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ON THE C-TEST ABILITY OF GENERALIZED COUNTERS

Abhijit Chatterjee 

Jacob A. Abraham

Computer Systems Group 
Coordinated Science Laboratory 

University of Illinois 
Urbana, IL 61801

ABSTRACT

This paper investigates the testability of a class of circuits called counters, that perform the 
addition of sets of input bits of equal arithmetic weight. These circuits consist of full and half 
adders interconnected in an iterative manner defined by the counting process. The general class of 
counter circuits contain reconvergent fanout and are structurally not as regular as 1 or 2 dimen­
sional Iterative Logic Arrays.

A model for analyzing the structure of counter circuits is proposed. Several schemes for gen­
erating test sets that exploit the iterative structure of counter circuits are presented. The testability 
of such circuits is enhanced by imposing certain design constraints on them. Some methods for gen­
erating easily testable counter structures are proposed. It is shown that counters can be always 
designed to be testable with either 8 or 9 tests, irrespective of the input size.
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1. Introduction

In the testing of iterative logic, the test size can be substantially reduced by exploiting the 

repetitive nature of the hardware. Patterns of test vectors are applied, that simultaneously test the 

circuit modules [1-4]. In the case of 1-D Iterative Logic Arrays (ILAs), the signal flow is in one 

direction and the inputs to each of the modules are directly controllable. In the case of 2-D ILAs. 

the signal flow is in two perpendicular directions and the controllability issue is more complicated. 

In each of the above cases, there does not exist any reconvergent fanout and the interconnection 

between the modules is fairly rigid. There exists a class of iterative circuits called counters which 

are not as regular as the circuits described above. A counter performs the summation of sets of 

input bits of equal arithmetic weight. A binary encoding of this summation is generated on an 

appropriate number of output lines. For any given set of inputs, several counter circuits ran be 

designed to perform the above summation. Further, these circuits contain reconvergent fanout.

A model for the counting process is first presented. Some properties of counters are derived 

and it is shown that a subset of the class of counter circuits can be designed without the use of half 

adders. A recursive construction for the above subset of the class of counter circuits is presented. 

Counters based on this construction are shown to be C-testable with a test length of 8.

A labelling scheme for a tree based representation of counter circuits is developed. This 

scheme is used to generate tests for counters. It is shown that by a process of 'growing* the trees in 

this tree based representation, any counter can be designed to be testable in 8 or 9 tests. Two such 

schemes are presented and timing issues are discussed. Finally, the testability of different 

configurations of counter circuits is discussed and a branch and bound algorithm for generating 

tests for any counter configuration is presented.

2. Previous Work

The problems of testing 1-D Iterative Logic Arrays are almost solved [1-5]. The testing of 2- 

D ILA s has been widely investigated and is well understood. Conditions for the C-testability of 

2-D ILA s are presented in [6]. The testing of Exclusive-OR tree structures is discussed in [7]. In
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[8], a recursive procedure for generating an O(n) test set for an n input general tree structure is 

presented. It has been shown [9] that if each of the paths from the inputs to the root node is C- 

testable, then the entire tree can be tested with a test length proportional to the logarithm of the 

number of inputs. However, there do not exist any results on generalized counters.

3. The Counting Process : A Model and it's Description

A unary counter of full and half adders stuns n bits of equal weight and generates a weighted

binary stun on log2n + 1 output lines [10-11]. A tree model for counter circuits and some related

properties are first discussed.

In the following, a half or full adder is referred to as an addition module. An input or output 

of an addition module of the counter, hereby referred to as a counter node, can be reached from one

of the counter inputs by traversing a sequence of addition modules .... am%. The traversal

through an addition module is from one of it’s inputs to either it’s sum or carry output.

Definition 1: The carry count of a traversal from an input of the counter to a counter node is 

defined to be the number of addition modules in the sequence that are traversed

from an input to the corresponding carry output.

In the following, the arithmetic weight of a counter node is referred to simply as the weight 

of the node.

Lemma 1: If the weight of an input to the counter is 2* and the carry count of a traversal 

from this input to a counter node is C. then the weight of the node is 2* 40.

Proof. The weight of the carry output of an addition module is twice the weight of the inputs 

to the module. If the carry count is C, the weight of the counter node reached by the corresponding 

traversal must be 2C 2* = 2k+c. n
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3.1. The Tree Model fo r  Counters

Consider the addition of 7 bits of equal weight by repeated addition of groups of 3 bits. This 

can be represented by a set of trees as shown in Figure 1.2 for the 7 input unary counter of Figure

1.1. The nodes of the trees represent the full adders of the counter and are assigned the same labels 

as the full adders of Figure 1.1 to which they correspond. The output branch of each node of a tree 

corresponds to the stun output of the associated full adder. The carry outputs of the fu ll adders 

represented by the nodes of the tree of Figure 1.2a are connected to the inputs of the tree of Figure 

1.2b, which are labelled accordingly. This process is recursive and leads to Figure 1.2c, until no 

more carries are generated. The values on the output branches of the root nodes of these trees 

represent the weighted binary count of the number of l 's  at the inputs to the tree of Figure 1.2a.

A2 B2 CZ Al B i  Ci \F

Figure 1.1: 7 input unary counter

a b e d

Figure 1.2: Tree representation for 7 input counter
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In general, n bits can be summed by repeated addition of groups of 2 or 3 bits, n  ^ 3. This can 

be represented by a set of trees, where each node of a tree has 2 or 3 input branches respectively. If 

a node of a tree has 2 input branches, it represents a half adder. If it has 3 input branches, it 

represents a full adder. Each tree represents a bit slice of the counter. Each node of a tree represent­

ing a full adder, reduces 3 branches to 1 branch, while each node representing a half adder reduces 

2 branches to 1 branch. This is said to be a 3 to 1 or 2 to 1 reduction o f brdnches respectively. It is 

always possible to do 3 to 1 reductions of branches until either 2 or 3 branches are left to be 

reduced by the root node of the tree. In the former case, the root node corresponds to a half adder, 

while in the latter it corresponds to a fu ll adder. In our design methodology, a half adder, if at all 

necessary, is placed at the root node of a tree. Such trees as above are called reduction trees and a 

reduction tree of input size k  is denoted by Rk .

Definition 2: Of the set of reduction trees that define the counter structure, the fundamental 

tree is defined to be the one whose inputs are all controllable inputs to the counter.

Definition 3i A derived subtree is defined as a tree which has one or more of it’s inputs fed by 

carries from another bit slice of the counter. The tree from which these carries are derived is called 

the parent tree of the derived subtree.

In general, there are many ways of forming the reduction trees that constitute each bit slice of 

the counter. Further, for each construction of the above set of reduction trees that define the 

counter, there are many ways that the carries in between these trees can be interconnected. 

Different possibilities as above, represent different hardware realizations of a counter with regard 

to the manner in which the addition modules are interconnected.

The output of every tree in the set of reduction trees for a counter represents the parity of it’s 

corresponding inputs. If the weight of the input bits to such a parity tree is 2i , then this tree is said 

to belong to bit slice i and the weight of this bit slice is 2‘ .

Lemma 2: Every hardware realization of a counter can be uniquely represented by a set of 

reduction trees with the following properties:
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Property 1: There exists a unique mapping between the full and half adders in the hardware reali­

zation of a counter and the nodes of the reduction trees in it’s corresponding tree model.

Property 2: The physical interconnection of the carries between two reduction trees in bit slices i 

and i+1. defines a one to one correspondence between the nodes of the reduction tree of bit slice i 

and the inputs of the reduction tree of bit slice i+1 to which the carries from the addition modules 

represented by the above nodes are connected.

Proof: The carry count is used to assign a weight to every counter node. The interconnection 

of the addition modules of the counter through counter nodes of the same weight represent trees 

where the nodes of the trees correspond to addition modules and the branches of the trees 

correspond to counter nodes of the same weight. This one to one mapping verifies Property 1. Pro­

perty 2 can then be trivially verified. □

Example 1: Consider the 9 input unary counter of Figure 2. The tree representation of this 

counter is depicted in Figure 3. The labels on the nodes of the trees correspond to the addition 

modules they represent. The labels on the inputs to the reduction trees represent addition modules 

whose carries are connected to those inputs. The inputs to reduction trees without any labels 

represent controllable inputs to the counter.



Figure 2: 9 input unary counter

Figure 3: Tree representation for 9 input counter

3.2. Some Properties o f Unary Counters

A subset of the class of unary counter circuits can be constructed with full adders only. In 

our design methodology, the minimum number of half adders necessary to construct a counter are 

used.

Definition 4: A counter that can be constructed without any half adders is defined to be com­

plete. Any other counter is an incomplete counter.
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THEOREM 1: A ll unary counters of input size N  = 2n — 1, n ^ 2, are complete. All other 

unary counters are not complete.

Corollary 1: If the bit of weight 2* in the binary representation of N is 0 then the bit slice of 

weight 2‘ of the counter must contain at least 1 half adder.

PROOF: Consider a reduction tree Rj in which every node correspond to a fu ll adder. Define a 

simple graph G. with the vertex set { { V ^  }.{Vinternal }.v0}. as in Figure 4. where { V ^  } is a set of 

vertices that represents the inputs to the reduction tree. { Vinternal} is the set of adder nodes and v0 
is a vertex representing the output of the reduction tree. The edges of G are the same as that of the 

reduction tree.

Figure 4: Graph G for reduction tree

Let of be the number of vertices in the set { } and let j8 be the number of vertices in the set {

înterned )• H <̂vl is the degree of the vertex i, € is the number of edges and n the number of vertices 

in G, then from a result in graph theory [12]:

i =71
E*», = 2 €
i =0 Cl)

Applying (1) to G. we get 4/3 + a  + 1 = 2(3 /3 +1) or

of = 2/3 + 1 (2)

Now consider that the root node of the reduction tree corresponds to a half adder. Applying 

(1) to G. we get 4( /3—1) + 3 + a  + 1 = 2(3( /3-1) + 2 + 1) or

a  = 2/3 (3)
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There are two cases:

Case Is Remainder of is 1 
2

In this case there are carries into the next bit slice and no half adders are necessary to

construct the reduction tree R j .

Case 2z Remainder of 4^ is 0

In this case there are carries into the next bit slice and a m in im u m  of one half adder is

necessary to construct the reduction tree. This half adder is placed at the root node of R j .

If Rni and Rni+\ are reduction trees for bit slices i and i+1 respectively, then from cases 1 and

2:

(4)

Let n q — N  initially. The set of remainders obtained from the division —— in the recursive
2

computation of n; +1 from rii, represents the binary encoding of N. A 0 in the bit position of weight 

2* , k  ^ 0 , in this binary encoding implies that the remainder of is 0. By case 2, the root node of
4U

Rnjt must be a half adder. Hence the binary encoding of N must not contain any 0’s. Since this

implies that the binary encoding of N must be of the form 1111....1, hence for a complete counter,

N must be of the form 2n —1, for n ^ 2  (n**l is trivial).

Also, if N is not of the form 2*—1, then it's binary encoding contains at least one 0 and the 

corresponding reduction tree contains a half adder. Hence it is not complete. □

3.2.1. Fault O bservability in  Counters

It can be easily shown that under the Single Cell Faulty Model (SCFM) [9], any error in the 

sum or carry outputs of an addition module will always cause an error in the observed counter
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output. Consider an addition module whose inputs are of weight 2*. An error in the sum output of 

this addition module causes the output of the i’th bit slice to be incorrect. This is because this out­

put is the parity of it’s inputs. An error in the carry output of the addition module causes an error 

in the output of some bit slice y, y > i . If both the sum and carry outputs of the addition module 

are incorrect, then the output of bit slice i is incorrect although there might not be any error in a 

bit slice y. y > i , due to fault masking. Hence an error in the outputs of an addition module is 

always propagated to one of the outputs of the counter.

4. An Empirical Approach to Test Generation for Complete Counters

In the following discussion, the counters referred to are unary counters. The following pro­

cedure constructs a 2m — 1 input counter from two counters of input size 2m - 1—1. The construction 

can also be used to prove by induction, that all counters of input size 2m -1 can be constructed 

with full adders only.

Figure 5: Recursive construction of unary counters
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Construction Is Consider the identity

2m —  1 =  2m~1 -  1 +  2m~1 - 1  +  1

Hence, two 2m~1 input counters and an extra input can be used to construct a 2m -1 input 

counter as in Figure 5. With regard to Figure 5. the blocks FAi are fu ll adders used to perform the 

summation of two output lines of equal weight from each of the 2m—1 input counters. Notice that 

the full adders FA{ are serially connected and that this serial chain is C-testable [9]. It is easy to 

see that any path in the above circuit consists of a string of serially connected full adders. This 

serial chain is through either the sum or carry output of the full adder and is C-testable.

In the following, conditions are derived for the C-test to be applied to the chain of full adders 

F A i, in Figure 5. In Figure 5, the vectors A ™ a© a i—am— l «^d B =* Bq b are the outputs of 

the two 2m~1 input counters. Input IF is the only directly controllable input line for the full adder 

chain FA{. The objective is to establish the patterns of vectors A and B, such that all the full 

adders in the chain are exhaustively tested by controlling IF for each such combination of patterns.

Let C and D be two arbitrary vectors of length m. It can be verified that the set of vectors A 

and B in Table 1, is a C-test of cycle length 8 for the above chain of full adders. Call this test set 

the C8 test set (an acronym for constant 8). The set of vectors applied at either a 0 or b 0

b l— bm _i in applying the C8 test set are the same and are referred to as the C8 input set. The vec­

tors listed in either of the columns A or B of Table 1 constitute the C8 input set.

In Table 1. C and D can be chosen to be the same. Tests 1-4 apply all possible vectors with 

ai = bi and the rest apply all possible vectors with .

Definition 5: Define the characteristics of the the C8 input set of length 8 by the following 

properties:

Property 1: The test set must contain the vectors 000..0,111..1,0101.... and 1010....

Property 2: For every test vector A, different from those identified in Property 1. the comple­

mented vector A  must also appear in the test set.
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Table 1.

Test A B IF
Test 1 0000..0 0000..0 0
Test 2 1111..1 1111..1 1
Test 3 0101... 0101... 1
Test 4 1010... 1010... 0
Test 5 C C 0
Test 6 c C 0
Test 7 D D 1
Test 8 D D 1

Let 0(l).0(2),...,0(8) represent the vectors obtained at the output terminals of the full adder 

chain F A 0J?A i,..F'Am_l in Figure 5. The vector 0 (0  is the vector o0,olt..,om obtained in applying 

the i'th test to the inputs of the full adder chain.

Lemma 3. In applying the C8 test set to the full adder chain of Construction 1, the set of vec­

tors {0(1),0(2),....0(8)} retain the characteristics of the C8 input set.

PROOF: Consider the C8 test set and the output vector 0(i) -  o0 o for the i’th test, listed 

for the tests 1-8 of Table 1 in Table 2. The output 0(1) -  0000..0 when test 1 is applied and the 

output 0(2) -  1111..1 when test 2 is applied. The application of test 3 gives 0(3) = 1010... and the 

application of test 4 gives 0(4) =* 0101.... Hence property 1 is satisfied.

Table 2.

Test Vector 0(i)
Test 1 0000..0
Test 2 1111..1
Test 3 1010...
Test 4 0101...
Test 5 1111..0
Test 6 0000..0
Test 7 0000..1
Test 8 0000..1
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For each of the tests 5-8, either at = 1 and b{ = 0 or a{ -  0 and b{ = 1, for FAf, where 

0 ^  i ^  m —1. If IF — 0 as in test 5 and test 6, then every full adder in the full adder chain has 

one of it’s inputs set to 1. Hence all the sum bits for all the FA{ are 1. except for the most 

significant output bit which is the carry from FAm If IF -  1. then it can be seen that all the sum 

and carry bits of the above full adders are complemented. Hence property 2 is satisfied.

Since both properties 1 and 2 are satisfied, the set {O(0),O(l)....,O(m)} has the characteristics 

of the C8 input set. □

Lemma 4: In applying all possible input vectors to a full adder, the set of output vectors 

obtained (C ^  , S) satisfy the characteristic properties of the C8 input set.

Lemma 4 is easily verified. Hence, by Lemma 3 and Construction 1, the test set for the 7- 

input counter of Figure 1.1 is derived in Table 3. The vector A represents the values a 0 ai- Simi­

larly for the vector B.

Theorem 2: Unary counters of input size 2n -1 based on Construction 1, where n ^  2. are C- 

testable with a minimal C-test cycle of length 8.

PROOF: (By induction) We have already seen that 3 and 7 input counters can be tested with a 

C-test cycle of length 8.

Table 3.

Test A1 B1 C l A2 B2 C2 A B IF 00 01 02
Testl 0 0 0 0 0 0 00 00 0 0 0 0
Test2 1 1 1 1 1 1 11 11 1 1 1 1
Test 3 0 1 1 0 1 1 01 01 1 1 0 1
Test4 1 0 0 1 0 0 10 10 0 0 1 0
Test5 0 0 1 1 1 0 10 01 0 1 1 0
Test 6 1 1 0 0 0 1 01 10 0 1 1 0
Test 7 0 1 0 1 0 1 10 01 1 0 0 1
Test 8 1 0 1 0 1 0 01 10 1 0 0 1
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Assume that the application of a set of tests T to the inputs of a 2m_1— 1 input counter results 

in a set of output vectors 0 (l)-0 (8 ), which have the characteristics of the C8 input set. Then a 

combination of test vectors from the set T can be applied to the inputs of each of the two 2m_1—1 

input counters of construction 1, such that the C8 test set is applied to the corresponding full adder 

chain. By Lemma 3, the set of output vectors 0 (l)-0 (8 ) of the 2m — 1 input counter retains the 

characteristics of the C8 input set. Hence, by the induction hypothesis, a test set can always be con­

structed for any complete unary counter based on construction 1. □

The above theorem also defines a method for deriving the test set for any complete unary 

counter based on construction 1.

5. Test Generation Based on the Tree Model

Test generation for unary counters is simplified by virtue of the iterative structure of the 

trees concerned. Consider the reduction trees of each bit slice individually, with the inputs to the 

tree considered as externally controllable inputs.

L e m m a  5: Every reduction tree in the set of reduction trees that represent a counter, is indivi­

dually C-testable.

Pr o o f: Consider the vectors V x -  00001111. V 2 =  00110011, V 3 =  01010101 and

V 4 = 01101001. It can be verified that Vx ®  Vj ©  Vk = Vt , where and K i  , j  Jc l  <4.

Also, any 3 of these vectors contain all possible combinations of 3 bit values.

The root node of a tree can be labelled such that it s 3 or 2 input branches and it*s output 

branch have different labels, according to whether it represents a full or half adder respectively. 

Since every node has 4 incident branches by construction, the labelling can be recursively applied 

to all the nodes whose output branches have been assigned labels.1 □

In the above procedure, if the label Vt is associated with the input i, V} with the input j .  upto 

with input n, then the i*th test vector is obtained by applying the i’th element of Vx to i, the

1Thc proof is an extension of that presented in [7] for 2 input EX-OR trees.
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i’th element of Vj to j  and so on. upto the i’th element of Vn to n. Since the length of each of the 

vectors Vj is 8, ^ 4 , 8 tests are obtained.

Lemma 5 is a necessary condition for the overall counter to be C-testable. It remains to be 

shown that the C-tests for each of the reduction trees taken together, can be applied simultane­

ously.

Consider the set of vectors V={ V j.V2*V3»V4}. where each of the vectors Vj are the same as 

defined in Lemma 5. Further, let C=*{Ci,C2»C3,C4} be a set of vectors where each of the vectors Cj 

are defined as follows: C A = 01110001. C2 = 01001101. C3 = 00101011. C4 = 00010111. Let Vj be 

the i th vector in the set V where l ^ i  ^ 4  and define Cj similarly for the set C. Also, define the 

functions g( ) and f( ) as follows:

CD gCV j.V ^.V ^-V jÆ V , Q Vk

(2) f(Vj ,Vj ,vk ) -  Vj .Vj + Vj .vk + Vj .vk
The function g( ) is the bitwise summation of the vectors Vj ,Vj and Vk . while the function f( 

) is the bitwise carry produced in the above summation.

The following relations can be verified:

(1) g(Vj .Vj ,Vk ) -  Vj

(2) f  ( Vj ,Vj ,Vk ) » Cj

(3) g(Cj ,Cj ,Ck ) =» Cj

(4) f(Cj ,Cj A  ) = Vj

(5) g(Vj.V,.V*) = Vj

(6) f(V j.v j,vk) =*ck
(7) g(Vj,V; .V*)=.V j

(8) f(Vj .Vj ,Vk ) -  Cj



16

(9) g( Vi .VJ.Vk) = Vl

(10) f (V t.V j.V tl-C t

where i ^  j  ^  k  ^  l and l ^ i  ,J J: J ^ 4  , in each of the above 10 equations.

The above equations which define the manner in which the sum and carry bits are generated 

at each addition module, satisfy the following property:

Property 1: Each of the equations 1-10 can be written with the ’V’ and ’C’ variables inter­

changed.

The sets of vectors V and C are seen to satisfy the following property:

Property 2: Any combination of 3 vectors Vi ,Vj ,Vk or Cx ,Cj ,Ck . and

l < i  ,j  Jc l  < 4  and combinations of complemented or uncomplemented sets of the same, contain all 

possible combinations of 3 bit values.

Branch Labelling Problem: The problem of finding a minimum test set of length 8 reduces to 

the problem of labelling each of the branches of the tree representation of the given counter with 

the labels V i~V 4,Vi~V4 or C i-C4,Ci~C4. By property 2, the indexes T  of the vectors VitVi or 

Ci ,Cj. applied at each of the inputs to a node must be different from each other. Further, the index 

j of the output branch of that node is uniquely determined by the equations 1-10. A consistent 

labelling for a tree is one that is determined by the above conditions. In considering the labelling 

for a set of reduction trees, the labelling for the fundamental tree determines the labels on the 

inputs to it's derived subtree. This set of input labels must define a consistent labelling for the 

derived subtree. In the same manner, a labelling for any tree in the set of reduction trees for a 

counter must define a consistent labelling on it's derived subtree. Such a labelling is a consistent 

labelling for the entire set of reduction trees.

By Property 1, the fundamental tree is labelled with V’s, it’s derived subtree with C*s, the 

next derived subtree with V’s and so on in an alternating manner.
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Definition 6: A  simple labelling set consists of only the uncomplemented labels V 1-V 4 and 

C1-C4. Any other labelling set is complex.

For simple labelling only equations 1-4 are relevant and the label on the carry from an addi­

tion module is the same as the label on the output branch of the node representing that module.

Consider the reduction tree set for a complete unary counter. The reduction tree set for a 3 

input counter is simply { R 3 }. The carry from R 3 is assumed to be implicit in R 3. The reduction 

tree set for a 7 input counter is { Ri»R3}. For a counter of input size 2” —1, n  ^ 2 , the reduction tree 

set is {R2n_lA 2n-\_v ...R22- l ) .

Let us associate the names a,6,c,d, with the branches incident on a full adder node of a reduc­

tion tree in the following manner. The output branch of a node is called the a branch of the node 

and the 3 input branches are called the b,c and d branches of the node in a clockwise manner (Fig­

ure 6).

Consider the reduction tree Rj . the external branches of Rj are those which are inputs to Rj 

and the internal branches of Rj are those which join two nodes of R j . External nodes of R} are 

those which have one or more inputs that are external branches of R} . The rest are internal nodes. 

Further, external and internal labels are those obtained on the external and internal branches of R j , 

by a consistent labelling in R j . The unordered set of internal and external labels with repetition, 

form the internal and external labelling sets of R} respectively.

a

Figure 6: Branch names for a node
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5.1. Tree Growing

Consider the full adder node of the reduction tree R 3 of a 3 input counter. The reduction tree 

R 7 can be constructed by connecting the outputs of 2 full adder nodes to the b and c input branches 

of the full adder node of R 3. Similarly, the reduction tree R 15 can be constructed by connecting the 

output of a fu ll adder node to every input of R 7 that is the b or c input branch of an external node 

of R  7. Such a process of replicating a reduction tree Rkl and adding full adder nodes to the inputs

of Rki to construct a reduction tree Rki, where k 2>k  i, is called tree growing. tree Rk is said to
/

have been grown from Rkl. Beginning with R 3. a set of reduction trees is grown recursively, at 

each step growing Rki from Rkl. k 2>k y.

Cose Is Consider ky  = 2n — 1 for some n  ^ 3 . Then the reduction tree Rk2, k 2 = 2n+1 — 1 is 

obtained from Rkl by adding a full adder node to every input of Rkl that is the b or c input branch 

of an external node of Rki. If the largest reduction tree generated by the above process is Ri •

where t max = 2J — 1, for some j  ^ 3 . then the set of reduction trees obtained, represent that for a 

unary counter of input size 2-̂ — 1

Example 2: The reduction tree R  7 for the 7 input counter of Figure 1 can be obtained by tree 

growing as above, from R 3.

Case 2j Consider the reduction tree Rk x where k  y is odd. Further, let every node of Rk satisfy 

the property that if it's b input branch is connected to the output of a full adder node, so is it’s c 

input branch. This is a necessary condition for the tree growing method of case 2 to be applied. Let 

k 2 = 2k x + 1 and we are to grow Rki from Rkl (i.e there exists 1 full adder in Rki for every input 

of Rkl). Since k 2 is odd. an even number of full adder nodes must be added to the inputs of Rk .̂

s k 2 ~ k y
Hence (---- ----- ) pairs of full adder nodes are added to pairs b and c of input branches of external

nodes of Rk t to generate Rki. The reduction tree Rk2 meets the necessary condition for case 2 for

tree growing as described earlier. Hence trees of larger size can be grown by applying the process 

recursively to Rkr
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Example 3: Figure 7 shows how R 23 is grown from R n ,

Tree growing as in case 1 is a special case of tree growing as in case 2. In the following discus­

sion, tree growing refers to that of case 2 and the corresponding definitions of Rk and Rk2 are 

retained.

DEFINITION 7: Define a sequence o f branches from the root node to a node n of a reduction 

tree, as the sequence b,c of branches, (ignoring the labels on the output branches of nodes) that 

must be followed from the root node to reach that node.

Example 4: In Figure 7a. the sequence {be} of branches must be followed to get to the node S 

from the root node N of R 15.

Let M(n) -* n' be a partial mapping that maps a node n of the reduction tree Rk2 to a node n 

of it’s derived subtree Rkl. where Rk2 is grown from Rkl.

Definition 8: M(n) -♦ n* if it is possible to reach n from the root node of Rk by following 

the same sequence of branches that it takes to reach n from the root node of Rkr  M(n) -*• NULL 

otherwise.

Example 5: In Figure 7a, M(P) -* M .
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Definition 9: Define an operation R( ) such that m = R(n). if the output branch of a node n in 

a reduction tree is connected to one of the inputs of the node m in the same tree.

Example 6: In Figure 7a, N -  R(P) in R 15.

By the manner in which Rk2 is grown from Rkl. it is clear that if M(n) -* NULL, then

M  (i? ( ji)) A  N U LL . The following construction defines the manner in which the carries from the 

reduction tree Rk 2 are connected to the inputs of Rkl.

Construction 2: Let n be a full adder node in the reduction tree Rkl. whose carry is to be con­

nected to the inputs of the reduction tree Rk . There are 2 cases.

Case is M(n) -  NULL.

In this case if the output branch of n  is connected to the b or c input branch of R(n), then the 

carry from n  is connected to the c or b input branch of n  respectively, where M(n) n \

Case 2z M(n) -♦ n', where n' is a node in Ru .*i

In this case, the carry from n is connected to the d input branch of n \  □

5.2. Partitioned Labelling

There are many ways of labelling a set of reduction trees for a counter. In the following, we 

discuss a labelling scheme that is later shown to be consistent with Constructions 1 and 2. The 

labels V and C are dropped for convenience and only the subscripts {1.2,3,4} are retained.

Partition the labelling set {1.2,3.4} into 2 partitions L 1»{2,3} and Z,2={1.4}. Partition the set 

of branches {a,b,c,d} incident on each full adder node into 2 partitions. B  ̂ {b.c} and 2?2={a,d}.

Definition 10: A partitioned labelling is defined as one in which the labels in the set L {. i=l,2, 

are applied either to the branches in B x or the branches in B 2. but not both.

Example 7: Figure 8 depicts a partitioned labelling of the set of reduction trees for a 15 input

unary counter.
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Figure 8: Partitioned labelling for 15 input unary counter

Figure 9: 15 input unary counter

Let SWITCH( ) be an operator on the sets , i-1,2, such that SWITCHCL,-), exchanges the 

labels in the specified set L {, on all the branches of a reduction tree. Consider a partitioned labelling 

of Rk2. where Rki is grown from Rkv  The labels on the branches a.b.c and d of a node n of Rki are 

duplicated on the node n of Rk t if M(n) n and n' ĵ NULL . This process is repeated for every



22

node n of Rkr  The resultant labelling of the nodes of Rk2 is called the duplicated labelling of Rki on

* i -

Let Rkl and Rki be defined as in the tree growing method of case 2. Further, let the carries 

between these two trees be interconnected as in construction 2.

Theorem 3: A consistent labelling between Rki and Rkl is obtained by applying the operators 

SWITCHCL i) and SWITCH(Z 2) to the duplicated (partitioned) labelling of Rk 2 on Rk .

Corollary 2: A consistent labelling between Rk 2 and Rk 1 defined as in the tree growing 

method of case 1, can be similarly found.

Proof: For every node n  in Rk r  either M(n) -  NULL or M  (n ^ N U L L .

Case 1: M(n) -  NULL.

From Construction 1. the output branch of n is connected to either the b o r e  input branch of 

R(n). Let it be connected to the b input branch and let the label on this branch be i. Then for simple 

labelling, the label on the carry signal from n  is also i. By Construction 2, this carry is connected to 

the c input branch of n ', where M(n) ~* n \  By the SWITCH operation on the duplicated labelling of 

5t 2o n ^ i ’ the label on the carry from n and the label on the c input branch of n is i. Hence the 

labelling is consistent.

Case 2: M ( n )  ^  NULL

Consider the node n' of Rkl, where M(n) -* n*. By Construction 1, the input branch d of n' is 

an input to Rkv  By the SWITCH operation on the duplicated partitioned labelling of Rk2 on Rkl, 

the label i of the output branch of n  is the label of the input branch d o in '.  Since i is also the label 

of the carry from node n and by Construction 2, the carry from n is connected to the d input 

branch of n \  the labelling is consistent.

Since the labelling of each of the reduction trees Rki and Rkl is consistent and the carries 

between the trees are consistent with this labelling, the labelling for both the trees is consistent.
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□

In the above, the branches b.c and d of every node are permutable. However, the naming con­

vention is adopted for the sake of formalism.

Consider the reduction tree set RTS * {J? ¿n _j, R  2n-i_1,...i? 3} obtained for a 2n — 1 input unary

counter by tree growing as in case 1. The interconnection of the carries between the trees is based 

on construction 2.

Theorem 4: A consistent labelling of the reduction tree set RTS is obtained by a partitioned 

labelling on the fundamental tree of the counter.

Corollary 3: A simple labelling set is sufficient to consistently label the reduction tree set of 

complete unary counters based on Constructions 1 and 2 and defines a C-test of length 8.

Proof: By corollary 2, a consistent labelling between the fundamental tree R 2n- i  and i?2n-i_1 
can be found.

Now consider the set of reduction trees {RaQJtai, Rar...Mai}. where a¿ = If a con­

sistent labelling for the above set for i <n exists, then a consistent labelling for the

set{i?a o..... J?ai+1} can be found by applying corollary 2 to find a consistent labelling between Ra

and it’s derived subtree Rai+i- By the induction hypothesis then, a consistent labelling for the com­

plete set of reduction trees can always be found for any n. This labelling defines 8 tests for the 

counter. □

Example 8: The partitioned labelling of Figure 8 defines 8 tests for the corresponding 15 input 

counter of Figure 9.

5.3. Test Generation for Incomplete Counters

A method for finding which bit slice of a counter must have a half adder is described in the 

proof of theorem 1. These half adders are placed at the root nodes of the corresponding reduction 

trees. In the worst case, all but one bit slice can have half adders at the above root nodes. This
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worst case ripple carry chain of half adders considered as a sub circuit of the counter, can be tested 

in O(m) tests for m half adders in the circuit. Since there are 0(log2n) half adders for an n input 

counter, these can be tested in 0(log2n) tests. By our earlier hypothesis, if the full adders in the cir­

cuit can be tested in 8 tests, then it should be possible to find an 0 (log2n) test for an n  input incom­

plete counter in general. In the following, we discuss how full adder trees that can be always tested 

in 8 tests are constructed. A design for testability procedure is also proposed that substitutes each 

half adder at the root node of a reduction tree by a full adder and by the addition of some extra 

circuitry, makes it possible to test all incomplete counters in at most 9 tests.

5.4. Generalized Counters

Generalized counters perform the summation of sets of input bits .each set corresponding to a 

different weight. Complete and incomplete generalized counters are defined in a manner similar to 

unary counters.

Definition 11: A C(ik ,ik l3i 0:count) weighted counter is defined to be one that adds i 0 

bits of weight 2° to i t bits of weight 21. and so on upto ik bits of weight 2* , where k  >0 and count 

is the number of output bits produced.

Theorem 5: A ll generalized counters of input size N. where 

N  ='£>•* 2* =2» - 1  m
i =0

where n ^2 are complete.

Corollary 4: If the bit of weight 2* in the binary representation of N is 0, then the bit slice 

of weight 2* of the counter must contain at least 1 half adder.

PROOF. The addition of ¿ o bits of weight 2° to i k bits of weight 21 and so on, upto ik bits of 

weight 2* is equivalent to the summation of N bits of weight 2° in the following manner. If a bit 

of weight 2J ,0< /  <&, is 0 or 1, then it is equivalent to setting 2J bits of weight 2° to 0 or 1 
respectively. Hence the argument of theorem 1 can be applied to the N bits of weight 2°. The proof 

then follows.
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□

For the generalized counter C(i* ,ijk_1,..i1,i0:count), the number of input bits to each bit slice 

is computed from the recurrence

cj +1 ~ C j + i j  

2 (2)

where ci = 0 for j-O. The number of input bits to bit slice j  is N j = Cj + ij and Cj is the number 

of carries into bit slice j  from bit slice j-1.

5.4.1. Restricted Tree Growing w ith  Partitioned Labelling

There exists a subset of the class of generalized counters on which the partitioned labelling 

scheme can be used effectively. Consider the reduction tree . where N } +1 = Cj +1 + +1 as

before. If we impose the restriction that ij+ * must be even, then -4r—■ pairs of external inputs to

&nj+j can be formed. Pairs {b.c} of input branches of external nodes of &nj+1 can then be selected to 

which these pairs of external inputs can be connected. If the d input branch of a node n  is connected 

to an external input, then the d input branch of the node n \  where R(n)-R(n’), must also be simi­

larly connected.

In order to grow &Nj from full adder nodes are added to the inputs of the replicated

tree R'Nj of RNj, as in the tree growing of case 2. However, full adder nodes are not added to those 

inputs of R‘Nj to which inputs iJ+1 are connected in the corresponding tree RNj. The growing of 

Rnj is said to be based on the input restrictions of

It should be mentioned that the number of external inputs ik to the derived subtree of the 

fundamental tree need not be even, since one does not need to apply the process recursively to the

fundamental tree.
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5.4.2. Design Methodology 1 for Generalized Counters

(1) Compute the number of input bits N j to each bit slice j  of the generalized counter.

(2) Construct the reduction tree RNj for each bit slice j ,  by tree growing based on the input res­

trictions of Rn j+1 recursively, beginning with R 3.

(3) Interconnect the carries between the trees as in Construction 2.

The external inputs of each of the reduction trees that are not connected to the carries from 

full adder nodes of other reduction trees are the inputs to the generalized counter.

5.4.3. Test Generation for Counters Based on Design Methodology 1

The testing procedure is an extension of that for unary counters. Consider the mapping M(n) 

n between the nodes n of and the nodes r i  of Rn j+1- The set of nodes of Rn j+1 obtained by 

performing the above mapping for every node n  of RNj defines a subtree STj+1 of Rn j+1- By 

theorem 3, a consistent labelling between Rjf} and ST  ̂+1 is obtained by a partitioned labelling of 

RNj. The resultant labelling of STJ+1 is then extended to Rn j+1 to obtain the labels on the input 

branches to Rnj+1 that are external inputs to the counter.

By the above process, starting with the fundamental tree, a consistent labelling can be 

obtained for all pairs of bit slices recursively. The set of labels obtained at the inputs to the counter 

define a test set of length 8.



Example 9: Figure 10 depicts the reduction tree set and labelling obtained by tree growing, 

for C(5,5:4). Figure 11 depicts it’s corresponding hardware implementation.

Figure 11: C(5,5:4) schematic
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L ^ b 3  d  c e

Figure 12: Reduction tree set and labelling for C(2.11:4)

Example 10: Figure 12 depicts the reduction tree set and labelling for C (2,ll:4).

5J5. U nrestricted Tree Growing

In unrestricted tree growing, the structure of the the reduction trees of each bit slice and the 

way they are interconnected, is determined by the manner in which the trees are grown.

Consider a consistent labelling on Rj . Let E be the external labelling set of Rj , every node of 

which represents a full adder. By equation 1, j  must be odd. The labels belonging to the set E can 

be obtained from the carry signals from each of j  nodes of a reduction tree Rk . if such a reduction 

tree can be found, where k = 2 j  + 1. Since k  is also odd, all the nodes of such a reduction tree Rk . 

can be designed to be full adder nodes. Let I be the internal labelling set of Rk for a consistent 

labelling on Rk .

Theorem 6: For a consistent labelling on every reduction tree R j , there exists a consistent 

labelling on a reduction tree Rk , k  = 2 j + 1. such that the set E of labels of Rj is the same as the 

set I of labels for Rk .

PROOF. Let be 4 labels such that i ^ j  7*1 and , j  Jc J. ^ 4 . Every node of Rj has 

4 distinct labels on each of it's 4 incident branches. This must also be true for Rk if the labelling is

to be consistent.
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The procedure used to construct R% , is to grow it from it’s root node, labelling it consistently 

at each step (This tree growing is different from that described earlier). Consider a partially grown 

tree Rt , with t inputs, where 3 ^ i  and t  is odd. Let the internal labelling set of Rt be I t , where 

I t is a proper subset of E. We pick a label l from the set {E—I t }. If this label l is an external label 

for Rt , then a node n  is added to the input of Rt with the label l as in Figure 13, to obtain Rt +2.

+2 is grown from Rt . The internal labelling set l t +2 of Rt +2 becomes I t +2 = I t + l . We have to 

show that it is possible to grow Rt+ 2 from Rt for all 3 ^ i  , such that if I t is a subset of E, then

I t +2 is also a subset of E and I t is contained in I t +2.

Consider the reduction tree Rj . The external labels in the set E come from 3 types of external 

nodes of Rj as in Figure 14.

All 3 input branches to a node of type 1 are external branches. A node of type 2, has 1 inter­

nal and 2 input external branches. A type 3 node has 2 internal and 1 external input branch.
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Assume that the label l picked from the set [ E - I t } is also an external label for Rt . Then l 

must be the label of the output branch of the node n which is used to construct Rt +2 from Rt .

It must also be the external label of a node of type 1,2 or 3 of Rj .

Case 1:1 is the external label of a node n' of R} of type 1.

In this case, there must be 2 other labels i j  where such that i j  and l are the labels

on the 3 inputs to n  . The labels i,j must appear on the inputs to node n  of R% because l is the label 

on the output branch of n. The branches with the labels i j  of n are made the output branches of 2 
nodes as in Figure 15a and these nodes are assigned consistent labels. The output of the node n is 

connected to the external branch of Rt with label l to yield Rt+6. The labels l , i j  are deleted from E 

and added to the set I. Hence I t is a subset of E.

Case 2:1 is the external label of a node n ’ of Rj of type 2.

In this case, there must be 1 other label i, where i , such that iX are the labels on the 2 
external inputs to r i  of R j . The label i must appear on the inputs to node n  because l is the label 

on the output branch of n. The branch with the label i is made the output branch of a node which 

is labelled consistently as in Figure 15b. The labels iX are deleted from E and added to I. The out­

put of the node n is connected to the external branch of Rt with label l to yield Rt +4. Again, I t +4 is 

a subset of E.

Case 3:1 is the external label of a node n’ of Rj of type 3.

In this case, the output of the node n is connected to the external branch of Rt with label l to 

yield Rt +2 as in Figure 15c. I t +2 is a subset of E.
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V ( a )
L t

t (b ) (c)
Figure 15: Tree growing for cases 1,2 and 3

Initially a label is picked from E and the construction of one of the cases 1,2 or 3 is applied to 

obtain R  5 or R 3 respectively. Any reduction tree must have at least one node n l  of type 1. For 

any node of types 1 and 2 in R j , there must exist at least 1 external label for that node which is 

the same as one of the external labels of n l. Hence the external labels of nodes of types 1 and 2 can 

always be made the internal labels of Rt , by applying the constructions of cases 1 and 2.

To complete the proof, we have to show that if a label in E comes from a node n  of Rj of 

type 3. it can always be made an internal label of Rk .

Consider a node n of type 2 in Figure 16a. Deletion of this node results in the configuration of 

Figure 16b. Delete all the nodes of Rj of type 2 as above.

The resultant tree Ry contains nodes of types 1 and 3 only. Consider that all but the external 

nodes of Ry are of type 1. Then from a property of binary trees [l], the number of nodes of type 3 

is one more than the number of nodes of type 1. If the internal nodes of Rj are also of type 3. then

t C<3) Ct>)
Figure 16: Deletion of type 2 nodes
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in general

Number o f nodes of type 3 > Number o f nodes of type 1 (1)

Hence» it is possible to select a label from E which, corresponds to a node n ’ of Rj of type 1 

and grow Rt based on the construction of case 1. This construction yields all the labels 1,2.3,4 as 

external labels of Rt +$. This process can be repeated alternately for cases 1 and 3. Now if there 

exists any node of type 3 in Rj . the corresponding label l can be made an internal label of Rt by 

applying the construction for case 3. By (1), the correctness of the procedure is guaranteed. □

5.6. The Design Methodology and Testing Strategy

Consider the generalized counter C(£* ,£* _j... i 2,t o'count). The number of input bits to each 

bit slice is computed by the recurrence

where Cj -  0 for j=0 . The number of input bits to bit slice j  is N j = c} +i} .

5.6.1. Tree Growing for the Unrestricted Case

Since N J+1 = Cj+1 + iJ+1, cJ+1 of the external labels of RNj+i must be internal labels of RNj. 

This is easily achieved, as the process of growing RNj as in theorem 6. consists of picking a label at 

a time from the set E of Rjf^ and adding it to the set I t of internal labels of the partially grown 

tree Rt . When Cj +1 labels have been picked, t  = Nj and the tree RNj is designed (t as in theorem 

6). The ij +1 labels remaining in the set E define iJ+1 inputs to the reduction tree Rnj+1. which are 

inputs to the counter. The growing of RNj is said to have been based on ci +1 labels of RNj+l-

5.6.2. Design Methodology 2 for Generalized Counters 

5.6.2.I. Designing the Reduction Tree Set

(1) Compute the number of inputs Nj to each bit slice j  of the counter.
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(2) Construct and label the reduction tree R 3 for bit slice k-1, where bit slice k  is the most 

significant bit slice of the counter ( the carry from the R$ tree of bit slice k-1).

(3) Let i-2.

Find the reduction tree of input size Nk for bit slice k-i, by tree growing based on the ci +1 

labels of the subtree RCk _j+1 of the reduction tree RNk_i+1- If Nk_i is even, add an extra con­

trollable input EIk_i to bit slice k-i and grow the reduction tree R^k_t+i. Preferably. EIk_i is 

made an external branch of the root node of RNk +1. If Nk- i  is even and the associated half 

adder corresponds to the root node of Rk _ j .  then an extra input is not added to bit slice k-1.

(4) Set i =i +1  and repeat from step 3 until all the reduction trees upto RiQ. based on a con­

sistent labelling have been found.

k L a

Figure 17: Reduction tree set and labelling for C (l,0,6.11:5)
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Example 11. Figure 17 shows the reduction tree set for the complete generalized counter 

C( 1,0,6,11:5). The numbers at the outputs of the trees represent the corresponding weights of the 

bit slices. The reduction trees are obtained by tree growing and the timing heuristic is used.

Example 12: Figure 18 shows the reduction tree set for the incomplete generalized counter 

C(2,10:4). The even number of inputs in bit slice 0 is made odd by adding the extra input E I0.

5.6.2.2* Mapping the Reduction Tree Set into Hardware

The 1-1 mapping between every reduction tree and the corresponding full adder tree is trivial. 

We need only discuss how the carries between the trees are interconnected. Consider the reduction, 

trees RNj and XNj+l of bit slices j  and j+1 respectively. The carries from the nodes whose output 

branches correspond to the set of labels I of are connected to the inputs corresponding to the 

set of labels E of ENj+i. where 0 ^ j < k .  This interconnection is defined by the 1-1 mapping 

between the elements of I and E.

For every bit slice j  in which a half adder has been substituted by a full adder . an extra 

input EIj is created. Connect the output an AND gate to the input EI} for every such bit slice /. 

Connect an input of this gate to any branch of a suitable reduction tree with the same label as EIj .
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Connect the other input of the AND gate to a TEST line, which is set to 0 during normal operation 

of the counter and is set to 1 during test mode.

Figure 19: Hardware for C (l,0 ,6 ,ll:5)

Figure 20: Hardware for C(2,10:4)

Example 13: Figure 19 shows the hardware corresponding to 

C(1,0,6,11:5). The labels of the fu ll adders and the labels of the nodes

the reduction tree set for 

of the reduction tree set of
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Figure 16 depict the 1-1 mapping between the two.

Example 14: Figure 20 shows the hardware corresponding to the reduction tree set for 

C(2,10.4). The labels of the fu ll adders and the labels of the nodes of the reduction tree set of Fig­

ure 17 depict the 1-1 mapping between the two.

5.6.3. The Testing Procedure

If the counter is complete, the 8 tests are defined by the labels on the controllable inputs. If 

the counter is incomplete. 9 tests for the counter are obtained as follows.

(1) With TEST-1, apply the 8 tests defined by the labels on the controllable inputs to the 

counter.

(2) With TEST—0 apply the test 11111....1 to the controllable inputs to the counter.

Theorem 7: A ll generalized counters constructed by design methodology 1 can be tested in 8 

or 9 tests.

Pr o o f: Let bit slice k  be the most significant bit slice of the counter.

Case Is The generalized counter is complete.

The R 3 or R 2 tree of bit slice k-1 is tested exhaustively. By theorem l,a  consistent labelling 

between Rnj+1 and RNj is obtained by construction. Now every full adder in Rnj+1 is tested 

exhaustively by test vectors on it s inputs defined by it’s external labels. By virtue of the con­

sistent labelling, it is possible to apply the above test vectors to the inputs of RNj+l by applying a

set of test vectors to the inputs of RNy  This latter set of test vectors test each full adder in RN 

exhaustively. Hence, by the induction hypothesis. 8 tests can be found for the complete counter. 

Case 2: The generalized counter is not complete.

With TEST-1, all the full adders in the circuit are tested as in case 1. This applies the combi­

nations 11 and 10 to the respective AND gates (the first bit is the TEST bit). With TEST-0, the 

input vector 1111...1 applies the test 01 to all the AND gates. This tests all the AND gates. Hence 9
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tests are required. □

Theorem 8: A complete generalized counter can always be designed to be testable in 8 tests. 

Also, incomplete generalized counters can always be designed, with the addition of AND gates as in 

design methodology 2. to be testable in 9 tests.

PROOF: The proof follows from theorem 6 and design methodology 2. □

6. Some Timing Issues

The computation speed of the counters designed, depends on the height of the reduction trees 

on which the designs are based. In constructing these trees, it is desirable to generate balanced trees 

as much as possible.

With regard to design methodology 1. consider the growing of RNj based on the input restric­

tions of &nj+1- Pairs of external inputs must be connected to pairs of branches {b.c} of external 

nodes of RjrJ+i in such a manner that these nodes are at the largest height values in Rnj+1- This 

reduces the height of the overall set of tree structures and is more time efficient.

With regard to design methodology 2, consider the partially grown tree Rt of theorem 6. The 

growing of this tree is based on the reduction tree Rnj+i* At each step of the tree growing process, a 

label chosen from the set {E-/f } is made an internal label of Rt . In order that Rt is a balanced tree, 

a proper choice of this label must be made at each step of the iteration. The following heuristic is 

used in order to minimise the depth of the counter circuit represented by the reduction tree set.

Timing Heuristic: In choosing labels from the set {E - I t } to grow Rt , those labels are chosen 

first that come from branches of Rn j+1 closest to the root node.

Designs using the above heuristic are shown in Figures 17 and 18.

7. Complex Labelling

Given an arbitrary design for a counter it is not always possible to find a consistent labelling 

for it with a simple labelling set. Consider the 15 input counter of Figure 21. Let the node names
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represent one of four labels that can be assigned to the output branch of that node. For a consistent 

labelling, the following set of inequalities are obtained:

A  5*2? &F&G

C ^ D ^ E ^ F

A 9*8 5*C 5*7 

D 7*E 5*2? 5*27

l9*H9*G  5*7

I  5*27 5*7 7*K

(1)

(2)

(3)

(4)

(5)

(6)

These lead to the inequality A  5*27 5*7 5*7 . Therefore a simple labelling set is insufficient

to solve the above set of inequalities. A solution with a complex labelling set is indicated in Figure 

21. The following is the sketch of a branch and bound method used to generate test sets for 

counter circuits which are not amenable to simple labelling.

Figure 21: Complex labelling 

Procedure Branch, and Bound:

(1) Label the root node of the fundamental tree with the labels V* .Vj ,Vk and Vt on it’s three 

input and one output branch, where 1 ,j  Jt X <4 and ¿5* /  i*k 5*Z.
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(4) If the output branch of a node in the fundamental tree has been labelled, assign labels to it’s

input branches such that a consistent labelling is obtained.

(5) Repeat until all the nodes of the fundamental tree have been labelled.

The above method has been used to generate tests for several counter circuits. An example is 

presented in Figure 20.

8. Conclusions

This paper presents a new model for the testability of iterative circuits for which classical 

models such as the flow table are inadequate. It is seen that by exploiting some properties of full 

addition, the issue of reconvergent fanout is sidetracked. The major result is a set of 10 equations 

on which the entire proposition is based. The testing of counter circuits has been shown to reduce to 

the problem of labelling the branches of a tree based representation of the counter structure in a 

systematic manner. It is shown that all counter circuits can always be designed to be testable in 

either 8 or 9 tests.
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