (MAX) message along a link (v, w) sends a CRA (MAX')
message to the parent of v where M AX' is the heavier of M A X and (v , w). In this way the

16

least common ancestor (LCA) t of x and y eventually receives two CRA(MAX) messages
(one from an ancestor of x and the other from an ancestor of y). The ancestors of the LCA
receive both CRA messages along the same link and discard their records of the CRA when
they receive the second CRA message.

The LCA determines the heaviest link (y, w) in the cycle by comparing the M A X fields of
the two CRA messages. The LCA tells the nodes in the MST cycle to remove (u, w) from the
X , re-order their parent child relationships, and eliminate their records of the CRA(MAX)
message by issuing DELETER, w) messages along the paths from the LCA to x and to y.

When a node u not incident to (v, w) and not x (the token holder) receives a DELETER, w)
message, u sends a DELETER, w) message along the link from which u received CRA, and u
discards its record of the CRA.

When v (incident to link (v, w)) receives a DELETE(u, w) message, v removes (v, w) from
the MST, and v triggers the nodes along the path from v to x to reverse their parent child
relationships. Node v disowns its child i t ; , v sends DELETER, 1 «) over (v,w) to i t ; , and w
discards its record of the CRA.

When w receives a DELETER, i c) message over (1 ; , i t ;) , w disowns its parent v, and w
makes the child z from which w received the CRA message the new parent of w. The M A X
link (v , i t ;) is no longer a member of the fragment because v disowned its child w and w
disowned its parent v. Node w sends a CHANGE-PARENT message to its new parent z.

CHANGE-PARENT messages propagates toward the token holder x reversing parent - child
relationships as they go. When a node z receives a CHANGE-PARENT message, z makes its
current parent a child, and z makes the node from which z received the CRA (MAX) message
the new parent of z.

If node x (the token holder) receives a CHANGE_PARENT message from its parent, then
x makes y the new parent of x. If x receives a CHANGE-PARENT message from y, then x
ignores the message.

Node x knows the CRA execution on (x, y) is complete when x receives a DELETE(MAW)
or a CHANGE-PARENT message from both y and the parent of x. Node x may initiate the
CRA on only one link at a time, and x must keep possession of the token while the CRA is
executing.

4.6.4 R e-entering th e Tree C onstruction Phase

Each node x reclassifies each outgoing ERROR link incident to x as a reliable BRANCH link
during the Tree Update phase. If x is incident to a BRANCH link (x,y), then x requests
its fragment X to re-enter the Tree Construction phase by sending a RESTART message
to the root r of X . By re-entering the Tree Construction phase, fragment X may merge
with fragment Y at the end of (x,y). When re-entering Tree Construction phase, X must
take care that no node in X is executing the CRA. When the root r receives a RESTART
message, r requests the CRA token (as in section 4.6.2). When r obtains the token, r tells
the fragment to re-enter the Tree Construction phase by broadcasting a ROOT_RESTART
message.

If x is incident to a BRANCH link, then x sends a RESTART message to its parent.
If a node v in the UPDATE state which has neither sent nor received a RESTART or
ROOT_RESTART message receives a RESTART message, then v sends a RESTART message

17

to its parent. If v is not in the UPDATE state or v has already sent or received a RESTART or
ROOT_RESTART message, then v ignores new RESTART messages. If a RESTART message
is generated, then the root r will eventually receive a RESTART message.

When r receives a RESTART message, r requests the token and r places restart at the
front of its REQUEST-Q. The root r will eventually take possession of the token. If r already
has the token, then r waits until the current execution of the CRA is complete. When the
CRA is complete, r broadcasts a ROOT.RESTART message which forces X to re-enter the
Tree Construction phase.

If a node x in the UPDATE state receives an ROOT.RESTART message, then x waits
for the results of the U.TEST messages that x sent over each incident ERROR link. After
receiving the result for each ILTEST message, x empties its REQUEST.Q, and x enters the
FIND state. Node x uses the results of the U.TEST messages to reclassify each ERROR
link as either a reliable BRANCH link or an internal ERROR link. Rather than issuing new
TEST messages in the FIND state, x uses the results of the U.TEST messages to identify its
minimum outgoing link.

4.6.5 Term ination of th e A lgorithm

Eventually a single fragment X forms on the network (theorem 3). When X can not find
an outgoing link, X enters the UPDATE state. Since no outgoing ERROR links exist, X
remains in the UPDATE state and executes the CRA on each internal ERROR link. An
MST over the reliable links of the network exists when no ERROR links exist in X (i.e., the
CRA has resolved all the internal ERROR link cycles). At this point every link is either a
REJECT link or an AF link.

5 Correctness
If our algorithm constructs a minimum spanning tree, then our algorithm is correct. Our
proof of correctness has three parts. First, we show that our algorithm constructs a minimum
spanning tree over the set of REJECT links belonging to a fragment. Then we show that
every reliable link is eventually classified as a REJECT link. Last, we show that a single
fragment eventually forms over all the nodes of the network.

5.1 Prelim inary Lemmas
Lem m a 1 A minimum spanning tree may be constructed on a graph with uniquely weighted
links by joining each fragment X with another fragment Y along the minimum weight out­
going link from X to form a new fragments and iterating [6].

Lem m a 2 Let (V,E) be a tree where V is the set of vertices and E is the set of links. The
MST over (V,E U E ’) where E ’ is a set of links disjoint from E but connecting nodes in V,
may be constructed by adding a link from E ’ to the tree (V,E), resolving the resulting cycle,
and iterating over all the edges in E ’ [16].

Lem m a 3 Each link (x ,y) incident to a node x that participates in our algorithm has a
TEST message sent over it.

18

PROOF: When a node x begins executing our algorithm, x classifies each link (x ,y)
incident to x as a BRANCH link that is not known to be reliable, and x enters the Tree
Construction phase. Node x remains in the Tree Construction phase until no BRANCH
links are incident to x , and x does not reclassify a link (x ,y) unless x sends or receives a
TEST message over (x ,y). Therefore, node x eventually sends or receives a TEST message
over (x ,y). □

Lem m a 4 Every node in the network participates in our algorithm.

PROOF: Before our algorithm begins execution, every node is in the SLEEP state. We
assume that at least one node x spontaneously leaves the SLEEP state and begins execution
of our algorithm. By lemma 3, a TEST message is eventually sent over each link (x,y)
incident to x.

When a sleeping node y receives a TEST message, y leaves the SLEEP state and begins
executing our algorithm. By lemma 3, a TEST message is eventually sent over each link
(:y , z) incident to y.

Since the network of reliable links is connected, every node eventually leaves the SLEEP
state and begins executing our algorithm. □

Lem m a 5 At least one TEST message is eventually sent over every link (x,y).

PROOF: Every node participates in our algorithm (lemma 4) and every link (x , y) inci­
dent to a node x that participates in our algorithm has a TEST message sent over it (lemma
3). Therefore, at least one TEST message is eventually sent over every link. □

5.2 Theorem s Showing Correctness
T heorem 1 When no node is executing the cycle resolution algorithm, each fragment X
defines the minimum spanning tree over the REJECT links incident to nodes in X .

PROOF: Let R be the set of REJECT links incident to the nodes of a fragment X at an
arbitrary time when no node is executing the cycle resolution algorithm. A link (x, y) may
become a member of R in one of three ways. In each of these cases, the fragment maintains
the MST over R.

First, if node x in fragment X sends a CONNECT message over link (x,y) to node y in
fragment Y, then x and y classify (x,y) as a REJECT link and (x,y) becomes part of the
MST defined by the fragment containing x and y. Since x sent a CONNECT message over
(x, y), we know (x , y) was the minimum weight outgoing link from fragment X over the set
of known reliable links. Therefore, (x , y) belongs to the minimum spanning tree by lemma
1 .

Second, if node y sends a REJECT message over (x, y) in response to a TEST from x and
(x, y) is not an AF link, then x and y classify (x , y) as a REJECT link that is not part of the
MST. Fragments X and Y had already merged along a link (u , v) that is lighter than (x , y).
Therefore, (x , y) does not belong in the MST.

Third, if (x , y) is an internal ERROR link and ID(X) < I D (Y), then during the Tree
Update phase, x initiates the cycle resolution algorithm on (x , y). The cycle resolution

19

algorithm resolves the cycle formed by adding (x, y) to the MST; by lemma 2 the MST is
maintained. □

T heorem 2 Every reliable link (#, y) is eventually classified as a REJECT link by both x
and y.

PROOF: A node x classifies every incident link (x , y) as being one of five types:

1. a BRANCH link not known to be reliable

2. a reliable BRANCH link

3. a REJECT link

4. an ASSUMED FAULTY link

5. an ERROR link.

At the beginning of our algorithm, each node x classifies every link (x, y) incident to x as
a BRANCH link that is not known to be reliable. By lemma 5, a TEST message is eventually
sent over link (x, y). Node x classifies (x, y) as a reliable BRANCH link, a REJECT link, or
an ASSUMED FAULTY (AF) link based on the response or lack of response to the TEST
message sent over (x , y).

If x sends a TEST message over (x,y) and x believes link (x , y) is faulty (because the
response to the TEST is late or there are fewer than / faulty links incident to x), then
x classifies (x , y) as an AF link. If (x,y) is actually reliable, then x eventually receives a
response to the TEST x sent over (x,y). When x receives a message over an AF link (x,y),
x reclassifies (x , y) as an ERROR link.

During the Tree Update phase, x reclassifies each ERROR link (x , y) as either a reliable
BRANCH link (if (rr, y) is an outgoing link) or a REJECT link (if (x, y) is an internal link).

Let (x , y) be a reliable BRANCH link connecting fragment X (containing x) with frag­
ment Y (containing y). If (x,y) is the lightest link connecting X and Y, then x eventually
sends a CONNECT message over (x,y), and (x , y) becomes a REJECT link that is part of
the MST. If (x , y) is not the lightest link connecting X and Y , then X and Y merge along a
lighter link (w,u), and x eventually sends or receives a REJECT message over (x,y), making
(x, y) a REJECT link that is not part of the MST. □

T heorem 3 Every node of the network eventually belongs to a single fragment.

PROOF: Every reliable link (x , y) eventually becomes a REJECT link (theorem 2). Since
the network is connected and REJECT links connect nodes in the same fragment, every node
of the network must eventually belong to the same fragment. □

20

6 M essage C om plexity
We present here an upper bound on the number of messages exchanged during the execution
of our algorithm. Note that our most complex message contains two unique identifiers (of
links, fragments, or levels) and a few bits to indicate the message type.

Each reliable link becomes a REJECT link exactly once.

• Two messages (TEST and REJECT) are required to reject a link (x, y), and both x and
y must reject (x , y).

This yields a maximum of 4e messages for REJECT link classification.
Each node x classifies at most / links as AF links. Since each AF link may become an

ERROR link, at most f n links may become ERROR links. A link can be classified as an
ERROR link at most once (i.e., once an ERROR link (x,y) is reclassified as a BRANCH or
REJECT link, (x,y) can not become an ERROR link again). Error links generate most of
the overhead in our algorithm. For each error link (x , y):

• at most 4 messages are used to classify (xry) as an ERROR link (a TEST from x and
a response from y, and a TEST from y and a response from x),

• at most 2 messages are used to classify each ERROR link (x, y) as internal or outgoing
(a ILTEST from y and a response from x),

• at most n REPORT and n UPDATE messages are generated to enter the Tree Update
phase,

• at most n REQUEST and n GRANT messages are generated to move the CRA token,

• at most 2n CRA messages are generated to identify the heaviest link in the cycle,

• at most n DELETE and CHANGE-PARENT messages are generated to remove the heav­
iest link from the cycle,

• at most n RESTART and n ROOT_RESTART messages are generated to re-enter the
Tree Construction phase.

A maximum of fn(9n + 6) messages are devoted to ERROR links.
Since log2 n is an upper bound on the fragment level, each node can go through at most

-1 + log2n levels not counting the zeroth and last level. At each intermediate level, each
node can:

• receive at most 1 INITIATE or CORRECT messages,

• receive at most / + 1 ACCEPT messages in response to at most / -f 1 TEST messages,

• send at most 1 REPORT message,

• send at most 1 CHANGE-ROOT or CONNECT message,

21

These messages add at most (2 / + 5)n(—1 + log2 n) to our total.
At level zero each node can:

• receive at most 1 CORRECT message,

• receive at most / + 1 ACCEPT messages in response to at most / + 1 TEST messages,

• send at most 1 CONNECT message.

The zeroth level adds at most n(2/ + 4) messages to our algorithm.
The last level each node sends one REPORT message and one UPDATE message adding

2n messages to our total.
Finally, each node incident to a faulty link (x, y) sends one TEST message over (x,y). At

most 2/ messages are sent over faulty links.
Summing our subtotals we find that the maximum number of messages sent During the

execution of our algorithm is at most:

(2 / + 5)n log2 n + n + 4e + fn(8n + 6) + 2 /

. Our message complexity is 0 (fn \ogn + f n 2).

7 Tim e Com plexity
We consider the time complexity of the Tree Construction phase and the Tree Update phase
separately. We calculate the overall time complexity of the algorithm by summing the time
complexities of the two phases. This is a reasonable thing to do because in the worst case
the Tree Construction phase messages are followed sequentially by the Tree Update phase
messages.

We first consider the time complexity of the Tree Construcion phase. We make the
simplifying assumption that WAKEJJP messages are sent to every node so that every node
begins execution of the algorithm within n — 1 time units of the time at which the initiator
begins the algorithm [7]. At each level, the worst case numbers of sequential messages are:

• n sequential TEST messages yielding n sequential responses,

• n sequential REPORT messages,

• n sequential CHANGE.ROOT or CONNECT messages,

• n sequential INITIATE or CORRECT messages.

Since each node goes through at most 1 + log2(n) phases, a maximum of 5n + 5nlog2n
sequential messages are sent during the Tree Construction phase assuming a WAKEJJP
message is broadcast at the beginning of the algorithm.

The Tree Update phase sequentially executes the CRA on up to f n ERROR links. Each
execution of the CRA involves at most:

• n sequential REPORT(oo) messages,

22

• n sequential UPDATE messages,

• n sequential REQUEST messages,

• n sequential GRANT messages,

• n sequential CRA messages,

• n sequential DELETE or CHANGE.PARENT messages,

• n sequential RESTART messages,

• n sequential ROOT_RESTART messages.

During Tree Update phase our algorithm sends at most 8/ n 2 sequential messages.
The time complexity of our algorithm is 0 (n logn + f n 2).

8 Exam ple

Figure A: Our Network

We present here an example of an execution of our algorithm on the six node net­
work shown in figure A. We identify nodes by letter (u,v,w,x,y,z) and links by weight
(L1,L2,L3,L4,L5,L6,L7,L8) where link LI has weight 1, L2 has weight 2, __ We de­
note fragments with a series of capital letters corresponding to the nodes in the fragment.
For example, fragment UVW consists of nodes u, v , and w.

We assume f — 1, that is, there may be at most one faulty link in the network, and we
assume L3 is faulty. For simplicity we assume that nodes w, u, and w undergo an execution
of our algorithm that is identical to the execution of nodes z, x, and y respectively to form

23

fragments UVW and X Y Z . Fragments UVW and X Y Z merge to form a complete MST
over the network.

8.1 Tree C onstruction Phase: Form ation o f Fragment U VW
Node u spontaneously begins execution of our algorithm by entering the FIND state. Node
u defines a single node fragment U at level 0. Node u sends / + 1 = 2 TEST(w, 0) messages,
one along LI and another along L2. We assume link LI is slow, so node w receives its TEST
message from u before node v receives its TEST.

When v and w receive their TEST(w,0) messages, they each leave the SLEEP state and
enter the FIND state. Both v and w respond to the TEST message with an ACCEPT message
because v and w are each in different fragments than w, and nodes u, v, and w are at the
same level 0.

If w did not know whether the / = 1 lightest link incident to w was reliable, then w
would issue / + 1 = 2 TEST messages along the two lightest links incident to w. Node w
knows L2 is reliable because w received the TEST message from u along L2. Therefore, w
issues a single TEST(u;, 0) message along link L2. Similarly, node v sends a single TEST(u, 0)
message along LI.

Because link LI is slow, u receives the ACCEPT message from w along L2 before u receives
the ACCEPT(u, u) message from v along link LI. Node u selects L2 as its minimum outgoing
link and classifies LI as an AF link. Now u enters the FOUND state. Node u makes w its
parent, classifies L2 as a REJECT link, and sends a CONNECT message along L2.

When u receives the ACCEPT(v,u) message from v along link LI, u classifies LI as an
ERROR link, and u sends an ERR message along LI to force v to classify LI as an ERROR
link too. Node u ignores the TEST(u, 0) message from v along the ERROR link LI.

When u receives the TEST(w, 0) message from w , node u responds with an ACCEPT(w, w)
message.

When v receives the ERR message from u, node v classifies LI as an ERROR link and
v issues new TEST(u, 0) messages along links L3 and L7 so that v maintains / + 1 = 2
outstanding TEST messages. Node w responds to the TEST(u, 0) message with an ACCEPT
message. When v receives the ACCEPT(w;, v) message from w , node v accepts link L7 as the
minimum outgoing link from u, and v classifies L3 as an AF link. Node v enters the FOUND
state, and v sends a CONNECT(u>, 0) message to w on L7.

When w receives the CONNECT(u, 0) message from u, node w classifies v as a child and
L7 as a REJECT link. When w receives the CONNECT message from u along L2, w adopts u
as a child, and w classifies L2 as a REJECT link. Because w has issued a TEST message along
L2, the fragments containing u and w are both at the same level 0, and w is in the FIND
state when w receives the CONNECT message, it follows that w classifies L2 as its minimum
outgoing link and enters the FOUND state. Node w sends a CONNECT(w, 0) message to
u along L2, and w marks u as the parent of w. Since w and u both send and receive a
CONNECT message along L2, they merge to form a new fagment. Since ID(w) > ID(u),
node w becomes the root of the new fragment UVW. Node w sets its level to 0 + 1 = 1, and
sets its fragment identifier to FID = ID(w) (the ID of the new fragment’s root w). Node
w adopts u and v as children, and w broadcasts an INITIATE(FLD = w, Level = 1) message

24

to its children, u and v. When u and v receive their INITIATE messages from w, nodes u
and v update their FID and level variables, and they enter the FIND state.

Figure B: Network at beginning of the Tree Update phase

Neither u nor v is incident to a BRANCH link. Therefore, u and v each issue a
REPORT(oo) message to their mutual parent, w.

Node w is incident to one BRANCH link L4 (1 < / + 1), and w does not know wheter
L4 is reliable or faulty. Therefore, w issues a TEST (FID = w, Level = 1) message along
L4, and w classifies L4 as an AF link.

Node w is the root of the fragment consisting of nodes u, v, and w (fragment UVW).
After w receives the REPORT(oo) messages from u and v, the root w enters the FOUND
state. When w enters FOUND state, w determines the minimum outgoing link from UVW.

Since no BRANCH links exist in fragment U V W , w broadcasts UPDATE messages to its
children u and v, and w enters the UPDATE state. Nodes u and v enter the UPDATE state
when they receive the UPDATE messages from w. We assume that w receives a response
to the TEST issued over LA shortly after w enters the UPDATE state; w classifies LA as
an ERROR link and w sends an ERR message over LA. Figure B depicts the state of the
network at the beginning of the Tree Update phase.

8.2 Tree U pdate Phase and the Cycle R esolution A lgorithm
When w enters the UPDATE state, w sets TOKEN-HOLDER to self because w is the root.
In other words, w possesses the CRA token for fragment UVW at the beginning of the
UPDATE phase. Upon entering the UPDATE state, the other nodes in the fragment (u and
v) set their TOKEN-HOLDER variables to w, their parent.

Nodes u and v are incident to ERROR link LI. Since ID(v) > ID(u), node v sends a
U_TEST((L7D = w,Level = 1) message over LI to determine whether LI is an internal or

25

outgoing ERROR link. Node u responds to the U.TEST message with a REJECT message,
and u classifies LI as an internal ERROR link. When v receives the REJECT message, v also
classifies LI as an internal ERROR link. Since ID(v) > ID(u), node v requests the CRA
token by sending a REQUEST message to w, the TOKEN-HOLDER.

When w receives the REQUEST message from v, node w sends a GRANT message to v,
and w sets its TOKEN-HOLDER variable to v. When v receives the GRANT message, v sets
its TOKEN-HOLDER variable to se l f , and v initiates the CRA algorithm on LI. Node v
classifies LI as a REJECT link, and v adopts u as a child. Node v sends CRA(Ll) messages
to nodes u and w over links LI and L7 respectively.

When u receives the CRA(Ll) message, u classifies LI as a REJECT link, and u adopts
v as a child. A cycle now exists in our network as depicted in figure C. Node u sends a
CRA(Ll) message to w over link L2.

Figure C: Network with an ERROR link cycle

Node w eventually receives two CRA(Ll) messages, one from v over L7 and one from u
over L2. By comparing the weights of LI, L2, and L7, node w determines that L7 is the
heaviest link in the cycle, and w sends DELETE(L7) messages to u and v. Since w is incident
to L7, w removes L7 from the MST by disowning its child v.

When node u receives the DELETE(L7) message, u simply sends a DELETE(L7) message
to u, the node that sent u the CRA message. When v receives the DELETE(L7) message
over L7 from w , node v disowns its parent w, and v adopts u as its new parent. Node v
knows the CRA is complete when v receives the second DELETE(L7) message from u along
LI. Figure D illustrates the state of our network at this point in the algorithm.

26

Figure D: Network after the Tree Update phase

Node w is incident to ERROR link L4. Node w sends a U_TEST(FID = w, Level = 1)
message over LA to determine whether LA is an internal or outgoing ERROR link. We assume
that nodes x, y , and z form a fragment X Y Z via a process analogous to the formation of
U V W . Therefore, w eventually receives an ACCEPT response to the ILTEST message and
w classifies LA as a reliable BRANCH link some time after w grants v the CRA token.

Since w is now incident to a reliable BRANCH link, w requests that fragment UVW
re-enters the Tree Construction phase. If w were not the root, then w would have to send
a RESTART message to the root to tell fragment UVW to re-enter the Tree Construction
phase. Since w is the root, w does not need to send a RESTART message, but w must
obtain the CRA token before w can broadcast a ROOT_RESTART message. Node w sends
a REQUEST message to v, the TOKEN-HOLDER. When v completes the CRA, v sends a
GRANT message to w and v sets its TOKEN-HOLDER(v) variable to w. When w receives the
GRANT message, w sets TOKEN-HOLDER(w) to se//and w broadcasts a ROOT.RESTART
message which tells the nodes in fragment UVW to enter the FIND state.

Since nodes u and v are not incident to any BRANCH links, they both send REPORT(oo)
messages to w and enter the FOUND state, but w is incident to L4. Node w knows LA is a
BRANCH link because w received an ACCEPT response to a U_TEST message sent over LA.
Therefore, w classifies LA as the minimum weight outgoing link from UVW and w enters
the FOUND state.

8.3 C om pletion o f the A lgorithm
Node w sends a CONNECT message over L4, and w makes y its new parent. By a similar
process, node y sends a CONNECT message over LA. Since ID(y) > ID(w), y becomes
the root of the new fragment U V W X Y Z formed by merging fragments UVW and X Y Z

27

over link Li . Node y sets Level = Level + 1 = 2 and FID = y and y broadcasts an
INITIATE(F/D = y, Level = 2) message to its children to tell them to enter the FIND state.

Since no BRANCH links remain, fragment U V W X Y Z enters the FOUND state then
the UPDATE state. No ERROR links exist either; therefore, the algorithm idles in the
UPDATE state. This is the end of the execution of the algorithm. Note that every reliable
link is classified as a REJECT link and the one faulty link L3 is classified as an ASSUMED
FAULTY (AF) link. Figure E shows the complete MST on our network.

Figure E: Network with complete MST

9 A fterthoughts
Our algorithm is open to a great deal of improvement and variation. We should note these
points about our algorithm:

• If / = 0, then our algorithm is equivalent to the GHS algorithm.

• If an initially faulty link is repaired, it is easily added to the MST via the Tree Update
phase.

• The longest message sent by our algorithm has 0(log(max. weight)) message length.

Some problems open for further study are:

• There are methods for reconstructing an MST after link deletion [14]. These may be
applicable to modifying our algorithm to allow link failure during execution.

28

• The time complexity of the GHS algorithm has been reduced in subsequent papers
[2, 5, 8]. These algorithms may have beneficial effects when used in place of the GHS
algorithm in the Tree Construction phase of our algorithm.

• Several papers deal with fault tolerant spanning tree construction and leader election
[1, 4, 9, 10, 13]. It may be possible to apply the concepts developed in these papers to
the MST problem in a way that is more direct than the path we have taken.

• The bottleneck of our algorithm occurs in the Tree Update phase. We implement a
serial algorithm to solve the cycle resolution problem, but we believe a more efficient
parallel algorithm may be developed. We cite two papers on the subject of tree update
after topology change [14, 16].

References
[1] H. Abu-Amara, “Fault-Tolerant Distributed Algorithm for Election in Complete Net­

works,” IEEE Transactions on Computers, Vol. 37, No. 4, April 1988, pp. 449-453.

[2] B. Awerbuch, “Optimal Distributed Algorithms for Minimum Weight Spanning Tree,
Counting, Leader Election and Related Problems,” Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, pp. 230-240.

[3] B. Awerbuch, I. Cidon, and S. Kutten, “Communication-Optimal Maintenance of Repli­
cated Information,” Proceedings of the 31st Annual Symposium on Foundations of Com­
puter Science, Vol. 2, 1990, pp. 492-502.

[4] R. Bar-Yehuda and S. Kutten, “Fault Tolerant Distributed Majority Commitment,”
Journal of Algorithms, Vol. 9, 1988, pp. 568-582.

[5] F. Chin and H. F. Ting, “Improving the Time Complexity of Message-Optimal Dis­
tributed Algorithms for Minimum-Weight Spanning Trees,” SIAM Journal on Comput­
ing, Vol. 19, No. 4, August 1990, pp. 612-626.

[6] E. A. Estes, “Distributed Minimum Spanning Tree Construction,” University of Illinois
at Urbana - Champaign, Master’s Thesis (ECE Department), 1987.

[7] R. G. Gallager, P. A. Humblet, P. M. Spira, “A Distributed Algorithm for Minimum-
Weight Spanning Trees,” ACM Transactions on Programming Languages and Systems,
Vol. 5, No. 1, January 1983, pp. 66-77.

[8] J. A. Garay, S. Kutten, and D. Peleg, “A Sub-Linear Time Distributed Algorithm
for Minimum-Weight Spanning Trees,” Proceedings of the Sfth Annual Symposium on
Foundations of Computer Science, 1993, pp. 659-668.

[9] A. Itai, S. Kutten, Y. Wolfstahl, and S. Zaks, “Optimal Distributed t-Resilient Election
in Complete Networks,” IEEE Transaction on Software Engineering, Vol. 16, No. 4,
April 1990, pp. 415-420.

29

[10] A. Itai and M. Rodeh, “The Multi-Tree Approach to Reliability in Distributed Net­
works,” Information and Computation, Vol. 79, 1988, pp. 43-59.

[11] E. Korach, S. Moran, and S. Zaks, “Tight Lower and Upper Bounds for Some Dis­
tributed Algorithms for a Complete Network of Processors,” Proceedings of the 3rd
Annual ACM Symposium on the Principles of Distributed Computing, 1984, pp. 199-
207.

[12] E. Korach, S. Moran, S. Zaks, “The Optimality of Distributive Constructions of Mini­
mum Weight and Degree Restricted Spanning Trees in a Complete Network of Proces­
sors,” SIAM Journal on Computing, Vol. 16, No. 2, April 1987, pp. 231-236.

[13] S. Kutten, “Optimal Fault-Tolerant Distributed Construction of a Spanning Forest,”
Information Processing Letters, Vol. 27, 1988, pp. 299-307.

[14] J. Park, T. Masuzawa, K. Hagihara, and N. Tokura, “Distributed Algorithms for Recon­
structing MST after Topology Change,” Proceedings of the fth International Workshop
on Distributed Algorithms, Lecture Notes in Computer Science, Vol. 486, Springer Ver­
lag, 1991, pp. 122-132.

[15] K. Raymond, “A Tree-Based Algorithm for Distributed Mutual Exclusion,” ACM
Transactions on Computer Systems, Vol. 7, No. 1, 1989, pp. 61-77.

[16] H. Tsin, “An Asynchronous Distributed MST Updating Algorithm for Handling Ver­
tex Insertions in Networks,” Proceedings of the International Conference on Parallel
Processing and Applications, 1987, pp.221-226.

30

