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Abstract

Safety verification of embedded systems modeled as hybrid systems can be scaled up by
employing simulation-guided reach set over-approximation techniques. Existing methods are
either applicable to only restricted classes of systems, overly conservative, or computationally
expensive. We present new techniques to compute a locally optimal bloating factor based on
discrepancy functions, which allow construction of reach set over-approximations from simula-
tion traces for general nonlinear systems. The discrepancy functions are critical for tools like
C2E2 to verify bounded time safety properties for complex hybrid systems with nonlinear con-
tinuous dynamics. The new discrepancy function is computed using local bounds on a matrix
measure under an optimal metric such that the exponential change rate of the discrepancy
function is minimized. The new technique is less time consuming and less conservative than
existing techniques and does not incur significant computational overhead. We demonstrate the
effectiveness of our approach by comparing the performance of a prototype implementation with
the state-of-the-art reachability analysis tool Flow*.

1 Introduction

Recent advances in verification tools for nonlinear hybrid systems have brought them to the thresh-
old of solving real-world embedded system design and analysis problems [9, 11, 14, 18, 25]. Early
successful applications have been demonstrated in automotive power-train control systems [5, 12]
medical devices [21, 22], and power plants [15].

∗This work was in part supported by the grants CCF 1422798 from the National Science Foundation.
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One promising approach that is instantiated in several verification tools like Breach [11], Strong [10],
and C2E2 [14], is based on constructing safety proofs from simulation data. The key idea is to
over-approximate the states reachable from (uncountably) infinite initial states of the system, from
finitely many (possibly error prone) numerical simulations by bloating each individual simulation
by an appropriate factor. An early instance of this approach was presented in [19] for test gener-
ation. It has been shown that such bloating factors can be computed for soundly verifying linear
systems using sensitivity analysis [11]. Specialized techniques have been developed for affine and
polynomial systems [1, 23]; however, for general nonlinear models, matrix sensitivity may not be
sound, as higher order error terms are ignored during computation. This notion of bloating factor
has been formalized as discrepancy functions, and the general properties needed for soundness and
completeness of verification have been identified [13]. In [16], an algorithm is presented for auto-
matically computing such discrepancy functions for general nonlinear systems, and this algorithm
has been employed to verify several challenging benchmark problems [12, 21].

Despite these encouraging developments, the algorithm in [16] has fundamental drawbacks that
prevent it from working for a large class of systems in practice. One drawback is that the bloating
factor (or discrepancy function) computed by [16] grows (or shrinks) with time exactly at the same
rate along all the dimensions of the system, and this rate is computed by bounding the eigenvalues of

the symmetric part of the Jacobian matrix. For example, the simple linear system ẋ =

[
0 3
−1 0

]
x

has eigenvalues ±
√

3i, and therefore, has oscillating trajectories. The actual distance between
neighboring trajectories is at most a constant times their initial distance; however, the discrepancy
function computed by [16] will bound this distance between trajectories, in all dimensions, as an
exponentially growing function Ceλt, where λ = 1 is the largest eigenvalue of the symmetric part of
the Jacobian matrix1. Furthermore, [16] uses a coarse method for bounding the largest eigenvalue
of the Jacobian matrix (of nonlinear models), which leads to an undesirable level of conservatism
to the point that even for certain contractive systems, the computed reach set over-approximation
may not converge over time.

In this paper, we address these issues and present an improved algorithm for simulation-based
verification that enjoys stronger theoretical guarantees and works better in practice on several
benchmark problems. The starting point of our development is the well-known fact that a matrix
measure (see Definition (2) in [29]) of the Jacobian matrix can bound the distance between neigh-
boring trajectories [6, 32]. For the above linear system, for example, the matrix measure is 0 using

M -norm (see definition in Sec. 2), with M =

[
1 0
0 3

]
. This results in an estimate of the reach set

that at least does not grow over time. In [29], matrix measures were used for reachability analysis,
but that technique relies on user-provided closed-form expressions of matrix measure functions,
which are in general difficult to obtain for nonlinear systems. For instance, for the 2-norm case, the
matrix value function is equivalent to the closed-form eigenvalue function of the Jacobian matrix.
In contrast, our approach automatically computes the bounds on locally optimal matrix measures.

For general nonlinear systems, the Jacobian matrix is a function of the state, and we use
constant interval matrices to bound the variation of the Jacobian over small parts of the state
space. The upper bound on the matrix measure of this interval matrix is used as an upper bound
on the matrix measure of the Jacobian matrix over this part of the state space. We use this bound
as the exponential change rate of the discrepancy function.

We provide two techniques for computing the optimal exponential change rate from the interval

1In [16], a simple coordinate transformation method is introduced to address this problem, but that requires user
intervention and adds an approximation error that is of the order of the matrix condition number.
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matrix. The first method uses the vertex matrices of the interval matrix, and the second uses
interval matrix norms. The vertex matrices approach provides more accurate results but is more
expensive, while the interval matrix norm approach is faster but less accurate. Both approaches are
less conservative than the algorithm of [16] as they find locally optimal exponential change rates.
A positive side effect of the current methods is that it bloats a simulation nonuniformly in different
directions.

In summary, the contributions of this paper are as follows. (a) We provide an improved algo-
rithm for over-approximating reachtubes for nonlinear models, which can be used as a core tech-
nology to address hybrid models, in tools such as C2E2 [14] and Breach [11] . (b) The proposed
algorithm uses the locally optimal exponential rate for estimating the distance between neighboring
trajectories, which results in less conservative over-approximations as compared to previous algo-
rithms. (c) We establish that for contractive models, the error in over-approximation converges to
0—a desirable property that existing simulation-based verification algorithms do not have. (d) We
compare the new algorithm with Flow* [9] on a suite of nonlinear system examples (and a high di-
mensional linear system), and the results suggest that this method provides significant advantages
for large and complex systems.

The rest of the paper is organized as follows. In Sec. 2 and 3, we introduce notation and
background information, and then we present our new techniques to perform reach set over-
approximation in Sec. 4 and 5. In Sec. 6 we compare the performance of our proposed algorithm
with a related tool, followed by the conclusions in Sec. 7.

2 Preliminaries

In this paper, we present key new results for reachability analysis of nonlinear dynamical systems.
Extending this to hybrid systems will follow the standard approach along the lines of [14]. In fact,
the new algorithm can be plugged-in to a hybrid verification tool like C2E2 [14] for handling the
continuous reachability more effectively.

Dynamical system The continuous evolution of an embedded system is mathematically modeled
as a dynamical system. Consider an n-dimensional dynamical system:

ẋ = f(x), (1)

where f : Rn → Rn is locally Lipschitz continuous function describing the continuous evolution
of the physical variables of the embedded system. A solution or a trajectory of the system is a
function ξ : Rn×R≥0 → Rn, such that for any initial state x0 ∈ Rn and at any time t ∈ R≥0, ξ(x0, t)
satisfies the differential equation (1). Assume that the function f is also continuously differentiable.

The Jacobian of f , Jf : Rn → Rn×n is a matrix-valued function: [Jf (x)]ij = ∂fi(x)
∂xj

. The following

lemma states a relationship between f and its Jacobian Jf which can be proved using generalized
mean value theorem [16].

Lemma 2.1. For any continuously differentiable vector-valued function f : Rn → Rn, and x, r ∈
Rn,

f(x+ r)− f(x) =

(∫ 1

0
Jf (x+ sr)ds

)
· r, (2)

where the integral is component-wise.
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Interval matrices We will use interval matrices to linearly over-approximate behaviors of non-
linear models. For a matrix A, we use A � 0 (or, A � 0) to indicate A is positive semi-definite
(or, positive definite). For a vector x ∈ Rn, xT denotes the transpose of x. The standard measure

of distance between vectors is the Euclidean norm or the 2-norm ‖x‖ ∆
=
√
xTx. In performing

linear over-approximations of a nonlinear system, we will find it convenient to perform local linear
coordinate transformations. This motivates the M -norm of a vector x: ‖x‖M ,

√
xTMx, where M

is a positive definite matrix M ∈ Rn×n. For M = I is the identity matrix, ‖x‖I is the 2-norm. For
any M � 0, there exists a nonsingular matrix C ∈ Rn×n, such that M = CTC, and ‖x‖M ≡ ‖Cx‖.
That is, ‖x‖M is the 2-norm of the linearly transformed vector Cx.

Throughout this paper, we use lower case letters with subscripts to denote the corresponding
element of a matrix, e.g., aij denotes the element in the ith row and jth column of A. We call [B,C]
a matrix pair if B,C ∈ Rn×n and bij ≤ cij for all 1 ≤ i, j ≤ n. For a matrix pair [B,C], we define
the interval matrix,

interval([B,C]) , {A ∈ Rn×n|bij ≤ aij ≤ cij , 1 ≤ i, j ≤ n}.

Two useful notions are the center matrix and the range matrix, which are defined as center([B,C]) =
(B + C)/2, and range([B,C]) = (C −B)/2, respectively. Then interval([B,C]) can also be written
as interval([Ac −Ar, Ac +Ar]), where Ac = center([B,C]), Ar = range([B,C]).

Next we introduce the notion of interval matrix norm. We start our discussion with an arbitrary
norm ‖ · ‖ of matrices; it can be 1, 2,∞, or the Frobenius norm (See definitions in [20] page 55).
Later we will pick specific norms for each case. Given a norm for matrices ‖ · ‖, the corresponding
norm on an interval matrix is defined as:

|||A||| = sup
A∈A
‖A‖. (3)

and |||A||| is called the interval matrix norm of A. The following theorem from [17] provides a
method to calculate the norm of an interval matrix from the norms of its center and range.

Theorem 2.2 (Theorem 9 from [17]). For any interval matrix A,

|||A|||1 = ‖ |center(A)|+ range(A)‖1,
|||A|||∞ = ‖ |center(A)|+ range(A)‖∞,

where |A| is the matrix obtained by taking the element-wise absolute value of matrix A.

For an interval matrix interval([B,C]), we define V = vertex(interval([B,C])) = {V ∈ Rn×n|vij =
bij , or, vij = cij , 1 ≤ i, j,≤ n}. The elements of V are called vertex matrices, the entries of which

are the boundary values of B or C. The cardinality of V is 2n
2
.

Let A = interval([B,C]), and V = vertex(A). We use hull(V) to denote the convex hull of V.
Assume Ai, i = 1, 2, . . . , N are all the elements of V, where N is the cardinality of V. Then

hull({A1, . . . , AN}) , {A ∈ Rn×n|∃α1, . . . , αN ≥ 0, and
N∑
i=1

αi = 1, s.t. A =

N∑
i=1

αiAi}.

It can be shown that the convex hull of the vertex matrices for an interval matrix is the interval
matrix itself.
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Proposition 2.3. For any interval matrix A,
hull(vertex(A)) = A.

Proposition 2.3 can be proved by constructing a bijection that maps an n-dimensional interval
matrix to an n2-dimensional hyper rectangle. Vectorizing, or flattening, the vertex matrices in A,
we obtain the vertices of this hyper rectangle. Then Proposition 2.3 holds, since the convex hull of
the vertices of a rectangle is the rectangle itself.

Matrix measure Matrix measures, also called logarithmic norms, provide a well-known tech-
nique to bound the divergence of trajectories of systems described by (1). For matrix A ∈ Rn×n,
the matrix measure µ(A) is defined as the one-sided derivative of the norm at I ∈ Rn×n in the
direction A:

µ(A) = lim
t→0+

‖I + tA‖ − ‖I‖
t

(4)

where I is the identity matrix and ‖·‖ can be any induced norm. The following related properties of
matrix measure have been proved in [33]: if ‖·‖ in Eq. (4) is 2-norm, then µ(A) = maxj

1
2λj(A+AT ),

where λj(A + AT ) are the eigenvalues of A + AT ; if ‖ · ‖ in Eq. (4) is M -norm, then µM (A) =
maxj

1
2λj(CAC

−1 + (CAC−1)T ), where M = CTC and C is nonsingular. We use λmax(M) and
λmin(M) to denote the largest and smallest eigenvalue of the positive definite matrix M respectively.

Reachable sets Consider the dynamical system described by Eq. (1). Given an initial set X ⊆
Rn, a state x in Rn is reachable within a time interval [t1, t2] if there exists an initial state x0 ∈ X
at time t1 and a time t ∈ [t1, t2] such that x = ξ(x0, t). The set of all reachable states in the interval
[t1, t2] is called the reach set and is denoted by Reach(X , [t1, t2]). Let Reach(X , t1) denote the set
of all reachable states at time t1. To capture the evolution of reach set with time, we introduce the
definition of a reachtube.

Definition 2.4. Given an initial set X and a time bound T , a (X , T )-reachtube of the system
described in Eq. (1) is a sequence of time-stamped sets (R1, t1), . . . , (Rk, tk) satisfying the following:
(a) t0≤t1 ≤ · · · ≤ tk = T ,
(b) Reach(X , [ti−1, ti]) ⊆ Ri, ∀i = 1, . . . , k.

Lastly, we note the following few operators on sets. For a set S ⊂ Rn, the diameter of S
is the supremum of the distance between any states in S: dia(S) = sup(‖x − x′‖), ∀x, x′ ∈ S.
In addition, Bδ(S) = ∪x∈SBδ(x), where Bδ(x) denotes the set {y|‖x − y‖ ≤ δ}. The notation
EM,c(xc) = {x | ‖x − xc‖2M ≤ c} represents an ellipsoid centered at xc, with shape M and size c.
For sets S1 and S2, S1 ⊕ S2 denotes the Minkowski sum of the sets.

3 Background: simulation guided reachability

Given an initial set X and time bound T , we wish to compute a (X , T )-reachtube. Following the
simulation guided reachability approach of [13, 16], we will over-approximate the reachtube by first
computing a numerical simulation from a specific initial state x0, and then symbolically compute
a reachtube from this simulation that contains all solutions starting from a neighborhood of x0. In
Sec. 3.1, we introduce the notion of a discrepancy function, which provides an upper bound on the
distance between two neighboring trajectories of a system. In Sec. 3.2 and Sec. 3.3 we demonstrate
methods to compute the bounds on matrix measures as the discrepancy functions in the 2-norm
case and in the M -norm case, respectively, within some local compact set.
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To simplify the presentation, we assume that the solutions (i.e., trajectories) for (1) can be
obtained exactly. Later in Sec. 5.5, we will discuss how the algorithms work with validated
simulations with guaranteed error bounds (see also for a detailed treatment of this [13]).

3.1 Discrepancy Between Trajectories

A discrepancy function bounds the distance between two neighboring trajectories, based on the
initial distance between states and the time [13, 16].

Definition 3.1. Given a positive definite matrix M , a continuous function β : R≥0 × R≥0 → R≥0

is a discrepancy function of the system in Equation (1) if

(1) for any pair of states x1, x2 ∈ Rn, and any time t ≥ 0,

‖ξ(x1, t)− ξ(x2, t)‖M ≤ β(‖x1 − x2‖M , t), and

(2) for any t, lim‖x1−x2‖M→0+ β(‖x1 − x2‖M , t) = 0.

According to the definition of discrepancy function, for system (1), at any time t, the ball
centered at ξ(x0, t) with radius β(δ, t) conservatively contains the reach set of (1) starting from
Bδ(x0). Therefore, by bloating the simulation trajectories using the corresponding discrepancy
function, we can obtain the over-approximating reachtube. Similar ideas have been considered
based on abstraction techniques to synthesize controllers [36]. Definition 3.1 corresponds to the
definition of discrepancy function (Definition 2) in [13], except that we allow an arbitrary M -norm
as a metric. Note here we do not require that trajectories converge to each other. As noted in
[13, 29], several techniques (contraction metric [28], incremental stability [3], matrix measure [29],
etc.) can be used to find discrepancy functions; however, those techniques either restrict the class
of nonlinear systems (e.g., polynomial systems, as in [23]) or require crucial user-supplied inputs
(e.g., the closed-form expression of matrix measure function, as in [29]).

For general nonlinear systems under the 2-norm, the technique in [16] used an exponential
function to bound the distance between trajectories over time, where the exponential rate was
bounded by the eigenvalues of the symmetric part of the Jacobian matrix. The discrepancy function
generated using that technique is actually a local bound on the matrix measure of the Jacobian
matrices under a standard 2-norm. In this work, we improve this technique by optimizing the
metric on states to find a discrepancy function that provides a tighter bound on distance between
pairs of trajectories. That is, we will provide practical methods to bound local matrix measures
under an M -norm and improve the accuracy of such a bound by identifying an optimal M .

In Sec. 3.2 and Sec. 3.3 we will restrict the states x1, x2 in Definition 3.1 to some compact2

set S, instead of the entire space Rn. Later we will see that the discrepancy over S is sufficient to
compute reachtubes.

3.2 2-Norm Discrepancy

In this section, we briefly review the method of [16] for computing discrepancy functions using
2-norm over compact subset of the state space.

As the function f in system (1) and its derivatives are continuous, if x, r are all bounded, then
each component of the Jacobian matrix Jf (x + sr),∀s ∈ [0, 1] and its norm are bounded. This
property of the Jacobian matrix can be used to invoke the following lemma to provide an upper
bound for the distance between two neighboring trajectories for the 2-norm case.

2Compact is equivalent to closed and bounded in Euclidean space.
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Lemma 3.2. For system (1), suppose S ⊆ Rn is a compact convex set, and [t1, t2] is a time
interval such that for any x ∈ S, t ∈ [t1, t2], ξ(x, t) ∈ S. Suppose γ ∈ R is an upper bound on the
largest eigenvalue of the symmetric part of Jacobian matrix (JTf (x) + Jf (x))/2,∀x ∈ S, then for

any x1, x2 ∈ S and for any t ∈ [t1, t2], ‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖eγ(t−t1).

Lemma 3.2 is Lemma 4 in [16] and is proved using Lemma 2.1.
Since Jf : S → Rn×n is bounded as stated earlier, there always exists an upper bound γ for

the eigenvalues of (JTf (x) + Jf (x))/2, and it can be computed using the algorithm provided in [16]
(Lemma 3). Also, the set S above can be chosen to be a coarse over-approximation of the reach
set, obtained using the Lipschitz constant [16]. Using the computed S and γ, Lemma 3.2 provides
a bound to the 2-norm distance between trajectories.

Given the simulation result of ξ(x1, t), for any other initial state x2 such that ‖x1−x2‖ ≤ c, we
will have that ∀t ∈ [t1, t2], ‖ξ(x1, t)− ξ(x2, t)‖ ≤ ceγ(t−t1). That means that at any time t ∈ [t1, t2],
ξ(x2, t) is contained in the hyber-ball centered at ξ(x1, t) with radius ceγ(t−t1). Thus, a discrepancy
function for system (1) is given by β(‖x1 − x2‖, t) = ‖x1 − x2‖eγ(t−t1).

Example 1. Consider a 2-dimensional nonlinear system over the set S = {x = [v, w]T | v ∈
[−2,−1], w ∈ [2, 3]}

v̇ = 1
2(v2 + w2); ẇ = −v. (5)

If for any x ∈ S, t ∈ [t1, t2], ξ(x, t) ∈ S, using Algorithm 2 in [16] we obtain 1.0178 as an upper
bound on the eigenvalues of the symmetric part of Jacobian matrix. Using Lemma 3.2, we obtain
the following discrepancy function for this system:
‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖e1.0178t, ∀x1, x2 ∈ S, ∀t ∈ [t1, t2].

3.3 General M-norm Discrepancy

Discrepancy functions based on the 2-norm provide a conservative (upper bound) estimate of
the difference between trajectories, which in turn results in reachtubes that conservatively over-
approximate the reach set. In this section, we reduce the conservativeness of the estimate by
generalizing the discrepancy function notion to M -norms and compute the locally optimal M . The
new metrics will provide a tighter estimate of the distance between trajectories, which can be used
to produce reachtubes that are tighter.

Intuitively, the upper bound on the eigenvalues of the symmetric part of the Jacobian matrix is
used to bound the worst case growth rate in the difference between trajectories, under the standard
2-norm. To develop a more accurate upper bound for the difference, we revisit Lemma 3.2. Given
a compact convex set S containing all the trajectories between time [t1, t2], using lemma 2.1 we
have the following:

ẏ(t) =

(∫ 1

0
Jf (ξ(x1, t) + sy(t))ds

)
y(t), (6)

where y(t) is the distance ξ(x2, t) − ξ(x1, t) starting from x1, x2 ∈ S. For bounded sets S, the
elements of the Jacobian matrix Jf (x) are bounded for all x ∈ S because of the continuity assump-
tions. Assuming we can compute the upper and lower bound of each term of the Jacobian matrix
Jf (x) within S, we can over-approximate the integration of the Jacobian matrix on the right hand
side of (6) using an interval matrix.

The following Lemma shows that the interval matrix that contains the possible values that
Jf (x) can take within S exists.
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Lemma 3.3. If each term of the Jacobian matrix Jf (x) is a continuous function of x. Over compact
sets S, there exists an interval matrix interval([B,C]) such that

∀x ∈ S, Jf (x) ∈ interval([B,C]), .

The lemma follows from the fact that each term is a continuous function of x, and over the
compact domain S, the function has a maximum and minimum value that define the matrix pair
[B,C]. The bounds of such values can be obtained for a broad class of nonlinear systems using
interval arithmetic or optimization toolbox.

To obtain a better bound on the distance between pairs of trajectories from X , consider
a compact convex set S that contains all the trajectories between time [t1, t2] and an inter-
val matrix A = interval([B,C]) that satisfies the conditions in Lemma 3.3. For any fixed t,∫ 1

0 Jf (ξ(x1, t) + sy(t))ds is a constant matrix. Because ξ(x1, t), ξ(x2, t) are contained in the convex
set S, ∀s ∈ [0, 1], ξ(x1, t) + sy(t) should also be contained in S. Then at t, Jf (ξ(x1, t) + sy(t)) ∈
interval([B,C]). Since the integration is from 0 to 1, it is straightforward to check that∫ 1

0
Jf (ξ(x1, t) + sy(t))ds ∈ interval([B,C]).

We rewrite (6) as

ẏ(t) = A(t)y(t), A(t) ∈ A (7)

which means at any fixed time t ∈ [t1, t2], we always have ẏ(t) = A(t)y(t), where A(t) is unknown
but A(t) ∈ A.

The above analysis is summarized by the following lemma.

Lemma 3.4. For a compact convex set S such that for any state x ∈ S, ξ(x, t) ∈ S for t ∈ [t1, t2],
if there exists an interval matrix A such that ∀x ∈ S, Jf (x) ∈ A, then for any x1, x2 ∈ S, and
for any fixed t ∈ [t1, t2], the distance y(t) = ξ(x2, t) − ξ(x1, t) satisfies ẏ(t) = A(t)y(t), for some
A(t) ∈ A.

Given any matrix M � 0, ‖y(t)‖2M = yT (t)My(t), and by differentiating ‖y(t)‖2M , we have that
for any fixed t ∈ [t1, t2],

d‖y(t)‖2M
dt

= yT (t)(A(t)TM +MA(t))y(t), (8)

for some A(t) ∈ A. If there exist a γ̂ such that ATM + MA � γ̂M, ∀A ∈ A, then (8) becomes
d‖y(t)‖2M

dt
≤ γ̂‖y(t)‖2M . After applying Grönwall’s inequality, we have ‖y(t)‖M ≤ ‖y(t1)‖Me

γ̂
2

(t−t1),∀t ∈

[t1, t2]. γ̂
2 can also be seen as an upper bound of the matrix measure of the family of matrices A,

since µM (A) ≤ γ̂
2 , ∀A ∈ A means CAC−1 + (CAC−1)T � γ̂I,∀A ∈ A, where M = CTC. Pre and

post multiplying the inequality by CT and C and we can also get ATM +MA � γ̂M, ∀A ∈ A.

The above provides an alternative discrepancy function, β(‖x1−x2‖M , t) = ‖x1−x2‖Me
γ̂
2

(t−t1).
This discrepancy function could result in less conservative reachtubes, depending on the selection
of M and γ̂. Ideally, we would like to identify the optimal M such that we can obtain tightest
bound γ̂. The problem is formulated as follows:

min
γ̂,M

γ̂ (9)

s.t ATM +MA � γ̂M, ∀A ∈ A
M � 0.
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Next we propose two methods to solve (9) subject to the constraints imposed by the infinite set of
matrices in A.

4 Solving Interval Constraints

4.1 Vertex Matrix Constraints

Proposition 2.3 provides that an interval matrix is equivalent to the convex hull of its vertex
matrices. That means each constant matrix A in the interval matrix A will have a representation
based on elements of vertex(A). This allows us to simplify the optimization problem in Eq. (9) to
one with a finite number of constraints, based on the vertex matrices.

The next lemma provides a method for computing discrepancy functions from the vertex ma-
trices of an interval matrix.

Lemma 4.1. Let S ⊆ Rn be the set of states such that for any state x ∈ S, we have ξ(x, t) ∈ S for
t ∈ [t1, t2]. Let M be a positive definite n×n matrix. If there exists an interval matrix A such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ̂ ∈ R, ∀ Ai ∈ vertex(A), ATi M +MAi � γ̂M ,

then for any x1, x2 ∈ S and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e
γ̂
2

(t−t1)‖x1 − x2‖M .

The proof follows from Lemma 3.4 and the details are shown in the appendix.
Lemma 4.1 suggests the following bilinear optimization problem for finding discrepancy over

compact subsets of the state space:

min
γ̂,M

γ̂ (10)

s.t. ATi M +MAi � γ̂M, for each Ai ∈ vertex(A)

M � 0.

Let γ̂max be the maximum of the eigenvalues of ATi +Ai for all i, then ATi +Ai � γ̂maxI (i.e., M = I)
holds for every Ai, so a feasible solution exists for (10). To obtain a minimal feasible solution for
γ̂, we choose a range of γ ∈ [γmin, γmax], where γmin < γmax and perform a line search of γ̂ over
[γmin, γmax]. Note if γ̂ is fixed, (10) is a semidefinite programming (SDP), and a feasible solution
can be obtained by an SDP solver. As a result, we can solve (10) using a line search strategy, where
an SDP is solved at each step. The solution we obtain using this technique may not be optimal, but
we note that any feasible γ̂ and M conservatively capture the behaviors of the difference between
trajectories. Further, in practice, we can always choose a negative enough lower bound γ̂min, such
that if γ̂ < γ̂min, then we can use γ̂min as a sufficient relaxation (upper bound) for γ̂.

The above process for identifying a feasible (optimal) γ̂ and a corresponding M can be used
to compute reach set over-approximations, based on the discrepancy function β(‖x1 − x2‖M , t) =

e
γ̂
2

(t−t1)‖x1 − x2‖M .

9



Example 2. For system (5) over the given compact set S as in Example 1, since we can obtain

γ̂ = −0.6 and M =

[
2.7263 −1.3668
−1.3668 6.7996

]
satisfies Lemma 4.1 by solving optimization problem 4.1,

we obtain the discrepancy function

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Me−0.3t,

∀x1, x2 ∈ S, ∀t ∈ [t1, t2].

The over-approximations computed using this method is less conservative than the method
based on the 2-norm (Sec. 3.1), because the optimal metric is searched for the minimum possible
exponential change rate, which is achieved by allowing the amount of bloating in each direction to
be different, instead of the uniform rate for all directions as in [16].

This approach is computationally more intensive than the 2-norm method due to the potentially
O(2n

2
) matrices in vertex(A) that appear in the SDP (10). In the next section, we present a second

method that reduces the complexity.

4.2 Interval Matrix Norm

We present a second method for computing discrepancy functions based on interval matrix norms,
which uses the center and range matrices to characterize the norm of the interval matrix A. The
next lemma provides a method to compute a discrepancy function using the matrix norm of an
interval matrix.

Lemma 4.2. Let S ⊆ Rn be sets of states such that for any x ∈ S, ξ(x, t) ∈ S, ∀t ∈ [t1, t2]. Let
M be a positive definite n× n matrix. If there exists an interval matrix A such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ̂ ∈ R, such that center(A)TM +Mcenter(A) � γ̂M ,

then for any x1, x2 ∈ S and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e
(
γ̂
2

+ δ
2λmin(M)

)
(t−t1)‖x1 − x2‖M , (11)

where δ =
√
|||D|||1|||D|||∞, and D = {D | ∃A ∈ A such that D = (A − center(A))TM + M(A −

center(A))} is also an interval matrix.

The proof uses the norm of the interval matrix and Lemma 3.4, and details are given in the
appendix.

In general, Lemma 4.2 provides the discrepancy function

β(‖x1 − x2‖M , t) = e

(
γ̂
2

+ δ
2λmin(M)

)
(t−t1)‖x1 − x2‖M ,

where an M and γ̂ need to be selected. This suggests solving an alternative optimization problem
to compute a discrepancy function over compact subsets of the state spaces.

min
γ̂,M

γ̂ (12)

s.t ATcM +MAc � γ̂M,Ac = center(A)

M � 0.
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As for δ, Thm. 2.2 provides an efficient way to compute the 1-norm and infinity-norm of the interval
matrix.

Example 3. For system (5) over the given compact set S as in Example 1, we can obtain γ̂ = −0.8

and M =

[
2.4431 −1.0511
−1.0511 4.5487

]
by solving optimization problem (12), and δ = 1.4162. Applying

Lemma 4.2, a discrepancy function for (5) is given by

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Me0.3081t,

∀x1, x2 ∈ S,∀t ∈ [t1, t2].

The computations required to produce the discrepancy using the interval matrix norm method
are significantly less intensive than for the vertex matrix constrains method. But this comes at
the price of decreasing the accuracy (i.e., increasing the conservativeness), due to the positive error

term δ
2λmin(M) that is added to γ̂

2 in (15). In practice, we want to make the compact sets S small

so that δ (and by extension the exponential term in (15)) remains small.
Lemmas 4.1 and 4.2 provide bounds on the M -norm distance between trajectories. Given the

simulation result of ξ(x1, t), for any other initial state x2 such that ‖x1 − x2‖M ≤ c, we will have

that ∀t ∈ [t1, t2], ‖ξ(x1, t)− ξ(x2, t)‖M ≤ ce
γ′
2

(t−t1) (γ′ = γ̂ for Lemma 4.1 and γ′ = γ̂ + δ
λmin(M) for

Lemma 4.2). This means that at any time t ∈ [t1, t2], ξ(x2, t) is contained in the ellipsoid centered
at ξ(x1, t) defined by the set of points x that satisfy

‖(ξ(x1, t)− x)‖2M ≤ ceγ
′(t−t1).

That is, ξ(x2, t) is contained within ellipsoid
EM,ceγ

′(t−t1) (ξ(x1, t)).

5 Reachability Algorithm

5.1 Piece-wise Discrepancy

Given an initial set X and time bound T , Lemmas 4.1 and 4.2 provide discrepancy functions over
compact sets in the state space and over a bounded time horizon. To compute the reach set of a
nonlinear model from a set of initial states over a long time horizon [0, T ], in principle, we could
compute a single discrepancy function that holds over the entire duration. For unstable systems,
this would result in large interval matrices, leading to large over-approximations. To mitigate this
problem, we divide the time interval [0, T ] into smaller intervals [0, t1], [t1, t2], etc., and compute
a piece-wise discrepancy function, where each piece is relevant for a smaller portion of the state
space and the time.

Consider two adjacent subintervals of [0, T ], a = [t1, t2] and b = [t2, t3]. Let βa, βb be the
discrepancy functions for the intervals a and b. βa defines an ellipsoid EMa,ca(t2)(ξ(x0, t2)) that
contains Reach(X , t2) and βb provides Mb and cb(t) such that Reach(X , t2) ⊆ EMb,cb(t2)(ξ(x0, t2)).
To over-approximate the reach set for the interval b, we require that cb(t2) is chosen so that at the
transition time t2:

EMa,ca(t2)(ξ(x0, t2)) ⊆ EMb,cb(t2)(ξ(x0, t2)). (13)

Computing the minimum value for cb(t2) that ensures this is a standard SDP problem (see, for
example [7]). This minimum value is used as cb(t2) for computing the reachtube for time interval
b.
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5.2 Reachtube Over-approximation Algorithm

We present an algorithm to compute a (X , T )-reachtube for system (1) using the results from Sec.
4. Given an initial set X and time bound T , Algorithm 1 computes a sequence of time-stamped
sets (R1, t1), (R2, t2), . . . , (Rk, tk), such that the reach set from X is contained in the union of the
sets.

The inputs to Algorithm 1 are as follows: (1) A simulation ψ of the trajectory ξ(x, t), for some
x ∈ X , where x = ξ(x, t0) and t0 = 0, represented as a sequence of points ξ(x, t0), . . . , ξ(x, tk) and
a sequence of hyperrectangles
Rec(ti−1, ti) ⊆ Rn. That is, for any t ∈ [ti−1, ti], ξ(x, t) ∈ Rec(ti−1, ti). (2) The Jacobian matrix
Jf (x); (3) a Lipschitz constant L for the vector field (this can be replaced by a local Lipschitz
constant for each time interval); (4) a matrix M0 and constant c0 such that X ⊆ EM0,c0(x). The
output is a (X , T )-Reachtube.

Algorithm 1: Algorithm to compute (X , T )-Reachtube.

input : ψ,Jf (·),L,M0, c0

initially: R ← ∅, γ0 ← −100
1 δ0 = dia (EM0,c0(x)) ;
2 for i = 1:k do
3 ∆t← ti − ti−1 ;
4 S ← Bδi−1eL∆t(Rec(ti−1, ti)) ;

5 compute A such that Jf (x) ∈ A, ∀x ∈ S ;

6 if ∀V ∈ vertex(A) :V TMi−1 +Mi−1V ≤ γi−1Mi−1 then
7 Mi ←Mi−1 ;

8 γi ← argmin
γ

∀V ∈ vertex(A) : V TMi +MiV ≤ γMi ;

9 ctmp ← ci−1

10 else
11 compute Mi, γi from Eq. (10) ;
12 compute minimum ctmp such that EMi−1,ci−1(ξ(x, ti−1)) ⊆ EMi,ctmp(ξ(x, ti−1))

13 end

14 ci ← ctmpe
γi∆t ;

15 δi ← dia(EMi,ci(ξ(x, ti))) ;

16 Ri ← Bδ′/2(Rec(ti−1, ti)) where δ′ = max{dia
(
EMi,ctmp (ξ(x, ti−1))

)
, δi} ;

17 R ← R∪ [Ri, ti] ;

18 end
19 return R ;

The algorithm proceeds as follows. The diameter of the ellipsoid containing the initial set X is
computed as the initial set size (Line 1). For the ith time interval, recall that for any t ∈ [ti−1, ti],
ξ(x, t) ∈ Rec(ti−1, ti). Rec(ti−1, ti) is bloated by the factor δi−1e

L∆t which gives the set S that is
guaranteed to contain Reach(X , t) for every t ∈ [ti−1, ti] (Line 4), where ∆t computed at Line 3 is
the length of the current time interval. Next, an interval matrix A containing Jf (x), for each x ∈ S
is computed using standard interval arithmetic. The matrix is guaranteed to exist by Lemma 3.3.

The “if” condition in Line 6 determines whether the Mi−1, γi−1 used in the previous iteration
satisfy the conditions of Lemma 4.1 (γ0 when i = 1, where γ0 is an initial guess). This conditional
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will avoid performing updates of the discrepancy function if it is unnecessary. If the condition is
satisfied, then Mi−1 is used again for the current iteration i (Lines 7, 8, and 9) and γi will be
computed as the smallest possible value such that Lemma 4.1 holds (Line 8) without updating the
shape of the ellipsoid (i.e, Mi = Mi−1 ). In this case, the γi computed using Mi−1 in the previous
iteration (i − 1) may not be ideal (minimum) for the current iteration (i), but we assume it is
acceptable.

If Mi−1 and γi−1 do not satisfy the conditions of Lemma 4.1, then Mi and γi are recomputed
at Line 11. For the vertex matrix constraints case, (10) is solved to update Mi and γi. On Line 12,
an SDP is solved to identify the smallest constant ctmp for discrepancy function updating such that

EMi−1,ci−1(ξ(x, ti−1)) ⊆ EMi,ctmp(ξ(x, ti−1)).

The next Lemma states that Line 11 computes the locally optimal exponential rate γ for a given
interval matrix approximation.

Lemma 5.1. In the i-the iteration of Algorithm 1, suppose A is the approximation of the Jaco-
bian over [ti−1, ti] computed in Line 5. If Xi−1 is the reach set at ti−1, then ∀M ′, γ′ such that
ReachXi−1,ti ⊆ EM ′,c′(ξ(x, ti)) where c′ is computed from γ′ (Line 14), then γ produced by Line 11
satisfies γ ≤ γ′.

In other words, the computed γ is the optimal exponential growth rate for any ellipsoidal reach
set approximation, based on a given interval matrix approximation for the Jacobian. The lemma
follows from the fact that any M ′, γ′ that satisfies ATM ′ + M ′A � γ′M ′,∀A ∈ A results in an
ellipsoidal approximation at ti that over-approximates the reach set; however, at Line 11 we are
computing the minimum exponential change rate γ by searching all possible matrices M for the
given interval matrix. Thus, the γ value computed at Line 11 is the optimal exponential change
rate over local convex set S for the given interval matrix A.

At Line 14, we compute the updated ellipsoid size ci such that EMi,ci(ξ(x, ti)) contains Reach(X , ti).
The size is provided by Lemma 4.1 (γi = γ̂i).

On Line 15, the diameter of EMi,ci(ξ(x, ti)) is assigned to δi. Note that by Lemma 4.1, at any
time t ∈ [ti−1, ti], any other trajectory ξ(x′, t) starting from x′ ∈ EMi−1,ci−1(ξ(x, ti−1)) is guaranteed
to satisfy

‖ξ(x, t)− ξ(x′, t)‖Mi ≤ ‖ξ(x, ti−1)− x′‖Mie
γi
2

(t−ti−1). (14)

Then, at time ti, the reach set is guaranteed to be contained in the ellipsoid EMi,ci(ξ(x, ti)).
At Line 16 we want to compute the set Ri such that it contains the reach set during time

interval [ti−1, ti]. According to Eq. (14), at any time t ∈ [ti−1, ti], the reach set is guaranteed to be
contained in the ellipsoid EMi,c(t)(ξ(x, t)), where c(t) = ctmpe

γi(t−ti−1). Ri should contain all the
ellipsoids during time [ti−1, ti]. Therefore, it can be obtained by bloating the rectangle Rec(ti−1, ti)
using the largest ellipsoid’s radius (half of the diameter). Since eγi(t−ti−1) is monotonic (increasing
when γi > 0 or decreasing when γi < 0) with time, the largest ellipsoid during [ti−1, ti] is either at
ti−1 or at ti. So the largest diameter of the ellipsoids is max{dia

(
EMi,ctmp (ξ(x, ti−1))

)
, δi}. Thus,

at Line 16
Reach(X , [ti−1, ti]) ⊆ Ri.

Next, we prove that R returned at Line 17 is an over-approximation of the reach set.

Theorem 5.2. Given initial set X and time bound T , Algorithm 1 returns a (X , T )-Reachtube.

13



Proof. Using the above analysis, when i = 1, because the initial ellipsoid EM0,c0(x) contains the
initial set X , we have that EM1,c1(ξ(x, t1)) defined at Line 15 contains Reach(X , t1). Also at Line 16,
R1 contains Reach(X , [t0, t1]). Repeating this analysis for subsequent iterations, we have that
EMi,ci(ξ(x, ti)) contains Reach(X , ti), and Ri contains Reach(X , [ti−1, ti]). Therefore, R returned
at Line 17 is a (X , T )-Reachtube.

Note Algorithm 1 uses the vertex matrix constraints method in Sec. 4.1. To apply the interval
matrix norm method in Sec. 4.2, just modify Lines 6, 8 , 11, and 14 according to Lemma 4.2 and
optimization problem (12). For the interval matrix norm method, the γ computed at Line 11 is
the local optimal exponential rate only for the center matrix of the interval matrix; we add an
error to this γ to upper bound the exponential rate for the entire interval matrix using Lemma 4.2.
Such an error term may introduce conservativeness, but this relaxation decreases the computational
complexity exponentially (see Sec. 5.4).

5.3 Accuracy

Theorem 5.2 ensures that Algorithm 1 over-approximates the reachable sets from 0 to time T . In
this section, we give results that formalize the accuracy of Algorithm 1. In the following, we assume
that

R = (R1, t1), . . . , (Rk, tk = T )

is a (X , T )-Reachtube returned by Algorithm 5.2.
The first Proposition 5.3 establishes that the bloating factor δi in Line 15 for constructing

reachtubes goes to 0 as the size of initial set X goes to 0. This implies, that the over-approximation
error from bloating can be made arbitrarily small by making the uncertainty in the initial set small.

Proposition 5.3. For any i, if M0 and c0 are optimal, in the sense that no M ′, c′ exists such that
c′ < c0 and X ⊆ EM ′,c′(x), then as dia(X )→ 0 the size of the bloating factor δi → 0 (Line 15).

The proof builds on the fact that the size of the initial ellipsoid defined by M0 vanishes for the
case where the initial set X approaches 0. The corresponding bloating factors δi converge to 0 as
the initial ellipsoid vanishes. Details are provided in the Appendix.

Next, Proposition 5.4 establishes that for contractive systems the reachtube computed by Al-
gorithm 1 converges to the rectangles, which represent the simulation.

Corollary 5.4. Consider a contractive systems for which there exists a matrix M such at ∀x ∈
Rn, Jf (x)TM + MJf (x) � γM , and γ < 0. As k, T → ∞, the conservativeness Algorithm 1 adds
to the simulation approaches 0, that is,

|dia(Rk)− dia (Rec(tk−1, T )) | → 0.

Corollary 5.4 follows from the fact that the size of the balls that are used to bloat the rectangles
Rec(ti−1, ti) in Line 16 approaches zero for the case where γ is always negative. The details can be
found in the Appendix.

Corollary 5.5. For a linear system ẋ = Ax with a Hurwitz matrix A, the conservativeness Algo-
rithm 1 adds to the simulation vanishes as time diverges.
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A linear system is contractive if A is Hurwitz as the real part of its eigenvalues are bounded by
some constant γ < 0. Pick matrix P such that PAP−1 is the Jordan form of A, then there exists
some ε < 0 such that (P−1)TATP T +PAP−1 � εI. Pre and post multiplying by P T and P , we get:
ATP TP + P TPA � εP TP . Setting M = P TP we see that the contractive condition is satisfied.

For (even unstable) linear invariant systems, since the Jacobian matrix A does not change over
time, the discrepancy function can be computed globally for any time t and x1, x2 ∈ Rn. Therefore,
there will be no wrap-over (accumulated) error introduced using Algorithm 1. We have also proved
the convergence of the algorithm for contractive nonlinear systems. For non-contractive nonlinear
systems, the over-approximation error might be accumulated. Such wrap-over error introduced
by on-the-fly algorithms is nevertheless unavoidable. Therefore, for non-contractive or unstable
nonlinear systems, it is especially important to reduce the over-approximation error in each time
interval, which is what Algorithm 1 is designed to mitigate.

5.4 Performance

We discuss the performance of Algorithm 1. For an n-dimensional system model, assume that there
are nI components of the Jacobian matrix that are not a constant number. At any iteration, at
Line 5, the algorithm uses interval arithmetic to get lower and upper bounds of each component of
the Jacobian. For linear time invariant systems, this step is eliminated. At Line 6 the vertex matrix
constrains method will compute 2nI matrix inequalities; however, the interval matrix norm method
will compute 1 matrix inequality. At Line 8 or Line 11, the vertex matrix constrains method will
solve 1 convex optimization problem with 2nI or 2nI+1 constraints, but the matrix interval method
solves 1 convex optimization problem with 1 or 2 constraints. The discrepancy function updating
at Line 12 solves 1 SDP problem. The rest of the algorithm from Line 14 to Line 16 are algebraic
operations.

From the above analysis, we can conclude that the interval matrix norm method improves the
efficiency of the algorithm as compared to the vertex matrix constraints method, especially when
the number of non-constant terms in the Jacobian matrix is large; however, the interval matrix norm
method introduces the error term δ/λmin(Mi) at each iteration, resulting in a more conservative
result. We can consider the vertex matrix constraints method “accurate but complex” and the
interval matrix method “simple but coarse”.

The effective efficiency of the algorithm depends on whether the system is contractive or not.
For contractive systems, it is possible that the “if” condition often holds at Line 6, allowing the
algorithm to often reuse the previous norm and contraction rate. For non-contractive systems this
may not be the case. Also, the efficiency of the algorithm applied to linear systems is low, since
the interval matrix to which the Jacobian matrix belongs is time invariant.

5.5 Reachtube With Guaranteed Simulation

In the case of nonlinear or hybrid dynamical systems, analytic solutions rarely exist and validated
simulation libraries, such as VNODE-LP [30] and CAPD [8], have to be used to obtain simulation
states and error bounds that are guaranteed to contain the actual solution. In the experiment
section, we are going to used the validated simulation produced by CAPD.

Following from the work of [13], we give the definition of validated simulations, then discuss
how to modify Algorithm 1.

Definition 5.6. (Simulation) A (x0, τ, ε, T )-simulation of the system described in Eq. (1) is a
sequence of time-stamped sets {(Di, ti)

n
i=0} satisfying the following.
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(a) Di is a compact set in Rn with dia(Di) ≤ ε.

(b) Let ξ(x0, t) be the system trajectory starting from x0. Then for all i = 1, . . . , n, ξ(x0, ti) ∈ Di,
and ∀t ∈ [ti−1, ti], ξ(x0, t) ∈ hull({Di−1, Di}).

(c) τ is called the maximum sampling period . For each i = 1, . . . , n, 0 < ti− ti−1 ≤ τ . Note t0 = 0
and tn = T .

A validated simulation is similar to a reachtube but only contains a single solution. By contrast,
a reachtube is the over-approximation of infinite solutions from an initial set.

It is straightforward to modify Algorithm 1 to accept validated simulations and the error
bounds introduced. At Line 4 and Line 16, instead of bloating Rec(ti−1, ti), we need to bloat
hull({Di−1, Di}), which is guaranteed to contain the solution ξ(x, t), ∀t ∈ [ti−1, ti]. Also, at Line 12
and Line 15, when using the ellipsoid EMi,ci(ξ(x, ti)), we use EMi,ci(0)⊕Di.

6 Experimental Results

We implemented a prototype tool in MATLAB based on Algorithm 1 3 and tested it on several
benchmark verification problems. Simulations are generated using the validated simulation engine
CAPD [8], which returns a sequence of time-stamped rectangles as required by our algorithm. The
optimization problems (10), (12), and the SDP problems are solved using SDP3 [35] and Yalmip
[27].

We evaluated the algorithm on several nonlinear benchmark problems. Van der Pol, Moore-
Gretizer and Brusselator are standard low dimensional examples. The Diode Oscillator from [29]
is low dimensional but has complex dynamics described by degree 5 polynomials. Robot Arm is a
4 dimensional model from [4]. Powertrain is the powertrain control system proposed in [24] as part
of a verification challenge problem. The Powertrain system is highly nonlinear; the dynamic equa-
tions contain polynomials, rational functions, and square roots. Saturation is a system analyzed in
[31] that exhibits saturation behavior. Loaub-Loomis is a molecular network that produces spon-
taneous oscillations, and used as a case study for NLTOOLBOX [34]. AS Polynomial is a twelve
dimensional polynomial system [2] that is asymptotically stable around the origin. We also study
one 28-dimensional linear model of a helicopter [18]4. For systems under 3 dimensions, we use the
vertex matrix constraints method, and for systems above 3 dimensions, we use the interval matrix
norm method.

As mentioned earlier, the technique in [16], which we call the ATVA method, is a special case of
the current algorithm, and therefore, the reachtubes produced by the current algorithm are always
less conservative than [16].

We compare the running time and accuracy of our algorithm against a leading nonlinear veri-
fication tool, Flow* [9], and also against the ATVA method. Analysis of several of these examples
have been reported on Flow*’s website and in those cases we use the given configurations. In other
cases, we set the order of Taylor models to be adaptive and we try different remainder values in an
attempt to get the best result.

As a measure of precision, we compare the ratio of the reach set volume to the initial set volume.
This is a reasonable measure of accuracy because the tools use different set representations (Flow*

3Source code of the algorithm and examples can be found at https://bitbucket.org/hurricanesoff/emsoft-code/src
4For the initial condition set of the helicopter model, we used 0.1 as the diameter for the first eight dimensions

and 0.001 for the remaining ones, because the reach set estimations of Flow* became unbounded when using 0.1 as
the diameter for all dimensions.
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uses hypercubes5 and Algorithm 1 and the ATVA method use ellipsoids). We calculate two volume
ratios: (a) average volume of the reach set divided by the initial volume (sampled at the time steps
used in Flow*), (b) the reach set at the final time point T divided by the initial volume.

The results are shown in Table 1. Consider the performance of Algorithm 1 as compared to
Flow*. From Line 1-3 in Table 1, we see that for simple low dimensional nonlinear systems, the
performance of Flow* is comparable with our algorithm. Lines 4-5 and 7-9 show that for more
complicated nonlinear systems (with higher order polynomials or higher order dimensionality), our
Algorithm 1 performs much better in terms of running time without sacrificing accuracy. Moreover,
from Line 6 and Lines 10-11, Algorithm 1 not only finishes reachtube computation much faster,
but also provide less conservative results for even more complicated systems (with complicated
nonlinear dynamic or even higher dimensions). For linear systems, Algorithm 1 can provide one
global discrepancy function that is valid for the entire space to do reach set over-approximation, as
compare to Flow*, where even for linear systems, the complexity for each time interval is exponential
in both the dimensionality and the order of the Taylor models. Algorithm 1 is more efficient because
it is based on the Jacobian, which has n dimensions, so the complexity increases polynomially with
the dimension, if the interval matrix norm method is used.

Consider next the performance of Algorithm 1 as compared to the ATVA method. The ATVA
method requires slightly less computation time in all but one case; however, as expected, the ATVA
method is more conservative in every case and in some cases is many orders of magnitude more
conservative.

7 Conclusions

We presented several techniques to perform reachability analysis for general nonlinear dynami-
cal systems by bloating simulation trajectories. The techniques are based on new approaches to
compute locally optimal matrix measures as discrepancy functions, which are used to perform
bounded time reach set estimation based on bounds for the Jacobian matrix of the vector field.
We demonstrated the effectiveness of our approach by comparing the performance of a prototype
implementation with the Flow* tool. Results show that our approach compares favorably with
Flow* on some of the examples with high dimensionality or complex dynamics.

Future work will include evaluating the performance of our approach when used as the reach
set estimation engine in a framework for performing bounded time verification of hybrid systems,
such as the C2E2 tool.

References

[1] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with un-
certain parameters using conservative linearization. In CDC, pages 4042–4048. IEEE, 2008.

[2] J. Anderson and A. Papachristodoulou. Dynamical system decomposition for efficient, sparse
analysis. In CDC, pages 6565–6570. IEEE, 2010.

[3] D. Angeli. A lyapunov approach to incremental stability properties. Automatic Control, IEEE
Transactions on, 47(3):410–421, 2002.

5Flow* supports other shapes but we chose hypercube to simplify computation.

17



[4] D. Angeli, E. D. Sontag, and Y. Wang. A characterization of integral input-to-state stability.
Automatic Control, IEEE Transactions on, 45(6):1082–1097, 2000.
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Proof of Lemma 4.1:

Lemma 4.1 Let S ⊆ Rn be the set of states such that for any state x ∈ S, we have ξ(x, t) ∈ S for
t ∈ [t1, t2]. Let M be a positive definite n×n matrix. If there exists an interval matrix A such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ̂ ∈ R, ∀ Ai ∈ vertex(A), ATi M +MAi � γ̂M ,

then for any x1, x2 ∈ S and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e
γ̂
2

(t−t1)‖x1 − x2‖M .

Proof. From Proposition 2.3, we know that Jf (x) ∈ A = hull(vertex(A)). It follows from (a) and
Lemma 3.4 that for any t ∈ [t1, t2], there exists a matrix A ∈ A such that ẏ(t) = Ay(t), and
A ∈ hull{A1, A2, . . . , AN}. Using this, at any time t ∈ [t1, t2], the derivative of ‖y(t)‖2M can be
written as:

d‖y(t)‖2M
dt

= yT (t)ATMy(t) + yT (t)MAy(t)

= yT (t)

((
N∑
i=1

αiA
T
i

)
M +M

(
N∑
i=1

αiAi

))
y(t)

= yT (t)

(
N∑
i=1

αi
(
ATi M +MAi

))
y(t)

≤ yT (t)

(
N∑
i=1

αiγ̂M

)
y(t) [using (b)]

= γ̂yT (y)My(t) = γ̂‖y(t)‖2M .

By applying Grönwall’s inequality, we obtain ‖y(t)‖M ≤ e
γ̂
2

(t−t1)‖y(t1)‖M .

Proof of Lemma 4.2:

Lemma 4.2 Let S ⊆ Rn be sets of states such that for any x ∈ S, ξ(x, t) ∈ S, ∀t ∈ [t1, t2].
Let M be a positive definite n× n matrix. If there exists an interval matrix A such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ̂ ∈ R, such that center(A)TM +Mcenter(A) � γ̂M ,

then for any x1, x2 ∈ S and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e
(
γ̂
2

+ δ
2λmin(M)

)
(t−t1)‖x1 − x2‖M , (15)

where δ =
√
|||D|||1|||D|||∞, and D = {D | ∃A ∈ A such that D = (A − center(A))TM + M(A −

center(A))} is also an interval matrix.
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Proof. Fix any x1, x2 ∈ S. Let Ac = center(A) and Ar = range(A), so A = interval([Ac − Ar, Ac +
Ar]). We can express A as the Minkowski sum of Ac and G, which we denote as Ac ⊕ G, where
G = interval([−Ar, Ar]) = {G | ∃A ∈ A such that G = A− center(A)}. We use a standard property
of norms to bound the 2 norm as follows (see [20], page 57):

‖GTM +MG‖2 ≤
√
‖GTM +MG‖1‖GTM +MG‖∞

≤
√

sup{‖D‖1|D ∈ D} sup{‖D‖∞|D ∈ D}

≤
√
|||D|||1|||D|||∞ = δ, (16)

which uses the fact that GTM +MG ∈ D. As λmin(M) is the minimum eigenvalue of the positive
definite matrix M , then ∀y 6= 0,

0 < λmin(M)‖y‖2 ≤ yTMy. (17)

Moreover, ∀G ∈ G, and any vector y ∈ Rn

yT (GTM +MG)y ≤ ‖GTM +MG‖2‖y‖2. (18)

Combining the above with (16) yields

yT (GTM +MG)y ≤ δ‖y‖2. (19)

Since for any x1, x2 ∈ S, and t ∈ [t1, t2], it follows from Lemma 3.4 that ∃G ∈ G, such that the
distance between trajectories y(t) = ξ(x1, t) − ξ(x2, t) satisfies ẏ(t) = (Ac + G)y(t). Considering
the above inequalities, we have that

d‖y(t)‖2M
dt

= yT (t)
(
(ATc +GT )M +M(Ac +G)

)
y(t)

= yT (t)(ATcM +MAc +GTM +MG)y(t)

≤ γ̂yT (t)My(t) + yT (t)(GTM +MG)y(t)

≤ γ̂‖y(t)‖2M + δ‖y‖2(t) [using (19) ]

≤ γ̂‖y(t)‖2M + δ
‖y(t)‖2M
λmin(M)

. [using (17)]

The lemma holds by applying Grönwall’s inequality.

Proof of Proposition 5.3:

Proposition 5.3 For any i, as dia(X )→ 0 the size of the bloating factor δi → 0 (Line 15).

Proof. At Line 14, the algorithm updates ci with some bounded number ctmpe
γi∆t, and ctmp is either

inherited from ci−1 (Line 9) or computed by discrepancy function updating (Line 12) of Mi−1, ci−1.
In either case ci goes to 0 as ci−1 goes to 0; in the discrepancy function updating case (Line 12) this
is because we select the smallest ellipsoid EMi,ctmp(ξ(x, ti−1)) that contains EMi−1,ci−1(ξ(x, ti−1)),
where if ci−1 → 0, then ctmp → 0, and thus ci → 0. If dia(X ) → 0, we will have c0 → 0, and

consequently ci → 0, i = 1, . . . , k. From Line 15 it follows that δi = 2
√
λmax(ciM

−1
i ) (See [26] Page

103) and therefore, δi → 0 with ci → 0, i = 1, . . . , k.
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Proof of Proposition 5.4:

Corollary 5.4 Consider a contractive systems for which there exists a matrix M such at ∀x ∈
Rn, Jf (x)TM + MJf (x) � γM , and γ < 0. As k, T → ∞, the conservativeness Algorithm 1 adds
to the simulation approaches 0, that is,

|dia(Rk)− dia (Rec(tk−1, T )) | → 0.

Proof. From the contractive condition, we have a uniform M such that any evaluation of the
Jacobian matrix satisfies Jf (x)TM +MJf (x) ≤ γM . The “If” condition at Line 6 will always hold
for Mi = M and γi = γ, and at that ci = ci−1e

γ∆t. Inductively, we obtain ck = c0e
γtk and γ < 0.

So ck → 0 as tk = T → ∞. The bloating factor δk, which is the diameter of EMk,ck(ξ(x, tk)),
also goes to 0. From the definition of Rk, we have Rk ⊇ Rec(tk−1, T ). The bloating factor for
Rec(tk−1, T ) goes 0, so Rk → Rec(tk−1, T ), and the result follows.
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