
October 1988 UILU-ENG-88-2253
ACT-101

COORDINATED SCIENCE LABORATORY
College o f Engineering
Applied Computation Theory

PARALLEL
RESTRUCTURING
AND
EVALUATION
OF EXPRESSIONS

D. E. Muller
F. P. Preparata

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

A p p r o v e d fo r Public Release. D istr ib u tio n U n lim ite d .

UNCLASSIFIED
jgfljftlTV ¿U tflE l¿A riÓ N OP THIS PA ¿Í_

1a. REPORT SECURITY CLASSIFICATION

Unclassified________

REPORT DOCUMENTATION PAGE
Form Approvò
OMB No. 0704-0188

1b. RESTRICTIVE MARKINGS
None_______________

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

2«. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2253 ACT #101
6«. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
U niverait^of^

6b. OFFICE SYMBOL
(If eppilceble)

7«. NAME OF MONITORING ORGANIZATION
Office of Naval Research and
National Science Foundation

7b. AOORESS (City, Stete, end ZIP Code)
Office of Naval Research
Arlington, VA 22217

6c AOORESS (City, State, *nd ZIP Cod*)

1101 W. Springfield Ave.
Urbana, IL 61801

& Nat. Science Fount
1800 G St., N.W. :
Wash ington^DC__205f

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

JSEP - N00014-84-C-0149
NSF - CCR-87-03807

8«. NAME OF FUNDING/-SPONSORING _
ORGANIZATION J°int Services

Electronics Program and Nations .
8b. OFFICE SYMBOL

(If epplkebie)

10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK

Arlington, VA 22217 & Washington, DC 20550 ELEMENT NO. NO. NO.
WORK UNIT
ACCESSION NO.

11. TITLE (Includo Security Oessificetion)

"Parallel Restructuring and Evaluation of Expressions"
12. PERSONAL AUTHOR(S)
Muller, D. E. and Preparata, F. P.

13a. TYPE OF REPORT 13b. TIME COVERED |1S. PAGE COUNT

J____ U ___________Technical FROM TO 1 October 1988
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continuo on rovino if necessary end identify tty block number)

evaluation of expressions, semiring computations,
restructuring of expressions, computational complexity,
parallel computation, minimum depth networks

In this paper we describe a boolean network of size 0(N logN) which accepts a fully
parenthesized N-variable expression over a given semiring and produces its value in
O(logN) time. The network consists of two components!, a preprocessor and a universal
evaluator. The preprocessor computes the destinations of the expression terms and
routes them to the correct input terminals of the universal evaluator.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
(3 UNCLASSIFIED/UNLIMITEO □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22b. TELEPHONE (Include Aree Code) I 22c. OFFICE SYMBOL22a. NAME OF RESPONSIBLE INDIVIDUAL

D O Fo rm 1473, JU N 86 Previous editions ere obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Parallel Restructuring and Evaluation of
Expressions1

D. E. Muller and F. P. Preparata
University of Illinois at Urbana-Champaign

Abstract

In this paper we describe a boolean network of size 0(N 2 log N)
which accepts a fully parenthesized TV-variable expression over a given
semiring and produces its value in O(logTV) time. The network con
sists of two components: a preprocessor and a universal evaluator. The
preprocessor computes the destinations of the expression terms and
routes them to the correct input terminals of the universal evaluator.

1. Introduction
The evaluation of tree-structured expressions is a fundamental computa

tion encountered in several problems. The feasibility of parallel computing
has attracted considerable research interest to the restructuring of expres
sions - typically arithmetic expressions - to speed up their evaluation. While
restructuring for parallel evaluation has been the main objective for some
time[BB68,M71,MP71,B73,BKM73,B74,KM75,MP76,PM76], more recently
attention has focussed on the parallelization of the actual evaluation starting
from the original expression itself. Several algorithms have been recently pro
posed for implementation on the P-RAM model[BV85,MR85,GR86,CV87,
CV88, KD88]; the most efficient of these algorithms achieve time O(log TV)
for an TV-variable expression, and are either optimal, 0(TV/ log TV), or near-
optimal, O(TV), in the number of processors used.

xT h is work was supported in part by N SF G rant C C R -8 7 -0 3 8 0 7 and by the Joint
Services Electronics Program under C ontract N 0 0 0 1 4 -8 4 -C -0 1 4 9 .

1

The evaluation of an expression in parallel could be carried out as the
combined execution of the restructuring and evaluation tasks. Indeed, in
this paper we propose a method consisting of two cascaded phases, i.e. the
restructuring of the expression followed by its evaluation. The adopted frame
work is the boolean network model. Specifically, our network consists of two
components: a universal evaluator, i.e. a network designed to carry out the
evaluation of any expression with at most N variables, and a preprocessor,
designed to compute the assignments to the terminals of the universal eval
uator of the variables and connectives of the given expression. Our results,
which combine Theorems 1, 4, 5, and 6 in this paper, are summarized by the
following theorem:

T heorem A : An N-variable expression E over a semiring can be re
structured and evaluated in time O(logiV) by an 0 (N 2 log N)-size boolean
network.

Although the term “semiring” implies that the two operations “-f” and
may have no inverses, the present scheme permits the inclusion of their

inverses ” and “ -J-” in the calculation if they do exist.
A result with analogous time performance, but based on an entirely differ

ent approach, has been developed by Buss, Cook, Gupta, and Ramachandran
[private communication].

2. Expressions
Let E be an expression over a semiring, where all variables are assumed to

be distinct. Such an expression will be called a primitive expression. Thus,
we require only that the algebraic structure to which the variables belong
has two associative operations, conventionally “ + ” and such that
distributes over “+ ” , and that there is the additive identity 0. Obviously,
this class includes rings, fields, distributive lattices, and boolean algebras.

2

For concreteness of presentation, we assume E to be an expression over the
field of rationals (i.e. the operators are and and their inverses), but
specializations to other cases are straightforward (nowhere will commutativ
ity be invoked).

Expression E is thought of as defining a computation tree T(E), and
is given as a fully parenthesized string, where (i) a variable a is an atomic
expression (a), and (ii) given two expressions E\ and f?2, the string (Ei^E?)
is an expression with 7 € {+ , •, —, -i-}.

Example: ((((a i b i K ^ K J b s ^ b ^ a s ^ b s M b e K)) is a fully paren
thesized expression, with variables {a1?a2, «3?«4, a5, % ,«7 } and operators
{7 i ?72,73,74, 75,76}- It is a trivial exercise to show that an expression with
TV variables (and TV — 1 operators) has 47V — 2 parentheses, i.e. a total of
67V — 3 symbols.

A term of an expression is either a variable or an operator. Note that a
variable occurs between two facing parentheses “() ” and an operator between
two opposing parentheses w) (” . The label X(a) of a term a is its level in T(E),
i.e. the number of edges in the path between the root and the node of the
term itself (thus, the root has label 0). It is easily seen that the label of a
term is given by: (number of left parentheses to its left) - (number of right
parentheses to its left) - 1. Thus, if we associate the integers -f 1 and —1 with
each left and right parenthesis of E , respectively, then the labels of the terms
are obtained by subtracting 1 from the prefix sums over the subsequence of
parentheses of E. It is well-known (see, e.g.[LF80]) that such prefix sums can
be computed for an TV-variable expression by an 0(7V)-node tree network in
time O(log TV).

3. T he Universal Evaluator.
The universal evaluator network is based on a restructuring scheme due

3

to Brent[B73], which we now review.
The variables of an expression are assumed to be of two kinds: atomic

variables . . . , ar and free variables X\ An expression is referred
to as an A- or E'-expression depending upon whether or not it contains free
variables, respectively. Normally we will use the letter uEn for ^-expressions
and the letter “A” for A-expressions. The weight “ | |” of an expression is the
number of atomic variables it contains. The symbols 6 and <j> will be used to
represent the operator that occurs at level 0 in the tree corresponding to an
E- and an A-expression, respectively.

Given a ^-expression E with N variables, 2*7“ 1 < N < 2J — 1, the break
point of E is a unique node v of T (E)i such that the expression associated
with the subtree rooted at v is (E'QE"), with max(|i?'|, \E"\) < 2J-1 — 1, and
l^'l + |E"\ > 2J_1. If we excise T(E'0E") from T(E) and replace it with a
free variable x (see Figure 1), we obtain the tree of a A-expression A ox with
|A| = \E\ - {\E'\ + \E"\) < N - 2J_1 < 2J_1 - 1. We cah A o (E'0E") the
canonical decomposition of E.

Analogously, given a A-expression A ox with N atomic variables, 2J_1 <
N < 2J — 1, the breakpoint of A o x (a ^-breakpoint) is a unique node v of
T(Aox) such that the expression associated with the tree rooted at v is either
((A ' o x)(f>E) or (E(f>(A' o x)), with |A'| < 2J_1 — 1, and |A'| + \E\ > 2J_1.
Again, if we excise from T(A o i) the subtree rooted at v and replace it
with a free variable y (see Figure 1), we obtain an A-expression (A" o y),
with |A"| = |A| - (|A'| + |£|) < N — 2J~1 < 2J_1 - 1 (see Figure lb). We
call A" o ((A ' o x)(f)E), or A" o (E<j){A' o x)) as appropriate, the canonical
decomposition of A o x.

Brent’s scheme is based on the following standard forms for E- and A-
expressions:

E = fi, i o * = t lX + 1 12,E2 A21X + A22

4

Figure 1: Canonical decompositions of E- and ^-expressions.

5

where ¿1, E2, An, A12, A21, A22 are division-free expressions. An ¿'-expression
E is given by the pair (Ei ,E 2) and an A-expression A o z by the quadru
ple (A n, A12, A21, A22)- (Notice that for division-free arithmetic expressions,
E2 = A22 = 1 and A21 = 0). The canonical decomposition E = A o (E'OE")
yields:

¿1 = numerator of ^Au + ^12) (1)

(
/ e »\

A2! (^"^^77) + ^22

with \E\ < 2J - 1 and \E’ |, |£"|, |A'| < 2*7' 1 - 1.
Similarly, the canonical decomposition A o x = A" o ((A ' o ;r)<^E) yields:

A n# + A12 = numerator of ^A^ + Ai^j (2)

A2iX + A22 = numerator of (a '̂ (- /r \ + ^22)\ \A2lx + A22 t,2J)

with |A| < 2J—1 and |A'|, |A"|, < 2J- 1-1 , \E\ < 2J-1 . Notice that Relations
(1) and (2) involve no division; this and relation E = E\/E2 indicate that
the evaluation of E involves a single division at the end.

These conditions on the weights of the terms of the decomposition readily
establish that the depth of the restructured trees for both E and A are 0 (J).
Moreover, the above decompositions yield the structures of universal evalua
tors. We shall use script letters “£ ” and “A ” to denote universal evaluators
for E- and A-expressions, respectively. (Note the distinction between an ex
pression - letters aEn and “A” - and the corresponding universal evaluator
networks - letters “£ ” and “A ” .) It must be underscored that a universal
evaluator network is itself described by an expression; however, the universal

6

Figure 2: Recursive structures of universal evaluators of E- and A-
expressions.

evaluator suited for all expressions of weight not exceeding a fixed bound B
has substantially larger weight than as we shall see shortly. Specifically,
let symbol denote the universal evaluator suited for an expression E such
that 2J_1 < \E\ < 2J — 1. Analogously, we define A^\ The structures of
and are shown in Figure 2, where 9- and ^-combiners are respectively
fixed-size modules implementing computations (1) and (2). Denoting by tj
and cij the numbers of input terminals of networks and A^\ respectively,
we readily have the following recurrence relations:

f ej = 2ej_i + a>j- i +1
\ Qj — 2uj-l + 6j +1

which, combined with the initial values t\ = 1 and ai = 2 yield

e,' = {V - 1)
at = 2 (4# - 1) for j = 1 ,2 , . . . , . (3)

7

Figure 3: Biasing of to evaluate (x(f>a).

Letting J = [log2iV], t j = (4 l̂og2i/vrl — l) /3 = 0(7V2) is the number of
input terminals of the universal evaluator for TV-variable expressions, with
2J~1 < N < 2J - 1.

It is a simple exercise to verify that £W for an input variable a is a trivial
circuit consisting of a straight wire carrying the variable and of a second
output with the constant bias 1. Network for an A-expression (x</>a),
consisting of a single atomic variable a and an operator </>, is realized by the
biasing of the standard ^-combiner shown in Figure 3. It is immediate to
verify that the default biasings of the terminals of the universal evaluator are
value “0” for a variable terminal and operator “+ ” for an operator terminal.

We now consider the latency (i.e., the computation time) of the universal
evaluator. Let 8(£^) and 0 (A ^) respectively denote the latencies of
and of A ^ and let r a n d tq respectively denote the delays of the (f>- and
0-combiners. From the schemes of Figure 2 we deduce:

f <$(£(J)) = m ax(i(£^_1)),i(A (-;“ 1))) +re
\ ¿ (A ^) = max(£(Ak'” 1)),£(£k*” 1))) +r^.

We readily have 8(A ^) = m a x ^ A ^ “ 1*), 8(S^) + t#, + tq) =
max(£(£k’-1)), to +r^ , which yields ¿ (A ^) = 8(£^) and

8

6(£(rt) — S (A ^) + To = 6(£d *1) + t# + tq. From the condition ¿(¿W) = 0
we have

6 (£ (J)) = (J - l)(r* + t$) = (RogiVl - l)(r* + r*).

(Here and in what follows, all logarithms are assumed to be base 2.) We also
note that delays can be trivially inserted so that £ ^ can be used in pipeline
fashion.

We summarize the preceding discussion with the following theorem:

T heorem 1. The universal evaluator for an N -variable expression has depth
O(log TV) and size 0 (N 2).

4. Parallel restructuring
In this section we discuss the overall scheme whereby the terms of a given

expression E (variables and operators) are applied to the terminals of the
universal evaluator £T(flo«l^ ll). \ flow-diagram of the process outlined in
the introduction is given in Figure 4. The expression E is applied at first
to the preprocessor, which computes for each term a of E an integer p(a),
called the assignment of a. Subsequently, for each term a, the pair (p(a),a)
is formed. The router directs term a to the terminal of index p(a) of the
universal evaluator. For brevity, the same denotation will be used for a term
of E and for the corresponding node of T(E).

Definition. Let w be a node of T(E), and Ew the expression represented
by the subtree of T(E) rooted at w. In T(E) a left (resp. right) ancestor
of a node v is any node such that v belongs to its right (resp. left) subtree.
For v in T(EW), we define p(v\w) - the assignment of v relative to w - as the
index of the terminal of £dloglf7u,H) to which term v should be applied. We

9

Assignment
computation

(p f a >)

= >

Preprocessor

v
Pairing Routing :h>

Universal
evaluator

{(p (a),a)}

Figure 4: Flow diagram of the overall restructuring/evaluation process,

also define p(v\root(T(E))) = p(v), the (absolute) assignment of v.

We now analyze the calculation of p(). The structure of the universal
evaluator E ^ for an expression with at most (2J — 1) variables exhibits the
following properties:2

(i) . In the canonical decomposition Ao(E'0E"), the component expressions
appear in the left-to-right order E', E", A o x . Moreover, we assume
\E'\ > \E"\.

(ii) . In the canonical decomposition A" o (E ^ A ' o x)) or A" o ((A ' o x)<j>E),
the component expressions appear in the left-to-right order A! o x,E ,
A” oy.

Lem m a 1. If the orders of the positions of the terms in E and of their
assignments to the terminals of are to be consistent, then the original

2I f the operations are not com m utative, then we introduce new denotations for the
original operations with the operands in reverse order.

10

computation tree T(E) must be rearranged to satisfy the following condi
tions:

1. Each free variable is the left child of its parent;

2. At each ^-breakpoint the A-expression is associated with the left sub
tree.

3. At each «^-breakpoint the heavier subexpression E' is associated with
the left subtree.

P roof: We say that a free variable is terminal if it was generated by the
removal of an expression of the form (E'OE"). Proof of (1): If the free
variable x is terminal, then by Property (i) the expression {E'OE") is to the
left of A ox, which implies that each term of A is to the right of (E'OE"), i.e.,
x is a left child. If the free variable y is not terminal, then by Property (ii),
the expression E<t>(A'ox) - or (A'ox)(j)E - appears to the left of A "oy , which,
again implies that y is a left child. Proof of (2): An immediate consequence
of Property (ii), by which (A ' o i) appears to the left of E. Proof of {3):
Trivial, by Property (i). □

We claim that the tree T'(E) obtained by rearranging the original T(E)
in order to comply with Conditions (1), (2), and (3) above, the left subtree of
each internal node is at least as heavy as the right subtree. This is trivially
so for a «^-breakpoint. For a «^-breakpoint, the left subtree is, by (2), an
A-expression of the form A' o x. We distinguish two cases: (a) \A'\ = 0, i.e.,
the A-expression reduces to a free variable x. In this case x is terminal and
originated by a decomposition of the form Ao{E'0E") with \E'\ + \E"\ > \A\.
Since the left subtree of the parent of x in T'{E) has weight at most |A|, the
claim holds, (b) |A'| > 0. In this case we have the situation illustrated in

11

x is terminal

Figure 5: Illustration of the chaining of free variables.

Figure 5. If x is terminal, then the expression of the tree rooted at node <f> is
(A'oE^^E, with |i?*| > |A/|-f |f?| (by the selection of ̂ -breakpoints) and thus
\A'\ + \E*\ > \E\. If x is not terminal, then there is a A-expression (A* o y),
with y terminal, such that the expression of the tree rooted at node <f> is
A'o(A*o£*)<££, with|£*| < |A'| + |A*| + |£|, and thus |A'| + |A*| + |J5*| > \E\.
This establishes the claim.

Referring to the rearranged tree T'(E), for each node v we define two
companion nodes r(v) and l(v) as follows: /

r(u): the farthest right ancestor of v such that each node in the path from
v to r(v) is a right ancestor of v. (Note, r(v) always exists and may coincide
with v.)

l(v): the closest left ancestor of v, i.e. l(v) is the parent of r(v). (Note,
l(v) may not exist, in which case we say l(v) = e, the empty node.)
We then have

p(v) = p(v|r(v)) + p(l(v)).

Indeed v is on the leftmost path of the computation tree T (£ r(„)), and

12

p(u|r(u)) is the assignment term v would receive in T{Er̂ v))\ moreover, v
is in the right subtree of l(v), so that the assignment of v must be offset by
p(l(v)). Iterating the above formula we obtain

p(v) = p(v\r(v)) + P(™\r(w)) (4)
w£A(v)

where A(v) is the set of left ancestors of v in T'(E).
Formula (4) reduces our problem to the calculation of p(v\r(w)) for an

arbitrary v in E. The value of p(v|r(u)) depends exclusively on the weights
L(v) and R(v) of the left and right subtrees of t>, respectively. Indeed, in the
semiclosed interval (max(L(u), R(v)), L(y) + R(v)] there is a unique integer
of the form p2q with largest value of q. Let l&a_2 .. • &g+ilO . . . 0 be the binary
spelling of p2q.

Suppose at first that p = 1 (i.e., s — 1 = q). Term v is a ^-breakpoint,
and its terminal of the universal evaluator occurs immediately to the right
of a subnetwork i.e., p(y) — ea_i -f 1.

When p > 1, term v is a ^-breakpoint, and its terminal of the universal
evaluator occurs after the following sequence of subnetworks (refer to Figure

2):

1. a terminal for a ^-operator, (for a total of 2e5_i + 1
terminals).

2. For j = s — 2 down to q + 1: A^\ a terminal for a «^-operator, S^+1\
(for a total of a.j -f eJ+1 + 1 terminals) if and only if bj = 1.

i
3. AW.

Therefore
3 - 2

/>(t>|r(t>)) = (2es_! + 1) + Ybi(ai + i + 1) + a, + 1
j=q+1

13

Using equalities (3) we obtain

45“ 1 - 1 iz? 49 _ l
= 2 - — ----- + 1 + £ • 4J + 2 • — -------1-1

d j=i+i }

= 2 2 4’ + g 2bj • 4J + 2 g 4J + 2
j=o j=q+1 j=o

= 4s- 1 - 2 4j - 1 + 2 26j • 4J + 2 2 4J + 2
i=0 i=9+l i=0

= 45“ 1 + 2 (2bi - 1)4J - 4’ + 2 4J + 1
j = q + l j= 0

= E (2ci - !)4i + 1 (5)
i—o

where cs_!Cs_2 . . . c0 is the binary spelling of p2q — 1.
From a computational viewpoint we note: If mr_ ! . . . m0 and sr_ ! . . . s0

are the binary spellings of max(L(u), R(v)) and of L(y) + R{v), respectively,
then (s — 1) is the largest value of j for which mj — Sj = 1, and q is the
largest value of j for which rrij — 0 and 3j = 1. Thus in time O(logiV) we
can obtain c4_ica_2 . . . Cq. T o obtain p(v|r(v)) from this number we perform
the following transformation

A j) A j) A i) _ / 1 1 1 if c j ~ 0
a 2 j+ 2 a 2 j + l a 2j ~ S o 0 1 iif Cj = 1

and add modulo- 2 bit-by-bit the equally-indexed bits of the corresponding
s binary numbers.

The calculation of the subtree weights L(v) and R(v) is the topic of
Section 5. In Section 6 we shall address the question of the distribution of
the offsets p(w\r(w)) for w € A(u). Finally, Section 7 will discuss the routing
of v to the terminal of S^ indexed p(v).

14

5. Calculation o f Subtree W eights
The expression E consists of a sequence of parentheses, variables, and

A

operators. We shall write E to denote the subsequence of E formed by
erasing the parentheses, leaving just the operators and variables. We note
that the members of E are in one-to-one correspondence with the nodes of
the tree T (E), and we have seen at the end of Section 2 that a label A(v),
representing its level in T(E), may be found for each such node v.

Let v be a variable in the expression E, so that v corresponds to a leaf
of T(E). There is a unique path from the root of T(E) to v. We write this
path as u0, V i,. . . , vp where v0 is the root of T(E) and vp = v. For each node
V{ in the path A(ut) = z, and if z is less than p, then is an operator.

We now wish to investigate the properties of the subsequence of E corre
sponding to the path u0, u1?. . . , vp of T(E). We begin with the following:

Lem m a 2: In the sequence E , for any i < p there is no element between
and vp whose level is less than i. Furthermore, if x is any operator or

variable of some level i < p such that every element between x and vp is of
level greater than z, then x must be ut-.
P roof: The variable vp is either in the right or the left subtree of T(EVi) (cf.
Definition 1). Let us assume first that it is in the left subtree so that vp is
to the left of v,- in E. Then there is a subsequence of E of the form (E'viE")
such that vp occurs in E'. All the operators and variables in E' have level
greater than i so we may conclude that all elements of E between vp and v{
have level greater than z. Furthermore, if we assume that x is some variable

A

or operator to the left of vp in E which has level no greater than z, and such
A

that every element of E between x and vp is of level greater than z, then x
must be the first operator immediately to the left of (E'viE"). Since it must
have level less than z it cannot be ut-, and the conclusion follows. Second,

15

if we assume that vp is in the right subtree a precisely analogous argument
gives the same result. □

Now, starting with vp we define the first forward subsequence FS(vp)
of E, starting with vp with monotone decreasing levels to consist of elements
ai> a2, • • • ? ar such that (i) ai = vp, (ii) for each at- before the last, the element
a,+i is the first member of E to the right of a*- having a smaller level than
a,-, and (iii) there is no element of E to the right of ar having a smaller level
than ar.

A similar definition describes the first backward subsequence BS(vp) of
E , starting with vp with monotone decreasing levels. The only difference is
that the word “right” replaces the word “left” in all places in the definition.
The corresponding subsequence has the form 6a,6a_ i , . . . , bi and is such that
(i) &i = vp, (ii) 6t+1 is always the first member of E to the left of 6t- having
smaller level than 6t-, (iii) there is no element of E to the left of bs with
smaller level than bs.

T heorem 2: A path Vo, t>i,. . . , vp on T(E) from the root Vo to a leaf vp
corresponds to FS(vp) and to BS(vp).
P roof: Using the previous lemma, we see that the members of the path are
precisely the elements satisfying the conditions for being in either the first
forward or first backward subsequence starting with vp. □

If v is a node of the tree T(E) which is not a leaf, then it represents an
operator. The subtree T(EV) of T(E) associated with v corresponds to an
expression of the form (E'vE"). The weights L(y) = \E'\ and R(v) = \E"\ are
the weights of the left and right subtrees of T(EV) respectively. Our objective
is to develop a procedure to determine L(v) and R(v) for each operator node

16

Figure 6: Circuits to compute (L(v), R(v)).

v of T(E) which can be carried out in time O(log N).
The circuit to compute L(v) and R(v) contains a binary tree correspond

ing to each variable w in E, a typical one of which we shall call Tw. The
edges in the tree are serial transfer paths and the leaves receive the members

A

a of E , with the exception of w, in their given order (see Figure 6). The
label A (a) of each member a of E is also applied to each corresponding leaf
of Tw. These labels are also transmitted to the internal nodes of Tw in such a
way that each internal node fi receives the minimum label of all the leaves in
its subtree. This is accomplished by sending messages from the leaves to the
root of Tw so as to give each internal node // the minimum label received by
its two children. This operation can clearly be carried out in time O(log N)
giving each node n of Tw a label 6 — X(fi) by endowing each node with a
one-bit comparator and feeding the labels most-significant-bit first.

Two messages called tokens are sent from the root of Tw along the left and
right edges of Tw connected to the root. These tokens have the form (L,
and {R,6), where L signifies “left” and R “right” and 6 is the label A(w). We

17

now trace the behavior of the left token (L , S) as it travels along the edges of
Tw towards the leaves. An analogous behavior will hold for (R,S), but with
“left” and “right” interchanged.

When starting out from the root, if the first node encountered by (L, S)
(i.e. the left child of the root) has label no less S, then the token is erased,
otherwise, it proceeds as follows.

After leaving the root of Tw, the token (L, 8) passes on a path along the
edges of Tw encountering various nodes until it finally comes to a leaf, where
it stops. We shall see that this leaf of Tw must correspond to an operator v
such that w is in the right subtree of T(EV). It will therefore contribute 1 to
the quantity R(v). The way that the token (Z, <S) chooses the correct path is
now described.

Since Tw is a binary tree, all its internal nodes are of degree 3 except the
root which is of degree 2. When the token (Z,<$) reaches an internal node
of degree 3 it takes either the left or the right descending branch according
to the following rule, where the labels on the left and right children of fi are
6jj and 8r, respectively.

Rule for left-token propagation

1. begin i f Sr < 6 then
2. begin (L,S) proceeds on the right edge;
3. i f Sl < Sr then (L,8r) is created and sent on the left edge
4. end
5. else (Z, S) proceeds on the left edge

end

Note that token (L,8r) created at Line 3 follows the same rule as the
former token except that, since it has a different label (namely Sr instead
of S), its interactions will be correspondingly different. An analogous Rule

18

holds for (i?, £) with the following substitutions: Sr —► Sl ,R —* L, left —*
right , right —► left .

Naturally, all the generated tokens as well as the original two tokens are
strings of 0(\ogN) bits that propagate simultaneously in Tw in bit-serial
fashion. Since they all move on paths of the binary tree, they do not retrace
their paths and hence the time required is determined by the sum of the
length of their representation, which is 0 (log N), and of the maximum path
length from the root to a leaf of the binary tree, which is also O(log N).

It remains to prove the following.

T heorem 3: The leaves of Tw which receive tokens are exactly those which
correspond to operators on the path of T(E) from w to it root. Furthermore,
those receiving a left token have w in their right subtrees (are left ancestors
of in), and those receiving a right token have w in their left subtrees (are
right ancestors of in).
P roof: We shall show that those leaves in the left subtree of Tw which receive
left tokens correspond to just the members of BS(w). An analogous result
applies to the right subtree. Then, using Theorem 2 the result is proved.

There are three parts to the proof. First, we show that the original token
(T, 6) goes to the leaf of Tw corresponding to the first member of E to the
left of w having level less than S. To show this, we imagine that each edge
of Tw has a label A (a) which is the same as the label of the child node a to
which it connects. We now trace the path from the root of Tw in the left
subtree taken by the original token (L,S). It can never follow an edge with
label as large as S, but otherwise it will always go to the right if possible until
it reaches a leaf. All parts of the subtree which are to the left of this path
must have labels which are greater than or equal to S, by the mechanism
that assign labels to the internal nodes of Tw. On the other hand, the label

19

of the leaf reached by the token must be less than 8 since it lies on the path.
This proves our first assertion.

Second, we show that any new token (L, 8') generated in the process must
go to one of the members of BS(w). At the point of its initiation, the token
(L, S') cannot have passed to the right of any part of the left subtree with
label less than 8\ because the tokens from which it was generated had labels
greater than S’. Following its initiation, the token (L,8 ') follows a path such
that all parts of the subtree which are to the right of this path must have
labels at least as large as S'. Thus, the leaf it reaches is the first one with
label less than 6' and is thus on BS(w).

Third, we show that every member of BS(w) must receive a token. Let
the operator a with level A be a member of this subsequence. From the
definition, we know that A < 8 and that all leaves of the left subtree of Tw
which occur to the right of a have level greater than A. Tracing a path on
Tw from a to the root, we see that this entire path has labels at most A, but
that tributaries to the right of this path have labels which are greater than
A. Now, consider a token starting out on this path. In the beginning it has
label 8 and as long as the path goes to the right it will retain this label and
follow the path. Now, if the path goes left, it either retains the label 8 or else
obtains a new label 8' < 8. However, 8' > A because the path is ultimately
connected to the leaf of a. Thus, a left token will ultimately reach a.

Now, by Theorem 2: we see that the leaves of Tw reached by tokens are
exactly those corresponding to those operators on the path of T(E) from its
root to the leaf corresponding to w. Also, those receiving left tokens have w
in their right subtrees and those receiving right tokens have w in their left
subtrees. □

The final steps for computing L(v) and R(v) for each operator v of E

20

must be carried out by adding the numbers of left and right tokens received
by each v. This can be done by using a separate pair of adders for each
operator. Such an adder is in effect a parallel counter using N single-bit
inputs corresponding to the N variables, and can be constructed as a binary
tree of depth log2(iV). The computation time is O(logiV). In Figure 6 we
have a global illustration of the machinery implementing the computation of
L(v) and R(v) for all internal nodes v of T(E).

Combining the foregoing discussion with the results of Section 4 on the
conversion of L{y) and R(v) to /9(v|r(v)), we have the following theorem:

T heorem 4. The computation of the relative assignments p(u|r(u)) for each
term v of N-teim expression E can be done by a boolean network of size
0 (N 2) in time O(logiV).

6. D istribution o f the Offsets
The last step needed to calculate the second term in the expression for

p(u), (formula (4)), for each vertex v of T(E), requires forming the sum
¿2 p{w\r(w)) over all the ancestors w of t; in T(E) such that v is in the
lighter subtree of w.

To carry out this calculation we can use the same structure that was used
to calculate the weights L(v) and R(v) and illustrated in Figure 6. Again,
we let S = X(w). Tokens of the form (T, £) and (R , 6) are sent from the root
of each tree Tw, but in this case the rules obeyed by the tokens are different
from those described in Section 4. (Notice that the token labels L and R
are used here to aid the explanation but need not be implemented.) We also
assume that the functions L(w) and R(w) have already been calculated.

Now, for each node u, we wish to add the offset of w provided that v
is in the lighter subtree of w. We begin by comparing L(w) with R(w) to

21

determine which of these two numbers is smaller and in this way decide into
which of the two subtrees of the root of Tw to send the token.

In order to send the token to only those leaves of Tw which correspond to
descendants of w in T(E), we must choose the rules suitably. For concrete
ness, let us assume that R(w) < L(w), in which case the token (R, 6) enters
the right subtree of the root of Tw. Then all the leaves of Tw corresponding to
nodes v of T(E) that must receive the offset p(w\r(w)) occur in a consecutive
sequence at the left of this subtree. Specifically, this sequence of leaves is
bounded on the right by a leaf p corresponding to a (right) ancestor of w,
which is associated with a label A' < 6. It follows that the token must be dis
tributed exactly to the left subtrees of the leaf-to-root path in Tw originating
in p. Therefore we have the following rules:

(i) . If the descending token (i?, 8) enters a vertex of Tw whose label is less
then 6, then the token follows the branch to the left child.

(ii) . If the descending token enters a vertex whose label is not less than 6,
then the token is duplicated and both children receive (R ,6).

(Note: (1) It is not possible for the label of a vertex reached by this process
to be the same as that of w. (2) If the leaf p exists, there must be at least
one leaf to its left in the right subtree of Tw. Therefore, p can never receive
a token.)

An entirely analogous set of rules applies to the original token (L, 8),
which is created when L(w) < R(w). In this case (L,6) is sent into the left
subtree and the above rules are used with “right” and “left” interchanged in
all places.

Finally, all the tokens will reach leaves of Tw which represent vertices
in the lighter subtree of T(E) whose root is w. To each of these leaves we

22

attach the offset p(u;|r(ii;)) calculated by the method described in Section 4
and given by Formula (5).

The last step consists of adding, for each term v of E , the offsets obtained
from all the trees Tw. This may be done, again in time O(logTV), by the
same adders which were used for computing the functions L(v) and R(v),
as described in Section 5. (Note that in this case each adder tree functions
as a full-fledged adder of 0(N) integers of O(logTV) bits.) The result is the
assignment value of the p(y) according to formula (4).

We summarize the discussion as follows:

T heorem 5. The computation of the (absolute) assignment p(v) for each
term v of an TV-term expression E can be done by a boolean network of size
0 (N 2) in time O(logTV).

We next see how these assignments are used to accomplish the routing of
the terms of E to the universal evaluator.

7. R outing to the universal evaluator
Once the set of TV integers {p(a) : a a term of E] is available, the pairs

(p(a),a) are formed and supplied to a routing network, where p(a) functions
as the address of record a. As usual, J = [logTV].

Let #2* (for an integer s) denote the 2*-input/2s-output butterfly network.
The terminals of B?* are numbered from 0 to 2s — 1 from left to right and the
stages of #2s are numbered from s — 1 to 0 from input to output. Given an
integer r £ [0,2s — 1], we let BITj(r) be the coefficient of 2J in the binary
representation of r. Suppose that the (address, record) pair (r, R) is applied
at any input terminal of # 2•; we say that R is obliviously routed to output
terminal r if at stage j record R is routed on the right or on the left outgoing
branch depending upon whether BITj(r) = 1 or 0, respectively. We have

23

the following lemma:

Lem m a 3. Let (r0, r2, . . . , r p_ !) ,p < 2s, be a sequence of distinct integers
in the range [0,2s — 1], sorted in ascending order. Pair (r,-, Ri) is applied
to input terminal (c + ¿) mod 2s of B2» (for some fixed c £ [0,2s — 1]), and
Ri is obliviously routed. Then the routing paths of the p records are vertex
disjoint.
P roof: Sequence (r0, . . . , rp_i) applied to B2* as in the statement of the
Lemma is said to be well-positioned in B2>. To prove the lemma, it suffices
to show that the oblivious routing through Stage (s—1) is free of collisions and
yields two sequences (r0, . . . , rk) and (rfc+1, . . . , rp_i), with rk < 2s“ 1 < rfc+1,
which are respectively well-positioned in the left subnetwork B2»~i and right
subnetwork B2>-1 that are obtained by removing Stage (s — 1) from B2*.

A collision may occur only between two elements of the input sequence
applied to two terminals of B2» situated 2S_1 positions apart. It is immedi
ately realized that no collision occurs for p < 2s-1, so we consider p > 2s“ 1.
If c < 2s — p — 1, then BITa_i(ri) ^ BIT5_i(r,+2«-i) (for any i = 0 , . . . ,p — 1),
for, otherwise B IT ,_i(rt) = BITa_1(ri+i) = . . . = BITs_ !(r t+2s- i) because
(r0, . . . , rp_x) is sorted. But this implies that there are at least 2s-1 -f 1 dis
tinct integers in [0,2s — 1] with identical most-signficant bit, which is false.
An analogous argument holds when c > 2s — p — 1, thus establishing the first
part of the lemma.

To prove the second part, we consider the case c + p — 1 < 2s, the other
case being analogous. If neither interval [c, c + k] or [c + k + 1, c + p — 1]
contains 2s-1 — 1, then (r0, . . . r k) and (rfc+i , . . . rp_i) are each applied as a
single segment in the left and right half, respectively. Otherwise, one of them,
say (r0, . . . rfc), is split into segments (r0, . . . , r2a-i_ c_!) and (r2»-i_c, . . . , rk),
which are jointly applied to form a well-positioned sequence in the left half;

24

the other sequence is applied as a single segment in the right half. In all cases
we obtain well-positioned sequences in the left and right B2s- i subnetworks.
□

To carry out the routing, we could sort the set {(/?(a), a) : a a term of E }
in ascending order by p(a) and apply the sorted sequence to the leftmost
segments of inputs of the appropriate butterfly network for oblivious routing.
The latter is B&j- i , since, for J > 1,22J-2 < (4J —1)/3 < 22J-1 and therefore
each p() is in the range [0,22J_1 — 1]. However, some pruning of B22j~\ is
possible, since at most 2J+1 — 3 terminals are used at the input of Stage
(2 J — 2), 2(2J+1 — 3) at the input of Stage (2 J — 3), and so on, until we reach
Stage «7, where more than 22J“ 2 inputs are used. In Stages (2J — 2), (2J —
3) , . . . , J we will remove from B22j-\ all nodes that are not reachable by any
of the input terminals with index > 2J+1 — 4. In the subsequent Stages
J — 1, J — 2 , . . . , 0 we will remove all nodes that are not reachable by any
of the output terminals with index > ej — (4J — l) /3 . We leave it as an
exercise to show that the number of branching nodes of the pruned B 22j-\

is ((3J - 1)22J + l) /9 + — 3.2J_1 - 6 = 0 (N 2 log N). The routing is
obviously accomplished in time 0(\ogN). Since the preliminary sorting can
be done in time O(logiV) by a mesh-of-trees [MP75,L84] with 0 (N 2) leaves
we conclude:

Theorem 6. Routing of the expression terms to the terminals of the univer
sal evaluator can be done in time O(log N) with equipment of size 0 (N 2 log N)

References
[B73] R.P. Brent, “The parallel evaluation of arithmetic expression in

logarithmic time,” in Complexity of Sequential and Parallel Nu-

25

mtrical Algorithms, 83-102, Academic Press, N.Y., 1973.

[B74] R.P. Brent, “The parallel evaluation of general arithmetic expres
sions,” J. ACM, 21, 2 (April 1974) 201-206.

[BB68] J.L. Baer and D.P. Bovet, “Compilation of arithmetic expressions
for parallel computation,” Proc. IFIP Cong. 1968, North-Holland
Pub. Co., Amsterdam, 340-346.

[BKM73] R.P. Brent, D.J. Kuck, and K. Maruyama, “The parallel evalua
tion of arithmetic expression without division,” IEEE Trans, on
Computers, C-22, 5, (May 1973) 532-534.

[BV85] I. Bar-On and U. Vishkin, “Optimal Parallel Generation of a Com
putation Tree Form,” ACM Trans. Prog. Lang, and Sys., 7, 348-
357, 1985.

[CV87] R. Cole and U. Vishkin, “The accelerated centroid decomposition
technique for optimal parallel tree evaluation in logarithmic time,”
TR, Courant Institute, June, 1987.

[CV88] R. Cole and U. Vishkin, “Optimal parallel algorithms for expres
sion tree evaluation and list ranking,” Proc. AWOC 88, VLSI Algo
rithms and Architectures, Corfu, Greece (Springer-Verlag)(1988),
91-100.

[GR86] A. Gibbons and W. Rytter, “An optimal parallel algorithm for
dynamic expression evaluation and its applications,” RR 77, Dept,
of Computer Sci., Univer. of Warwick, April, 1986.

[KD88] S.R. Kosaraju and A.L. Delcher, “Optimal parallel evaluation of
tree-structured computation by raking,” Proc. AWOC 88, VLSI
Algorithms and Architectures, Corfu, Greece (Springer-Verlag)
(1988), 101-110.

[KM75] D.J. Kuck and K. Maruyama, “Time bounds on the parallel eval
uation of arithmetic expressions,” SIAM J. Comput. 4, 2, (June
1975), 147-162.

26

[L84] F.T. Leighton, “New lower bound techniques for VLSI,” Math.
System Theory, 17 (January 1984), 47-70.

[LF80] R.E. Ladner and M.J. Fischer, “Parallel prefix computations,” J.
ACM, 27, 4(October 1980), 831-838.

[M71] K. Maruyama, “On the parallel evaluation of polynomials,” IEEE
Trans, on Computers, C-22, 1, (Jan. 1973), pp. 2-5.

[MP71] I. Munro and M. Paterson, “Optimal algorithm for parallel polyno
mial evaluation,” Proc. IEEE Twelfth Annual Symp. on Switching
and Automata Theory, Oct. 1971, 132-139.

[MP75] D.E. Muller and F.P. Preparata, “Bounds to complexity of net
works for sorting and for switching,” J.ACM, 22, 2, (April 1975),
195-201.

[MP76] D.E. Muller and F.P. Preparata, “Restructuring of arithmetic ex
pressions for parallel evaluation,” J. ACM 23, 3, (July 1976), 534-
543.

[MR85] G.L. Miller and J.H. Reif, “Parallel tree contraction and its ap
plications,” Proc. 26th IEEE Symposium on Foundations of Com
puter Science, 478-489, 1985.

[PM76] F.P. Preparata and D.E. Muller, “Efficient parallel evaluation of
boolean expressions,” IEEE Trans, on Computers, C-25, 5 (May
1976), 548-549.

27

