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DYNAMIC MODEL OF A CONTINUOUS

COLD ROLLING MILL 

by

M. Jarnshidi and P. Kokotovic 

Abstract

The dynamic model of a continuous cold reduction mill is developed.

The model makes use of the force=torque equation expansion technique developed 

in an earlier report and presents the generalized (7N+8)th order state equation 

for an N-stand rolling mill. The equations of inter stand tensions are found 

to be highly nonlinear with the arguments delayed due to the transition of strip 

between the stands. The model developed can be used in the design of a 

controller for the entire rolling process.
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I. INTRODUCTION
In this report a nonlinear model of an N-stand rolling mill is 

developed. The model represents an improvement on previously proposed 

models [1,2].

Figure 1 shows an N-stand mill presented with coiler, decoiler, 

ro ll  screw-down and drive motors.

As seen, the decoiler feeds the strip into the f irs t  stand 

where its thickness is reduced by a combination of interstand tension 

and ro ll  separating force. The rolls of each stand are driven by a dc- 

motor which in turn is connected to its generator. The generators, the 

circuit breakers and emergency stopping circuits are not shown for 

simplicity of the diagram [3]. The drive motors can be controlled 

by both armature and fie ld , while the screwdown motors are only 

armature controlled.

The model developed in this report w i l l  be used in the design 

of a controller for the rolling process. Each stand, coiler and decoiler 

are considered as dynamic subsystems coupled by an elastic strip. In 

general the coupled model is nonlinear and its order is high. Conse

quently, straight forward applications of optimal control theory would 

be virtually impossible and some approximation methods are needed.

The development of this npdel takes into consideration properties of a 

class of near optimum design methods. In particular, it  is adapted for 

an application of singular perturbation [4-6 ], decoupling methods [7 ], 

three time scale design method [8] and design of systems with time 

lags [9-12]. This model, although assumes the electrical features of
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Figure,!. An N-stand continuous cold rolling mill.
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Figure 1, remains general in its mechanical subsystems and formulation of 

state equations for the mill in interstand variables. The N-stand mill 

system of Figure 1 is divided into two major subsystems: mechanical

and electrical.

2. MECHANICAL SUBSYSTEM

A brief review of rolling theory w il l  explain the deformation 

process, interstand relations and other rolling equations relating mill 

process variables such as thickness, tension, torque, force, and 

coefficients of friction. Appendix 1 presents the notation and nomen

clature for the entire report.

2.1 Deformation Process

In general, there is no "exact" rolling theory presented in 

the literature. The "exactness" of a rolling theory depends on assump

tions involved. Thus far, the theory of Orowan [13] is most "exact".

It  permits variation of both yield stress and coefficient of friction.

Xt is furthermore useful for both cold and hot strip rolling. Orowan’s 

theory has been extended by Finne, et al [14]. However, due to its  

complexity, this theory is approximated by Bland and Ford [15].

The theory of Bland and Ford is used throughout our analysis. 

Using this theory several authors have developed graphical techniques 

and iterative methods for computations of force and torque to be 

applied to the rolls during the process [1,2,16-20]. In an earlier 

report we developed a computational procedure for determining the 

coefficients of a three-term Taylor series expansion of rolling
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force and torque [21].

The deformation of strip takes place at each stand's ro ll  gap. 

A ro ll gap configuration is shown in Figure 2.

Figure 2. A ro ll  gap configuration.
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As seen the arc of contact is divided into three segments:

A is the elastic arc at the entry.

B is the plastic arc.

C is the elastic recovery arc at the exit.

In the two elastic regions the frictional force exerted by the rolls to the 

strip is commonly assumed to [13-15] be proportional to ro ll  pressure with 

proportionality being the coefficient of friction. It  is in these two 

regions where the rolling metal is said to be "slipping” [13-20]. In 

region B, however, the frictional force increases up to the magnitude 

of the yield stress in shear and a plastic shear occurs in the metal.

The surface of the rolling metal is then said to be "sticking" to the 

rolls [13]. One of the basic assumptions made in [13] is that the 

deformation in the plastic region is a "homogeneous compression", i .e .  

the strip is divided into a number of vertical segments which remain 

plane and perpendicular to the direction of rolling. Three of these 

planes are shown in Figure 2. As seen from this figure, in the neighbor

hood of the entry plane these vertical segments (Planes) are "squeezed 

backward" while close to the exit plane they are "squeezed forward".

In the middle of the gap there is a segment where the strip is being 

pulled out to its right and pushed back to its le ft .  Such a segment 

is called the "neutral plane" [13,20].

The rolling theory of Bland and Ford calculates ro ll  force and

torque items of the "mill variables", h., h , t . ,  t , and y,1 o 1 o

F = F(h. , h , t . , t , y) i  o i  o ( 2 . 1)
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t = t(h± , hQ, t± , tQ, y) . (2.2)

As it  w i l l  become clear later a third equation for the neutral point

thickness, h^ (See Figure 2) is also required.

h = h (h . , h , t . , t , y) n n i  o ’ l* o ’ (2.3)

Analytic expressions for (2.1, 2 and 3) developed by Bland and Ford 

are given in Appendix 2.

These expressions are complicated nonlinear functions of mill 

variables and a simplification of their calculation is needed. In [18] 

a graphical method was proposed. Some computer iterative methods have 

been suggested [1,2], where small (1%) incremental changes of different 

mill variables are made to perform linearization of the force-torque 

equations. A computationally simpler and in the same time more accurate 

approximation is given in [21] where 2.1, 2 and 3 are expanded using 

explicit differentiation. The truncated series are

F = (k,q) + ( q,Kq) (2.4)

f  = (4,q> + ( q,Lq> (2.5)

‘n = <m,q> + ( q, Mq ) (2.6)

where q is a vector with the mill variables as its components

Tj r-  ̂ /v a  ̂n
q = Lh. h t . t mJ ,1 0  1 0 (2.7)
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*
k is a 5X1 normalized vector, k. = ^—* l F oq, i = 1 ,...5  and K is a 5X5

symmetric matrix whose elements are, k „  = —
q* q^*
i 1 ô2F
F* dq. dq. 

i J
Similar

definitions apply for i ,  L, m, and M for (2.5) and (2.6). The computational 

scheme developed in [2 l ]  consists of two main subroutines which allows a l l  

the mill coefficients to be obtained in less than 20 seconds on a CDC-1604 

computer.

A common assumption in a l l  rolling theories is that the volume 

of the material per unit time passing through each vertical segment is 

constant, i.e .

v. h. = . . . .  = v h = . . . .  = v h i l  n n o o ( 2 . 8)

2,2. Stand Relations

The output tension of the jth stand is assumed to be equal to 

the input tension of the ( j+1) th stand, i.e .

t . - (t) = t . (t) .
i,J+l oj (2.9)

The output tension is related to the strip velocity by the elasticity  

principle (Hook's law) [22-24],

‘ oj ■ T <vi , j + l - vo; j ) ( 2 . 10)

where it is assumed that the delay time T (transit time between stands j 

and j+1) is constant [l4 ,18 ]. The input thickens at the (j+1)th stand is the 

same as the output thickens at the jth stand delayed,by T, i.e .
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= h . (t-1) .
o,J ( 2 . 11)

As noted before when force is applied to the ro lls  an elastic deformation 

occurs to the "mill housing" and the ro lls , i .e .  the entire structure 

(stand and its four highs) is considered to be a s t i f f  spring with a 

modulus of elasticity (spring constant) M [1,2,25]. Thus,

F.
J

( 2 . 12)

where is the screw-down setting (separation of rolls during rolling,

positive upward) of the jth stand and S . is the screw-down setting when
°> J

Fj = 0. I f  the elastic recovery of the metal is neglected as in the case in

Bland and Ford's theory [1,2,15,25] then the output thickness h . = S. and
°> J J

(2.12) in incremental form becomes [ 2] ,

(2.13)
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3. ELECTRICAL SUBSYSTEM

The electrical subsystem consists of the control rectifier motor 

groups for coiler, decoiler, stands, drives, and screw-down servomechanisms. 

In order to preserve generolity, our model is derived with the assumption 

that the armature voltages of the motors are control variables. In a 

solution of an optimum control problem the dynamics of the generators or 

rectifiers w ill have to be included, and the motor armature voltages w ill  

become state variables.

In this section the dynamic equations of motors are given. A 

block diagram of both mechanical and electrical subsystems shows the inter

connection between process variables.

3.1 Coiler and Decoiler

The coiler and decoiler are driven by a dc motor which is con

trolled by both armature and field voltages.

strip

c

Figure 3 Coiler schematic.
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The torque equation at the co iler ’ s shaft, Figure 3, is [23,26]

where the term J (o o  c c

St = t = Jd)  + J ( u)  - 0) ) + B u) H— ■ r t __ (3,1)c c c cs c c c n c oN

U)̂ ) accounts for the fact that the inertia of

the coiler, Jc , is a time-varying function [27-29], The term u>c - 

is the magnitude of the angular velocity of incoming strip relative to 

that of the coiler. The remaining relationships for the system in 

Fig, 3 are

TC = Klc0 ic ac

= R i + L ■ac ac ac a

1 f c = R i  „ + Nfc f c fc

r c

hoN
2n 00c

di

d0(

+ K aoDC C

fc Cl0c + C30c

J (r ) = J + ^  JT = J + npW r 4 c c m 2 L  m 0 2 r cn Zn

and B = B + ~  BT , c m 2 ^n

A ll the quantities are defined in the nomenclature (Appendix 1),

A similar set of equations can be written for decoiler by 

interchanging subscripts c (coiler) to d (decoiler) and N to 1, For 

example, as an equivalent to 3,1 one obtains,

St = Td = Jid + Jd <«»]_ - u>d) + BdU)d - l  r t

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

where xd = Kld0di ad, etc
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Note that a nonlinear magnitization relation, (3.6) is assumed between 

the field current and the flux of the motors.

3.2 Main Drive

The torque, armature and field circuit ^equations for the jth stand 

are presented. The stand's drive motor must provide torque sufficient to 

balance frictions rolling torque, torque caused by inlet tension and the 

acceleration torque. The torque caused by outlet tension is helping the 

rolls to rotate in the prescribed directions. Thus,

where t^ j o , f ,  i ,  j indicate the torque of motor, outlet tension, friction, 

inlet tension, and jth ro lls , respectively. Equation (3.9) can be written 

for the jth stand as

Et = t + t - J - t , - t . - t . = 0 m o tu f i j (3.9)

t . = Jd). + Bcjd. + ~ Rt. . = — Rt . + t .mj J j  n i j  n o j j (3.10)

where,

(3.11)

The armature and field currents are governed by,

(3.12)

(3.13)

The field current-flux are related by the familiar magnitization charac

teristic approximated by third order polynomial,

(3.14)

Thus three variables, u)., i . , and 0; are sufficient for a state space
J aJ v

model of the main drive.
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3,3 Screw-Down

The screw-down motors are assumed to be of the armature- 

controlled direct current type. The task of these motors is the 

adjustment of the vertical position of ro lls  (settings or screw 

pitch) [30], The equations for the jth stand screw-down motor are,

(3.15)

(3.16)

(3.17)

and the screw speed is assumed to be directly proportional to the 

angular velocity of the motor,

t . -  J cb . + B a) . sj s sj s sj

t . = K. 0 . i .Sj 1 sj asj

d (i  .)
e . — R i . + L l~" ~l "3' * + K, cuasj a asj d t b sj

S . 
° J (3,18)

where S . is the screw pitch of the ith stand ro lls ,  oj J

3,4 Mill Block Diagram

The mechanical and electrical subsystems for the jth 

stand can be shown in a general block diagram as in Fig, 4, Note 

that for j = 1 and N, the diagram involves the decoiler or coiler 

motors, respectively and are considered as special cases of this 

diagram.



Figure 4. Mechanical-electrical subsystem block diagram
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Table 1 shows a possible selection of state, control and output 

variables of the system of Figures 1,2. For a single stand rolling mill, 

i . e . , j = N = 1 there may be as many as 7 + 8 = 15 state variables, 

3 + 4 = 7  control variables and 2 output variables.

Let

x. . = (JD .
J

x0 . = t 2j Oj
x0 . = i  . 3j aj
x. . = 0 .
4j

x r . = U) . 
5j s j

x. . = S 
6j Oj

x_ . = i  7j as j

u. . = e . 
! j  a J

u0 . = e  
2j f J

u_ . = e 3 j as j (4.1)

Considering (2.4) and rewrite it as:

f j = <k>qj ) + ( q j- K q?

= k00 iin . + (k0 + k10 ii. + k0 t . . + k0 p. .) ii . 22 Oj 2 12 lg 23 i j  25 y  aj

+ ( k,qj) + <qy  K q (4.2)

where

k = Ik, K = IK, I = diag [ l  0 1 1 l ] ,

note that vector k and matrix K are previously computed for stand j and
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Table 1

System Variables in an N-Stand Rolling Mill

Stand j
Total no. 
of VariablesType of 

Variable
Roll
Gap Drive Motor Screw-Down Decoiler Coiler

State *0j (JO. j i . ’ 6 .
J a J J

(10 ’ .S-*,  i  s j  Oj aSj U)dio’d0drd (jo? i > (t>> r c ac c c 7N + 8

Control e ..e, . 
f j

eas . 
J

ead',ef d e 9 0. .  ac f c 3N + 4

Output fl , OJ
t . 
OJ

- - - - 2N
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the subscript has been omitted on them for Simplicity- 

Eliminating ft from (4.2) and (2.13),

Pjk22^0j + ^ j (k2 + k12^ih + k23^ij + k24^0j + k2 ^ V

-1] + (<*jS0j + p . <is>qj) + 3j ( q j^ q ^ ) )  =

where O'. = ( ^ —) , 3. = (F ./Mb-.) as defined in (2.13).
J n0 j  J A J J

Solving for h  ̂ from the above and considering (2 

notations of (4.1),

R0j = a. .o . x . . + a. .x + 7] . (t-T ) + a_ . 3 J 2, j-1 4j 2j -  2 5j

where, a _ ,  i = 3,4,5 and Tj^(t-T) are defined in Appendix 3.

Similarly torque and thickness equations of (2.5)

after the substitution of . from (4.3) can be rewritten asOj

t . = b x . + b x + 0 . (t-T ) + b
J 3 j 2, j - 1 4j 2 j 5 j

b ^ ,  i = 3,4,5 and 0^(t-T) are expressed in Appendix 3 

Similarly 2.6 can be reduced to,

fi . = C x . - + C. .x + i|r .(t-T ) + C,. . nJ 3j 2 , j-1 4j 2j Yj v 5j

where C ., n = 3,4,5 and \lf . have expressions identical with nj TJ
and 0^ when replacing & and L by m and M, respectively.

9) and

(4.3)

and (2.6)

(4.4)

(4.5)

b ., n = 3,4,5 nj
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To derive the f irs t  state equation let us write the torque 

equation at the shaft of the stand drive motor,

J cl). = -Bud . + K . i .0 . - — A. . t . . + — , t .
J J 1 a J J n i j  i j  n oj

1 * * 1 * -k *
-  T . T . - —(R (t . . - tA .) + X .) n J J i j  Oj7 y (4.6)

Substituting for % from (4»7)

B 1 *x, . = " T x - — (b X . + RA. .) x. . . 
l j  J  J n  3 j  j  i j '  2 ,  j - 1

—  (b . r . - RAn .)x0 . — 0 . - dn . Jn 4j j 0 j7 2j Jn l j (4.7)

where

d. . = —  (R(t. 4 - tn .) + (b .+1) t .) l j  Jn i j  Oj7 v 5j 7 j 7 (4.8)

To drive the state quantum for t ^ ,  consider equations (2 .8 ), (2.10), 

and (2.11),

Vi>j+1
- 1 H----3?V

i* j+1
= -1 +

V 1 h 1 n, 1+1 n ,j+ l
h. .Vi,j+1 “ i, j+1

Rh* ... U).,.(fi + 1)
n, .1+1 1+1 n, i+l

v* - L h  ( t L . ( t - T )  +  1)
i , J + l  i ,J + l  0 j v

-1 + (4.9)
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Similarly,

+
Rh

.h
J

9T~
oj

CJU . (ft .+1)

• jrf-oj + 1) (4.10)

then by (2.10)

*2j = ^2j (—*—( t_T) »—( t_2T) )  (4.11)

where is defined in Appendix 3. Note that by x in (4.11) it is meant a
I

vector containing a l l  state variables as defined by (4.1).

The remaining state equations are simple and are written accord

ing to (3.12-18).

Ra Kb , 1
LaX3.j L Xl j  a J L Ulja J

V i Rf e3 3 . 1
Nf v4j Nf x. . + —  

4j Nf

B K.• s . i s
5J " “ Js X5j Js X7j

(4.12)

(4.13)

(4.14)

-K x s 5j (4.15)

Ras
Las as 5j (4.16)

Thus 4.7, 4.11, 4.12 to 4.16 are Severn state equations describing the 

th
dynamics of the j stand. In addition to the above, eight other equations 

are needed to describe coiler and decoilerj
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let

M = 7N, N is the number of stands in the rolling mill instal

lation, and

.1er : Coiler:

XM+1 = “a XM+5 = (JOc

XM+2 Lad XM+6 Lac

XM+3 XM+7 K

XM+4 rd XM+8 = r c
i

U2N+1 = ®ad U3N+3 = eac

U3N+2

CDII

U3N+4 = e, f c

(4.17)

The corresponding state equations are,

M+l * XM+4X11
*M+1 Bd Jd(x) 2WPhij  Jd(x)

2 3
, XM+lXM+4 , i l  XM+4XM+5+ 2Wph . . ■_ ~ t---- +i l  Jd(x) n Jd(x)

+ K XM+2XW-3 
Id Jd(x )

(4.18)

where

J(x) Jm + 2 TTpWxM+42n

R , K, ,. _ ad bd , 1
^+2  "L , XM+2 L , XM+1 L , U3N+1 ad ad ad

(4.19)
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Rf dl Rfdd3 3 1
XM+3 ” N , , XM+3 " N£j XM+3 + N£J U3N+2 rd rd fd

i l
^+4  2tt XM+1

^ + 5

3
„ CM+5 , * XM+8XN .= - B x + 2Wph „ —i—r~r +c J (x) c oN J (x) c

2 3
„„ , * XM+5XM+8 ON XM+8X2N , TT XM+8XM+7 2Wph .. ■_ r~—  - — ----- mi 1 j \ + K,oN J (x) c n J (x) lc J (x)c c

when
1 4J (x) = J H------x npWx..,0c v ' m _ 2 M+82n

Rac K

M+6
be 1X_, + T---- u.L M+6 L M+5 L 3N+3 ac ac ac

Rr Cfc 1 RfcC3
XM+7 Nr aM+7 f c Nfc U3N+3

RfcCl R r C fc 3 3
XM+7 = N, XM+7 fc N, f c XM+7 ' 'fc

= _oN
XM+8 2tt XM+5

(4.20)

(4.21)

(4.22)

(4.23)

(4.23)

(4.24)

(4.25)

The above equations as well as those for the j stand can now 

be written in a vector form for an N- stand rolling mill as follows,

Let
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x

X1 xn ui U1

x2 X21 u2

0 S tand 1 0 u3

« X71 • U3

O •
• • •

0 • • * . • •

• = x . 
J

u = • St u . 
J

• X2j Stand j • U2j

• K7j • _  *3 j  _
• % f

•
» » #

o o

« X1N • " n

° X2N Stand N • U2N

• X7N • _  ^3N _

• X7N+1 Coiler • U3N+1
0 * and j

•

Decoiler

X7N+8 X7N+8 U3N+4 U3N+4
_ _  _ — — —1

(4.26)

be 7N + 8th and 2N + 4th state and control vectors for the N- stand 

rolling mill then the general form of the state equations is,
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x = Ax + Bu + f (x ) + g (x ,x (t -T ),  x(t-2T)) + d

where

A 7N + 8 X 3N + 8 constant matrix

B 7N + 8 X 2N + 4 constant matrix (4.27)

f ,  g, d, and x are 7N + 8 vector

u is 7N + 4 vector

f and g are nonlinear vector functions.

The above matrices and vectors are defined on the following

pages.
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5 „ CONCLUSIONS

A dynamic model of an N-stand continuous cold reduction mill 

has been developed. A generalized state equation of (7N + 8)th order 

was derived taking into account the dynamics of coiler, stands, drive, 

screw~down motors and decoiler. The equations turned out to be highly 

nonlinear and in general involve time lags due to the transition of 

strip from one stand to the next.

This model is expected to be a more accurate description of 

a rolling mill than the models proposed thus far since it uses less 

approximations such as linearizations of force-torque as well as the 

conservation of the strip volume (eq. 2.8). The main reasons for avoid 

ing these approximations is that with the existence of digital computer 

and efficient numerical methods more realistic models can be handled.

The state equations can be modified for rolling mills with 

different electrical equipment and introduction of new variables cause 

no difficulty in formulating the new set of equations.
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1 Appendix 1. Notations and Nomenclature

1 Notations :

1 i = "entry" or inlet plane
m

o = "exit" ,  or outlet plane

i n = neutral plane

a j = number of stand j = 1 , . . . ,N

1 N = maximum number of stands in the mill

1 A = f - F*F = , denotes the operating value 
F

■

t. . the inlet tension, t. belonging to 
the jth stand.

1 s = screw down motors

| c = coiler

d = decoiler

1 m = motor (coiler, decoiler)

i
L = load

I Nomenclature:
•

ef = field voltage

1 ea = armature voltage

■
(JO = angular velocity

1 S
oj

= screw-down setting of jth stand rol ls

I 9 = arc of contact (ro l ls  and strip)
m

R = radius of undeformed ro l l

i R' = radius of deformed ro l l

i

i

h thickness of the strip
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tension per unit area 

area of the strip 

ro l l  torque per unit width 

ro l l  force per unit width 

coefficient of friction  

strip velocity

modulus of elasticity (Young's modulus)

time lag (strip transit period)

modulus of elasticity (spring 
constant) of "mill housing"

moment of inertia

friction loss

gear ratio

coiler or decoiler radius

torque constant

magnetic flux

armature current

armature resistance

armature inductance

back emf constant

field current

back emf constant

field inductance

field resistance

field winding number of turns

coefficients of f ield current 
polynomial



33

p = density of rolled material

w = width of the strip

Ks = screw-down position gears constant

d = disturbance vector

X = state vector

u = control vector
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Appendix 2.

where

and

Roll Force and Torque Equations 

[Bland and Ford]

F = F(h.,h , t . , t  ,r) = R ' f f  n ^  (1 - ^  ) '  i  * o i * o 7 L*Jo h v k 7
M<H(h , 0)

d0

rei k h n  V  - H( ho>e0 l
+ Je ÏT (1 " k7) e Jn i

( 2 . 1)

e
T = = RR' J1̂  jp- (1 - J2 ) ee»1 + 1ae +

O

to

Ô
+ 1

0. i,ui kh
Jo" if1 C1 “ t t )  +

t. h .t. - h t  lv . i t  o o
0 h.H 1 k.i 2R ' ( 2 . 2)

H(h,0) = 2 / f  tan"1 0

h = h (h. ,h , t. ,t t) n n i o i o 1 + \ tan2

. h. (1 - to/ko) J
—  In 1 t.
2(1 h (1 - ~  ) Jo k.i

(2.3)



Appendix 3: Expressions Involving Equations (4.3), (4.4), and (4.11)

In Equation (4.3);

“23 “24
a3j 2k22 ’ “4j 2k22 ’

^25^1
a5j -  -  2k22 + 2P.k22 , a l l  k's are for jth stand,

+ 71. (t-T)
”  J

12
2k22 ko , j - l ^ t_T  ̂ ± f ^ ( k2+ki2ho , + k23X2,j-

+ k24X2,j + k25M'j ) “1-' " 4ßk22(aj x6j + ^ k’ qj^

+ ß .(q. ,K q . ) )P  .
J J J

Note that here

qj Cho , j - l (t_I )  h0 j (t) X2,j-1 X2,j ^

For Equation (4.4):
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0 j ( t -T )  (X22a3j + 'e23a3j) x 2 , j - l  + ^22a4j + X24a4j^X2,j

+ (X23a4j + ^24a3j + 2'e22a3ja4j) x 2 , j - l  x2j

+ [ ( ^ 23 + 2'e22a3j) x 2 , j - l  + ( ^24 + 2 i22a4 j) x 2j + X12ho,

+ (¿2 + 2̂ 22a5j + <e25M' j ^ Tij ( t “T) + ^ 1 2 (a3jX2 , j - l  + a4jX2,j 

+ a 5 . ) + ^2^ho , j - l ( t " T̂  + ^qj ’- ,qj^ + <e22Tij 2 (t" 1̂  *

Note that L = rL and is as in (4.2). Equation (4.11);

A ER 
S2j T

h* X. (c- .X . - + c, .X + Y. (t-T) + c,. .+1) 
_£J__  -L l  31 2 , i - l  4i 2i i x 5i

V . h*. (a,,.x0 . - + a. .x0. + Ti. (t-T) + ac.+l)°J °J 3j 2,j-1 4j 2j 3 5j

h* ,‘n.i+l *1 . i + l (c3 .1+1*2.1 + C4 .1+1*2 ■ 1+1 +

vi , j + l  hi , j + l  <a3jX2 , j - l ( t * ^  + a4Jx2J(t_l5 +

'i' i + l ( t ' ^  + C5.i+1 + ^
Tlj (t-2T) + a5j + 1)
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The dynamic model of a continuous cold reduction mill is developed. The model 

makes use of the force-torque equation expansion technique developed in an earlier  

report and presents the generalized (7N+8)th order state equation for an N-stand 

rolling mill. The equations of interstand tensions are found to be highly nonlinear 

with the arguments delayed due to the transition of strip between the stands. The 

model developed can used in the design of a controller for the entire rolling  
process.

DD ,F,r .,1473
Securi ty  C la s s i f i c a t i o n



S ecu ri ty  C la s s i f i c a t i o n

1 4
K E Y  W O  R  D  S

L I N K  A L I N K  B L I N K  C

R O L E . W T R O L E W  T R O L E W  T

System Modelling 

Rolling Mills 

Control Systems 

State-space Approach

!

j *

-

Securi ty  C la s s i f i c a t i o n


