
October 1986 UILU-ENG-86-223 7
CSG-58

COORDINATED SCIENCE LABORATORY
College of Engineering

ON THE C-TESTABILITY
OF GENERALIZED
COUNTERS

Abhijit Chatterjee
Jacob A. Abraham

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

S E C U R I T Y C L A S S I F I C A T I O N OF T H I S P A G E

REPORT DOCUMENTATION PAGE
1«. R E PO R T S E C U R IT Y C L A S S IF IC A T IO N

unclassified
lb . R E S T R IC T IV E M A R K IN G S

none
2«. S E C U R IT Y C L A S S IF IC A T IO N A U T H O R IT Y 3. D IS T R IB U T IO N /A V A IL A B IL IT Y OF R E PO R T

2b. D E C L A S S IF IC A T IO N /D O W N G R A D IN G S C H EO U LE

not applicable
4 . P E R F O R M IN G O R G A N IZ A T IO N R EPO R T N U M B E R (S) 5. M O N IT O R IN G O R G A N IZ A T IO N R E P O R T N U M B E R (S)

CSG-58 UILU-ENG-86-2237 none

I
I

University of Illinois
Coordinated Science Laboratory

Bb, O F F IC E S Y M B O L
(I f applicable)

n. a.

ur muh i i umng unuAnuA i tun1. General Electric Company
2. Semiconductor Research Corporation

|6 c . AO OR ESS (C ity. State and Z IP Code)

1101 West Springfield Avenue
Urbana, IL 61801

7b. AO O RESS (CUy, State and Z IP Code)

1. 1 River Road, Schenectady, NY 12345
2. P.0. Box 12053, Research Triangle Park, NC

27709
8». N A M E OF FU N O IN G /S P O N S O R IN G

O R G A N IZ A T IO N

see 7a.

8b. O F F IC E S Y M B O L
(I f applicable)

9. P R O C U R E M E N T IN S T R U M E N T ID E N T IF IC A T IO N N U M B E R1. none
2. 84-06-049-4

Be. AOORESS (C ity, State and Z IP Code) 10. SO URCE OF F U N O IN G NOS.

P R O G R A M PROJECT TA S K W O R K U N IT

see 7b. E L E M E N T NO. NO. NO. NO .

11. T IT L E (Include Security C loutficalion) On the
C-Testabilitv of Generalized Counters n.a. n.a. n.a. n.a.

Abhiiit Chatterjee and Jacob A. Abraham
I3 a -T Y P E OF REPO RT

■technical
13b. T IM E C O V E R E D

F R O M _____________ TO
14. O A TE OF R E PO R T (Yr., M o.. Day)

October, 1986
IS . PAGE C O U N T

41
18. S U P P LE M E N TA R Y N O T A T IO N

17. C O SA TI COOES

F IE L D GROUP SUB. GR.
18. SUBJECT TE R M S (Continue on reverte i f necettary and identify by block num ber)

C-testability, counters, iterative logic arrays, test sets

19. A B STR A C T (Continue on reverte i f necettary and identify by block numbert

This report investigates the testability of a class of circuits, called counters, that perforin the
addition of sets of input bits of equal arithmetic weight. These circuits consist of fu ll- and half-
adders interconnected in an iterative manner defined by the counting process. The general class of
counter circuits contain reconvergent fanout and are structurally not as regular as one- or two-
dimensional iterative logic arrays.

A model for analyzing the structure of counter circuits is proposed. Several schemes for gen
erating test sets that exploit the iterative structure of counter circuits are presented. The testability
of such circuits is enhanced by imposing certain design constraints on them. Some methods for gen
erating easily testable counter structures are proposed. It is shown that counters can be always
designed to be testable with either eight or nine tests, irrespective of the input size.

■20. c i s t r i b u t i o n / a v a i l a b i l i t y o f a b s t r a c t 21. A B S TR A C T S E C U R IT Y C L A S S IF IC A T IO N

T u n c l a s s i f i e d / u n l i m i t e d S s a m e a s r p t . □ O T IC USERS □ unclassified
■22a. N A M E OF RESPONSIBLE ¡N O IV IO U A L 22b. TE L E P H O N E N U M B E R 22c. O F F IC E S Y M B O L

(Include Area Cadet

I E D IT IO N OF 1 JAN 73 IS O B SO LETE. unclassified
S E C U R IT Y C L A S S IF IC A T IO N OF T H IS PAGE

1

ON THE C-TEST ABILITY OF GENERALIZED COUNTERS

Abhijit Chatterjee

Jacob A. Abraham

Computer Systems Group
Coordinated Science Laboratory

University of Illinois
Urbana, IL 61801

ABSTRACT

This paper investigates the testability of a class of circuits called counters, that perform the
addition of sets of input bits of equal arithmetic weight. These circuits consist of full and half
adders interconnected in an iterative manner defined by the counting process. The general class of
counter circuits contain reconvergent fanout and are structurally not as regular as 1 or 2 dimen
sional Iterative Logic Arrays.

A model for analyzing the structure of counter circuits is proposed. Several schemes for gen
erating test sets that exploit the iterative structure of counter circuits are presented. The testability
of such circuits is enhanced by imposing certain design constraints on them. Some methods for gen
erating easily testable counter structures are proposed. It is shown that counters can be always
designed to be testable with either 8 or 9 tests, irrespective of the input size.

5 #
This research was supported by the General Electric Company and the Semiconductor Research Corporation under

contract SRC RSCH 84-06-046.
A preliminary version of this paper w ill be presented at the Int. Conf. on Computer Aided Design, Nov. 1986.
A. Chatterjee is on leave from the General Electric Research and Development Laboratories, Schenectady, N.Y. 12301.

2

1. Introduction

In the testing of iterative logic, the test size can be substantially reduced by exploiting the

repetitive nature of the hardware. Patterns of test vectors are applied, that simultaneously test the

circuit modules [1-4]. In the case of 1-D Iterative Logic Arrays (ILAs), the signal flow is in one

direction and the inputs to each of the modules are directly controllable. In the case of 2-D ILAs.

the signal flow is in two perpendicular directions and the controllability issue is more complicated.

In each of the above cases, there does not exist any reconvergent fanout and the interconnection

between the modules is fairly rigid. There exists a class of iterative circuits called counters which

are not as regular as the circuits described above. A counter performs the summation of sets of

input bits of equal arithmetic weight. A binary encoding of this summation is generated on an

appropriate number of output lines. For any given set of inputs, several counter circuits ran be

designed to perform the above summation. Further, these circuits contain reconvergent fanout.

A model for the counting process is first presented. Some properties of counters are derived

and it is shown that a subset of the class of counter circuits can be designed without the use of half

adders. A recursive construction for the above subset of the class of counter circuits is presented.

Counters based on this construction are shown to be C-testable with a test length of 8.

A labelling scheme for a tree based representation of counter circuits is developed. This

scheme is used to generate tests for counters. It is shown that by a process of 'growing* the trees in

this tree based representation, any counter can be designed to be testable in 8 or 9 tests. Two such

schemes are presented and timing issues are discussed. Finally, the testability of different

configurations of counter circuits is discussed and a branch and bound algorithm for generating

tests for any counter configuration is presented.

2. Previous Work

The problems of testing 1-D Iterative Logic Arrays are almost solved [1-5]. The testing of 2-

D ILA s has been widely investigated and is well understood. Conditions for the C-testability of

2-D ILA s are presented in [6]. The testing of Exclusive-OR tree structures is discussed in [7]. In

3

[8], a recursive procedure for generating an O(n) test set for an n input general tree structure is

presented. It has been shown [9] that if each of the paths from the inputs to the root node is C-

testable, then the entire tree can be tested with a test length proportional to the logarithm of the

number of inputs. However, there do not exist any results on generalized counters.

3. The Counting Process : A Model and it's Description

A unary counter of full and half adders stuns n bits of equal weight and generates a weighted

binary stun on log2n + 1 output lines [10-11]. A tree model for counter circuits and some related

properties are first discussed.

In the following, a half or full adder is referred to as an addition module. An input or output

of an addition module of the counter, hereby referred to as a counter node, can be reached from one

of the counter inputs by traversing a sequence of addition modules am%. The traversal

through an addition module is from one of it’s inputs to either it’s sum or carry output.

Definition 1: The carry count of a traversal from an input of the counter to a counter node is

defined to be the number of addition modules in the sequence that are traversed

from an input to the corresponding carry output.

In the following, the arithmetic weight of a counter node is referred to simply as the weight

of the node.

Lemma 1: If the weight of an input to the counter is 2* and the carry count of a traversal

from this input to a counter node is C. then the weight of the node is 2* 40.

Proof. The weight of the carry output of an addition module is twice the weight of the inputs

to the module. If the carry count is C, the weight of the counter node reached by the corresponding

traversal must be 2C 2* = 2k+c. n

4

3.1. The Tree Model fo r Counters

Consider the addition of 7 bits of equal weight by repeated addition of groups of 3 bits. This

can be represented by a set of trees as shown in Figure 1.2 for the 7 input unary counter of Figure

1.1. The nodes of the trees represent the full adders of the counter and are assigned the same labels

as the full adders of Figure 1.1 to which they correspond. The output branch of each node of a tree

corresponds to the stun output of the associated full adder. The carry outputs of the fu ll adders

represented by the nodes of the tree of Figure 1.2a are connected to the inputs of the tree of Figure

1.2b, which are labelled accordingly. This process is recursive and leads to Figure 1.2c, until no

more carries are generated. The values on the output branches of the root nodes of these trees

represent the weighted binary count of the number of l 's at the inputs to the tree of Figure 1.2a.

A2 B2 CZ Al B i Ci \F

Figure 1.1: 7 input unary counter

a b e d

Figure 1.2: Tree representation for 7 input counter

5

In general, n bits can be summed by repeated addition of groups of 2 or 3 bits, n ^ 3. This can

be represented by a set of trees, where each node of a tree has 2 or 3 input branches respectively. If

a node of a tree has 2 input branches, it represents a half adder. If it has 3 input branches, it

represents a full adder. Each tree represents a bit slice of the counter. Each node of a tree represent

ing a full adder, reduces 3 branches to 1 branch, while each node representing a half adder reduces

2 branches to 1 branch. This is said to be a 3 to 1 or 2 to 1 reduction o f brdnches respectively. It is

always possible to do 3 to 1 reductions of branches until either 2 or 3 branches are left to be

reduced by the root node of the tree. In the former case, the root node corresponds to a half adder,

while in the latter it corresponds to a fu ll adder. In our design methodology, a half adder, if at all

necessary, is placed at the root node of a tree. Such trees as above are called reduction trees and a

reduction tree of input size k is denoted by Rk .

Definition 2: Of the set of reduction trees that define the counter structure, the fundamental

tree is defined to be the one whose inputs are all controllable inputs to the counter.

Definition 3i A derived subtree is defined as a tree which has one or more of it’s inputs fed by

carries from another bit slice of the counter. The tree from which these carries are derived is called

the parent tree of the derived subtree.

In general, there are many ways of forming the reduction trees that constitute each bit slice of

the counter. Further, for each construction of the above set of reduction trees that define the

counter, there are many ways that the carries in between these trees can be interconnected.

Different possibilities as above, represent different hardware realizations of a counter with regard

to the manner in which the addition modules are interconnected.

The output of every tree in the set of reduction trees for a counter represents the parity of it’s

corresponding inputs. If the weight of the input bits to such a parity tree is 2i , then this tree is said

to belong to bit slice i and the weight of this bit slice is 2‘ .

Lemma 2: Every hardware realization of a counter can be uniquely represented by a set of

reduction trees with the following properties:

6

Property 1: There exists a unique mapping between the full and half adders in the hardware reali

zation of a counter and the nodes of the reduction trees in it’s corresponding tree model.

Property 2: The physical interconnection of the carries between two reduction trees in bit slices i

and i+1. defines a one to one correspondence between the nodes of the reduction tree of bit slice i

and the inputs of the reduction tree of bit slice i+1 to which the carries from the addition modules

represented by the above nodes are connected.

Proof: The carry count is used to assign a weight to every counter node. The interconnection

of the addition modules of the counter through counter nodes of the same weight represent trees

where the nodes of the trees correspond to addition modules and the branches of the trees

correspond to counter nodes of the same weight. This one to one mapping verifies Property 1. Pro

perty 2 can then be trivially verified. □

Example 1: Consider the 9 input unary counter of Figure 2. The tree representation of this

counter is depicted in Figure 3. The labels on the nodes of the trees correspond to the addition

modules they represent. The labels on the inputs to the reduction trees represent addition modules

whose carries are connected to those inputs. The inputs to reduction trees without any labels

represent controllable inputs to the counter.

Figure 2: 9 input unary counter

Figure 3: Tree representation for 9 input counter

3.2. Some Properties o f Unary Counters

A subset of the class of unary counter circuits can be constructed with full adders only. In

our design methodology, the minimum number of half adders necessary to construct a counter are

used.

Definition 4: A counter that can be constructed without any half adders is defined to be com

plete. Any other counter is an incomplete counter.

8

THEOREM 1: A ll unary counters of input size N = 2n — 1, n ^ 2, are complete. All other

unary counters are not complete.

Corollary 1: If the bit of weight 2* in the binary representation of N is 0 then the bit slice of

weight 2‘ of the counter must contain at least 1 half adder.

PROOF: Consider a reduction tree Rj in which every node correspond to a fu ll adder. Define a

simple graph G. with the vertex set { { V ^ }.{Vinternal }.v0}. as in Figure 4. where { V ^ } is a set of

vertices that represents the inputs to the reduction tree. { Vinternal} is the set of adder nodes and v0
is a vertex representing the output of the reduction tree. The edges of G are the same as that of the

reduction tree.

Figure 4: Graph G for reduction tree

Let of be the number of vertices in the set { } and let j8 be the number of vertices in the set {

înterned)• H <̂vl is the degree of the vertex i, € is the number of edges and n the number of vertices

in G, then from a result in graph theory [12]:

i =71
E*», = 2 €
i =0 Cl)

Applying (1) to G. we get 4/3 + a + 1 = 2(3 /3 +1) or

of = 2/3 + 1 (2)

Now consider that the root node of the reduction tree corresponds to a half adder. Applying

(1) to G. we get 4(/3—1) + 3 + a + 1 = 2(3(/3-1) + 2 + 1) or

a = 2/3 (3)

9

There are two cases:

Case Is Remainder of is 1
2

In this case there are carries into the next bit slice and no half adders are necessary to

construct the reduction tree R j .

Case 2z Remainder of 4^ is 0

In this case there are carries into the next bit slice and a m in im u m of one half adder is

necessary to construct the reduction tree. This half adder is placed at the root node of R j .

If Rni and Rni+\ are reduction trees for bit slices i and i+1 respectively, then from cases 1 and

2:

(4)

Let n q — N initially. The set of remainders obtained from the division —— in the recursive
2

computation of n; +1 from rii, represents the binary encoding of N. A 0 in the bit position of weight

2* , k ^ 0 , in this binary encoding implies that the remainder of is 0. By case 2, the root node of
4U

Rnjt must be a half adder. Hence the binary encoding of N must not contain any 0’s. Since this

implies that the binary encoding of N must be of the form 1111....1, hence for a complete counter,

N must be of the form 2n —1, for n ^ 2 (n**l is trivial).

Also, if N is not of the form 2*—1, then it's binary encoding contains at least one 0 and the

corresponding reduction tree contains a half adder. Hence it is not complete. □

3.2.1. Fault O bservability in Counters

It can be easily shown that under the Single Cell Faulty Model (SCFM) [9], any error in the

sum or carry outputs of an addition module will always cause an error in the observed counter

10

output. Consider an addition module whose inputs are of weight 2*. An error in the sum output of

this addition module causes the output of the i’th bit slice to be incorrect. This is because this out

put is the parity of it’s inputs. An error in the carry output of the addition module causes an error

in the output of some bit slice y, y > i . If both the sum and carry outputs of the addition module

are incorrect, then the output of bit slice i is incorrect although there might not be any error in a

bit slice y. y > i , due to fault masking. Hence an error in the outputs of an addition module is

always propagated to one of the outputs of the counter.

4. An Empirical Approach to Test Generation for Complete Counters

In the following discussion, the counters referred to are unary counters. The following pro

cedure constructs a 2m — 1 input counter from two counters of input size 2m - 1—1. The construction

can also be used to prove by induction, that all counters of input size 2m -1 can be constructed

with full adders only.

Figure 5: Recursive construction of unary counters

11

Construction Is Consider the identity

2m — 1 = 2m~1 - 1 + 2m~1 - 1 + 1

Hence, two 2m~1 input counters and an extra input can be used to construct a 2m -1 input

counter as in Figure 5. With regard to Figure 5. the blocks FAi are fu ll adders used to perform the

summation of two output lines of equal weight from each of the 2m—1 input counters. Notice that

the full adders FA{ are serially connected and that this serial chain is C-testable [9]. It is easy to

see that any path in the above circuit consists of a string of serially connected full adders. This

serial chain is through either the sum or carry output of the full adder and is C-testable.

In the following, conditions are derived for the C-test to be applied to the chain of full adders

F A i, in Figure 5. In Figure 5, the vectors A ™ a© a i—am— l «^d B =* Bq b are the outputs of

the two 2m~1 input counters. Input IF is the only directly controllable input line for the full adder

chain FA{. The objective is to establish the patterns of vectors A and B, such that all the full

adders in the chain are exhaustively tested by controlling IF for each such combination of patterns.

Let C and D be two arbitrary vectors of length m. It can be verified that the set of vectors A

and B in Table 1, is a C-test of cycle length 8 for the above chain of full adders. Call this test set

the C8 test set (an acronym for constant 8). The set of vectors applied at either a 0 or b 0

b l— bm _i in applying the C8 test set are the same and are referred to as the C8 input set. The vec

tors listed in either of the columns A or B of Table 1 constitute the C8 input set.

In Table 1. C and D can be chosen to be the same. Tests 1-4 apply all possible vectors with

ai = bi and the rest apply all possible vectors with .

Definition 5: Define the characteristics of the the C8 input set of length 8 by the following

properties:

Property 1: The test set must contain the vectors 000..0,111..1,0101.... and 1010....

Property 2: For every test vector A, different from those identified in Property 1. the comple

mented vector A must also appear in the test set.

12

Table 1.

Test A B IF
Test 1 0000..0 0000..0 0
Test 2 1111..1 1111..1 1
Test 3 0101... 0101... 1
Test 4 1010... 1010... 0
Test 5 C C 0
Test 6 c C 0
Test 7 D D 1
Test 8 D D 1

Let 0(l).0(2),...,0(8) represent the vectors obtained at the output terminals of the full adder

chain F A 0J?A i,..F'Am_l in Figure 5. The vector 0 (0 is the vector o0,olt..,om obtained in applying

the i'th test to the inputs of the full adder chain.

Lemma 3. In applying the C8 test set to the full adder chain of Construction 1, the set of vec

tors {0(1),0(2),....0(8)} retain the characteristics of the C8 input set.

PROOF: Consider the C8 test set and the output vector 0(i) - o0 o for the i’th test, listed

for the tests 1-8 of Table 1 in Table 2. The output 0(1) - 0000..0 when test 1 is applied and the

output 0(2) - 1111..1 when test 2 is applied. The application of test 3 gives 0(3) = 1010... and the

application of test 4 gives 0(4) =* 0101.... Hence property 1 is satisfied.

Table 2.

Test Vector 0(i)
Test 1 0000..0
Test 2 1111..1
Test 3 1010...
Test 4 0101...
Test 5 1111..0
Test 6 0000..0
Test 7 0000..1
Test 8 0000..1

13

For each of the tests 5-8, either at = 1 and b{ = 0 or a{ - 0 and b{ = 1, for FAf, where

0 ^ i ^ m —1. If IF — 0 as in test 5 and test 6, then every full adder in the full adder chain has

one of it’s inputs set to 1. Hence all the sum bits for all the FA{ are 1. except for the most

significant output bit which is the carry from FAm If IF - 1. then it can be seen that all the sum

and carry bits of the above full adders are complemented. Hence property 2 is satisfied.

Since both properties 1 and 2 are satisfied, the set {O(0),O(l)....,O(m)} has the characteristics

of the C8 input set. □

Lemma 4: In applying all possible input vectors to a full adder, the set of output vectors

obtained (C ^ , S) satisfy the characteristic properties of the C8 input set.

Lemma 4 is easily verified. Hence, by Lemma 3 and Construction 1, the test set for the 7-

input counter of Figure 1.1 is derived in Table 3. The vector A represents the values a 0 ai- Simi

larly for the vector B.

Theorem 2: Unary counters of input size 2n -1 based on Construction 1, where n ^ 2. are C-

testable with a minimal C-test cycle of length 8.

PROOF: (By induction) We have already seen that 3 and 7 input counters can be tested with a

C-test cycle of length 8.

Table 3.

Test A1 B1 C l A2 B2 C2 A B IF 00 01 02
Testl 0 0 0 0 0 0 00 00 0 0 0 0
Test2 1 1 1 1 1 1 11 11 1 1 1 1
Test 3 0 1 1 0 1 1 01 01 1 1 0 1
Test4 1 0 0 1 0 0 10 10 0 0 1 0
Test5 0 0 1 1 1 0 10 01 0 1 1 0
Test 6 1 1 0 0 0 1 01 10 0 1 1 0
Test 7 0 1 0 1 0 1 10 01 1 0 0 1
Test 8 1 0 1 0 1 0 01 10 1 0 0 1

14

Assume that the application of a set of tests T to the inputs of a 2m_1— 1 input counter results

in a set of output vectors 0 (l)-0 (8), which have the characteristics of the C8 input set. Then a

combination of test vectors from the set T can be applied to the inputs of each of the two 2m_1—1

input counters of construction 1, such that the C8 test set is applied to the corresponding full adder

chain. By Lemma 3, the set of output vectors 0 (l)-0 (8) of the 2m — 1 input counter retains the

characteristics of the C8 input set. Hence, by the induction hypothesis, a test set can always be con

structed for any complete unary counter based on construction 1. □

The above theorem also defines a method for deriving the test set for any complete unary

counter based on construction 1.

5. Test Generation Based on the Tree Model

Test generation for unary counters is simplified by virtue of the iterative structure of the

trees concerned. Consider the reduction trees of each bit slice individually, with the inputs to the

tree considered as externally controllable inputs.

L e m m a 5: Every reduction tree in the set of reduction trees that represent a counter, is indivi

dually C-testable.

Pr o o f: Consider the vectors V x - 00001111. V 2 = 00110011, V 3 = 01010101 and

V 4 = 01101001. It can be verified that Vx ® Vj © Vk = Vt , where and K i , j Jc l <4.

Also, any 3 of these vectors contain all possible combinations of 3 bit values.

The root node of a tree can be labelled such that it s 3 or 2 input branches and it*s output

branch have different labels, according to whether it represents a full or half adder respectively.

Since every node has 4 incident branches by construction, the labelling can be recursively applied

to all the nodes whose output branches have been assigned labels.1 □

In the above procedure, if the label Vt is associated with the input i, V} with the input j . upto

with input n, then the i*th test vector is obtained by applying the i’th element of Vx to i, the

1Thc proof is an extension of that presented in [7] for 2 input EX-OR trees.

15

i’th element of Vj to j and so on. upto the i’th element of Vn to n. Since the length of each of the

vectors Vj is 8, ^ 4 , 8 tests are obtained.

Lemma 5 is a necessary condition for the overall counter to be C-testable. It remains to be

shown that the C-tests for each of the reduction trees taken together, can be applied simultane

ously.

Consider the set of vectors V={ V j.V2*V3»V4}. where each of the vectors Vj are the same as

defined in Lemma 5. Further, let C=*{Ci,C2»C3,C4} be a set of vectors where each of the vectors Cj

are defined as follows: C A = 01110001. C2 = 01001101. C3 = 00101011. C4 = 00010111. Let Vj be

the i th vector in the set V where l ^ i ^ 4 and define Cj similarly for the set C. Also, define the

functions g() and f() as follows:

CD gCV j.V ^.V ^-V jÆ V , Q Vk

(2) f(Vj ,Vj ,vk) - Vj .Vj + Vj .vk + Vj .vk
The function g() is the bitwise summation of the vectors Vj ,Vj and Vk . while the function f(

) is the bitwise carry produced in the above summation.

The following relations can be verified:

(1) g(Vj .Vj ,Vk) - Vj

(2) f (Vj ,Vj ,Vk) » Cj

(3) g(Cj ,Cj ,Ck) =» Cj

(4) f(Cj ,Cj A) = Vj

(5) g(Vj.V,.V*) = Vj

(6) f(V j.v j,vk) =*ck
(7) g(Vj,V; .V*)=.V j

(8) f(Vj .Vj ,Vk) - Cj

16

(9) g(Vi .VJ.Vk) = Vl

(10) f (V t.V j.V tl-C t

where i ^ j ^ k ^ l and l ^ i ,J J: J ^ 4 , in each of the above 10 equations.

The above equations which define the manner in which the sum and carry bits are generated

at each addition module, satisfy the following property:

Property 1: Each of the equations 1-10 can be written with the ’V’ and ’C’ variables inter

changed.

The sets of vectors V and C are seen to satisfy the following property:

Property 2: Any combination of 3 vectors Vi ,Vj ,Vk or Cx ,Cj ,Ck . and

l < i ,j Jc l < 4 and combinations of complemented or uncomplemented sets of the same, contain all

possible combinations of 3 bit values.

Branch Labelling Problem: The problem of finding a minimum test set of length 8 reduces to

the problem of labelling each of the branches of the tree representation of the given counter with

the labels V i~V 4,Vi~V4 or C i-C4,Ci~C4. By property 2, the indexes T of the vectors VitVi or

Ci ,Cj. applied at each of the inputs to a node must be different from each other. Further, the index

j of the output branch of that node is uniquely determined by the equations 1-10. A consistent

labelling for a tree is one that is determined by the above conditions. In considering the labelling

for a set of reduction trees, the labelling for the fundamental tree determines the labels on the

inputs to it's derived subtree. This set of input labels must define a consistent labelling for the

derived subtree. In the same manner, a labelling for any tree in the set of reduction trees for a

counter must define a consistent labelling on it's derived subtree. Such a labelling is a consistent

labelling for the entire set of reduction trees.

By Property 1, the fundamental tree is labelled with V’s, it’s derived subtree with C*s, the

next derived subtree with V’s and so on in an alternating manner.

17

Definition 6: A simple labelling set consists of only the uncomplemented labels V 1-V 4 and

C1-C4. Any other labelling set is complex.

For simple labelling only equations 1-4 are relevant and the label on the carry from an addi

tion module is the same as the label on the output branch of the node representing that module.

Consider the reduction tree set for a complete unary counter. The reduction tree set for a 3

input counter is simply { R 3 }. The carry from R 3 is assumed to be implicit in R 3. The reduction

tree set for a 7 input counter is { Ri»R3}. For a counter of input size 2” —1, n ^ 2 , the reduction tree

set is {R2n_lA 2n-_v ...R22- l) .

Let us associate the names a,6,c,d, with the branches incident on a full adder node of a reduc

tion tree in the following manner. The output branch of a node is called the a branch of the node

and the 3 input branches are called the b,c and d branches of the node in a clockwise manner (Fig

ure 6).

Consider the reduction tree Rj . the external branches of Rj are those which are inputs to Rj

and the internal branches of Rj are those which join two nodes of R j . External nodes of R} are

those which have one or more inputs that are external branches of R} . The rest are internal nodes.

Further, external and internal labels are those obtained on the external and internal branches of R j ,

by a consistent labelling in R j . The unordered set of internal and external labels with repetition,

form the internal and external labelling sets of R} respectively.

a

Figure 6: Branch names for a node

18

5.1. Tree Growing

Consider the full adder node of the reduction tree R 3 of a 3 input counter. The reduction tree

R 7 can be constructed by connecting the outputs of 2 full adder nodes to the b and c input branches

of the full adder node of R 3. Similarly, the reduction tree R 15 can be constructed by connecting the

output of a fu ll adder node to every input of R 7 that is the b or c input branch of an external node

of R 7. Such a process of replicating a reduction tree Rkl and adding full adder nodes to the inputs

of Rki to construct a reduction tree Rki, where k 2>k i, is called tree growing. tree Rk is said to
/

have been grown from Rkl. Beginning with R 3. a set of reduction trees is grown recursively, at

each step growing Rki from Rkl. k 2>k y.

Cose Is Consider ky = 2n — 1 for some n ^ 3 . Then the reduction tree Rk2, k 2 = 2n+1 — 1 is

obtained from Rkl by adding a full adder node to every input of Rkl that is the b or c input branch

of an external node of Rki. If the largest reduction tree generated by the above process is Ri •

where t max = 2J — 1, for some j ^ 3 . then the set of reduction trees obtained, represent that for a

unary counter of input size 2-̂ — 1

Example 2: The reduction tree R 7 for the 7 input counter of Figure 1 can be obtained by tree

growing as above, from R 3.

Case 2j Consider the reduction tree Rk x where k y is odd. Further, let every node of Rk satisfy

the property that if it's b input branch is connected to the output of a full adder node, so is it’s c

input branch. This is a necessary condition for the tree growing method of case 2 to be applied. Let

k 2 = 2k x + 1 and we are to grow Rki from Rkl (i.e there exists 1 full adder in Rki for every input

of Rkl). Since k 2 is odd. an even number of full adder nodes must be added to the inputs of Rk .̂

s k 2 ~ k y
Hence (---- -----) pairs of full adder nodes are added to pairs b and c of input branches of external

nodes of Rk t to generate Rki. The reduction tree Rk2 meets the necessary condition for case 2 for

tree growing as described earlier. Hence trees of larger size can be grown by applying the process

recursively to Rkr

19

Example 3: Figure 7 shows how R 23 is grown from R n ,

Tree growing as in case 1 is a special case of tree growing as in case 2. In the following discus

sion, tree growing refers to that of case 2 and the corresponding definitions of Rk and Rk2 are

retained.

DEFINITION 7: Define a sequence o f branches from the root node to a node n of a reduction

tree, as the sequence b,c of branches, (ignoring the labels on the output branches of nodes) that

must be followed from the root node to reach that node.

Example 4: In Figure 7a. the sequence {be} of branches must be followed to get to the node S

from the root node N of R 15.

Let M(n) -* n' be a partial mapping that maps a node n of the reduction tree Rk2 to a node n

of it’s derived subtree Rkl. where Rk2 is grown from Rkl.

Definition 8: M(n) -♦ n* if it is possible to reach n from the root node of Rk by following

the same sequence of branches that it takes to reach n from the root node of Rkr M(n) -*• NULL

otherwise.

Example 5: In Figure 7a, M(P) -* M .

20

Definition 9: Define an operation R() such that m = R(n). if the output branch of a node n in

a reduction tree is connected to one of the inputs of the node m in the same tree.

Example 6: In Figure 7a, N - R(P) in R 15.

By the manner in which Rk2 is grown from Rkl. it is clear that if M(n) -* NULL, then

M (i? (ji)) A N U LL . The following construction defines the manner in which the carries from the

reduction tree Rk 2 are connected to the inputs of Rkl.

Construction 2: Let n be a full adder node in the reduction tree Rkl. whose carry is to be con

nected to the inputs of the reduction tree Rk . There are 2 cases.

Case is M(n) - NULL.

In this case if the output branch of n is connected to the b or c input branch of R(n), then the

carry from n is connected to the c or b input branch of n respectively, where M(n) n \

Case 2z M(n) -♦ n', where n' is a node in Ru .*i

In this case, the carry from n is connected to the d input branch of n \ □

5.2. Partitioned Labelling

There are many ways of labelling a set of reduction trees for a counter. In the following, we

discuss a labelling scheme that is later shown to be consistent with Constructions 1 and 2. The

labels V and C are dropped for convenience and only the subscripts {1.2,3,4} are retained.

Partition the labelling set {1.2,3.4} into 2 partitions L 1»{2,3} and Z,2={1.4}. Partition the set

of branches {a,b,c,d} incident on each full adder node into 2 partitions. B ̂ {b.c} and 2?2={a,d}.

Definition 10: A partitioned labelling is defined as one in which the labels in the set L {. i=l,2,

are applied either to the branches in B x or the branches in B 2. but not both.

Example 7: Figure 8 depicts a partitioned labelling of the set of reduction trees for a 15 input

unary counter.

21

Figure 8: Partitioned labelling for 15 input unary counter

Figure 9: 15 input unary counter

Let SWITCH() be an operator on the sets , i-1,2, such that SWITCHCL,-), exchanges the

labels in the specified set L {, on all the branches of a reduction tree. Consider a partitioned labelling

of Rk2. where Rki is grown from Rkv The labels on the branches a.b.c and d of a node n of Rki are

duplicated on the node n of Rk t if M(n) n and n' ĵ NULL . This process is repeated for every

22

node n of Rkr The resultant labelling of the nodes of Rk2 is called the duplicated labelling of Rki on

* i -

Let Rkl and Rki be defined as in the tree growing method of case 2. Further, let the carries

between these two trees be interconnected as in construction 2.

Theorem 3: A consistent labelling between Rki and Rkl is obtained by applying the operators

SWITCHCL i) and SWITCH(Z 2) to the duplicated (partitioned) labelling of Rk 2 on Rk .

Corollary 2: A consistent labelling between Rk 2 and Rk 1 defined as in the tree growing

method of case 1, can be similarly found.

Proof: For every node n in Rk r either M(n) - NULL or M (n ^ N U L L .

Case 1: M(n) - NULL.

From Construction 1. the output branch of n is connected to either the b o r e input branch of

R(n). Let it be connected to the b input branch and let the label on this branch be i. Then for simple

labelling, the label on the carry signal from n is also i. By Construction 2, this carry is connected to

the c input branch of n ', where M(n) ~* n \ By the SWITCH operation on the duplicated labelling of

5t 2o n ^ i ’ the label on the carry from n and the label on the c input branch of n is i. Hence the

labelling is consistent.

Case 2: M (n) ^ NULL

Consider the node n' of Rkl, where M(n) -* n*. By Construction 1, the input branch d of n' is

an input to Rkv By the SWITCH operation on the duplicated partitioned labelling of Rk2 on Rkl,

the label i of the output branch of n is the label of the input branch d o in '. Since i is also the label

of the carry from node n and by Construction 2, the carry from n is connected to the d input

branch of n \ the labelling is consistent.

Since the labelling of each of the reduction trees Rki and Rkl is consistent and the carries

between the trees are consistent with this labelling, the labelling for both the trees is consistent.

23

□

In the above, the branches b.c and d of every node are permutable. However, the naming con

vention is adopted for the sake of formalism.

Consider the reduction tree set RTS * {J? ¿n _j, R 2n-i_1,...i? 3} obtained for a 2n — 1 input unary

counter by tree growing as in case 1. The interconnection of the carries between the trees is based

on construction 2.

Theorem 4: A consistent labelling of the reduction tree set RTS is obtained by a partitioned

labelling on the fundamental tree of the counter.

Corollary 3: A simple labelling set is sufficient to consistently label the reduction tree set of

complete unary counters based on Constructions 1 and 2 and defines a C-test of length 8.

Proof: By corollary 2, a consistent labelling between the fundamental tree R 2n- i and i?2n-i_1
can be found.

Now consider the set of reduction trees {RaQJtai, Rar...Mai}. where a¿ = If a con

sistent labelling for the above set for i <n exists, then a consistent labelling for the

set{i?a o..... J?ai+1} can be found by applying corollary 2 to find a consistent labelling between Ra

and it’s derived subtree Rai+i- By the induction hypothesis then, a consistent labelling for the com

plete set of reduction trees can always be found for any n. This labelling defines 8 tests for the

counter. □

Example 8: The partitioned labelling of Figure 8 defines 8 tests for the corresponding 15 input

counter of Figure 9.

5.3. Test Generation for Incomplete Counters

A method for finding which bit slice of a counter must have a half adder is described in the

proof of theorem 1. These half adders are placed at the root nodes of the corresponding reduction

trees. In the worst case, all but one bit slice can have half adders at the above root nodes. This

24

worst case ripple carry chain of half adders considered as a sub circuit of the counter, can be tested

in O(m) tests for m half adders in the circuit. Since there are 0(log2n) half adders for an n input

counter, these can be tested in 0(log2n) tests. By our earlier hypothesis, if the full adders in the cir

cuit can be tested in 8 tests, then it should be possible to find an 0 (log2n) test for an n input incom

plete counter in general. In the following, we discuss how full adder trees that can be always tested

in 8 tests are constructed. A design for testability procedure is also proposed that substitutes each

half adder at the root node of a reduction tree by a full adder and by the addition of some extra

circuitry, makes it possible to test all incomplete counters in at most 9 tests.

5.4. Generalized Counters

Generalized counters perform the summation of sets of input bits .each set corresponding to a

different weight. Complete and incomplete generalized counters are defined in a manner similar to

unary counters.

Definition 11: A C(ik ,ik l3i 0:count) weighted counter is defined to be one that adds i 0

bits of weight 2° to i t bits of weight 21. and so on upto ik bits of weight 2* , where k >0 and count

is the number of output bits produced.

Theorem 5: A ll generalized counters of input size N. where

N ='£>•* 2* =2» - 1 m
i =0

where n ^2 are complete.

Corollary 4: If the bit of weight 2* in the binary representation of N is 0, then the bit slice

of weight 2* of the counter must contain at least 1 half adder.

PROOF. The addition of ¿ o bits of weight 2° to i k bits of weight 21 and so on, upto ik bits of

weight 2* is equivalent to the summation of N bits of weight 2° in the following manner. If a bit

of weight 2J ,0< / <&, is 0 or 1, then it is equivalent to setting 2J bits of weight 2° to 0 or 1
respectively. Hence the argument of theorem 1 can be applied to the N bits of weight 2°. The proof

then follows.

25

□

For the generalized counter C(i* ,ijk_1,..i1,i0:count), the number of input bits to each bit slice

is computed from the recurrence

cj +1 ~ C j + i j

2 (2)

where ci = 0 for j-O. The number of input bits to bit slice j is N j = Cj + ij and Cj is the number

of carries into bit slice j from bit slice j-1.

5.4.1. Restricted Tree Growing w ith Partitioned Labelling

There exists a subset of the class of generalized counters on which the partitioned labelling

scheme can be used effectively. Consider the reduction tree . where N } +1 = Cj +1 + +1 as

before. If we impose the restriction that ij+ * must be even, then -4r—■ pairs of external inputs to

&nj+j can be formed. Pairs {b.c} of input branches of external nodes of &nj+1 can then be selected to

which these pairs of external inputs can be connected. If the d input branch of a node n is connected

to an external input, then the d input branch of the node n \ where R(n)-R(n’), must also be simi

larly connected.

In order to grow &Nj from full adder nodes are added to the inputs of the replicated

tree R'Nj of RNj, as in the tree growing of case 2. However, full adder nodes are not added to those

inputs of R‘Nj to which inputs iJ+1 are connected in the corresponding tree RNj. The growing of

Rnj is said to be based on the input restrictions of

It should be mentioned that the number of external inputs ik to the derived subtree of the

fundamental tree need not be even, since one does not need to apply the process recursively to the

fundamental tree.

26

5.4.2. Design Methodology 1 for Generalized Counters

(1) Compute the number of input bits N j to each bit slice j of the generalized counter.

(2) Construct the reduction tree RNj for each bit slice j , by tree growing based on the input res

trictions of Rn j+1 recursively, beginning with R 3.

(3) Interconnect the carries between the trees as in Construction 2.

The external inputs of each of the reduction trees that are not connected to the carries from

full adder nodes of other reduction trees are the inputs to the generalized counter.

5.4.3. Test Generation for Counters Based on Design Methodology 1

The testing procedure is an extension of that for unary counters. Consider the mapping M(n)

n between the nodes n of and the nodes r i of Rn j+1- The set of nodes of Rn j+1 obtained by

performing the above mapping for every node n of RNj defines a subtree STj+1 of Rn j+1- By

theorem 3, a consistent labelling between Rjf} and ST ̂+1 is obtained by a partitioned labelling of

RNj. The resultant labelling of STJ+1 is then extended to Rn j+1 to obtain the labels on the input

branches to Rnj+1 that are external inputs to the counter.

By the above process, starting with the fundamental tree, a consistent labelling can be

obtained for all pairs of bit slices recursively. The set of labels obtained at the inputs to the counter

define a test set of length 8.

Example 9: Figure 10 depicts the reduction tree set and labelling obtained by tree growing,

for C(5,5:4). Figure 11 depicts it’s corresponding hardware implementation.

Figure 11: C(5,5:4) schematic

28

L ^ b 3 d c e

Figure 12: Reduction tree set and labelling for C(2.11:4)

Example 10: Figure 12 depicts the reduction tree set and labelling for C (2,ll:4).

5J5. U nrestricted Tree Growing

In unrestricted tree growing, the structure of the the reduction trees of each bit slice and the

way they are interconnected, is determined by the manner in which the trees are grown.

Consider a consistent labelling on Rj . Let E be the external labelling set of Rj , every node of

which represents a full adder. By equation 1, j must be odd. The labels belonging to the set E can

be obtained from the carry signals from each of j nodes of a reduction tree Rk . if such a reduction

tree can be found, where k = 2 j + 1. Since k is also odd, all the nodes of such a reduction tree Rk .

can be designed to be full adder nodes. Let I be the internal labelling set of Rk for a consistent

labelling on Rk .

Theorem 6: For a consistent labelling on every reduction tree R j , there exists a consistent

labelling on a reduction tree Rk , k = 2 j + 1. such that the set E of labels of Rj is the same as the

set I of labels for Rk .

PROOF. Let be 4 labels such that i ^ j 7*1 and , j Jc J. ^ 4 . Every node of Rj has

4 distinct labels on each of it's 4 incident branches. This must also be true for Rk if the labelling is

to be consistent.

29

The procedure used to construct R% , is to grow it from it’s root node, labelling it consistently

at each step (This tree growing is different from that described earlier). Consider a partially grown

tree Rt , with t inputs, where 3 ^ i and t is odd. Let the internal labelling set of Rt be I t , where

I t is a proper subset of E. We pick a label l from the set {E—I t }. If this label l is an external label

for Rt , then a node n is added to the input of Rt with the label l as in Figure 13, to obtain Rt +2.

+2 is grown from Rt . The internal labelling set l t +2 of Rt +2 becomes I t +2 = I t + l . We have to

show that it is possible to grow Rt+ 2 from Rt for all 3 ^ i , such that if I t is a subset of E, then

I t +2 is also a subset of E and I t is contained in I t +2.

Consider the reduction tree Rj . The external labels in the set E come from 3 types of external

nodes of Rj as in Figure 14.

All 3 input branches to a node of type 1 are external branches. A node of type 2, has 1 inter

nal and 2 input external branches. A type 3 node has 2 internal and 1 external input branch.

30

Assume that the label l picked from the set [E - I t } is also an external label for Rt . Then l

must be the label of the output branch of the node n which is used to construct Rt +2 from Rt .

It must also be the external label of a node of type 1,2 or 3 of Rj .

Case 1:1 is the external label of a node n' of R} of type 1.

In this case, there must be 2 other labels i j where such that i j and l are the labels

on the 3 inputs to n . The labels i,j must appear on the inputs to node n of R% because l is the label

on the output branch of n. The branches with the labels i j of n are made the output branches of 2
nodes as in Figure 15a and these nodes are assigned consistent labels. The output of the node n is

connected to the external branch of Rt with label l to yield Rt+6. The labels l , i j are deleted from E

and added to the set I. Hence I t is a subset of E.

Case 2:1 is the external label of a node n ’ of Rj of type 2.

In this case, there must be 1 other label i, where i , such that iX are the labels on the 2
external inputs to r i of R j . The label i must appear on the inputs to node n because l is the label

on the output branch of n. The branch with the label i is made the output branch of a node which

is labelled consistently as in Figure 15b. The labels iX are deleted from E and added to I. The out

put of the node n is connected to the external branch of Rt with label l to yield Rt +4. Again, I t +4 is

a subset of E.

Case 3:1 is the external label of a node n’ of Rj of type 3.

In this case, the output of the node n is connected to the external branch of Rt with label l to

yield Rt +2 as in Figure 15c. I t +2 is a subset of E.

31

/

V (a)
L t

t (b) (c)
Figure 15: Tree growing for cases 1,2 and 3

Initially a label is picked from E and the construction of one of the cases 1,2 or 3 is applied to

obtain R 5 or R 3 respectively. Any reduction tree must have at least one node n l of type 1. For

any node of types 1 and 2 in R j , there must exist at least 1 external label for that node which is

the same as one of the external labels of n l. Hence the external labels of nodes of types 1 and 2 can

always be made the internal labels of Rt , by applying the constructions of cases 1 and 2.

To complete the proof, we have to show that if a label in E comes from a node n of Rj of

type 3. it can always be made an internal label of Rk .

Consider a node n of type 2 in Figure 16a. Deletion of this node results in the configuration of

Figure 16b. Delete all the nodes of Rj of type 2 as above.

The resultant tree Ry contains nodes of types 1 and 3 only. Consider that all but the external

nodes of Ry are of type 1. Then from a property of binary trees [l], the number of nodes of type 3

is one more than the number of nodes of type 1. If the internal nodes of Rj are also of type 3. then

t C<3) Ct>)
Figure 16: Deletion of type 2 nodes

32

in general

Number o f nodes of type 3 > Number o f nodes of type 1 (1)

Hence» it is possible to select a label from E which, corresponds to a node n ’ of Rj of type 1

and grow Rt based on the construction of case 1. This construction yields all the labels 1,2.3,4 as

external labels of Rt +$. This process can be repeated alternately for cases 1 and 3. Now if there

exists any node of type 3 in Rj . the corresponding label l can be made an internal label of Rt by

applying the construction for case 3. By (1), the correctness of the procedure is guaranteed. □

5.6. The Design Methodology and Testing Strategy

Consider the generalized counter C(£* ,£* _j... i 2,t o'count). The number of input bits to each

bit slice is computed by the recurrence

where Cj - 0 for j=0 . The number of input bits to bit slice j is N j = c} +i} .

5.6.1. Tree Growing for the Unrestricted Case

Since N J+1 = Cj+1 + iJ+1, cJ+1 of the external labels of RNj+i must be internal labels of RNj.

This is easily achieved, as the process of growing RNj as in theorem 6. consists of picking a label at

a time from the set E of Rjf^ and adding it to the set I t of internal labels of the partially grown

tree Rt . When Cj +1 labels have been picked, t = Nj and the tree RNj is designed (t as in theorem

6). The ij +1 labels remaining in the set E define iJ+1 inputs to the reduction tree Rnj+1. which are

inputs to the counter. The growing of RNj is said to have been based on ci +1 labels of RNj+l-

5.6.2. Design Methodology 2 for Generalized Counters

5.6.2.I. Designing the Reduction Tree Set

(1) Compute the number of inputs Nj to each bit slice j of the counter.

33

(2) Construct and label the reduction tree R 3 for bit slice k-1, where bit slice k is the most

significant bit slice of the counter (the carry from the R$ tree of bit slice k-1).

(3) Let i-2.

Find the reduction tree of input size Nk for bit slice k-i, by tree growing based on the ci +1

labels of the subtree RCk _j+1 of the reduction tree RNk_i+1- If Nk_i is even, add an extra con

trollable input EIk_i to bit slice k-i and grow the reduction tree R^k_t+i. Preferably. EIk_i is

made an external branch of the root node of RNk +1. If Nk- i is even and the associated half

adder corresponds to the root node of Rk _ j . then an extra input is not added to bit slice k-1.

(4) Set i =i +1 and repeat from step 3 until all the reduction trees upto RiQ. based on a con

sistent labelling have been found.

k L a

Figure 17: Reduction tree set and labelling for C (l,0,6.11:5)

34

Example 11. Figure 17 shows the reduction tree set for the complete generalized counter

C(1,0,6,11:5). The numbers at the outputs of the trees represent the corresponding weights of the

bit slices. The reduction trees are obtained by tree growing and the timing heuristic is used.

Example 12: Figure 18 shows the reduction tree set for the incomplete generalized counter

C(2,10:4). The even number of inputs in bit slice 0 is made odd by adding the extra input E I0.

5.6.2.2* Mapping the Reduction Tree Set into Hardware

The 1-1 mapping between every reduction tree and the corresponding full adder tree is trivial.

We need only discuss how the carries between the trees are interconnected. Consider the reduction,

trees RNj and XNj+l of bit slices j and j+1 respectively. The carries from the nodes whose output

branches correspond to the set of labels I of are connected to the inputs corresponding to the

set of labels E of ENj+i. where 0 ^ j < k . This interconnection is defined by the 1-1 mapping

between the elements of I and E.

For every bit slice j in which a half adder has been substituted by a full adder . an extra

input EIj is created. Connect the output an AND gate to the input EI} for every such bit slice /.

Connect an input of this gate to any branch of a suitable reduction tree with the same label as EIj .

35

Connect the other input of the AND gate to a TEST line, which is set to 0 during normal operation

of the counter and is set to 1 during test mode.

Figure 19: Hardware for C (l,0 ,6 ,ll:5)

Figure 20: Hardware for C(2,10:4)

Example 13: Figure 19 shows the hardware corresponding to

C(1,0,6,11:5). The labels of the fu ll adders and the labels of the nodes

the reduction tree set for

of the reduction tree set of

36

Figure 16 depict the 1-1 mapping between the two.

Example 14: Figure 20 shows the hardware corresponding to the reduction tree set for

C(2,10.4). The labels of the fu ll adders and the labels of the nodes of the reduction tree set of Fig

ure 17 depict the 1-1 mapping between the two.

5.6.3. The Testing Procedure

If the counter is complete, the 8 tests are defined by the labels on the controllable inputs. If

the counter is incomplete. 9 tests for the counter are obtained as follows.

(1) With TEST-1, apply the 8 tests defined by the labels on the controllable inputs to the

counter.

(2) With TEST—0 apply the test 11111....1 to the controllable inputs to the counter.

Theorem 7: A ll generalized counters constructed by design methodology 1 can be tested in 8

or 9 tests.

Pr o o f: Let bit slice k be the most significant bit slice of the counter.

Case Is The generalized counter is complete.

The R 3 or R 2 tree of bit slice k-1 is tested exhaustively. By theorem l,a consistent labelling

between Rnj+1 and RNj is obtained by construction. Now every full adder in Rnj+1 is tested

exhaustively by test vectors on it s inputs defined by it’s external labels. By virtue of the con

sistent labelling, it is possible to apply the above test vectors to the inputs of RNj+l by applying a

set of test vectors to the inputs of RNy This latter set of test vectors test each full adder in RN

exhaustively. Hence, by the induction hypothesis. 8 tests can be found for the complete counter.

Case 2: The generalized counter is not complete.

With TEST-1, all the full adders in the circuit are tested as in case 1. This applies the combi

nations 11 and 10 to the respective AND gates (the first bit is the TEST bit). With TEST-0, the

input vector 1111...1 applies the test 01 to all the AND gates. This tests all the AND gates. Hence 9

37

tests are required. □

Theorem 8: A complete generalized counter can always be designed to be testable in 8 tests.

Also, incomplete generalized counters can always be designed, with the addition of AND gates as in

design methodology 2. to be testable in 9 tests.

PROOF: The proof follows from theorem 6 and design methodology 2. □

6. Some Timing Issues

The computation speed of the counters designed, depends on the height of the reduction trees

on which the designs are based. In constructing these trees, it is desirable to generate balanced trees

as much as possible.

With regard to design methodology 1. consider the growing of RNj based on the input restric

tions of &nj+1- Pairs of external inputs must be connected to pairs of branches {b.c} of external

nodes of RjrJ+i in such a manner that these nodes are at the largest height values in Rnj+1- This

reduces the height of the overall set of tree structures and is more time efficient.

With regard to design methodology 2, consider the partially grown tree Rt of theorem 6. The

growing of this tree is based on the reduction tree Rnj+i* At each step of the tree growing process, a

label chosen from the set {E-/f } is made an internal label of Rt . In order that Rt is a balanced tree,

a proper choice of this label must be made at each step of the iteration. The following heuristic is

used in order to minimise the depth of the counter circuit represented by the reduction tree set.

Timing Heuristic: In choosing labels from the set {E - I t } to grow Rt , those labels are chosen

first that come from branches of Rn j+1 closest to the root node.

Designs using the above heuristic are shown in Figures 17 and 18.

7. Complex Labelling

Given an arbitrary design for a counter it is not always possible to find a consistent labelling

for it with a simple labelling set. Consider the 15 input counter of Figure 21. Let the node names

38

represent one of four labels that can be assigned to the output branch of that node. For a consistent

labelling, the following set of inequalities are obtained:

A 5*2? &F&G

C ^ D ^ E ^ F

A 9*8 5*C 5*7

D 7*E 5*2? 5*27

l9*H9*G 5*7

I 5*27 5*7 7*K

(1)

(2)

(3)

(4)

(5)

(6)

These lead to the inequality A 5*27 5*7 5*7 . Therefore a simple labelling set is insufficient

to solve the above set of inequalities. A solution with a complex labelling set is indicated in Figure

21. The following is the sketch of a branch and bound method used to generate test sets for

counter circuits which are not amenable to simple labelling.

Figure 21: Complex labelling

Procedure Branch, and Bound:

(1) Label the root node of the fundamental tree with the labels V* .Vj ,Vk and Vt on it’s three

input and one output branch, where 1 ,j Jt X <4 and ¿5* / i*k 5*Z.

39

(4) If the output branch of a node in the fundamental tree has been labelled, assign labels to it’s

input branches such that a consistent labelling is obtained.

(5) Repeat until all the nodes of the fundamental tree have been labelled.

The above method has been used to generate tests for several counter circuits. An example is

presented in Figure 20.

8. Conclusions

This paper presents a new model for the testability of iterative circuits for which classical

models such as the flow table are inadequate. It is seen that by exploiting some properties of full

addition, the issue of reconvergent fanout is sidetracked. The major result is a set of 10 equations

on which the entire proposition is based. The testing of counter circuits has been shown to reduce to

the problem of labelling the branches of a tree based representation of the counter structure in a

systematic manner. It is shown that all counter circuits can always be designed to be testable in

either 8 or 9 tests.

ACKNOWLEDGEMENTS

We would like to thank Subhasis Laha who suggested the method of Construction 1 and Pro

fessor Prithviraj Banerjee of the University of Illinois for the many valuable discussions and help

ful remarks. We would like to thank Dr. Sung Je Hong of GE R&D Schenectady. N.Y for his help

ful discussions especially with regard to the corollary of Theorem 1. We also acknowledge the help

and support of Dr. Manuel D'Abreu of GE R&D Schenectady.

40

REFERENCES

[1] A.D. Friedman. "Easily Testable Iterative Systems," IEEE Transactions on Computers, Vol
C-22, No 12. Dec 1973.

[2] Francisco J.O. Dias. "Truth Table Verification of an Iterative Logic Array." IEEE Transac
tions on Computers, Vol C-25, No 6, June 1976.

[3] W.H. Kautz. "Testing for Faults in Cellular Logic Arrays." Proc, 8 ’th Anrvu. Symp. Switch
ing and Automata Theory, 1967.

[4] John Paul Shen and Joel Ferguson. "Easily Testable Array Multipliers." Proc, lZ 'th I n f l
Symp. on Fault Tolerant Computing, June 1983.

[5] R. Parthasarthy and S.M. Reddy. "A Testable Design of ILA's." IEEE Transactions on
Computers, Vol C-31, pp 833-841. Nov 1981.

[6] Hasan Elhuni. Anastasios Vergis, Larry Kinney. "C-Testability of Two-Dimensional Ar
rays of Combinational Cells." Proc, In t’l Conference on Computer Aided Design, Nov
1985. 6

[7] S.C. Seth. K.L. Kodandapani. "Diagnosis of Faults in Linear Tree Networks." IEEE Tran
sactions on Computers, Vol C-26, pp 29-33, Jan 1977.

[8] J.A. Abraham and D.D. Gajski, "Design of Testable Structures Defined by Simple Loops,"
IEEE Transactions on Computers, Vol C-33, pp 875-884. Nov 1981.

[9] Wu Tung Cheng. "Testing and Error Detection in Iterative Logic Arrays," PhD Thesis,
University of Illinois at Urbana-Champaign. 1985.

[10] L. Dadda, "Some Schemes for Parallel Multipliers." Alta Freq, pp 349-356, May 1965.

[11] Kai Hwang. "Computer Arithmetic. Principles. Architecture and Design." John Wiley and
Sons, 1979.

[12] Edward Reingold. Jurg Nievergelt. Narsing Deo. "Combinatorial Algorithms: Theory and
Practice." Prentice H all Inc, 1977.

