
August 2003 U ILU -EN G -03-2215
CRH C-03-07

SCALAR QUEUE CONVERSION:
DYNAMIC SINGLE ASSIGNMENT
FOR CONCURRENT SCHEDULING

Matthew I. Frank and Saman Amarasinghe

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

A ugust 2003 U ILU -EN G -03-2215
CRHC-03-07

SCALAR QUEUE CONVERSION:
DYNAMIC SINGLE ASSIGNMENT
FOR CONCURRENT SCHEDULING

Matthew I. Frank and Saman Amarasinghe

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

REPO RT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

HuOhcrywftnq buroan lor this collection of information is estimsied to average 1 how per response, including the time lor reviewna instructions, searching existing data sources.mantaming thadata needed, and completing and reviewing the collection of information. Send comment regarding this burden esbmatas or any other aspectofthis5?I6™?'1,2 W»*hinflton Headquarters Services. Directorate lor information Operations and Reports, 1215 Jefferson
Davis Highway. Suae 1204, Arlington. VA 22202-4302. ana to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE8/2003 3. REPORT TYPE AND DATES COVERED

4. TITLE AN0 SUBTITLEScalar Queue Conversion:
Concurrent Scheduling

Dynamic Single Assignment for 5. FUNDING NUMBERS

6. AUTHOR(S)
Matthew I. Frank and Saman Amarasinghe

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) Coordinated Science Laboratory
University of Illinois
1308 W. Main St,
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER
UILU-ENG-03-2215
(CRHC-03-07)

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper described scalar queue conversion, a compiler transformation that m akes scalar
renaming an explicit operation through a process similar to closure conversion. We demonstrate
how to use scalar queue conversion to slice a flow graph into two executable parts. When
executed, the backward slice creates queues o f suspended computations (continuations). A t any
point in time execution o f the backward slice can be suspended and the queued continuations can
be invoked to effect the state transformations o f the forward slice. In other words, scalar queue
conversion finds the concurrency between the backward and forward slices o f a given point in
the flow graph. We briefly describe our experience using an implementation o f scalar queue
conversion as the key subroutine in the SU D S automatic parallelization system for the RAW
m icroprocessor. The SU D S compiler implements a generalized form o f loop distribution that
can distribute loops that contain inner loops with arbitrary (even irreducible) control flow.

14. SUBJECT TERMS n 0 n e 15. NUMBER IF PAGES
16

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

I NSN 7540-01*280-5500 Standard Form 298 (Rav. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Scalar Queue Conversion: Dynamic Single Assignment for
Concurrent Scheduling

M atthew I. Frank
Dept, o f Electrical and C om puter Engineering

U niversity o f Illinois, U rbana-C ham paign
m if @ u iu c . e d u

Sam an A m arasinghe
Laboratory for C om puter Science

M assachusetts Institute o f Technology
s a m a n @ lc s . m i t . e d u

U niversity o f Illinois Center for Reliable and H igh Perform ance C om puting
Technical Report CRHC-03-07

Ju ly 18, 2003

Abstract

This paper describes scalar queue conversion, a com­
piler transformation that makes scalar renaming an
explicit operation through a process similar to clo­
sure conversion. We demonstrate how to use scalar
queue conversion to slice a flow graph into two ex­
ecutable parts. When executed, the backward slice
creates queues of suspended computations (continua­
tions). At any point in time execution of the backward
slice can be suspended and the queued continuations
can be invoked to effect the state transformations of
the forward slice. In other words, scalar queue con­
version finds the concurrency between the backward
and forward slices of a given point in the flow graph.
We briefly describe our experience using an implemen­
tation of scalar queue conversion as the key subrou­
tine in the SUDS automatic parallelization system for
the Raw microprocessor. The SUDS compiler imple­
ments a generalized form of loop distribution that can
distribute loops that contain inner loops with arbitrary
(even irreducible) control flow.

1 Introduction

There are two relatively standard approaches for con­
verting sequential imperative programs into equiva­
lent concurrent programs, Tomasulo’s algorithm [36,
19], and compiler based program restructuring based
on scalar expansion [24]. Both of these techniques are
based on the notion that converting a program to a dy­
namic single assignment form exposes concurrency.

On the other hand, each of these techniques presents
the system designer with a set of tradeoffs. In partic­

ular, Tomasulo’s algorithm guarantees the elimination
of scalar storage (anti- and output-) dependences but
schedules locally, across a relatively small window of
consecutive instructions, and so partially sequential-
izes control flow. On the other hand, compiler based re­
structuring techniques can perform global control de­
pendence analysis, and thus find all of the available
flow concurrency in a program, but have not, prior
to this work, been capable of eliminating scalar stor­
age dependences across arbitrary unstructured control
flow. Scalar queue conversion eliminates this tradeoff be­
tween Tomasulo’s algorithm and compiler based program re­
structuring techniques.

Informally, renaming turns an imperative program
into a functional program. Functional programs have
the attribute that every variable is dynamically written
at most once. Thus functional programs have no anti-
or output- dependences. The cost of renaming is that
storage must be allocated for all the dynamically re­
named variables that are live simultaneously. The par­
ticular problem that any renaming scheme must solve,
then, is how to manage the fixed, and finite, storage
resources that are available in a real system.

Traditional compiler based renaming techniques,
(e.g., scalar expansion), rename only those scalars that
are modified in loops with structured control flow and
loop bounds that are compile time constants. This en­
ables the compiler to preallocate storage for scalar re­
naming, but limits the applicability of this technique
to structured loops that can be analyzed at compile
time. Scalar queue conversion, like modem variants of
Tomasulo’s algorithm [29, 30], manages scalar renam­
ing resources at runtime with queue data structures.
Thus, scalar queue conversion, like Tomasulo’s algo­
rithm, is able to rename scalars across arbitrary control

1

mailto:mif@uiuc.edu
mailto:saman@lcs.mit.edu

sum = 0
i = 0
do
partial_sum = 0
j = 0
use(i, sum)
do
use2(sum, partial_sum, i, j)
partial_sum = partial_sum + 1
j = next(j)
cl = condl(i, j)

while cl
i = i + 1
sum = sum + partial_sum
c2 = cond2(i)

while c2
use(sum)

Figure 1: An example program with a doubly nested
loop.

flow.

Tomasulo’s algorithm (and trace based scheduling
algorithms, in general [15,18]), however, schedule only
locally, and are unable to schedule across the mispre­
dicted branches that exit innermost loops. Thus, Toma­
sulo’s algorithm is unable to exploit concurrency out­
side of inner loops. Scalar queue conversion performs
global control dependence analysis [14,12], and is thus
able to exploit concurrency in outer loops as well.

Because scalar queue conversion both manages
scalar renaming resources at runtime, rather than com­
pile time, and does global control dependence analy­
sis, it is able to exploit concurrency in situations where
both Tomasulo’s algorithm and traditional compiler
based restructuring algorithms fail. In particular, scalar
queue conversion can exploit the concurrency in outer
loops of programs with arbitrary unstructured control
flow. This is the situation that we have found to be the
common case in practice [16].

The next section introduces the running example we
will use throughout the paper, and defines a few ba­
sic terms. Section 3 describes the scalar queue con­
version transformation. Section 4 describes unidirec­
tional renaming, the static renaming technique that
scalar queue conversion uses to eliminate scalar def-
def chains that would otherwise restrict scheduling.
Section 5 describes some of the practical issues we en­
countered in our implementation. Section 6 describes
related work. Section 7 concludes.

Figure 2: The control flow graph corresponding to the
program in Figure 1.

2 Running Example

The concepts in the rest of this paper are illustrated
with respect to an example based on the program
shown in Figure 1. We have done our best to choose
the example such that it illustrates the relationships be­
tween the relevant ideas, but so that it is not so compli­
cated as to overwhelm the reader. The control and data
dependence patterns in the example program of Fig­
ure 1 are representative of the kind of control and data
dependence patterns we found in several sparse matrix
creation codes after applying recurrence reassociation.
(The variable i corresponds to the row number, j cor­
responds to the column number of a non-zero entry,
and sum and p a r t ia l- su m represent the reassociated
index into the array where non-zero entries are being
stored).

We will use a standard control flow graph represen­
tation of programs. The flow graph for the code in Fig­
ure 1 is shown in Figure 2.

The example problem is as follows. Suppose we
want to apply loop distribution to the example pro­
gram. Roughly speaking, the loop distribution algo­
rithm described in Section 5 starts by identifying the
loop carried (cyclic) dependences of the loop (in this
case, the variables i and sum), and then creates sepa­
rate loops for each loop carried dependence. So let us
reschedule the loop in Figure 2 into two loops, one that

2

Figure 3: Partitioning the outer loop into the two sub­
sets, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14 and 1, 5, 6, 12, 15 pro­
duces a unidirectional cut because no dependence edges
flow from the second subset into the first. Cut depen­
dence edges are shown in dotted lines. They all flow
from the first subset into the second.

does the work corresponding to nodes 2, 3, 4, 7, 8, 9,
10,11, 13 and 14, and one corresponding to nodes 1, 5,
6,12 and 15. In particular, nodes 1 and 12 represent all
of the definitions of the variable sum, while nodes 5, 6,
12 and 15 represent all the uses of variable sum.

Is there a legal way to restructure the code to ef­
fect this rescheduling? We will demonstrate, in Sec­
tion 3, that this transformation is legal exactly because
the flow of value and control dependences across the
partitioning of nodes in the region is unidirectional.

To conserve space, we will assume that the reader
is familiar with the standard definitions of dominance,
postdominance and dominance frontiers [26], control depen­
dence [14, 12], def-use chains, use-def chains, def-def chains
and du-webs. Most of these definitions can be found in
a standard undergraduate compiler textbook.

We reserve the terms “def-use, use-def and def-def
chains,” for dependences between registers (scalars
that are provably unaliased). We will also define a par­
ticularly conservative set of dependences with respect
to memory operations (load and store instructions). We
say that any memory operation, x, reaches memory op­
eration, y, if there is a path from x to y in the control
flow graph. We say there is a memory dependence from x
to y if at least one of x and y is a store instruction. (That
is, we don’t care about load-load dependences).

We define the conservative program dependence graph
as the graph constructed by the following procedure.
Take the nodes from the control flow graph. For every
pair of nodes, x, y, insert an edge, x —> y, if there is
either a def-use-chain from x to y , a use-def-chain from
x to y, a def-def-chain from x to y, a memory depen­
dence from x to y or a control dependence from x to
V-

We define the value dependence graph as the graph
constructed by the following procedure. Take the
nodes from the control flow graph. For every pair of
nodes, x, y, insert an edge, x —> y, if there is either a
def-use-chain from x to y , a memory dependence from
x to y or a control dependence from x to y. Thus the
value dependence graph is the subgraph of the conser­
vative program dependence graph created by remov­
ing the use-def and def-def chains from the conser­
vative program dependence graph. A portion of the
value dependence graph for our example flow graph is
shown in Figure 3.

3 Scalar Queue Conversion

In this section we will show that the compiler can re­
structure a given flow graph code to eliminate the reg­
ister storage dependences across a class of flow graph
partitionings that we call unidirectional cuts. Informally,
a unidirectional cut corresponds to a slicing of the

3

value dependence graph such that information is flow­
ing in only one direction across the slice. The ability
to eliminate register storage dependences across uni­
directional cuts means that instruction scheduling algo­
rithms can make instruction ordering decisions irrespective
of register storage dependences. The increased flexibility
results in schedules that would otherwise be impossi­
ble to construct.

We call this transformation to eliminate register
storage dependences scalar queue conversion, because
it completely generalizes the traditional technique of
scalar expansion [24] to arbitrary unstructured (even
irreducible) control flow, and provably eliminates all
register anti- and output-dependences that would vio­
late a particular static schedule. In Section 5 we show
how to use scalar queue conversion as the key sub­
routine to enable a generalized form of loop distribu­
tion. Loop distribution is best viewed as a schedul­
ing algorithm that exposes the available parallelism in
a loop [24], The loop distribution algorithm in Sec­
tion 5 generalizes previous scheduling techniques by
scheduling across code with completely arbitrary con­
trol flow, in particular, code with inner loops. This gen­
eralization is possible only, and exactly, because scalar
queue conversion guarantees the elimination of all reg­
ister anti- and output-dependences.

The intuition behind the transformation is that every
imperative program is semantically equivalent to some func­
tional program [25, 20, 1]. Since a functional program
never overwrites any part of an object (but rather cre­
ates an entirely new object) there are no storage depen­
dences.

Another way to view the transformation is to com­
pare it to the dynamic register renaming performed
by Tomasulo’s algorithm [36, 19]. Tomasulo’s algo­
rithm performs a dynamic mapping of “virtual” regis­
ter names to “physical” registers, each of which is writ­
ten only once. After this renaming all register storage
dependences are eliminated, because (conceptually) no
physical register ever changes its value. Thus, the in­
struction scheduling algorithm is less constrained by
register storage dependences.

More concretely, instead of executing a piece of code,
we can defer execution of that piece of code by turning
it a closure. A closure can be thought of as a suspended
computation [25, 31]. It is typically implemented as
a data structure that contains a copy of each part of
the state required to resume the computation, plus a
pointer to the code that will perform the computation.
There are then a set of operations that we can perform
on a closure:

1. We can allocate a closure by requesting a portion of
memory from the dynamic memory allocator that
is sufficient to hold the required state plus code

pointer.

2. We can fill a closure by copying relevant portions
of the machine state into the allocated memory
structure.

3. We can invoke a closure by jumping to (calling) the
closures code pointer and passing a pointer to the
associated data structure that is holding the rele­
vant machine state.

Closures will be familiar to those who have used lexi­
cally scoped programming languages. For example, in
C++ and Ja v a closures are called objects. In these lan­
guages closures are allocated by calling operator new,
filled by the constructor for the object’s class, and in­
voked by calling one of the methods associated with the
object’s class.

In the general case we can defer execution of some
subset of the code by creating a closure for each de­
ferred piece of code, and saving that closure on a
queue. Later we can resume execution of the deferred
code by invoking each member of the queue in FIFO
order.

3.1 U n idirection al C uts

Now we define a cut of the set of nodes in a region, R,
as a partitioning of the set of nodes into two subsets,
A, B such that A n B = 0 and A U B = R. We say that
a cut is unidirectional iff there are no edges x —> y such
that x e B and y e A. That is, all the edges either
stay inside A, stay inside B or flow from A to B, and no
edges flow from B to A. For example, given the region
corresponding to the outer loop in Figure 3, the par­
tition {2,3,4,7,8,9,10,11,13,14} and {1,5,6,12,15} is a
unidirectional cut because there are no def-use chains,
memory or control dependences flowing from the sec­
ond set to the first.

In the following sections we will demonstrate that
by the process of queue conversion we can always trans­
form a unidirectional cut A-B of a single-entry single­
exit region into a pair of single-entry single-exit re­
gions, that produce the same final machine state as the
original code, but have the feature that all of the in­
structions from partition A execute (dynamically) be­
fore all the instructions from partition B.

Any particular value dependence graph might have
many different unidirectional cuts. The criteria for
choosing a specific cut will depend on the reasons for
performing the transformation. In Section 5 we will
discuss one method for efficiently identifying a useful
set of unidirectional cuts for loop distribution.

4

3.2 M ax im ally C onnected G rou ps

First we will show that we can create a “reasonable”
flow graph that consists only of the nodes from subset
A of a unidirectional A-B cut. The property that makes
this possible is that every maximally connected group of
the nodes from subset B will have only a single exit.
Thus we can remove a maximally connected subset of
nodes from subset B from the region flow graph and
“fix-up” the breaks in the flow graph by connecting
the nodes that precede the removed set to the (unique)
node that succeeds the removed set.

Given a unidirectional cut A-B of a flow graph then
we will call a subset of nodes (3 c B in the graph a max­
imally connected group iff every node in (3 is connected
in the flow graph only to other nodes of (3 or to nodes
of A. That is, given 3 = B — (3 and nodes b € (3, b e 3
there are no edges b —> b or b —4 b. For example,
given the unidirectional cut shown in Figure 3 where
A = {2,3,4,7,8,9,10,11,13,14} and B = {1,5,6,12,15},
the maximally connected groups are the subsets {1},
{5,6}, {12} and {15} ofB.

But now suppose that we are given a unidirectional
cut A-B. This means that there can be no control depen­
dences from B to A. Informally, there are no branches
in B that can in any way determine when or if a node in
A is executed. Now suppose that we are given a max­
imally connected group (3 c B. If |3 has an exit edge
b —4 a (an edge where b € (3, a £ (3), then, because 3
is maximally connected it must be the case that a £ A.
The node a can not be in B because then 3 would not
be maximally connected.

If there are two (or more) such exit edges, bo —4 ao
and bi —4 <n, where bo 7̂ bi then it must be the case
that there is a branch or set of branches in 3 that causes
the flow graph to fork. In particular, bo and bi must
have different control dependences, and at least one of
those control dependences must be on a node inside
3. But cm and a 0 can not be control dependent on any
node inside 3 - because they are on the wrong side of
the A-B cut.

Consider node ao- There is an edge from bo to ao,
thus there is at least one path from bo to e x i t that
passes through ao- But a 0 is not control dependent on
bo, so every path from b0 to e x i t must pass through
a 0. Thus ao postdominates bo- Similarly, for every
node bi € 3 such that there is any path from bi to b0,
it must be the case that ao postdominates bi.

Consider this set of bi £ 3 that are on a path to b0.
Now, 3 Is connected, thus there must either be a path
from bi to bi or there must be a path from bi to bi. If
there is a path from b 1 to bi then there is a path from
bi to bo and thus ao also postdominates bi. Suppose
there is no path from bi to bo, then there must be a
path from one of the bi to b i . But we already know

Figure 4: Any maximally connected subset of nodes
from the bottom of a unidirectional cut always exits to
a single point. In this case (an irreducible loop) if ei­
ther node 4 or 7 is in the bottom of a unidirectional cut
then so must all the nodes 2, 4, 5, 6, 7, 8 and 9. Thus a
maximally connected subset containing node 4 or node
7 will exit to node 10.

that every path from bi to e x i t goes through ao, so
every path from bi to e x i t must go through ao. Thus
ao postdominates both bo and b i .

By a similar argument ai postdominates both bi and
bo- More specifically, ai immediately postdominates b 1,
because there is a flow graph edge bi -4 a i . Thus ao
must postdominate ai if it is to also postdominate b i.
A similar argument shows that ai must postdominate
ao. Postdominance is a partial order, thus ao = ai.
So the maximally connected group 3 exits to a unique
node in A.

As an example, consider Figure 4. This figure shows
a flow graph containing an irreducible loop. Suppose
that we would like to include node 4 (a branch in­
struction) in set B of a unidirectional A-B cut. We
will demonstrate that any maximally connected group
3 C B that contains node 4 must also contain nodes 8
and 9, and will, therefore, exit through node 10. We can
see this by examining Figure 5, which shows control
dependence graph corresponding to the flow graph in
Figure 4. There is a cycle in the control dependence
graph between the two exit branches in nodes 4 and
7. Thus if either of the exit branches for the irreducible

5

Figure 5: The control dependence graph for the flow
graph in Figure 4 has a cycle between nodes 4 and 7.
Thus both nodes must be on the same side of a unidi­
rectional cut of the flow graph.

loop is included on one side of the unidirectional cut,
then the other must as well, because we require that no
control dependences in a unidirectional cut flow from
B to A.

Given a unidirectional cut A-B of a flow graph we
can efficiently find all the maximally connected groups
(3 c B as follows. First we scan the edges of the flow
graph to find all the edges bj -4 cn where bj G B and
ai € A. By the argument above the set of nodes at
found in this manner represent the set of unique exits
of maximal groups ^ c B. Then for each cu we can
find the associated maximally connected group Pi by
performing a depth first search (backwards in the flow
graph by following predecessor edges) starting at cu,
and where we follow only edges that lead to nodes in
B.

For example, recall that in Figure 3 the maximally
connected subgroup {5,6} exits to node 7. A backwards
search from node 7 finds nodes 5 and 6 from set B
but does not find node 12, because that would require
traversing intermediate nodes (e.g., node 4) that are in
set A.

Now we can create a flow graph that performs ex­
actly the work corresponding to part A of the unidi­
rectional A-B cut by removing each of the maximally
connected groups of B one by one. Given a maxi­
mally connected group Pi C B with entry edges aVo -4
bV , . . . , aV -4 bf and exits b£ —4 a N . . . , b£ —4
a * to the unique node a*, then we can remove Pi
from the flow graph by removing all the nodes of (3i
from the flow graph, and inserting the edges aVQ -4
a * , . . . , aV —4 a *. We call the resulting flow graph the
sliced flow graph for partition A.

Figure 6 shows the sliced flow graph for the partition
(2,3,4,7,8,9,10,11,13,14}. The maximal groups in the
original flow graph (Figure 3) were the sets {5,6}, and
{12}. The entry edges to (5,6} were {4 -4 5} and {10 —4
6}, while the exit edge was {6 -4 7}. Thus in the sliced
flow graph we remove nodes 5 and 6 and insert edges

{4 —> 7} and {10 -4 7}. Node 12 is removed and the
edge {11 -4 13} is inserted. Similarly, nodes 1 and 15
have been removed and edges connecting their entries
to their exits have been inserted.

3.3 The D eferred Execution Q ueue

In addition to creating a flow graph that performs ex­
actly the work corresponding to part A of a unidirec­
tional A-B cut, we can also annotate the flow graph
so that it keeps track of exactly the order in which the
maximal groups ^ c B will be executed. We do this
by creating a queue data structure at the entry point of
the region flow graph. We call this queue the deferred
execution queue.

Every edge aV -4 bV , aV € A, bV G (3i in the flow
graph represents a point at which control would have
entered the maximal group Pi. Likewise, every edge
b£k -4 a*, b*k G Pi, a f € A, represents exactly the
points at which control would have returned to region
A.

Thus, after creating the sliced flow graph for parti­
tion A, by removing the regions pi from the flow graph
(as described in the previous section), we can place an
instruction along each edge aV -4 a}0 that pushes the
corresponding code pointer for the node bV on to the
deferred execution queue. The edges aV. -4 a? execute
in exactly the order in which the PiS would have exe­
cuted in the original flow graph. Thus after execution
of the sliced flow graph for partition A, the deferred
execution queue will contain all of the information we
need to execute the code from partition B in exactly the
correct order and exactly the correct number of times.

We can accomplish this by converting each Pi into
a procedure that contains a flow graph identical to the
flow graph that corresponds to the original Pi, but re­
turns at each exit point of Pi.1 Then we can recreate the
original execution sequence of partition B by popping
each code pointer bV off the front of the deferred exe­
cution queue and calling the corresponding procedure.

The queue conversion of our example program is
shown in Figure 6. Push instructions for the appro­
priate maximal group entry points have been inserted
along the edges b e g in —4 2, 4 —4 7, 10 —4 7, 11 —4 13
and 14—4 end. The maximal groups {1}, {5,6}, {12} and
{15} are each converted into a procedure.

1 If the underlying infrastructure does not support multiple-entry
procedures, then each maximal group 3 * can be further partitioned
into a set of subprocedures, each corresponding to a maximal basic
block of 3i. Each subprocedure that does not exit 3 i tail calls [31] its
successors) from 3i-

6

3 : partial__sutn - 0

~ ^ '
7: partial_sum • parcial_aum ♦ 1

Figure 6: The sliced flow graph for partition A, consist­
ing of nodes 2, 3, 4, 7, 8, 9,10,11,13 and 14. For exam­
ple, nodes 4 and 10 (the entries to the maximal group
consisting of nodes 5 and 6) are connected to node 7,
(the single exit node for group 5, 6). Queue conversion
annotates the sliced flow graph for A with instructions
that record which maximal groups of B would have ex­
ecuted, and in what order. Each maximal group of B is
converted into its own procedure.

I 6 : use2(sum . pA rtial_sum , i , j) I

Figure 7: Cuts in the du-webs for variables i , j , sum
and p a r t ia l- su m given the cut from nodes 2, 3, 4, 7,
8, 9, 10, 11, 13, 14 to nodes 1, 5, 6, 12, 15 (shown in
bold). Def-use chains that cross the cut are shown as
dotted edges.

Closure Conversion

If it were the case that there were no register storage
dependences flowing from B to A then the deferred ex­
ecution queue would be sufficient. Our definition of
a unidirectional A-B cut did not, however, exclude the
existence of use-def or def-def chains flowing from re­
gion B to region A. Thus, we must solve the problem
that partition A might produce a value in register x that
is used in region B but then might overwrite the regis­
ter with a new value before we have a chance to ex­
ecute the corresponding code from partition B off the
deferred execution queue.

The problem is that the objects we are pushing and
popping on to the deferred execution queue are merely
code pointers. Instead, we should be pushing and pop­
ping closures. A closure is an object that consists of the
code pointer together with an environment (set of name-
value pairs) that represents the saved machine state in
which we want to run the corresponding code. Thus a
closure represents a suspended computation.

Consider the registers (variables) associated with the
set of def-use chains that reach into a maximal group
3 i C B. If we save a copy of the values associated with
each of these registers along with the code pointer, then
we can eliminate all the use-def chains that flow from
B to A, and replace them, instead, with use-def chains
that flow only within partition A.

To convert each maximal group 3i C B into a closure
we transform the code as follows.

7

Figure 8: Closure conversion ensures that each value crossing the cut gets copied into a dynamically allocated
structure before the corresponding register gets overwritten.

8

1. Consider the graph of nodes corresponding to (3i.
For each of the entry nodes bV of this graph find
the set of nodes (3ij c reachable from bV . For
each set (3i; find the set of variables, Vij = {vijk}
such that there is a def-use chain flowing from par­
tition A into Pi,. (That is, there is a definition of
Vijk somewhere in A and a use of Vijk somewhere
in (3ij). Figure 7 shows that this set can be eas­
ily derived from the du-webs corresponding to the
flow graph. For example, = {p artia l_ su m }
and = 0. The maximal group fi{5 6} has two
entry points, (at 5 and 6). In this case it happens
that V{5 g} 5 = V{5 6} 6 == { i > j »partia l_sum }.

2. Consider each edge aV —» a -0 in the sliced flow
graph for partition A that corresponds to entry
point bV of maximal group (3i. Along this edge
we place an instruction that dynamically allocates
a structure with |Vij |+1 slots, then copies the values
(bV ,v tji, . . . ,Vij|Vij|) into the structure, and then
pushes a pointer to this structure onto the deferred
execution queue. Figure 8 demonstrates this pro­
cess. For example, along the edge 4 - * 7 we have
placed instructions that allocate a structure con­
taining the values of the code pointer, “5”, and the
copies of the values contained in variables, i , j
and p a rtia l-su m .

3. For each Pi we create a procedure that takes a sin­
gle argument, c, which is a pointer to the structure
representing the closure. The procedure has the
same control flow as the original subgraph for Pi
except that along each entry we place a sequence
of instructions that copies each entry from each
slot of the closure into the corresponding variable
vik. Figure 8 shows that the two entries to the pro­
cedure corresponding to the maximal group {5 ,6}
have been augmented with instructions that copy
the values of variables i , j and p a r t ia l- su m out
of the corresponding closure structure.

4. To invoke a closure from the deferred execution
queue we pop the pointer to the closure off the
front of the queue. The first slot of the correspond­
ing structure is a pointer to the code for the proce­
dure corresponding to Pi. Thus we call this pro­
cedure, passing as an argument the pointer to the
closure itself. In Figure 8 this process is shown to­
wards the bottom of the original procedure, where
we have inserted a loop that pops closures off the
deferred execution queue, and invokes them.

This completes the basic scalar queue conversion
transformation. Because a copy of each value reach­
ing a maximal group Pi is made just before the point in

the program when it would have been used, the correct
set of values reaches each maximal group, even when
execution of the group is deferred. Additionally, since
the copy is created in partition A, rather than partition
B, we have eliminated any use-def chains that flowed
from partition B to partition A. In the next section we
will demonstrate how to generalize the result to elimi­
nate def-def chains flowing from B to A.

4 Unidirectional Renaming

In the previous section we demonstrated that we could
transform a unidirectional A-B cut on a single-entry
single-exit region into an equivalent piece of code such
that all the instructions in partition A run, dynamically,
before all the instructions in partition B. Further we
demonstrated that we could do this even in the pres­
ence of use-def chains flowing from partition B to par­
tition A. In this section we will show that the result
can be generalized, in a straightforward way, to A-B
cuts where there are additionally def-def chains flow­
ing from partition B to partition A.

The result depends on the fact that given a unidi­
rectional A-B cut, we can insert a new instruction any­
where in the flow graph, and that if we give that in­
struction a labeling that includes it in partition B, then
we will not introduce any new control dependences
that flow from partition B to partition A. (The oppo­
site is not true. That is, if we place a new instruction
in partition A at a point that is control dependent on
an instruction in partition B, then we will introduce a
control dependence edge that will violate the unidirec­
tionality of the cut.)

For the remainder of the paper we will assume that
each du-web in the program has been given a unique
name. This transformation is already done by most
optimizing compilers because it is so common for pro­
grammers to reuse variable names, even when the vari­
ables are completely independent. For example, many
programmers reuse the variable name i for the index
of most loops. Once the du-webs are calculated we it­
erate through the set of du-webs for each variable x, re­
naming all the uses and definitions in each node in the
ith web to Xi. Thus we can, without loss of generality,
talk about the du-web for a particular variable.

Now consider the du-web for variable x on a unidi­
rectional cut A-B where some of the definitions of x are
in A and some of the uses of x are in B. Thus, there is
a value dependence flowing from A to B. It may be the
case that there are definitions of x in B and uses of x in
A, but, because A-B is a unidirectional cut, it cannot be
the case that there are any def-use chains reaching from
B to A. Thus the du-web has a unidirectional struc­
ture, just as the value dependence graph did. (In fact,

9

Figure 9: An example of statically renaming the vari­
ables i , j and p artia l_ su m .

Figure 10: The unidirectionally renamed du-webs for
variables i , j and p artia l-su m .

another way of seeing this is to observe that each du-
web is an induced subgraph of the value dependence
graph). For example, in the du-webs shown in Figure 7
one can observe that the def-use chains crossing the cut
(shown with dotted edges) all flow in one direction.

The du-web for variable x thus has a structure that
is almost renameable, except for those edges in the web
that cross the cut. Suppose, however that we were to
place a copy instruction “x ' = x ” directly after each
of the definitions of x from A that reach a use in B.
Then we could rename all the definitions and uses of
x in B to x'. The program will have exactly the same
semantics, but we will have eliminated all of the def-
def chains flowing from B to A. We will call such a
renaming of of a du-web that crosses a unidirectional
cut a unidirectional renaming.

An example of a unidirectional renaming is shown
in Figure 9. Each time one of the variables i , j and
p a r t ia l- su m is modified it is copied to a correspond­
ing variable i ' , j ' or p a r t ia l . s u m '. The uses of i ,
j and p a r t ia l- su m in partition B are then renamed
to i ' , j ' and p a r t ia l . s u m '. The du-webs for this
unidirectional renaming are shown in Figure 10.

To see how unidirectional renaming eliminates back­
wards flowing def-def chains, consider Figure 11. We
examine the cut from the set of nodes {1,2,3,4,6,7} to
the set (5,8}. This is a unidirectional cut because all of
the value and control dependences flow from the first
set to the second. Figure 12 shows the corresponding
du-web for variable x. There is, however, a def-def
chain flowing from node 5 to node 7 (against the cut

10

Figure 11: The cut separating nodes 1, 2, 3, 4, 6 and
7 from nodes 5 and 8 is unidirectional because all the
value and control dependences flow unidirectionally.
The def-def chain flowing from node 5 to node 7 does
not violate the unidirectionality of the cut.

Figure 13: After unidirectionally renaming the variable
x the def-def chain between nodes 5 and 7 is elimi­
nated, and replaced instead with a def-def chain from
node 5 to node T. The new def-def chain does not cross
the cut because node 5 and 7’ are both in the same par­
tition (indicated by nodes with a bold outline).

Figure 12: The du-web for variable x from the flow
graph in Figure 11. The cut is unidirectional because
all the def-use chains flow in one direction across the
cut. Dotted edges show cut edges.

direction).
Unidirectionally renaming the flow graph, as shown

in Figures 13 and 14 solves this problem. After placing
copy instructions “x ' = x ” after the definitions that
reach across the cut, and renaming x t o x ' in nodes 5
and 7, all of the definitions of x are on one side of the
cut while all of the definitions of x ' are on the other
side of the cut. Thus there are no def-def chains flowing
across the cut. All the def-def chains are now contained
within one partition or the other.

Placing the copy instructions for the unidirectional
renaming directly after the corresponding definition of
each variable produces a correct result, but, in fact, we
can do better. We can maintain the program semantics
and eliminate the output dependences if we place the
copy instructions along any set of edges in the program
that have the property that they cover all the paths
leading from definitions of x in A that reach uses of

11

Figure 14: The du-web for variables x and x ' from
the flow graph in Figure 13. The cut is still unidirec­
tional because all the def-use chains flow in one direc­
tion across the cut. Dotted edges show cut edges. Now,
however, there is no def-def chain crossing the cut be­
cause definitions of variable x happen in one partition,
while definitions of variable x ' happen in the other.

x in B and are not reached by any of the definitions of x
in B. Frank’s dissertation describes how to derive such
a set of edges that is optimal, in the sense that they will
execute only as often as the innermost loop that con­
tains both the definitions and the uses [16].

In this Section we have argued that given any unidi­
rectional cut A-B we can insert copy instructions into
each du-web that has edges flowing from A to B and
derive a semantically equivalent flow graph with the
property that there are no def-def chains flowing from
B to A. There is a second benefit of performing unidi­
rectional renaming on the du-webs that cross the cut.
This is that after renaming, closure conversion and a
single pass of local copy propagation, all the uses of a
variable will be entirely contained on one side of the
cut or the other. That is, all communication across the
cut will occur through the deferred execution queue.
There will be no “shared” scalar variables. Because of
this property we perform unidirectional renaming on
all du-webs that cross the cut, even when there are no
def-def chains that need to be broken.

5 Implementation Experience

We have implemented scalar queue conversion in the
context of SUDS [16], our research system for automati­
cally parallelizing C programs running on the Raw mi­
croprocessor [35]. In this section we briefly describe
how we used scalar queue conversion as the key sub­
routine of a generalized form of loop distribution that
can reschedule any region of code with arbitrary con­
trol flow, including arbitrary looping control flow. In
addition, we describe a set of other practical problems
that needed to be solved in order to effectively find
concurrency. Due to space limitations, the discussion
is brief. The intent of this section is to complement our

somewhat abstract description of scalar queue conver­
sion with a discussion of its use in a practical setting.
For details, refer to Frank’s dissertation [16].

5.1 G en eralized L o o p D istrib u tio n

The goal of loop distribution is to transform the cho­
sen region so that any externally visible changes to ma­
chine state will occur in minimum time. Roughly speak­
ing, then, we begin by finding externally visible state
changes for the region in question, which we call crit­
ical definitions. We then find the smallest partition of
the value dependence graph that includes the critical
node, yet still forms a unidirectional cut with its com­
plement. Finally we apply scalar queue conversion to
create a minimal (and hopefully small) piece of code
that performs only the work that cyclically depends on
each critical definition.

Consider again the example flow graph from Fig­
ure 2 used throughout Section 3. Roughly speaking,
this loop has two loop carried dependences, on the
variables i and sum. The other variables, (e.g., j , p a r -
t ia l.su m , c l and c2) are private to each loop itera­
tion, and thus are not part of the state changes visible
external to the loop.

Following this intuitive distinction, we more con­
cretely identify the critical definitions of a region by find­
ing all uses (anywhere in the program) such that at
least one definition cIr within the region R reaches the
use and at least one definition from outside the region
d* reaches the use. Then we call the definition d.R (the
one inside region R) a critical definition. To reiterate,
intuitively, the critical definitions represent changes to
the part of the state that is visible from outside the re­
gion. Critical definitions represent points inside the re­
gion at which that visible state is changed. (As opposed
to region (loop) invariant and externally invisible (pri­
vate) state).

For the region corresponding to the outer loop in Fig­
ure 2 the critical definitions are the nodes 11 and 12.
Nodes 5, 6, 9 and 11, for example, are reached both by
node 11 (inside the loop) and node 2 (outside the loop),
so node 11 is a critical definition for the loop. Likewise,
nodes 5, 6 and 12 are reached both by node 12 (inside
the loop) and node 1 (outside the loop), so node 12 is
also a critical definition for the loop.

Next, for each critical node we find all nodes in the
value dependence graph that have a cyclic dependence
with the critical node. That is, given critical node d
and node n, if there is a path from d to n in the value
dependence graph and a path from n to d in the value
dependence graph, then we give n the same priority
as d. For example, in the loop in Figure 2 the cyclic
path 11 —> 1 3 —> 14 —» 11 in the value dependence
graph indicates that nodes 13 and 14 form a cycle with

12

the critical node 11. We assign the nodes in each cyclic
critical dependence path to the same partition.

All remaining nodes will be assigned to a partition
between two critical node partitions. That is, for each
node n find the critical node dMow with the highest pri­
ority, such that there is a path from n to in the
value dependence graph. Then assign n to a partition
between dMow and dbelow’s parent.

For example, in Figure 2 node 12 depends on node
7. Node 7, in turn, is dependent on nodes 3, 4, 7, 8,
9 and 10. (There exists, for example, the dependence
path 4 -4 8 —> 9 —> 10 —> 7.) None of these nodes has
a path in the value dependence graph leading to any
of nodes 11, 13 or 14. Thus we give nodes 3, 4, 7, 8, 9
and 10 a priority between the priority of node 11 and
the priority of node 12.

For each partition we have a unidirectional cut from
the higher priorities to this partition and those below.
Thus we perform scalar queue conversion on each par­
tition (from the bottom up) to complete our code trans­
formation.

5.2 Q ueue M an agem en t

The register renaming resources in any real system are
of finite size, and thus need to be managed carefully so
that they do not overflow. This problem appears in any
system where queues are used, and there are several
approaches to handling the problem. One approach to
managing the deferred execution queues is to alternate
execution between operations that increase the queue
length (code from the backward slice) until the queue is
nearly full, and then run code that decreases the queue
length (closures from the forward slice) until the queue
is empty. This is similar to the approach used to han­
dle reading and writing from pipes in most UNIX file
systems. In fact, in the degenerate case that the total
space available for deferred execution queues is only
as large as a single closure, this management scheme
is equivalent to running the code in the order specified
by the original flow graph. The SUDS compiler also
strip mines the loop being distributed, which tends to
reduce the probability of filling the deferred execution
queues.

Generalized loop distribution introduces an addi­
tional subtlety, in that multiple queues need to be man­
aged simultaneously. The basic idea of falling back
to the sequential schedule given by the original flow
graph still works, however, and thus the queues can be
managed both correctly and efficiently [7, 6, 16].

5.3 E xtensions

The transformation described in Section 3 applies only
to single exit regions of a flow graph. Scalar queue con­

version can be extended to work on multiple exit re­
gions of a flow graph. Interestingly this extension can
be effected by applying scalar queue conversion, itself,
to separate the multi-exit region from its successors
in the flow graph. The generalized loop distribution
transformation described above, was also extended
with a recurrence reassociation transformation [24].

5.4 M em ory D epen d en ces

Scalar queue conversion takes a conservative view of
memory dependences by inserting edges in the value
dependence graph for all load-after-store, store-after­
load and store-after-store dependences. These, ex­
tra, conservative dependences may restrict the appli­
cability of scalar queue conversion because they might
create cycles in the value dependence graph across
what would otherwise be unidirectional cuts. In prac­
tice we found it necessary to implement four addi­
tional transformations to reduce the impact of mem­
ory dependences. These include transforming the code
by register promotion [10] and apply the transforma­
tion that Barua has called “equivalence class unifica­
tion,” [32, 4, 8]. In addition we do a simple form of ar­
ray privatization, based on the scope information that
is typically available in C programs.

Additionally, the SUDS runtime system implements
a memory checkpoint repair mechanism, and a concur­
rency control mechanism based on basic timestamp or­
dering [5] that is able to detect memory references that
violate the expected sequential order. Because of this
support, we are able to speculatively eliminate many
memory dependence back edges that would otherwise
create cycles in the value dependence graph.

6 Related Work

The idea of renaming to reduce the number of stor­
age dependences in the dependence graph has long
been a goal of parallelizing and vectorizing compilers
for Fortran [24], The dynamic closure creation done
by the queue conversion algorithm in Section 3 can be
viewed as a generalization of earlier work in scalar ex­
pansion [24, 11]. Given a loop with an index variable
and a well defined upper limit on trip count, scalar ex­
pansion turns each scalar referenced in the loop into an
array indexed by the loop index variable. The queue
conversion algorithm works in any code, even when
there is no well defined index variable, and no way to
statically determine an upper bound on the number of
times the loops will iterate. Moreover, earlier meth­
ods of scalar expansion are heuristic. Queue conver­
sion is the first compiler transformation that guarantees
the elimination of all register storage dependences that

13

create cycles across what would otherwise be a unidi­
rectional cut.

Given a loop containing arbitrary forward control
flow, loop distribution [24] can reschedule that graph
across a unidirectional cut [21, 17], but since loop
distribution does no renaming, the unidirectional cut
must be across the conservative program dependence
graph (i.e., including the register storage dependences).
Queue conversion works across any unidirectional cut
of the value dependence graph. Because scalar queue
conversion always renames the scalars that would cre­
ate register storage dependences, those dependences
need not be considered during analysis or transforma­
tion. It is sometimes possible to perform scalar ex­
pansion before loop distribution, but loop distribution
must honor any register storage dependences that are
remaining.

Moreover, existing loop distribution techniques only
handle arbitrary forward control flow inside the loop,
and do so by creating arrays of predicates [21, 17]. The
typical method is to create an array of three valued
predicates for each branch contained in the loop. Then
on each iteration of the top half of the loop a predi­
cate is stored for each branch (i.e., “branch went left”,
“branch went right" or “branch was not reached dur­
ing this iteration”). Any code distributed across the
cut tests the predicate for its closest containing branch.
This can introduce enormous numbers of useless tests,
at runtime, for predicates that are almost never true.

Queue conversion, on the other hand, creates and
queues closures if and only if the dependent code is
guaranteed to run. Thus, the resulting queues are (dy­
namically) often much smaller than the corresponding
set of predicate arrays would be. More importantly,
queue conversion works across inner loops. Further,
because queue conversion allocates closures dynami­
cally, rather than creating static arrays, it can handle
arbitrary looping control flow, in either the outer or in­
ner loops, even when there is no way to statically de­
termine an upper bound on the number of times the
loops will iterate.

Feautrier has generalized the notion of scalar expan­
sion to the notion of array expansion [13]. As with
scalar expansion, Feautrier’s array expansion works
only on structured loops with compile time constant
bounds, and then only when the array indices are
affine (linear) functions of the loop index variables.
Feautrier’s technique has been extended to the non-
affine case [22], but only when the transformed array
is not read within the loop (only written). The equiv­
alence class unification and register promotion tech­
niques mentioned in Section 5.4 extend scalar queue
conversion to work with structured aggregates (e.g., C
s tru c ts) , but not with arrays. Instead, our implemen­

tation of scalar queue conversion relies on the mem­
ory dependence speculation system mentioned in Sec­
tion 5.4 to parallelize across array references (and even
arbitrary pointer references).

The notion of a unidirectional cut defined in Sec­
tion 3.1 is similar to the notion, from software engineer­
ing, of a static program slice. A static program slice is
typically defined to be the set of textual statements in a
program upon which a particular statement in the pro­
gram text depends [38]. Program slices are often con­
structed by performing a backward depth first search
in the value dependence graph from the nodes corre­
sponding to the statements of interest[27]. This pro­
duces a unidirectional cut.

In Section 3.2 we proved that we could produce an
executable control flow graph that includes exactly the
nodes from the top of a unidirectional cut of the value
dependence graph. Yang has proved the similar prop­
erty, in the context of structured code, that an executable
slice can be produced by eliding all the statements
from the program text that are not in the slice [39].
Apparently it is unknown, given a program text with
unstructured control flow, how to produce a control
flow graph from the text, elide some nodes from the
graph and then accurately back propagate the elisions
to the program text [3]. Generalizations of Yang’s re­
sult to unstructured control flow work only by insert­
ing additional dependences into the value dependence
graph [3, 9], making the resulting slices larger and
less accurate. The proof in Section 3.2 demonstrates
that when working directly with control flow graphs
(rather than program texts) this extra work is unneces­
sary, even when the control flow is irreducible.

Further, executable program slicing only produces
the portion of the program corresponding to partition
A of a unidirectional cut A-B (that is, it only produces
the backward executable slice). In Sections 3.3 and 4 we
demonstrated how to queue and then resume a set of
closures that reproduce the execution of partition B as
well (the set of state transitions corresponding to the
forward executable slice.

The reason queue conversion generalizes both loop
distribution and executable program slicing is that
queue conversion makes continuations [34, 31, 2] explicit.
That is, any time we want to defer the execution of a
piece of code, we simply create, and save, a closure
that represents that code, plus the suspended state in
which to run that code. It is standard to compile func­
tional languages by making closures and continuations
explicit [31, 2], but this set of techniques is relatively
uncommon in compilers for imperative languages.

In fact, scalar queue conversion was anticipated by
work from formal programming language semantics
that demonstrates that continuation passing style rep-

14

reservations and SSA form flow graphs of imperative
programs are semantically equivalent [20]. Based on
this work, Appel has suggested that a useful way of
viewing the <j) nodes at the join points in SSA flow
graphs is as the point in the program at which the ac­
tual parameters should be copied into the formal pa­
rameters of the closure representing the code domi­
nated by the (J) node [1]. This roughly describes what
scalar queue conversion does.

That is, given a maximal group 3 containing a use
of variable x for which we are going to create a clo­
sure, we rename x to x ' (which can be viewed as the
formal parameter). Then we introduce a new closure,
containing the instruction x' = x, at the cf> point which
shares an environment containing x' with 3. It is useful
to view the new closure as simply copying the actual
parameter, x, to the formal parameter x '.

A transformation similar to loop distribution, called
critical-path reduction has been applied in the context
of thread-level speculative systems [37, 33, 40]. Rather
than distribute a loop into multiple loops, critical-path
reduction attempts to reschedule the body of the loop
so as to minimize the amount of code executed during
an update to a critical node. While the transformation
is somewhat different than that performed by loop dis­
tribution, loop distribution and critical-path reduction
share the goal of trying to minimize the time observed
to update state visible outside the loop body.

Schlansker and Kathail [28] have a critical-path re­
duction algorithm that optimizes critical paths in the
context of superblock scheduling [18], a form of trace
scheduling [15]. Vijaykumar implemented a critical-
path reduction algorithm for the multiscalar processor
that moves updates in the control flow graph [37]. Stef-
fan et al have implemented a critical-path reduction al­
gorithm based on Lazy Code Motion [23] that moves
update instructions to their optimal point [33, 40]. As
with previous loop distribution algorithms, none of
these critical-path reduction algorithms can reschedule
loops that contain inner loops.

7 Conclusion

This paper has given an informal description of the
scalar queue conversion transformation. We have ar­
gued that scalar queue conversion can restructure any
unidirectional cut of the true scalar dependences in
any flow graph, and reschedule the code so that all
of the instructions in the top half of the cut run (dy­
namically) before all of the instructions in the bottom
half. Scalar queue conversion completely eliminates
scalar anti- and output-dependences that might other­
wise make this rescheduling impossible.

We have described the use of scalar queue conver­
sion in one practical setting, as a subroutine for a gen­
eralized form of loop distribution that can reschedule
loops with arbitrary control flow, including irreducible
control flow and inner loops with trip counts that can
not be determined until the loop exits. We believe that
scalar queue conversion has many other applications
as well. Our ongoing work involves applying scalar
queue conversion to automate the process of hiding
program slices for the purposes of software security
(as in [41]), and applying scalar queue conversion as
the basis of a code generator to convert imperative pro­
grams to executable data-flow graphs.

Acknowledgments

The authors thank the members of the Computer Ar­
chitecture Group at MIT for creating an environment
particularly conducive to research, and Anant Agar-
wal, Jon Babb, Sam Larsen, Walter Lee, Michael Tay­
lor, and Bill Thies for a variety of conversations, ob­
servations, and suggestions directly relevant to this
work. This work was financially supported by NSF
and Darpa grants to the Fugu and Raw projects, the
Industrial Technology Research Institute/Raw Project
Collaboration, and the Electrical and Computer Engi­
neering Department at the University of Illinois.

References

[1] A. W. Appel. SSA is functional programming. SIGPLAN
Notices, 33(4), 1998.

[2] A. W. Appel and T. Jim. Continuation-passing, closure-
passing style. In Symp. Principles of Programming Lan­
guages, 1989.

[3] T. Ball and S. Horwitz. Slicing programs with arbitrary
control flow. In Int'l. Workshop on Automated and Algo­
rithmic Debugging, 1993.

[4] R. Barua, W. Lee, S. P. Amarasinghe, and A. Agarwal.
Maps: A compiler-managed memory system for Raw
machines. In Int’l. Symp. Computer Arch., 1999.

[5] P. A. Bernstein and N. Goodman. Timestamp-
based algorithms for concurrency control in distributed
database systems. In Int'l. Conf. Very Large Data Bases,
1980.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably ef­
ficient scheduling for languages with fine-grained par­
allelism. J. ACM, 46(2):281—321, 1999.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multi­
threaded computations by work stealing. In Symp. on
Foundations of Computer Science, 1994.

[8] M. Budiu and S. C. Goldstein. Optimizing memory ac­
cesses for spatial computation. In Int’l. Symp. on Code
Generation and Optimization, Mar. 2003.

15

[9] J.-D. Choi and J. Ferrante. Static slicing in the pres­
ence of GOTO statements. ACM Trans. Prog. Lang. Syst.,
16 (4): 1097—1113, 1994.

[10] K. D. Cooper and J. Lu. Register promotion in C pro­
grams. In Conf. Programming Language Design and Imple­
mentation, 1997.

[11] R. Cytron and J. Ferrante. What’s in a name? The value
of renaming for parallelism detection and storage allo­
cation. In In ti Conf. Parallel Processing, 1987.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assign­
ment form and the control dependence graph. ACM
Trans. Prog. Lang. Syst., 13(4):451—490, 1991.

[13] R Feautrier. Array expansion. In Int’l. Conf. on Super-
computing, pages 429-441, July 1988.

[14] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro­
gram dependence graph and its use in optimization.
ACM Trans. Prog. Lang. Syst., 9(3) :319—349, July 1987.

[15] J. A. Fisher. Trace Scheduling: A technique for
global microcode compaction. IEEE Trans. Comput., C-
30(7):478-490, July 1981.

[16] M. I. Frank. SUDS: Automatic Parallelization for Raw Pro­
cessors. PhD thesis, Department of Electrical Engineer­
ing and Computer Science, Massachusetts Institute of
Technology, June 2003.

[17] B.-M. Hsieh, M. Hind, and R. Cryton. Loop distribution
with multiple exits. In Supercomputing, 1992.

[18] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke,
D. M. Lavery, G. E. Haab, J. C. Gyllenhaal, and D. I. Au­
gust. Compiler technology for future microprocessors.
Proceedings of the IEEE, 83(12):1625—1640, Dec. 1995.

[19] R. M. Keller. Look-ahead processors. ACM Computing
Surveys, 7(4):177—195, Dec. 1975.

[20] R. A. Kelsey. A correspondence between continuation
passing style and static single assignment form. In ACM
Workshop on Intermediate Representations, 1995.

[21] K. Kennedy and K. S. McKinley. Loop distribution with
arbitrary control flow. In Supercomputing, 1990.

[22] K. Knobe and V. Sarkar. Array SSA form and its use in
parallelization. In Symp. Principles of Programming Lan­
guages, Jan. 1998.

[23] J. Knoop, O. Ruthing, and B. Steffen. Lazy code motion.
In Conf Programming Language Design and Implementa­
tion, 1992.

[24] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and
M. Wolfe. Dependence graphs and compiler optimiza­
tions. In Symp. Principles of Programming Languages,
1981.

[25] P. J. Landin. The mechanical evaluation of expressions.
Computer Journal, 6 (4) :308—320, 1964.

[26] T. Lengauer and R. E. Tarjan. A fast algorithm for find­
ing dominators in a flowgraph. ACM Trans. Prog. Lang.
Syst., 1 (1):121—141,1979.

[27] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in a software development environ­
ment. In Symp. on Practical Software Development Envi­
ronments, 1984.

[28] M. Schlansker and V. Kathail. Critical path reduction
for scalar programs. In Int’l. Symp. on Microarchitecture,
1995.

[29] J. E. Smith and A. R. Pleszkun. Implementing precise
interrupts in pipelined processors. IEEE Trans. Comput.,
37(5):562—573, May 1988.

[30] G. S. Sohi. Instruction issue logic for high-performance,
interruptible, multiple functional unit, pipelined com­
puters. IEEE Trans. Comput., 29(3):349—359, Mar. 1990.

[31] G. L. Steele. RABBIT: A compiler for Scheme. Technical
Report AITR-474, MIT Artificial Intelligence Laboratory,
May 1978.

[32] B. Steensgaard. Sparse functional stores for imperative
programs. In ACM Workshop on Intermediate Representa­
tions, Jan. 1995.

[33] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry.
Improving value communication for thread-level spec­
ulation. In Int’l. Symp. High Performance Computer Arch.,
Feb. 2002.

[34] C. Strachey and C. P. Wadsworth. Continuations: A
mathematical semantics for handling full jumps. Higher-
Order and Symbolic Computation, 13(1):135—152, Apr.
2000. (Republication of Oxford University Computing
Laboratory Technical Monograph PRG-11,1974).

[35] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, J.-W. Lee, P. Johnson, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The Raw
microprocessor: A computational fabric for software cir­
cuits and general purpose programs. IEEE Micro, Mar.
2002.

[36] R. Tomasulo. An efficient algorithm for exploiting mul­
tiple arithmetic units. IBM Journal of Research and Devel­
opment, 11 (1):25—33, Jan. 1967.

[37] T. N. Vijaykumar. Compiling for the Multiscalar Archi­
tecture. PhD thesis, University of Wisconsin-Madison
Computer Sciences Department, Jan. 1998.

[38] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.,
10(4):352—357, July 1984.

[39] W. Yang. A New Algorithm for Semantics-Based Pro­
gram Integration. PhD thesis, University of Wisconsin-
Madison Computer Sciences Department, Aug. 1990.

[40] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry.
Compiler optimization of scalar value communication
between speculative threads. Conf Arch. Support for Pro­
gramming Languages and Operating Systems, 2002.

[41] X. Zhang and R. Gupta. Hiding program slices for soft­
ware security. In Int’l. Symp. on Code Generation and Op­
timization, 2003.

16

