
June 1990 UILU -EN G-90-2218
DAC-19

COORDINATED SCIENCE LABORATORY
College o f Engineering

SOME NP-COMPLETE
PROBLEMS IN THE
PHYSICAL DESIGN
OF DIGITAL
INTEGRATED CIRCUITS

Youssef G. Saab
Yasant B. Rao

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
M fn fllÏY gLASSlEldAiìÒN OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2218 (DAC-19)
6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6c ADDRESS {City, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

8a. NAME OF FUNDING / SPONSORING^
ORGANIZATION Semiconductor
Research Corporation

8c ADDRESS (City, State, and ZIP Code)
P.0. Box 12053
Research Triangle Park, NC 27709

6b. OFFICE SYM80L
(If applicable)

8b. OFFICE SYMBOL
(If applicable)

1b. RESTRICTIVE MARKINGS
None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

7a. NAME OF MONITORING ORGANIZATION
Semiconductor Research Corporation

7b. ADDRESS (City, State, and ZIP Code)
P.0. Box 12053
Research Triangle Park, NC 27709

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)
Some NP-Complete Problems in the Physical Design of Digital Integrated Circuits

13a. TYPE OF REPORT
Technical

16. SUPPLEMENTARY NOTATION

|l3b. TIME COVERED
FROM TO

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Combinational optimization, NP-Complete problems,
partitioning, placement.

t" A s ; I rVMV. I \V.UfiUflUC UU i c r c u « #« « ------- ---------------------

In this report we formulate certain specific optimization problems commonly occurring in
the physical design process of digital integrated circuits such as the problem of
testable nets, exchange, feed-through, and track-reduction. We show that the decision
versions of these optimization problems are NP-Complete.

I 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
| (2 UNCLASSIFIEDAJNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICA7

Unclassified
ION

I 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

UNCLA.SSIF LED

SOME NP-COMPLETE PROBLEMS IN THE
PHYSICAL DESIGN OF DIGITAL INTEGRATED CIRCUITSf

Youssef G. Saab and Vasant B. Rao

Coordinated Sciences Laboratory and
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
1101 W. Springfield Avenue,

Urbana, IL 61801

ABSTRACT

In this paper we formulate certain specific optimization problems commonly occurring in the physi­

cal design process of digital ihtegrated circuits such as the problem of testable nets, exchange, feed­

through, and track-reduction. We show that the decision versions of these optimization problems are

NP-Complete. The problems considered in this paper are often considered as sub-problems within more

general problems such as cell-placement and wire-routing, and are not given the full attention they

deserve. Hence, our major contribution is in identifying these sub-problems as separate problems, and

showing that they themselves are computationally intractable, thereby justifying the use of heuristics for

their solution.

t This work was supported by the Semiconductor Research Corporation under contract # SRC-87-DP-109HAJ.

2

1. INTRODUCTION

The main application of theory of NP-Completeness is to allow algorithm designers justify the

development of heuristic approaches for solving such problems. Once a problem has been shown to be

NP-Complete, it joins a large (and continually growing) class of "inherently hard" problems for which

there are no known efficient solution techniques and there is already an overwhelming evidence support­

ing the fact that such problems can never be solved efficiently (i.e., in polynomial time). In this paper, we

identify several combinatorial optimization problems commonly occurring in the physical design of

integrated circuits. We then show formally that the decision versions of these optimization problems are

NP-Complete. In doing so we have added some new problems to the already existing long list of NP-

Complete problems thereby justifying the use of heuristics in solving these sub-problems occurring

within the much harder layout problem of integrated circuits.

The decision problems in this paper will be described in the format used in [4]. Proving that a new

problem n is NP-Complete consists of the following three steps :

(1) Showing that n is in NP.

(2) Selecting a known NP-Complete problem 11' and constructing a transformation from IT to n .

(3) Proving that the above transformation can be performed in polynomial time.

In this paper, we will focus only on step (2) in the proofs. Steps (1) and (3) can be easily verified by the

reader if necessary for each of the problems considered in this paper and will therefore be omitted from

the proofs.

In Appendix A, we list three basic NP-Complete problems, namely, 3SAT, PARTITION, and

HITTING_SET, for the sake of convenience of the reader. In Appendix B, we introduce two intermediate

problems n -HITONG_SET and 3-MAX_FULL_SAT and establish their NP-Completeness. In each of

the remaining sections, we consider some commonly occurring sub-problems in the physical design and

3

layout of integrated circuits and establish their NP-Completeness by transforming one of the problems in

the appendices to the problem under consideration. The reader is advised to read the appendices before

proceeding with the rest of the paper.

2. The problem of TEST ABLE_NETS

In the packaging process of large systems a complex partitioning problem encountered is as follows.

Consider a large system of cells (or modules) of different sizes interconnected by a set of nets. One

wishes to partition this system of cells into N packages (or parts) of disjoint cells subject to certain size

and connection constraints [1,8]. A typical size constraint is that the sum of the sizes of the cells in each

package is within a prespecified size-bound, resulting in a balanced partition. A net is said to be internal

with respect to a partition if all its cells are assigned to the same package by the partition; otherwise, the

net is said to be cut by the partition, or is external with respect to the partition. A typical connection con­

straint is that the total number of nets cut by the partition is below a prespecified bound. In some applica­

tions, however, it may be desired that certain nets are forced to be external nets so that they are externally

available, say, for testing purposes [1,7,8]. To enforce this requirement, at least two cells of each of these

nets must be locked in different packages. This is normally done before partitioning; hence, it is desirable

that the number of locked cells be as small as possible, so that their influence on the subsequent partition­

ing step is minimal. This motivates the following decision problem:

TESTABLE_NETS

INSTANCE: A collection C of subsets of a finite set S and two positive integers N and K .

QUESTION: Is there a collection D = {D\ ,D 2 , . . . , Dp) of p disjoint subsets of S, such that

p = | D | <N, | Di | < K , and each subset in C intersects with at least two different subsets in D , i.e.,

for each c e C , there exist D, and D j, with i * j , such that both c nD; * 0 and c nDj * 0 1

In the TESTABLE_NETS problem, the set S is the union of all cells belonging to external nets, C

is the collection of all external nets, and D is the collection of all cells to be locked so that the nets in C

are forced to be external nets. The cells in D, are to be locked in the i -th package (or part). The integer

N is the number of packages, while AT is a bound on the total number of locked cells.

As an example consider the following instance to TESTABLE_NETS:

S = {l, 2,3,4,5,6}

{l,2A,6} , {2,3,6} , r2,3,4,5; , {l,2,3,5}

N = 2

K =3

It can be easily verified that a solution to the above instance is given by

D = | {\,3} , {2}

Theorem 1: TESTABLE_NETS is NP-Complete.

Proof: We reduce 2-HS (described in Appendix B) to TESTABLE_NETS. Let a collection C of subsets

of a finite set S and a positive integer K < \ S \ denote an arbitrary instance of 2-HS. We construct an

instance of TESTABLE_NETS given by a collection C of subsets of a finite set S and two positive

integers N and K as follows :

S =S

C = C

K =K

N =K

Let S ' = {s 1̂ 2» • • •»sp} c S be a solution for the given instance of 2-HS, i.e., p = \ S '\ <K and S '

contains at least 2 elements from each subset in C . Then the collection D =\ {s\} , {s^} , . . . , {sp} of

5

the singletons of S ' is clearly a solution to the constructed instance of TESTABLE_NETS. Conversely, if

D - {D i , D 2 , . • . , Dp} is a solution to the constructed instance of TESTABLE_NETS, then S ' = \jD i

can be easily verified to be a solution to the given instance of 2-HS. □

3. Exchange problems

The bisectioning problem is a special case of the general partitioning problem wherein one wishes

to partition a given system of cells interconnected by nets into two parts such that the number of nets cut

is minimized, subject to a balance in size constraint. There are several iterative improvement algorithms

for bisectioning [2,3] that essentially start with an initial bisection and try to improve on it by exchanging

subsets of cells between the two parts. This exchange step needs to account for the balance in size con­

straint. Suppose that the initial bisection consists of two parts P i and P 2. Suppose also that P i exceeds

its size bound by a value B > 0. In this case the exchange procedure attempts to find S icP i and S 2QP2

such that | size(S 1) - sizeCSi) - 5 | is as small as possible. Here, the size of a set is the sum of sizes of

its elements. The decision version of this optimization problem can now be stated as:

2EXCHANGE

INSTANCE: Two finite disjoint sets P \ and P 2, a positive integer size s (p) for each p e P \kjP 2, and two

nonnegative integers B and AT.

QUESTION: Are there subsets S i&P 1 and S i^P 2 such that

I X •*</>)“ X s O O - s I ZK ?
p e S 1 p & S 2

Theorem 2: 2_EXCHANGE is NP-Complete.

Proof: We reduce PARTITION (described in Appendix A) to 2_EXCHANGE. Let a set A with a posi­

tive integer size s(a) for each a<=A denote an arbitrary instance of PARTITION. We now construct an

instance of 2_EXCHANGE given by two sets P 1 and P 2, a positive integer size pip) for eachp e P \u P 2,

6

and two nonnegative integers B and K as follows:

p2=a ,
p(p) = s(p) fo reachp€/>2.
T = V 5 (<a) the total size of all the elements in A ,

aeA
b = r + 1,

=0, and
P i = {y} is a singleton set with a new element y which has size p(y) = + 1.

If A 'qA is a solution for the given instance of PARTITION, then, by construction, S \= P \ and S 2 = A '

form a solution for the constructed instance of 2_EXCHANGE. Conversely, let S 1 and S 2 be a solution

for the constructed instance of 2_EXCHANGE. Since P i is a singleton, by construction, there are only

two possible choices for the subset S 1, namely, S 1 = P 1 or S 1 = 0 . But S 1 = 0 means

I Z p(p) - Z.P (p) - B 1 = 1 E p (p) + B 1 > 0 = i :
pei 2 peS 2

for any choice of subset S ’̂ P 2. Therefore, we must have S 1 = P 1. Since S 1 and S 2 solve the constructed

instance of 2_EXCHANGE, we get

I L pO) - I p(p) - S I =1 - ¥ + 1 - Tp(p)-T-lI =1 T p (p) - X | = 0
pTSx peSi ^ peij peS 2 z

Therefore, A ' = S 2QP2 = A is a solution to the given instance of PARTITION. □

The 2_EXCHANGE problem remains NP-Complete even if one of the two sets P i or P 2 is empty.

The statement of the problem then becomes:

1JEXCHANGE

INSTANCE: A finite set P , a positive integer size sip) for eachp e P , and two nonnegative integers B

and K.

QUESTION: Is there a subset S c P such that

| Z s (p) - B | <K ?
p e S

7

The reduction of PARTITION to 1 .EXCHANGE can be easily done by setting P = A , K = 0, and

B - £ , where T = T s (a) is the total size of all the elements in A .
1 a it A

4. The feed-through problem

The standard cell approach is commonly used in the physical design of VLSI circuits [7]. In this

approach a set of standard cells have been previously handcrafted, laid out, tested, characterized, and

stored in a technology library. The individual standard cells, after layout, have a common height and may

differ only in length. A standard cell interacts with other cells through pins which are located only at the

top and bottom sides of the cell. In the layout of standard cells, the cells are assigned to rows and the

interconnection nets (or wires) among the pins of these cells are routed in channels between rows. An

example of a layout of 9 standard cells and 10 nets is shown in Figure 1.

Whenever a net has to cross a given row d. feed-through cell has to be inserted in that row to connect

the two parts of the net above and below the row. For example, in Figure 1, net d crosses the middle row

while net j crosses the bottom row. Hence, two feed-through cells, one between cells 4 and 5, and

another between cells 7 and 8, have to be inserted to provide the required interconnection. Since these

feed-through cells increase the area, we would like the total number of such cells minimized. Sometimes,

by flipping the cells of a given row we can reduce the number of feed-through cells in that row as illus­

trated in Figure 2. In Figure 2(a), nets c , d , and e cross the middle row. Hence, three feed-through cells

are needed in this case. However, if cell 2 is flipped around its horizontal axis, as shown in Figure 2(b),

we find that only nets a and b cross the middle row, thereby reducing the number of feed-through cells in

this row by one.

The above discussion motivates the following feed-through optimization problem which is per­

formed after the placement of the standard cells into rows is completed and before the routing phase

begins. In the feed-through optimization problem, one attempts to find the set of cells to be flipped

8

a

j

Figure 1: An example of a standard cell layout.

around their horizontal axis, so that the total number of feed-through cells is minimized. It is important

to note that the number of feed-through cells in a given row is not affected by the orientation of cells in

the other rows. Hence, the feed-through optimization problem can be solved independently for each row.

For the remainder of this section, therefore, we consider only one row.

In order to give the abstract formulation of the problem, we need an adequate representation. Con­

sider a particular row of p standard cells. Suppose the cells are labeled by positive integers from 1

throughp . Let U = {u\,ui, . •. ,up) be a collection of p Boolean variables and let

V ={U \ ,Ui ,U2 ,U2 up ,up}
denote the collection of the 2p literals over U . Let us arbitrarily label the two horizontal sides (the top

9

(«) (b)

Figure 2 : An illustration of feed-through reduction.

and bottom sides containing the pins) of the cell i by Boolean literals ui and m,- respectively. We then

consider the cell i oriented with its side labeled u,- on the top whenever = 1 and on the bottom when­

ever ui = 0. Thus, each truth assignment over U corresponds to a particular orientation (with respect to

the horizontal axis) of the cells in the particular row under consideration. In this setting, a net is a collec­

tion of pins to be electrically connected. Consider the set of nets connecting pins on the cells of the row

under consideration. Such a net is represented by a clause of Boolean literals drawn from Vu/"0,lj as

follows:

(1) If a net contains a pin on the side labeled m,- (m,-) of cell i, then include the literal u, (¿7,) in its

representation-clause.

(2) If a net contains a pin on a cell in a row above (below) the row under consideration, then include the

literal 1 (0) in its representation-clause.

10

Here, 1 is treated as a literal that is always assigned a true value of 1 by any truth assignment. Similarly,

0 is treated as a literal that is always assigned a false value of 0 by any truth assignment. For example,

consider the middle row of cells in the layout of Figure 2(a). This row has 3 cells and we label the top

side of cell i by (the choice is arbitrary). There are eight 2-teiminal nets connecting pins on the cells

of this row and their representation-clauses are given in Table 1 below.

It can be easily seen that for a particular orientation of cells of a row, a net will not cross the given

row if and only if all the literals in its representation-clause are assigned the same value by the

corresponding truth assignment. This gives rise to the following:

Definition : A clause of literals is fed-through by a truth assignment over U if the conjunction (AND) of

its literals is 0 and the disjunction (OR) of its literals is 1 under that assignment.

In other words, a clause is fed-through if any two of its literals are assigned different values by a truth

assignment Going back to the above example, the truth assignment (u \,u2,^3) = (1,1,1) corresponding to

the orientation of cells as shown in Figure 2(a) results in three feed-through clauses, namely, the ones

representing nets c, d , and e . However, the truth assignment (u1.w2.w3) = (1,0,1) corresponding to the

orientation of cells as shown in Figure 2(b) results in only two feed-through clauses, namely, the ones

representing nets a and b. In fact, it can be easily verified (by exhausting all possibilities) that the

assignment (1,0,1) results in the minimum number of feed-through clauses; hence, the layout of Figure

2(b) will result in the smallest number of feed-through cells (2 in this case) that need to be inserted in the

middle row of the layout. The abstract decision version of our feed-through optimization problem can

now be stated as :

FEEDTHROUGH

INSTANCE: A set U - {u\ , 112 , . . . , up) of Boolean variables, a collection C of clauses where each

clause is a subset of literals from {0 , 1 , u \ , u 1, 112, U2 > • • • * wp ,up}, and a non-negative integer K .

11

Table 1 : A representation of nets of Figure 2(a).

Net Representation

a {UbUl}

b

c {Omt)

d {hu?J

e {UbU?}

f m o

g

h

QUESTION: Is there a truth assignment for U such that the number of clauses in C that are fed-through

is at most K ?

We now distinguish between three types of values of a clause of Boolean literals. The OR-value of

a clause is simply the disjunction (OR), the AND-value is the conjunction (AND), while the EXOR-value

is the EXCLUSIVE-OR of its AND-value and OR-value. In the 3SAT problem we seek a truth assign­

ment such that each clause has an OR-value of 1. In the optimization version of the 3-MAX_FULL_SAT

problem we seek a truth assignment that maximizes the number of clauses having an AND-value of 1,

while in the optimization version of the FEED_THROUGH problem we seek a truth assignment that

minimizes the number of clauses having an EXOR-value of 1. This is essentially the difference between

the three problems. In Appendix B, the reduction of 3SAT to 3-MAX_FULL_SAT is given. We now

consider the following result

12

Theorem 3: FEED_THROUGH is NP-Complete.

Proof: We reduce 3-MAX_FULL_SAT to FEED_THROUGH. Let U = {u\ , 112 , . . . , up},

C ={c 1 , C2 , . . . , cmJ of 3-literal clauses over U , and a positive integer k <m, denote an arbitrary

instance of 3-MAX_FULL_SAT. For convenience, suppose each clause cj = {Cjt\ , cj ̂ , cj^j, where cj<q

is a literal over U for each 1<^<3, and \<j<m. We need to construct an instance U of Boolean vari­

ables, C of clauses of literals of U together with fixed Boolean constants 0 and 1, and a positive integer

K , such that there exists a truth assignment over U that fully-satisfies at least k clauses in C if and only if

there is a truth assignment over U such that at most K clauses of C are fed-through. The construction is

as follows:

Define the set U = U .

Define the integer K = \ C \ - k = m -k . Note that K >0.

For each 1 <j <m, define Cj = { l , Cjt\ ,Cjp., Cjj}, and set C = {C\ , ¿2 , Cm}.

Note that a clause Cj e C is fully-satisfied, if and only if the clause Ci eC is not fed-through. Hence,

a truth assignment for U solves the given instance of 3-MAX_FULL_SAT if and only if the same truth

assignment for U - U solves the constructed instance of FEED_THROUGH. □

5. The track reduction problem

Consider, once again, the standard cell layout problem. After the cells have been placed in rows,

and the cells have been flipped around the horizontal axis, if necessary, to minimize the number of feed­

through cells, the routing of wires in the channels created between the rows remains to be performed.

The height of a channel is proportional to the number of horizontal tracks needed to perform the required

routing. Before the routing phase actually begins, it may be possible to minimize the number of tracks

used for routing as well as the total-wire-length by performing appropriate flips of the cells around their

vertical axis. A simple example in Figure 3(a) shows two nets that cannot be routed on the same track

13

because they overlap horizontally. However, as shown in Figure 3(b), the flipping of the second cell

around its vertical axis permits us not only to route the two nets on the same track but also decreases the

wire-length necessary to route these two nets.

Let us define the horizontal span o f a net to be the length of the horizontal side of the smallest rec­

tangle that encloses all its pins. Then the track-reduction problem can be stated as finding the cells to be

flipped around their vertical axis such that the sum of the spans of all the nets is minimized.

In order to give the abstract formulation of the decision version of the above optimization problem,

we need a suitable model for the representation of an instance of the problem. Consider a placement of p

standard cells on horizontal rows of a 2-dimensional plane. Let the x -axis and y -axis denote the horizon­

tal and vertical axes respectively. Let P -{ 1 ,2 ,3 ,. . . ,p} denote the set of cells. Let

U = {u\,ii2, . . . ,up} be a collection of p Boolean variables. Let us arbitrarily label one of the vertical

sides (left or right) of the cell i by a Boolean literal ut and the other side by m,-. We then consider the cell

i oriented with its side labeled m,- on the left whenever m,- = 1 and on the right whenever m; = 0. Thus,

each truth assignment over U corresponds to a particular orientation (with respect to the vertical axis) of

the cells in P . In some applications, it may be necessary to include a dummy cell labeled 0 for which

wo = 1 always and this cell is never flipped.

00 (b)

Figure 3 : An illustration of the track-reduction problem.

14

We now consider the set of pins on the top and bottom faces of the cells in P . Label these pins

arbitrarily by positive integers and let R = { 1 , 2 , , r) denote the set of all pins. Define a function

a :R-*P such that a(s)<= P denotes the cell on which pin se R is located. Also define a real-valued

function / : {0,1 }xR —» R , such that / (0 ,s) is the x -coordinate of pin s when m a(i) = 0 and is the

* -coordinate of pin s when ua(s)= 1. A net can now be specified as a subset of pins to be electrically

connected.

Definition : The span of a net c sJR under a truth assignment over U is defined as the maximum of the

absolute value of the difference in the * -coordinates among all pairs of its pins specified by that assign­

ment. Mathematically, given a truth assignment over U , functions a and / , and a net cqR , define

Span(c) = max | / I

The above definitions can easily be modified to include the dummy cell labeled 0 if necessary. We can

now state the decision version of the track-reduction problem as follows:

TRACKREDUCTION

INSTANCE: A set P = {1,2,3,. . . ,p } of cells, a set U = {u\,U2, . . . , up} of Boolean variables, a set

R = {1 ,2 ,... ,r} of pins, a function a : R u{0} associating a pin with a cell (here 0 is a dummy cell),

a real-valued function / : {0,1 }xR —»]R providing the x -coordinates of pin locations on the cell boun­

dary, a collection C of nets which are subsets of R , and a real number a > 0.

QUESTION: Is there a truth assignment for U such that the sum of spans of all nets in C is at most a,

i.e.,

y max | /(M o(j) ,i) - /(M o(0 ,r) | < a ?
ceV i >*ec

Here, we assume that uq = 1 if required.

Theorem 4: TRACK_REDUCTION is NP-Complete.

15

Proof: We reduce FEED_THROUGH to TRACK_REDUCTION. We will first informally illustrate the

construction of an instance of TRACK_REDUCTION from an instance of FEED_THROUGH. Consider

an instance of FEED_THROUGH shown in Figure 4(a). The abstract representation of this instance is

denoted by a set of clauses C = {c i , c2 , erf where

c i - f l . m . “2}

C l= {\ ,U2 ,Uz}

c 3 = {0 , U\ ,u 2 ,u 3}

The corresponding instance of TRACK_REDUCTION is illustrated in Figure 4(b). Here, we have 3 cells

centered around a common vertical axis and placed one below the other. Since the literal 1 or 0 is present

in a clause of FEED_THROUGH, a dummy cell 0 is introduced and is placed on top of cell 1. Each row

in the constructed instance of TRACK_REDUCTION will contain only one cell of length 2(m2+m),

where m is the number of clauses (nets) in the instance of FEED_THROUGH (here, m= 3). For each

clause cj in the instance of FEED_THROUGH, a net <?y is created in the instance of

TRACK_REDUCTION as follows. If wx- e c}, then the net Cj contains a pin on the top of cell i located at

a distance of m 2+j- 1 units to the left of the vertical axis. However, if wt- e c j, then the net Cj contains a

pin on the top of cell i located at a distance of m 2+j—1 units to the right of the vertical axis. With

regards to the dummy cell 0, we always assume that u q= 1.

We will now give a formal reduction. Let an arbitrary instance of FEED_THROUGH be denoted

by a set U - {u i,u2, . . . , up) of Boolean variables, a collection C = {c hc2, . . . , cm} of m clauses where

each clause

Cj — {Cj tl , Cj 2 , . . . , Cj tyj}

is a subset of yy literals drawn from the set {0 , 1 , u \ , u \ , u2 , u2 , . . . , up , up}, and a non-negative

integer K . We now construct a setP = {l ,2 ,3 ,... ,p} of cells, a set U = {uhu2, . . . ,upj of Boolean

16

(a) FEED_THROUGH instance.

verdea] axis

C 3

(b) TRACK_REDUCTION instance.
Figure 4 : A transformation of FEED_THROUGH to TRACK_REDUCTION.

17

variables, a set R = {1 ,2 ,... ,r} of pins, a function o : R-*Pv{0} associating a pin with a cell, a real-

valued function / : {0,1 }xR —>IR, a collection of nets C of subsets of R , and a real number a>0,

representing an instance of TRACK_REDUCTION as follows.

Define p = \ U \ , U = U, Ui = ut for each 1</ <p.

Define r = as the total number of pins. Let r\j = ¿Llq denote the cumulative sums of the

cardinalities of the clauses. For each element Cjj of clause Cj create a pin s = l + r|; . If
Cjjefiii , ui}, then set o(s) = i (i.e., pin s belongs to cell i). However, if cj j e { 0 ,1), then set
a(s) = 0 (i.e., pin s belongs to the dummy cell 0). Also, define pCs)=j and 5(s)=l.

For each pin s , define

/ (U) = I
— (m 2+ p (i) - l) i f Cp(j)f8(i) = MCT(i)

+ (l7l2+ P (j)~ 1) i f C£(s)£ (s) = U a(s)

and

/ (0 ^) = - / (U)
Here we assume that uq = 1 and ùo = 0.

For each clause c j, define a net

6j = {s : r\j<s<r\j+i}

as a collection of pins and define

C = { £ cm}.
as a collection of nets.

Finally, define a = 2K(m 2+m-1).

We now illustrate the formal reduction by considering, once again, the example in Figure 4. Here

the set U ={u \,U2,ui} of Boolean variables, the set of clauses C - {c \,c2,ctJ where

c \ - { l ,u 1 ,Ut) ,

c2 = n . «2 >1*3},

c 3 = {0,U i ,¡¡2 , 1* 3},

and integer K = 1 represents an instance of FEED_THROUGH. Clearly, p= 3, m= 3, Yi =72 = 3, and

18

73 = 4. Therefore, r = 71+72+73 = 10 is the total number of pins, and r|i = 0, r\2 = 3, r|3 = 6, and ri4 = 10.

This gives us R = {1,2, . . . , lOj as the set of pins. The values of the functions p , 5, and a for each of the

pins are given by the following table.

s P(J) s (*) c(s)
1 1 1 0
2 1 2 1
3 1 3 2
4 2 1 0
5 2 2 2
6 2 3 3
7 3 1 0
8 3 2 1
9 3 3 2

10 3 4 3

The values of the function / (1 j) are given in the following table.

5 f (U)
1 -9
2 -9
3 + 9
4 -10
5 -10
6 -10
7 + 11
8 + 11
9 + 11

10 + 11

and / (0,j) = - / (1,5) for each pin s e R . The set of nets is given by

{1X3} , {4,5,6} , ¿7,8,9,10/ k

as shown in Figure 4(b). Finally, the integer a = 22.

To complete the proof we make the following simple observations.

19

(1) The span o f a net dj in the constructed instance of TRACK_REDUCTION is either 0 or 2 (m 2+j -1).

(2) The clause Cj in the instance of FEED_THROUGH is fed-through by a truth assignment over U if

and only if the corresponding net dj in the constructed instance of TRACK_REDUCTION has a

span of 2(m2+j-1) under the same truth assignment over U - U .

Now suppose there is a truth assignment for U that solves FEED_THROUGH, i.e., there are at most

K clauses fed-through in the given instance of FEED_THROUGH. By Observation (2), there are at most

K nets with nonzero span in the constructed instance of TRACK_REDUCTION under the same truth

assignment But the maximum span of a net in the constructed instance of TRACK_REDUCTION is

2(m2+m -l). Consequently, the sum of spans of all nets for the instance of TRACK_REDUCTION is at

most a = 2K(m2+m -l)\ hence, the same truth assignment for U = U solves the constructed instance of

TR ACK_R.EDU CTI ON.

Conversely, assume that there is a truth assignment for U that solves the constructed instance of

TRACK_REDUCTION. We will then show that the same truth assignment for U =U indeed solves the

given instance of FEED_THROUGH using a proof by contradiction. Suppose that under the assumed

truth assignment, there are at least K +1 clauses fed-through in the given instance of FEED_THROUGH.

Then, by Observation (2), there are at least K+1 nets in the constructed instance of

TRACK_REDUCTION with nonzero span. But, by Observation (1), the minimum nonzero span of a net

in the constructed instance of TRACK_REDUCTION is 2m2. Therefore, we must have

2(K+\)m2 < a = 2K(m2+m-l),
which implies

m2< (m-l)K . (**)

There are two possibilities for the value of the integer K in the instance of FEED_THROUGH, namely,

K > m or K <m. li K > m then, clearly, any truth assignment for U solves the given instance of

20

FEED_THROUGH. On the other hand, if K <m then it is impossible to satisfy (**). Therefore, the

number of clauses fed-through in the instance of FEED_THROUGH under the assumed truth assignment

must be at most K, thus proving that the assumed truth assignment also solves the given instance of

FEED_THROUGH. □

6. Conclusions

In this paper, we have considered several problems such as TESTABLE_NETS, 2-EXCHANGE,

FEED_THROUGH, and TRACK_REDUCTION, that often occur as sub-problems in the physical design

phase of integrated circuits. We have shown that each of these problems is NP-Complete by reducing

Figure 5 : An illustration of the reduction process.

21

three well-known and classical NP-Complete problems, namely, 3-SAT, PARTITION, and

HITTING_SET. The reduction process is summarized in Figure 5. Our main purpose in establishing the

NP-Completeness of these sub-problems is to justify the use of heuristics for their solution.

REFERENCES

[1] S. Goto and T. Matsuda, "Partitioning, Assignment and Placement," Layout Design
and Verification (Ed. T. Ohtsuki), North-Holland, 1986, pp. 55-97.

[2] B. W. Kemighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning
Graphs," Bell System Technical Journal, vol. 49, pp. 291-307, February 1970,

[3] C. M. Fiduccia and R. M. Mattheyses, "A Linear-Time Heuristics for Improving Net­
work Partitions," Proceedings of the 19th Design Automation Conference, pp. 175-
181, January 1982.

[4] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, pp. 126,1979.

[5] S. A. Cook, "The complexity of theorem-proving procedures," Proceedings of Third
Annual ACM Symposium on the Theory o f Computing, pp. 151-158.

[6] R. M. Karp, "Reducibility among combinatorial problems," Complexity o f Computer
Computations (Eds. R. Miller and J. Thatcher), Plenum Press, New York, 1972, pp.
85-103.

[7] B. T. Preas, "Introduction to Physical Design Automation," Physical Design Automa­
tion of VLSI Systems (Eds. B. Preas and M. Lorenzetti), The Benjamin/Cummings
Publishing Company, Inc., Menlo Park, California, 1988, pp. 1-29.

[8] Y. G. Saab and V. B. Rao, "An Evolution-Based Approach to Partitioning ASIC Sys­
tems," Proceedings of the 26th Design Automation Conference, pp. 767-770, Las Ve­
gas, Nevada, June 1989.

23

APPENDIX A

A list of three well-known NP-CompIete Problems

3-SATISFIABILITY (3SAT)

The terminology used in describing this problem, borrowed from [4], is as follows. Let

U = {u\,U2, . . . , un} be a set of Boolean variables. A truth assignment for U is an assignment of a fixed

value 0 or 1 to each variable in U. Here a value 0 means "false", while value 1 means "true". If u is a

variable in U, then u and ¿7 are literals over U . If u is assigned a value 0, denoted by u - 0, then u gets

assigned a value 1, denoted by ¿7=1, and vice-versa. Similarly, u - 1 if and only if ¿7=0. A clause over U

is a set of literals over U . The value of a clause (also called OR-value) under a truth assignment is the

disjunction (OR) of the values of its literals under that assignment. A clause is satisfied by a truth assign­

ment if its value is 1 under that assignment Hence, a clause is satisfied if and only if at least one of its

literals is assigned a value 1 by the truth assignment. For example, c\ = {u\M2,u\j is clause over

U = {u\,U2>U2,u^}. The truth assignment u i=0,K2=1,M3=0,M4=1 satisfies the above clause c\. However,

the same truth assignment does not satisfy the clause C2 - {u\,112^ 3}. The 3SAT problem can now be

described as follows:

INSTANCE: A set U = {u\M2, • . . ,uH} of Boolean variables and a collection C = {c\,C2, . . . ,cm} of

clauses over U such that each clause has exactly 3 literals, i.e., | c,-1 =3 for all 1 <i <m.

QUESTION: Is there a truth assignment for U that simultaneously satisfies all the clauses in C l

PARTITION

INSTANCE: A finite set A and a positive integer size s (a) for each a e A .

QUESTION: Is there a subset A 'o 4 such that

24

,S - i (a) = Z / («)
a e T -A '

?

HITTING_SET

INSTANCE: A collection C of subsets of a finite set S and a positive integer K < \ S \ .

QUESTION: Is there a subset S '^ S with | S '| < k such that S ' contains at least one element from each

subset in C ?

Further discussion and proofs of NP-Completeness of these problems can be found in [4,5,6].

25

Appendix B

Two new NP-Complete Problems

n-HITTING_SET (n-HS)

INSTANCE: A collection C of subsets of a finite set S and a positive integer K < | S \ .

QUESTION: Is there a subset S'&S with | S '\ <K such that S ' contains at least n elements from each

subset in C ?

It is easily seen that 1-HS is the same as the HITTING_SET problem described in Appendix A. As

an example, let

S = {s

C — ̂ {s 3l/ 1 »*S3»*̂4/^

and integer K =3 be an instance of 1-HS. Clearly, the subset S ' = {s 2} is a solution to 1-HS. The same S ,

C , and K can be considered instances of 2-HS and 3-HS problems. For the 2-HS problem, the solution is

the set S ' = { s \J 2,S2), while this instance has no solution for the 3-HS problem. However, if we choose

K =4, then S ' = S becomes a solution to the 3-HS problem.

Theorem Bl: n -HS is NP_Complete for any fixed positive integer n>l.

Proof: We use induction on n. The basis is the case n=l for which n-HS becomes 1-HS (or simply the

HITTING_SET problem) which is known to be NP_Complete [4].

The induction step consists of assuming that n-HS is NP_Complete for some value of n> 1, and

proving that (n+l)-HS is also NP-Complete. Let an arbitrary instance of n-HS be given by a set

S = {$ 1 **52» • • • >sp}, a collection C = {c\,C2, ■ •. ,cq} of subsets of S, i.e., for each 1 £j<q, and a

positive integer K< \ S \ =p. We will now construct an instance of (n+l)-HS given by a set S , a collec­

tion C of subsets of S , and a positive integer K < | S \ as follows:

26

Define a new setX = {x \jc i,. . . ,xn+\j disjoint from S .

SetS = S uX . Hence, | S | =n+l + | S | =n+l+p.

Define 6j = {x\}ucj for each \<j<q.
Define ^+1 =X = { x u 2, . . . ,xn+i).

Set C = {<?i,<?2> • • •»¿q+0- Clearly, C is a collection of subsets of S.

S&tK = n+l+K. Note that K < \ S \ .
Let S '£ S be a solution to the above instance of n-HS, i.e., | S '\ <K, and | S 'n c j \ >n for each

1 <j<q. Define S ' = S 'uX . Qearly, S '^ S , | S '\ = | S '\ +n+\<K+n+l=K. Also,

S 'nc j = {x\}Kj(S'ncj) for each l<j<q, and S 'n £ q+\= X . Hence, for each l<y<^+l we have

| S'c\£j | > n+1, since X and S are disjoint, thus proving the S ' is a solution to the constructed instance

of (n+l)-HS. Conversely, let S'g^S be a solution to the constructed instance of (n+l)-HS, i.e., | S '\ <K,

and | S 'n c j | >n+l for each \<j<q+l. In particular, when £q+\=X, we get | X \ =n+l>| S 'n X \>n+\,

thereby establishing that X &S'. Consequently, the set S ' = S ' - X is a solution to the considered instance

of n -HS. □

3-MAX_FULL_SAT

In the classical 3SAT problem, defined in Appendix A, a clause c of 3 literals of a set U of Boolean

variables is said to be satisfied by a truth assignment over U if and only if at least one of the literals in the

clause c is assigned a value 1 (i.e., a true value). Thus, a clause is viewed as a disjunction (OR) of the

values of its literals in 3SAT. In the new problem of 3-MAX_FULL_SAT, defined below, we say that a

clause c of 3 literals is fully-satisfied by a truth assignment over U if and only if all its literals are

assigned a true value of 1 by that assignment Thus, a clause is viewed as a conjunction (AND) of the

values of its literals in 3-MAX_FULL_SAT. We now define the new problem as follows:

INSTANCE: A set U = {u \,u i,. . . ,un} of Boolean variables, a collection C = {c\,C2, . . . ,cmj of

clauses over U such that each clause has exactly 3 literals, and a positive integer k < \ C \ - m .

27

QUESTION: Is there a truth assignment for U that simultaneously fully-satisfies at least k clauses in C ?

Theorem B2: 3-MAX_FULL_SAT is NP-Complete.

Proof: We reduce 3SAT to 3-MAX_FULL_SAT. Let U = {u\,ui> • • • , un) and C = {c\,C2, . . . , cm} of

3-literal clauses over U denote an arbitrary instance of 3SAT. For convenience, suppose each clause

cj = {cj'i'Cj&Cj'i}, where cj# is a literal over U for each l^p<3, and \<j<m. We need to construct an

instance U of Boolean variables, C of 3-literal clauses over U , and a positive integer k , such that there

exists a truth assignment over U that simultaneously satisfies all clauses in C if and only if there is a truth

assignment over U that simultaneously fully-satisfies at least k clauses of C . The construction is as fol­

lows:

Define positive integer k = m - \ C \ , the number of clauses in C .

Introduce 2m new Boolean variables xj and yy-, 1 <j<m disjoint from the variables in U , and
form the set

Define the set U =U u X . Note | U | =n+2m.

For each clause cj = {Cj%\jCj&Cj C of literals over U, define three new clauses

cj l = {Cj,\ ,xj ,yj}

Cj2 ={Cj 2 ,Xj J j }

Cj3 = {Cj2 >Xj ,yj}

Define the set C = \ j{ c }x , cj1 , Cj3} of 3-literal clauses over U . Note \ C\ - 2 m .
j =i

We now make the following simple observations :

(1) For each 1 <j<m, no two of the clauses c / , c f , c / in C can be simultaneously fully-satisfied by

any truth assignment over U .

28

(2) If a truth assignment for U satisfies a clause Cj eC , then there is a truth assignment for the variables

xj and yj such that exactly one of the clauses c f , c f , c f in C is fully-satisfied. For example, if a

truth assignment sets Cjt\ = 1 to satisfy the clause cj, then set xj =yj =1 to fiilly-satisfy the clause

c /. Note that the clauses c/2 and c f are not fully-satisfied by this truth assignment.

(3) If there is a truth assignment for U that fully-satisfies any one of the clauses c / , cj2, , c} in C for

some 1 <j<m, then the restriction of this truth assignment to U will satisfy the clause cj e C .

Now suppose that there is a truth assignment for U that satisfies each of the m clauses in C . By observa­

tion (2), we can extend this truth assignment to an assignment for U such that exactly k-m clauses of C

are fully-satisfied. Conversely, suppose a truth assignment for U fully-satisfies at least k-m clauses of

C. By construction of C and by observation (1), this truth assignment actually fully-satisfies exactly

k=m clauses in C. In fact, this truth assignment fully-satisfies exactly one of the clauses c / , c / , c f in

C , for each 1 <j<m. Therefore, cjgC is satisfied by observation (3) for each 1 <j<m. Consequently, the

truth assignment for U when restricted to U satisfies each clause in C . □

