
June 1989 UILU -EN G-89-2219
ACT-107

COORDINATED SCIENCE LABORATORY
College o f Engineering
Applied Computation Theory

LOAD
BALANCING
IN
MULTIPROCESSOR
SYSTEMS

Michael C. Loui
Milind A. Sohoni

UNIVERSITY OF ILLINOIS AT URBANA-CHAM PAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
« ft if liT V ¿ L A « lf l¿ A f l¿ N M THIS ¿ A G Í

1«. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution unlimited2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-89-2219 (ACT #107)
5. MONITORING ORGANIZATION REPORT NUMBe' r(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research

6c ADDRESS (City, State, and ZIP Code)
1101 W. Springfield Ave.
Urbana, IL 61801

800 N. Quincy
Arlington, VA 22217

8«. NAME OF FUNDING /SPONSORING
ORGANIZATION
Office of Naval Research

8b. OFFICE SYM80L
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

0NR N00014-85-K-0570
8c ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNOING NUMBERS

800 N. Quincy
Arlington, VA 22217

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO.

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

11. TITLE (Include Security Gassification)

Load Balancing in Multiprocessor Systems
12. PERSONAL AUTHOR(S)
Loui, Michael C. and Sohoni, Milind A,

13«. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM______ TO

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
June, 1989 10

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

load balancing, scheduling, multiprocessor, shared
memory

We present an algorithm for dynamic load balancing in a multiprocessor system that minimizes the

number of accesses to the shared memory. The algorithm assumes no information, probabilistic or otherwise,

regarding task arrivals or processing requirements. For k processors to process n tasks, the algorithm incurs

0 0fc log k log n) potential memory collisions in the worst case. The algorithm itself is a simple variation of

the strategy of visiting the longest queue. The key idea is to delay reporting task arrivals and completions,

where the delay is a function of dynamic loading conditions.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
(3 UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Load Balancing in Multiprocessor Systems

Michael C. Loui

Milind A. Sohoni

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1101 West Springfield Avenue, Urbana.IL 61801

June 5, 1989

Abstract

We present an algorithm for dynamic load balancing in a multiprocessor system that minimizes the

number of accesses to the shared memory. The algorithm assumes no information, probabilistic or otherwise,

regarding task arrivals or processing requirements. For k processors to process n tasks, the algorithm incurs

O {k log k log n) potential memory collisions in the worst case. The algorithm itself is a simple variation of

the strategy of visiting the longest queue. The key idea is to delay reporting task arrivals and completions,

where the delay is a function of dynamic loading conditions.

Supported by the Office of Naval Research under Contract N00014-85-K-0570.

1

Introduction

This paper studies load balancing in a multiprocessor environment We consider a shared memory

model similar to the one described in [3]. Briefly, there are k processors, each with unlimited individual

memory, and a segment of shared memory. Tasks arrive, or are generated by ongoing tasks, at unpredictable

instants, and their computation times are also unpredictable. We assume all tasks are independent of each

other and may be assigned in any order to any processor. The k processors must perform these tasks

promptly, and at the same time, with minimum interference from each other. Any load balancing algorithm

must keep track of the loading conditions of the processors and assign a suitable number of available tasks

whenever a processor becomes free. This dynamic information is maintained in the shared memory. We

assume, as in [3], that all processors execute the same load balancing algorithm and access the shared

memory asynchronously. This leads to the possibility of interference or collisions. The goal of our algorithm

is to minimise this interference, while keeping all processors busy. As in [3], we assume that the number of

potential collisions is the sole performance criterion.

Here, we present an algorithm that performs dynamic task scheduling. For k processors to process n

tasks, our algorithm incurs O (k log k log n) collisions in the worst case. This is an improvement on

algorithm in [3], which incurs O (kE log n) (e> 1) collisions in the worst case.

The Problem

One approach to the problem is to retain all tasks (or their descriptors) in the shared memory. Each

processor is assigned only one task, and on its completion the processor accesses the shared memory to

acquire another task. There are two disadvantages to this strategy. First, if a task generates a new task, then

the new task must be "reported" or "put" into the shared memory. Second, at the completion of a task each

processor must access the shared memory to obtain a new task. Both events can lead to collisions. If there

were n tasks to be processed, there could be 2n (i.c., O (n)) collisions. Hence when reassigning tasks to

processors one must assign not one but a certain number depending on the dynamic conditions. But if several

2

tasks are being assigned to processors, then idle processors must not only look in the shared memory but also

examine the loads at other processors. Here, by the load of a processor we mean the number of tasks assigned

to it. Idle processors must then "visit" overloaded processors and relieve some of their load. This "visit", as it

is interference, is also counted as a collision. Thus in our worst case analysis, the possibility of interference

or collision is termed as a collision. >From our analysis above, any scheduling algorithm must handle two

issues:

(i) Once a processor finds itself idle, it must arrange to "visit" another processor for sharing its load. Thus

there must be a policy to decide which processor to visit.

(ii) Once processor pi decides to visit processor p j , efficient data structures should ensure that load sharing is

done speedily. Processor pi must also decide what fraction of processor p j ’s load it should take.

We briefly sketch Manber’s algorithm here. We refer the reader to [3] for a complete discussion of the

above. Our algorithm differs from Manber’s only in its way of handling (i) above.

Each processor pt has an individual area in the shared memory, called its local segment, in which p t-

stores the tasks (or their descriptors) assigned to p i . The data structure here is similar to a binary tree which

allows addition, deletion, and splitting in constant (i.e., O (1)) time. The split operation splits the tree into

two trees whose sizes are between 1/3 and 2/3 of the original. Whenever a processor finishes its current task,

it accesses its local segment first. If the local segment is not empty, then the processor picks up a task from

its local segment and deletes the task (or the task’s descriptor) from its local segment. If the currently

executing task generates more tasks, or if some external tasks arrive, then the processor puts the new tasks

into its local segment. When a processor finds its local segment empty, however, it proceeds to the global

memory to find a processor that has a non-empty local segment. This local segment is split, and the visitor

takes a part of the host’s local segment into its own local segment. We say that some of the host’s tasks have

migrated to the visitor.

Processor p t is busy if it is processing a task or its local segment is non-empty; otherwise pi is idle. A

global data structure maintains the status (i.e., busy or idle) of each processor. The data structure of [3] is

3

organised as an m -ary tree with each of the k processors as a leaf. Each internal node maintains the loading

conditions of its leaves. Then finding a busy processor takes O (kz) collisions (see [3] for details). The

number e approaches 1 as m increases. Thus for k processors to finish n tasks, this scheme incurs

O (k£ log n) collisions in the worst case. Also, Manber established a lower bound of Cl(k log n) collisions.

Our global data structure, which resides in the shared memory, is a Fibonacci heap [2]. As an abstract

data structure on k objects {*,-} with real weights (w,-}, a Fibonacci heap supports the following operations:

max: find the maximum weighted object.
incr(x,r): increment the weight of x by positive real r .
decr(x,r): decrement the weight o fx by positive real r.

The max and deer operations take (9(1) (amortized) time, and the incr operation takes 0 Gog k) time. Hence

each operation involves 0 Gog k) memory accesses. We use a Fibonacci heap F to maintain the processor

loading information. Each processor p-t is an object, and its reported load Ri is the weight associated with p i.

For ease of analysis, we first present a simple version of our algorithm. Once again, our algorithm

differs from [3] only in how it finds a processor to visit.

Each processor is individually responsible for updating its loading information in F . To minimize

updating collisions when two processors try to access F at the same time, however, the processors report only

increases in their previously reported loads. Thus at any time, the reported load is always an overestimate of

the actual load. When processor p t completes a task, it first checks its local segment. If that is empty, then

Pi accesses F and performs the operation max to obtain the name of the processor pj whose reported load is

the largest. After p t visits p j , processor pi has between one-third and two-thirds of p j ’s old load and pj has

the remainder. Processorpt uses incr and deer to record the new loads of px and pj in the F . Note that

though visiting the most heavily loaded processor seems to be a good policy for minimising future visits, it

entails maintaining fairly accurate loading conditions in the global memory. This in turn requires processors

to report their loads, which is collision-prone. So then there are two types of collisions: reporting collisions

and visiting collisions. We estimate them separately. Note that when a processor completes a task and

deletes the task from its local segment, the access to the local segment is not counted as a potential collision.

4

Visiting Collisions

We begin with estimating visiting collisions in our scheme. First, a "static" result. Assume that there

are n tasks, and these tasks are distributed over the local segments of the k processors. Further, no new tasks

are generated within, or added to, the system, so no reporting collisions occur.

Theorem 1. In the static case, if there are n tasks in a k -processor system, then in the worst case the

processors complete all tasks with O (k log k log n) collisions.

Proof. First note that every operation on F takes O (log k) time, hence O (log k) collisions, in the worst

case. We consider each such operation as a unit step and proceed to estimate the number of steps.

By convention, the computation begins at step 0. Let

Ri (t)= the reported load of processor i at step t .

Li(t)= the actual load of processor i at step t .

m(t)=mdXj{Rj(t)}.

Thus m {t) is the largest weight in F at step t . If processorpt visits processorpj at step to, thenp-t takes

between one-third and two-thirds of p j ’s load. In our notation,

Ri(.to) = U (t o) < f L j d o - l) < ^ R j (

Hence

Ri (t0) < m (r0- l) and Rj (t0) < m (t0- l) .

Now considerm(to+k), i.e., the maximum reported load after/: steps (k potential visiting collisions). We

9
claim that m (to+k) < -jm (to). Observe that at step to there can be at most k processors with reported load

greater than - j m (to), and that the processor with the largest reported load is visited at each step. Hence in

the k visits following r0 all the processors with load greater than (tò) must be visited and our claim must

hold. But m (0) < n , so the number of steps in the computation is bounded by O (k log n). □

5

In the static case above, there were no additional tasks or reporting collisions to complicate our analysis.

Nevertheless, the bound on the visiting collisions holds even in the dynamic case when visiting collisions are

interspersed with reporting collisions.

Theorem 2. Under dynamic conditions, in the worst case, k processors complete n tasks with at most

0{k log k log n) visiting collisions.

Proof. In the proof of Theorem 1, since no tasks were introduced into the system, m (t) was a

monotonic decreasing function. This is not true in the dynamic case. Let us assume that all the n tasks in the

system at step 0 are blue in colour, and all tasks generated or added are green. So at any step in the

computation each processor has a mix of blue and green tasks. Further, as a theoretical convenience, we

assume that when /?,• visits p j , processor pt takes equal proportions of blue and green tasks.

In addition to the previously defined functions Ri(t) ,L i(t) ,m (t), let us define R (f), L (t) ,m '(t)

considering only the blue jobs. Thus, for example, R (r) is the reported blue load of processor i at step t .

Further, define n \ t) as the number of blue tasks in the system at step t . Again, by a step we mean a single

Fibonacci heap operation (which incurs 0 (log k) collisions in the worst case). So at any step t ,

m'(t) 5

Our line of proof is as follows. We show that in pA: steps after step t (for a constant p>l to be chosen

later), either n \ t) tasks finish execution or m \ t +(3£)<-|-m '(t) . This would imply that some n jobs, blue or

green, have been processed in 0 (k log n) steps following step t . Now at time t , there can be at most k

processors with R (i) > -j/n \ t) . If m '(t+$k) > '(t), then clearly there must exist a processor pj such

that R 'j (t)> y m \ t) and R 'j (t+$k) > |m '(i) . Since equal proportions of blue and green tasks migrate at

every visit, we conclude that processor pj has not been visited in the $k steps following t. As our policy is to

visit the most heavily loaded processor, the $k visits must have involved processors whose loads were larger

\h m R 'j(t). Hence each visit must have involved a migration of at least -j/? 'y-(r) > j f)

tasks. Also note that between successive visits by processor pL, pi must execute all tasks acquired at the

6

previous visit. Now as there are k processors in the system, and there have been pk visits, at least

(p-l)& (-g- n- j? -̂) tasks must have been processed in the meantime.

Thus for p=l 1/2, in pk steps either m \ t) decreases to two-thirds of its original value, or at least n \ t)

tasks are processed. Formally, either m \ t +-y-&) < - |/n '(t) or n '{t) tasks have been processed between

steps t and t+ i^-k . But n'(t)=n is the number of blue tasks in the system at step t . Thus in O (k log n)

steps n tasks were processed, though they need not all be blue. This proves the theorem. □

Reporting Collisions

Next, we estimate reporting collisions. First, note that our proofs of Theorem 1 and Theorem 2 were

based on the assertion that the reported load is always an overestimate of the actual load of processors. This

assertion, in turn, was based on the assumption that processors report every increase in their previously

reported load. Under the above stated conditions we showed that it takes O (k log k log n) collisions, in the

worst case, to process n tasks. Hence if O (k log k log n) reporting collisions suffice to introduce n tasks

into the system, then our simple algorithm would incur O (k log k log n) total collisions. But this would

imply a "chunky” task arrival/generation process, which may not be a reasonable assumption in many

situations. To accommodate this possibility, we relax our requirement that processors report every increase in

load immediately. Instead, we ask that if a processor’s current load is L , then it report the number f logpL"| ,

where p > 1 is a constant to be determined later. If at a task arrival/generation this number does not change,

then the processor does not report an increase. Thus our modified reporting rule is as follows: Do not report

any load reductions; report increases only iff logpL"| changes, where L is the current load of the processor.

Of course, if visits p j , then the new loading conditions of both processors are reported, but that has already

been counted as a visiting collision.

Let us see how this new reporting policy affects our proofs of Theorems 1 and 2. The actual load in the

modified reporting scheme is at most p times the reported load. Hence as long as y p e l, i.e., p < y ,

7

Theorems 1 and 2 hold.

First, a static result. Assume that there are n tasks in the k -processor system at time io* We analyse the

worst case number of reporting collisions required to introduce an additional n ' tasks. Further we assume that

while we introduce these tasks, no visiting collisions occur. Let nt- be the load of processorp t at time to, and

of the « 'new tasks, let n'i be added to p t . Then we have:

Theorem 3. In the static case, in a k -processor system, O (k log k log n') reporting collisions suffice to

add n ' tasks into the system, in the worst case.

Proof. Clearly, in the static case, adding n tasks to processorp t takes no more than

logp (n l o g p (n,) < logp n \ reporting steps. Note that while there may be no visiting collisions, there is

the possibility that pi completes some of its assigned tasks. Under our reporting scheme, this could only lead

to fewer reports, since more tasks may arrive at p t before pi reaches the next reporting level. Hence the total

fa
number of reports is less than log n'i < k log n '. Therefore the number of steps required is O (k log n 0,

and the number of possible collisions is O (k log k log n '). □

In the dynamic case, as a theoretical convenience, we assume that the tasks form a first-in first-out

(FIFO) queue in front of their processors. Thus if tasks bo, b\,...,bs are in processorp i ’s queue, then bo

entered the queue the earliest and bs the latest. The next task arriving at or generated for p i sits after bs .

Further, we assume that whenp i has b i,...,bm',bm'+i,...,bm'+m in its queue, and a visit by P 2 takes m tasks

from p i, then after the visit, p \ has b i , . . . , bm> and p 2 has bm'+\,. . . , bm'+m as their respective queues. Thus

visits do not disturb the order of the migrating tasks or of the tasks left behind. Let br be the m th task from

the head of the queue at time t in some processor. Define the level number, l(br , t)=j such that pi <m<pJi+1.

Clearly, for each b , l (b , t) only decreases with time. Further, since - jp< l , when task b migrates to a

visiting processor, / (b , t) decreases by at least 1 in this migration. Let l0(b) denote the level number of task

b when it first entered the system. Then / (b , t)<l o(b) for all tasks b , at any instant t . In the following

theorem, we make a steady state assumption that is clarified in the proof. Why we need to make such an

8

assumption is discussed in the next section.

Theorem 4. At time t , let processor p i have n tasks in its queue. Then, under the above scheme, and

under the steady state assumption, no more than O (log k log n) reporting collisions could have occurred

while introducing the n tasks into the system.

Proof. Here again we consider Fibonacci heap operations as steps. Let b \ , . . . ,bn be m p i’s queue at

time t. Let O=mo* . . . , mr be numbers such that bm.+i,...,bm.+l originated at processorp c for all

0 < ;< r-l wherepa.*pCT.+1. Call bm. + . . . , bm.+i the j th segment of p \. Next, note that the Oth segment has

incurred at least r-1 migrations due to visits. Since the level number decreases by at least 1 in every visit, we

have r< l0(b i). Further, all segments except possibly the last one (i.e., (r-l)th), were acquired by p i in just

one visit. This last segment may have recently arrived at p i. As level numbers decrease in every migration,

each segment of p \ must have originated at a level higher than its current level.

For x , y , and z >0 such that x >y, we have log(x +z)-log(;t)<log(y +z)-logCy), and hence

I"log(x+z)] - flogCt)1 < flog(y +z)| - rlog(y)1 +1. Consequently

But l o (^ tlH o (^ + i) is the number of possible reporting steps incurred in introducing the j th segment

into the system at p Gj. So summing both sides of the above inequality we get:

At this point we make the steady state assumption and say that ¿o(b ¡) is O (log n). Thus O (log n) reporting

steps occurred during the addition of n tasks to the queue ofp\ . □

lo(bm.+l)-lo(bm.+i) < l (bm.+l, t)-/ (bm.+1, t)+ l.

<flogp/?l +r <[logp/i] +l0(b0

9

Discussion

Note that in our complexity analyses, each access to F was priced at the maximum possible of O Gog k)

shared memory accesses, and hence with the possibility of O (log k) collisions. Thus the Fibonacci heap is

not essential to the result; any data structure allowing max, incr, and deer in O (log k) time will suffice. We

chose Fibonacci heaps to optimise the performance as much as possible. It may be noted that non-amortized

versions of Fibonacci heaps are now available [1].
V»ave

We^shown that it takes O (k log k log n) visiting collisions following step t to process the n tasks in the

system at time t . Similarly we have shown that it takes O (k log k log n) reporting collisions preceding time

t to arrive at a configuration of n tasks at time t . We have not shown that over O (k log k log n) collisions,

the system completes n tasks; this is not true. The second assertion holds only when we assume steady

loading conditions. The local steady state assumption of lo(b\)-c log n (c a constant) appears reasonable.

The constant c measures how steady the loading is.

References

[1] Driscoll, J. R., Gabow, H. N., Shairman, R., and Tarjan, R. E., Relaxed heaps: an alternative to

Fibonacci heaps with applications to parallel computation, Commun. ACM 31 (1988) 1343-1354.

[2] Fredman, M. L., and Taijan, R. E., Fibonacci heaps and their uses in improved network optimization

algorithms, J. ACM 34 (1987) 596-615.

[3] Manber, U., On maintaining dynamic information in a concurrent environment, SIAM J. Comput. 15

(1986) 1130-1142.

