
February 1988 UILU-ENG-88-2210
ACT-89

COORDINATED SCIENCE LABORATORY
College of Engineering
Applied Computation Theory

SEARCHING
ON A TAPE

Scot W. Hornick
Sanjeev R. Maddila
Ernst P. Mücke
Harald Rosenberger
Steven S. Skiena
Ioannis G. Tollis

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED iU ^
SECURITY CLASSIFICATION ¿F Vh I ̂ PAG^

REPORT DOCUMENTATION PAGE
1*. REPORT SECURITY CLASSIFICATION

Unclassified
1b. RESTRICTIVE MARKINGS

None_______ _
2a. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2210 ACT #89
5. MONITORING ORGANIZATION REPORT NUM8ER($)

N/A
6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATIONNational Science Foundation and
Amoco Foundation for Faculty Development

6c AOORESS (G'ty, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADDRESS (Gty, State, and ZIP Cod*)
1800 G Street, N.W.
Washington, D.C. 20552

Ba. NAME OF FUNDING/SPONSORING
ORGANIZATION National Science

Foundation & Amoco Foundation
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER •
NSF - ECS-84-10902
Amoco - CS 1-6-44862 & NSF - CCR-87-14565

8c ADDRESS (City, State, and ZIP Code)ISOO G. Street, N.W.
Washington, D.C. 20552

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11, TITLE (Include Security Classification)

Searching on a Tape
12. PERSONAL AUTHOR(S)
Homick, S.W., Maddila, S. R., Mücke, E. P., Rosenberger, H., Skiena, S. S. . and Tollis. I. G.
13a. TYPE OF REPORT

Technical
Il3b. TIME COVERED
I FROM TO

14. DATE OF REPORT (fear, Month, Day) J
1988 February

15. PAGE COUNT

18
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

c o m p a r i s o n c o m p le x i t y , c o m p u t a t i o n a l c o m p le x i t y , h e a d m o v e -

m e n t c o m p le x i t y , s e a r c h i n g a l g o r i t h m s , s e q u e n t i a l a c c e s s

m a c h in e m o d e l, t a p e s e a r c h i n g

FIELD GROUP SUB-GROUP

19. ABSTRACT {Continue on reverse if necessary and identify by block number)
In this paper, we consider the problem of minimizing the average time to search for a

key in a sorted list of keys in a sequential access machine model, where both the time to
access a key in the list and the time to compare it with the given search key are taken into
account, e.g., a magnetic tape. The time to access a key in the list is proportional to the
distance the head moves from its current location to reach the key. The time to read and
compare the key with the search key is taken to be constant. We analyze two classes of
algorithms and present a matching lower bound on the average search time. These results
answer an open problem posed by Nishihara and Nishino [NN] regarding the optimal search
algorithm for such a model. We then show that the organization of the input data is crucial
in determining the SAM complexity of the search problem.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
E UNCLASSIFIEDAJNLIMITED □ SAME AS RPT. □ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified _____
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DO FORM 1473,84 m a r 83 APR edition may be used until exhausted.
All other editions art obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Searching on a Tapef
February 1,1988

Scot W. Hornick, Sanjeev R. Maddila, Ernst P. Miicke,

Harald Rosenberger, Steven S. Skiena, and Ioannis G. Tollis

Abstract: In this paper, we consider the problem of minimizing the average time to search for a key in a

sorted list of keys in a sequential access machine model, where both the time to access a key in the list

and the time to compare it with the given search key are taken into account, e.g., a magnetic tape. The

time to access a key in the list is proportional to the distance the head moves from its current location to

reach the key. The time to read and compare the key with the search key is taken to be constant. We

analyze two classes of algorithms and present a matching lower bound on the average search time. These

results answer an open problem posed by Nishihara and Nishino [NN] regarding the optimal search algo

rithm for such a model. We then show that the organization of the input data is crucial in determining the

SAM complexity of the search problem.

Index Terms: comparison complexity, computational complexity, head movement complexity, search

ing algorithms, sequential access machine model, tape searching.

tThis research was supported in part by the National Science Foundation under grant ECS-84-10902, the Amoco Foundation for Faculty
Development under grant CS 1-6-44862, and the National Science Foundation under grant CCR-87-14565.

S. W. Homick and S. R. Maddila are with the Coordinated Science Laboratory and Department o f Electrical and Computer Engineering,
University o f Illinois, Urbana, IL 61801.

E. P. Mucke, H. Rosenberger, and S. S. Skiena are with the Digital Computer Laboratory and Department o f Computer Science, University
of Illinois, Urbana, IL 61801.

I. G. Tollis was with the Coordinated Science Laboratory and Department o f Computer Science, University o f Illinois, Urbana, IL 61801.
He is currently with the Department of Computer Science, University o f Texas at Dallas, Richardson, TX 75083.

1

1. Introduction

Searching for a given key in a sorted list is a fundamental problem in computer programming

[Knu]. This problem has been studied extensively in various models of computation by a number of

researchers: the random-access machine (RAM) model [Knu,0,F], the hierarchical-memory machine

(HMM) model [AACS] and the similar variable probe cost model of [Kni], and most recently, a sequen

tial access machine (SAM) model [NN]. In this last model, the keys are stored in sorted order in a linear

array (the tape), the tape head is initially to the left of the tape, and the cost of accessing key i on the

tape, when the head is at position j , is proportional to the amount of head movement, i.e., 11' - j I. Furth

ermore, the head has a small memory of its own in which it can store 0(1) tape position indices (e.g., the

indices of the first and last keys of a subinterval on the tape) and the value of the search key. This model

differs from the HMM model (using a linear cost function) and the variable probe cost model of [Kni] in

that the access cost is a function of the relative location of the data to be accessed instead of the absolute

location of the data.

Under the assumption that each key is equally likely to be accessed, [NN] showed that a variant of

the classical Fibonacci search has less average head movement than the conventional binary search

(r 809« -o { n) vs. n - o (n) , where n is the number of keys in the list). However, if average head

movement is the only cost function, then it is clear that the optimal algorithm is simply linear search,

which achieves an average head movement of n il. Of course, linear search does require, on average, a

linear number of comparisons, as opposed to the logarithmic number required by either binary search or

Fibonacci search. This suggests the inclusion of both the average number of comparisons and the average

head movement in the cost function for the SAM complexity of searching; including both gives a more

interesting and realistic model of computation since stopping the tape to read and compare each key may

significantly slow head movement

Here, we propose a searching complexity measure for the SAM model that captures both average

number of comparisons and average head movement by combining them in a measure of time complex-

2

ity. Let us denote by n the length of the sorted list and by k the index of a particular key position in the

list. We can distinguish two cases of this problem: searching for a key that is present in the list and

searching for a key that is absent from the list We only analyze the time complexity of the latter case

since it serves as an upper bound for the former. In this context, the index k refers to the index of the list

element that would be the immediate successor of the search key if the search key was in the list, so

k e [l,/i] (we assume that the key cannot succeed the last list element). Let TM be the time that is

required to move the tape head one record forward or backward, where a record is a key and its associ

ated information, and let 7c be the time that is required to read a key from the tape and compare it with

the search key.1 Then the total time required by an algorithm A to find the k\h key in a sorted list of n

elements can be expressed as a function:

SA (n ,k J m T c) = TMMA(n,k) + Tc CA (n,k), (1)

where Ma (n ,k) is the amount of head movement and CA (n ,k) is the number of comparisons. Since we

are interested in average case performance, we wish to find the expected value of these functions under

the assumption that all n possible values of k are equally likely. Therefore, we define

SA (n J m ,7c) = Tu Ma (n) + Tc CA (n), (2)

where " " denotes the expectation over all k . (For notational convenience, we will remove the explicit

reference to the independent variables TM and Tc from the average total time functions SA (•)). Thus, the

SAM complexities of binary (denoted by subscript B) and linear (denoted by subscript L) search are

roughly

SB(n) = TMn + 7 c logn (3)

and

$l (n) = (Tm + Tc)n 12. (4)

‘Current magnetic tapes have densities in the range o f 1600 to 6250 bpi/track, seven to nine tracks, and speeds around 120 inches/sec, so
Tm is in the range of 1.3/? to 5.2/? |lsec for an R character record, while Tc is typically in the range o f 1 to 20 m sec [G].

3

Using this model, we analyze two general classes of algorithms, one of which includes binary and

Fibonacci search as special cases, and the other of which is simpler conceptually and slightly better in

terms of performance. We then prove a lower bound that indicates that these classes of algorithms are

asymptotically optimal within a constant factor. Finally, we make some remarks regarding improved list

organizations for tape searching.

2. Fixed-Ratio Search

Binary search has long been known to minimize the average number of comparisons required to find

a key in a sorted list However, in [NN], the average head movement for binary search was shown to be

n -o (n) , while a variant of the classical Fibonacci search has average head movement = .809n - o(n).

These two algorithms belong to the class of algorithms referred to as fixed-ratio searches. Such algo

rithms are parametrized by a constant ratio r e (0,1). The algorithm moves the head to the rrcth key and

compares it with the search key; if the two keys match, then the algorithm halts, otherwise, the algorithm

recurs on the left or right sublist, depending on the result of the comparison (Figure 1). The algorithm is

given concisely below. Initially, it is called with list L , search key o, and pointers h - 0 and t - n ; it

returns the index k of the successor key in L .

FIXED_RATIO_SEARCH(L, a, h , t , k)
if (If - h I =1) then

k :=max(/i,f);
return;

else
p := r r (r—/1>1 ;
if (a < L [h +p]) then /* This requires time Tm Ip I + 7 c . */

FIXED_RATIO_SEARCH(L ,G ,h+p, min(/z ,r), k)\
else

FIXED_RATIO_SEARCH(L, a, h+p , max(/i ,f), k)\
endif
return;

endif

For binary search, r = Vi, and, for the modified Fibonacci search of [NN], r = 1 - (Jr1 = V̂ (3 - ^5) = .382,

where <J> is the "golden ratio." [NN] posed the open problem of determining which r minimizes average

4

head

possible search key locations

Figure 1. A recursive step of fixed-ratio search

head movement. As we pointed out earlier, though, if average head movement is the only cost function,

then the optimal algorithm is simply linear search. On the other hand, if we adopt the model proposed

above, which takes both head movement and comparisons into account, this question becomes interest

ing.

In this section, we will determine separately the average amount of head movement and average

number of comparisons for a fixed-ratio search with parameter r . The recurrence equation for the average

amount of head movement is

MFR(r)(n) = rMFR(r)(rn) + (1 - r)MFR (r)((1-r)n) + rn, (5)

where the algorithmic subscript FR(r) denotes a fixed-ratio search algorithm with ratio r , and with the

simplifying assumption that Mfr(t)0) is a continuous function of a real variable instead of a discrete func

tion of an integer variable. The first term of the recurrence represents the probability that a lies between

the initial head position and the probe position times the average head movement while searching in that

region, the second term represents the probability that o lies between the probe position and the far end of

the tape (as measured from the initial head position) times the average head movement while searching in

that region. The last term represents the head movement required to reach the probe position in order to

discriminate between the two cases. One can verify that Equation (5) has as its solution

5

MFR(r)(n)= ¿ (l- 'r) - (6)

A similar recurrence can be written for the average number of comparisons:

CFR{r)(fl) = rCpR{r)(/n) + (l - r)C/r/?(r)((l - r)/i) + 1, (7)

which has as its solution

CFR<r)(n)= (8)

where H i(r) = -rlo g r - (l- r) lo g (l-r) is the binary entropy function and log is taken with respect to

base two. Thus, the average total time for a fixed-ratio search is

SfR (r)(n) = TMMfr (r)(rt) + Tc Cfr (r)(rt) = ^ [- r) + ' (9)

Note that, as r decreases (for r < V4), the first term of (9) decreases, while the second increases. This

tradeoff is exhibited in Figure 2.

Figure 2. Graph of the average head movement and number of comparisons
made by a fixed-ratio search as a function of r

6

To optimize a fixed-ratio search algorithm, r must be chosen so that

-¡jp-SFR(r)(n) = 0. (10)

(Since both MpR(r){') and CpR(r){‘) are convex u functions of r this will only occur at a minimum of

Sfr(t)(')•) Taking the derivative with respect to r in Equation (9), reveals that, for the optimal r , r*,

2(l-r*)2log(g -r*yr*) _ T„n
(Hz(r*))2 Tc togn ' (11)

While we cannot solve this equation for r* explicitly, we can determine the asymptotic behavior of r*,

i.e., the behavior of the optimal r as n increases without bound for fixed values of TM and Tc .

Increasing n (or increasing TM/TC) increases the right-hand side of Equation (11). On the other

hand, decreasing r* increases the left-hand side of (11). Therefore, r* should be considered a very small

number « 1 as n becomes sufficiently large. Neglecting the asymptotically insignificant terms of Equa

tion (11), we obtain:

21og(l/r*) _ Tan
(r*log(l/r*))2 Tc logrt

41 r*2 .. Tm rt
log(l/r*2) ~ Tc logn

4/r*2 _ Tm n
\og{4Tc l{TMr*2)) Tc iogn ’

which is clearly satisfied by

r*W^=2 02)
Therefore, contrary to the apparent expectations of [NN], the asymptotically optimal ratio for fixed-ratio

search is not a constant but, rather, is inversely proportional to the square root of the length of the sorted

list. The average total time for the resulting fixed-ratio search is

SFR,M n) = _____ ________ - + ____ TrJogn
m r *n> 2(\-2-4Tc l(TMn)) + H ^ 2 iT c l(TMn)Y

7

Manipulating this equation and, again, neglecting insignificant terms, we find, for large n ,

SFR(r*)(n) = Tu n
T + 2^TMTc n , (13)

which results in the following theorem.

Theorem 1: SpR (r*)(n) = TM + 2^TMTc n + o (Vjn).

In Equation (13), it is interesting to note that the term contributed by the moves in excess of the n/2 lower

bound balances the term contributed by the comparisons in excess of the (asymptotically negligible) logn

lower bound, i.e., both are ^T ^T cn . Also observe that, although we can optimize r , fixed-ratio search

itself is suboptimal because the value of r is chosen initially and remains fixed and, therefore, cannot be

optimal for the smaller recursive subproblems. We will expound on this idea in Section 4, where we dis

cuss lower bounds.

3. Block Searching Algorithms

We now consider an alternate class of algorithms for searching on a tape, the block searching algo

rithms. We will partition the data into blocks of size rn for some r , and sequentially compare the last

element of each block with the search key to ensure that we do not move the head past the block contain

ing the search key. Thus, in this first stage, we never incur excess head movement greater than 2rn while

we perform at most 1/r comparisons (Figure 3). Once we have found the block containing the key, we

can either recur on that block or use almost any reasonable algorithm to find the key within the block. In

this section, we will consider just two variants of this approach: the first, block-binary search, uses

binary search to locate the key within its block, while the second, block-linear search, uses linear search.

8

BLOCK_BINARY_SEARCH(L , n ,a ,k)
p :=0
repeat

p ‘.—p +rn
until (o < L [p]) /* This requires time Tm rn +Tc. */
BINARY_SEARCH(L[p-r7i:/?], a, fc) /* This requires time 7m (rn-1) + 7clog(rn). */
return

BLOCK_LINEAR_SEARCH(L ,n ,G ,k)
p :=0
repeat

/? : -p + r n
until (o < L [p]) /* This requires time 7m rn +Tc. */
LINEAR_SEARCH(L [p- rn :p] ,a ,k) /* This requires average time (TM + Tc)rn /2. */
return

head

Figure 3. First stage of a block search algorithm

The performance of these seemingly ad hoc algorithms depends upon the value chosen for r , and,

for block-binary search, can vary between linear search if r = 1 In and binary search if r = 1. In order to

calculate the optimal value of r , we must determine the average head movement and average number of

comparisons for each algorithm. The average amount of head movement is the sum of the averages of

each of the two stages. For the first stage of either algorithm, each key in block i = [k/(rn) 1 requires

moving rni positions. In the second stage, the head movement required to find the key within the block is

rn—l in the case of binary search and rni —k in the case of linear search. Thus:

'(rn)(rni) + n (rn -l) - n , 3 rn i (14)

9

M B L (r) (n) = -jj-
Mr 1 m
i^ (r n) (r n i)+ jr ^ j = f + r n + T (15)

The average number of comparisons can be similarly determined:

CBB(r)W =_ 1n

CßUrpl) _ 1

Xrn)i +nlog(rn)

[('-«)* + y 2 ;

= -jp + y + log(rn >

_ 1 1 r/i+1
~ 1 F + J + - T ~

(16)

(17)

Here, the algorithmic subscripts BB(r) and BL(r) respectively denote block-binary and block-linear

search algorithms with block size rn . Note that, for both algorithms, M (•) and C (•) can be reduced by

treating the rn elements of the last block separately and not making the (l/r)th comparison. This

modification complicates the analysis, but does not effect the asymptotic performance of the algorithms,

and, hence, is ignored.

The average total time of block-binary search is therefore

SBB(r)(n) = Tm

while that of block-linear search is

SBL(r)(n) = Tm

n L 3 rn
J + ~2~ + TC j p + y + log(rn) (IB)

* " r

T + r n + Tlb 4
+ TC

»
1 ^ 1 x rn+1

lF + 7 + —Z ~ (19)

Taking the derivative of (18) with respect to r and setting it equal to zero, we find that the optimal r

for block-binary search is

r* = Vr(?log2e +3TMTc n - 7 c loge
W Tn---------------- (20)

which asymptotically approaches

r* ~ \ l Tc
r ^ 3 7 ^ (21)

as n —> °o. The average total time for the resulting block-binary search is

10

SBB (H n) = Tu f + - x > / - + T c [| A / ^ ^ - + log(rn) .

Simplifying and discarding asymptotically insignificant terms, we find

SßB(r*)(n) ~ Tm
n , 1 a / 3Tc n Tc a. / 37a/ n n , (22)

which results in the following theorem.

Theorem 2: (r*)(rt) = Tm -j - + ^¡3Tf^Tc n + 0 Ô z").

This theorem shows that block-binary search is somewhat better than fixed-ratio search.

Now, for block-linear search, taking the derivative of (19) with respect to r and setting it equal to

zero, we find the optimal r is

r* = * \f. Tc(iru+Tc)n

The average total time for the resulting block-linear search is

(23)

Ssur')(n) = TM - |+ « A / (1T^ Tc)n + 4 + Tc [W w I + T c)n + 1 + T V ■

Simplifying, we obtain the following theorem.

Theorem 3: SBl or*)(n) = Tm -j + ^Tc (2TM+Tc)n + I* L + T C.

This shows that block-linear search is asymptotically better than block-binary search if and only if

Tc <Tm , but it can never achieve average total time less than

Tm y + ^¡2Tm Tc n .

4. Lower Bounds

All three of the algorithms analyzed thus far have average time complexity = TM- j + '¡cTm Tc n ,

for some constant c. However, the only obvious lower bound on the average time complexity is

11

S(n)>TM n-2 ~ + r c logAi, which follows directly from independent lower bounds on the average

amount of head movement and the average number of comparisons. In particular, if the correct index of

the search key o is k, then the head must move at least k times just to compare a with L[k]. Thus,

Ma (n) > (Jj1/ + n -l) /n = (n-l)/2 + 1 - 1 In for any algorithm A . Information theoretic arguments allow

one to conclude that CA{n)>\ogn for any A . Here, we strengthen this lower bound to show that the

algorithms proposed above are nearly optimal in a well defined sense.

It is useful to begin by considering the possible structure of an optimal search algorithm. The fol

lowing lemma shows that we may restrict our attention to varying-ratio search algorithms, i.e., ratio

search algorithms where the parameter r is no longer fixed for a given problem instance (as it was in Sec

tion 2) but rather is a function r(n) dependent on the length of the current sublist

Lemma 4.1: There exists a varying-ratio search that achieves the optimal search time.

Proof: Every optimal algorithm starts its search by moving the head to an initial list key position and

comparing this key with the search key, after which it continues its search in one of the two pieces of the

list, either to the left or right of the initial probe location. Since the only information available to the

algorithm is the length of the list, this initial probe location is a function p(n) of the length n of the list,

and the varying ratio itself is the function r(n)= p(n)/n . Since the algorithm is optimal, the search in

either the left or right sublist must also be optimal, and, therefore, may be effected by a recursive call to

the same optimal algorithm (even though there may be alternative optimal algorithms). □

The preceding lemma indicates that an optimal algorithm can be written as follows:

12

OPTIMAL_SEARCH(L, a, h , t , k)
if (I f - A I = 1) then

k :=max(/i ,t)\
return;

p := r (\ t -h \) i t -h) ;
if (a < L[h+p]) then

OPTIMAL_SEARCH(L, a, h+p , min(/i ,r), it);
else

OPTIMAL_SEARCH(L ,G, h+p, max(/i ,r), £);
endif
return;

endif

The complexity of this algorithm is determined by the recurrence

SoPT(.n) = r(n)SoPT(r(n)n) + (\-r(n))Sopr((l-r(n))ii) + TM r(n)n +TC, (24)

which, unfortunately, is difficult to analyze exactly without specific knowledge of r(n). Dynamic pro

gramming allows one to compute tables of values of r(n) that can be used to provide insight into its

asymptotic behavior, but it is quite likely that r(n) will not have a closed form for most values of TM and

7c.

On the other hand, we can determine lower bounds on the average total search time S opt in)

required by the varying-ratio optimal algorithm. The following theorem gives the desired lower bound on

the solution of Equation (24).

Theorem4: S0PT(n)> TMnl2 + VTMTc n +TC - ^ 2 T MTC.

Proof (by induction on n):

Basis (n = 2): SoptQ) = Tu +Tc =Tm 2I2 + iT „ T c 2 + Tc - V2TUTC.

Inductive hypothesis: Assume that the theorem is true for all integers ri <n \ now we must prove it for

Replacing the terms in Equation (24) with the bounds given by the inductive hypothesis, we obtain

13

S o n in) > T u r2(n)n/2 + 'ÌTuTc rìrl(n)V^ +(TC - V 2 r« rc)r(n) +

r M(1 - r (n))2n /2 + VrMTc (1 -r in))M^ +(TC -V 2 rMr c)(l-r(n)) + r Mr(«)n + r c ,

which can be rewritten as

SoF r(n)^TMnl2 + TMr \n)n + V r« rc [r3/2(n) + (l- r (n))3'2]'.'n +2Tc - '¡2 T MTC. (25)

Since 0 < l - r (n) < 1 (in fact, 1/2 < l - r (n)), (l- r (n))3/2 > (l- r(n))2. Therefore, we can replace the fac

tor [r3/2(n) + (l- r(/t))3/2] in Equation (25) with (l- r (n))2, which yields

Sopr(n)>TMft/2 + TMr2(n)n + VT^ Tc (1-r (n))2̂ + 27c - ^2Tm Tc

= Tun 12 + [7« r^ n)« + iT MTc n (1 - 2 r (n) + r^ n)) + Tc] +TC - V 2 r„ rc

= Tunl2 + [Tur2(n)n -2 'lT u T c nr(n) + Tc + ^T uT c n (\ + r2(n))] + Tc ~ ^2T MTC

= Tun 12 + [('Jf^rin)-^? + 'iTMT cn r2(n))]+ 'iTMTc n +TC - ^2TMTC. (26)

This must hold for any choice of r(n); in particular, it must hold for the r(n) that minimizes the right-

hand side of Equation (26). Taking the derivative of the right-hand side with respect to r and equating it

to zero, we see that it is minimized for

Substituting back into Equation (26):

(27)

Ti + -?T + ^TMTc n +Tc -'~l2TMTcSoft in) > TM n 12 +

= Tun/2+ + 'iTuTcn +Tc

> T\i n/2 + Tc n + Tc — V27a/ Tq . □

This theorem shows that the upper bounds obtained previously are very nearly optimal, asymptotically

differing from the lower bound only by a constant factor in the "surplus" term (the O (^n) term beyond

14

the "obvious" T ^n ll) .

5. Conclusion and Remarks

In this paper, we have shown that the obvious algorithms for searching on a tape are not necessarily

the best when the cost of both head movement and comparisons is taken into account. Binary search is

asymptotically suboptimal by a factor of 2 (see Equation (3)), while linear search is asymptotically

suboptimal by a factor of (Tm + Tq)/Tm (see Equation (4)). Fixed-ratio search and block search, how

ever, are optimal with respect to the constant of the linear term and come within a constant factor of the

0 0¡n) term.

The SAM model of computation is also interesting for other search problems, e.g., batch-mode

search [MKB], in which several search keys are to be located on the tape. A reasonable solution for the

SAM model is to sort the search keys in ascending order and proceed in one pass from head to tail. We

leave as an open problem the analysis of this or a better algorithm. Another avenue for further research is

the analysis of a broader class of problems in the SAM model analogous to the analysis of sorting, matrix

multiplication, and DFT in the HMM model [AACS]. In these problems, special attention should be

devoted to determining an appropriate organization of the input data on the tape, since this is a crucial

aspect of the analysis. Indeed, the "natural" sorted order is not optimal for the case of searching on a tape.

Throughout this paper, we have assumed that the list of elements is stored in sorted order on the

tape, which seems to be the "natural" approach. However, if we need this ordering only for fast search

then there is a far better strategy. Recall that simple linear search is optimal with respect to average head

movement, whereas binary search is optimal with respect to number of comparisons, both on the average

and in the worst case. Now, if we can organize the list on the tape in a different manner, the advantages

of both approaches can be combined in a solution that is optimal with respect to both average head move

ment and average number of comparisons.

15

The special organization n(L) of a sorted list L that achieves these desirable properties is called a

preorder organization and can be recursively defined as follows:

n(L)[i]=z,[U/2l]

n(Z.)[2:rn/2l] = n(L[l:fn/2l -1])

n(L)tfn/2l +l:n] = n(L[fn/2l +1:»])

In other words, the median of L appears first, followed by the first half of L (recursively organized), and

then followed by the second half of L (also recursively organized) (Figure 4).

Figure 4. Preorder organization of keys on a tape

The origin of the term "preorder" should now be clear, this organization corresponds to a preorder embed

ding of the binary search tree on the tape. (The list could be converted to a preorder organization by

using a second tape along with an external sorting algorithm [Knu].) The search procedure itself is also

straight-forward; to search for o in n , we move the head to the first tape cell and then call the following

algorithm with h = 1, f = n , and £ = n :

PREORDER_SEARCH(II, G , h , t , k)
if (c < U[h]) then /* This requires time 7c. */

k :=h;
t := L(i+*y2j;
h := h + 1; /* This requires time 7j#. */
if (f > h) then

PREORDER.SEARCHfll, G , h , t , k);
else

return;
endif

else
h := L(i+/i)/2j +1; /* This requires time TM{_{t-h)/2\ + 1). */
if (t > h) then

PREORDER_SEARCH(FI, < s,h ,t,k)\
else

return;
endif

endif

The index of the successor key to a in II is returned in k .

The average total time required by preorder search is

Tm - j + (^ - + r c)logrt + o Gog«),

but, if we assume that the search key is in the list, this complexity is further reduced to roughly

Tm y + 7c log*,

which matches the obvious lower bound discussed in the introduction to Section 4.

17

REFERENCES

[AACS] A. Aggarwal, B. Alpem, A. K. Chandra and M. Snir, "A Model for Hierarchical Memory,"

Proceedings o f the Nineteenth Annual ACM Symposium on Theory o f Computing, New York,

NY, May 1987, pp. 305-314.

[F] D. E. Ferguson, "Fibonaccian Searching," Communications o f the ACM, vol. 3, no. 12, Dec.

1960, pp. 648.

[G] C. W. Gear, Computer Organization and Programming, third edition, McGraw Hill Book

Company, New York, NY, 1980.

[Kni] W. J. Knight, "Search in an Ordered Table Having Variable Probe Cost," masters thesis,

Department of Computer Science, University of Illinois, Urbana, IL, 1986.

[Knu] D. E. Knuth, The Art o f Computer Programming, vol. 3, Addison-Wesley, Reading, MA,

1973.

[MKB] Y. P. Manolopoulos, J. (Y.) G. Kollias, and F. W. Burton, "Batched Interpolation Search," The

Computer Journal, vol. 30, no. 6, Dec. 1987, pp. 565-568.

[NN] S. Nishihara and H. Nishino, "Binary Search Revisited: Another Advantage of Fibonacci

Search," IEEE Transactions on Computers, vol. C-36, no. 9, Sep. 1987, pp. 1132-1135.

[O] K. J. Overholt, "Efficiency of the Fibonacci Search Method," BIT, vol. 13, no. 1, Jan. 1973, pp.

92-96.

