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1. INTRODUCTION

An algorithm for a distributed computer system achieves common knowledge if it 

computes a function that requires the participation of all processors, Korach 

et al, (1984) call such a function global. The processors compute this global 

function by exchanging some local information at each step.

Efficient distributed algorithms have been designed to compute maxima (Dolev 

et al., 1982; Peterson, 1982), medians (Frederickson, 1983; Rodeh, 1982; Santoro and 

Sidney, 1982), minimum spanning trees (Gallager et al., 1983), shortest paths 

(Chandy and Misra, 1982), and maximum flows (Segall, 1982). Each of these 

algorithms achieves common knowledge.

In this paper we study further problems on distributed systems. We establish 

new lower bounds on the communication complexity of activation, plurality, and 

distinctness problems. These problems are ostensibly simpler than the problems 

previously investigated, yet they are fundamental: algorithms that achieve common 

knowledge often involve decisions about activation of processors or distinctness of 

input values. Thus we believe that our techniques will yield lower bounds when 

applied to other problems.

The communication complexity of an algorithm is measured by the number of 

messages or the number of bits that are transmitted on communication links by the 

processors executing the algorithm. Several lower bounds on communication 

complexity are known. As usual, to express these lower bounds, Q(g(N)) denotes a 

function f such that for some constant c, f(N) 2 c g(N) for all N sufficiently 

large. For the election problem Burns (1980) obtained a lower bound of Q(N log N) 

messages in the worst case on a bidirectional ring with N processors. Frederickson 

and Lynch (1984) derived an Q(N log N) lower bound for election even when the ring 

is synchronous. Pachl et al. (1982) demonstrated that Q(N log N) messages are 

necessary on the average for election on a unidirectional ring. For the sorting
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problem Loui (1983) proved that when the values are in {0,...,L}, every algorithm 

requires Q(hr log (L/N)) bits among messages on a bidirectional ring. For the 

computation of minimum spanning trees Santoro (1982) and Korach et al. (1984) 

established Q(N log N) lower bounds on messages on various networks with N 

processors.

Section 2 defines precisely the execution of a distributed algorithm and the 

two performance measures: message complexity and bit complexity. Also, this Section 

defines the problems that we discuss. Section 3 presents some elementary results, 

including the message complexity of the activation problem. Section 4 treats the 

message complexities of the distinctness and plurality problems. Section 5 

discusses the bit complexity of the distinctness problem.
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2. DEFINITIONS

2.1. The Computational Model

We adopt the model of asynchronous distributed computation developed by Santoro 

(1981« 1982). After describing the model informally« we give complete« precise 

definitions.

A distributed system comprises identical processors connected via a 

communication network. Processor y can send a message directly to processor z if 

and only if link (y,z) is in the network. The transmission of a message incurs an 

unpredictable but finite delay. Messages sent on the same link (y,z) arrive at z in 

the same order as they were sent.

Every processor executes the same algorithm« which specifies the messages sent 

by the processor. Any message transmitted by a processor depends only on the 

sequence of messages that it has received. Initially« each processor knows only the 

links that involve it; thus the algorithm cannot use information about the global 

structure of the network. Each processor y has an identifier ID(y) and an 

initial value V(y). The processors exchange messages to compute a function of these 

values. At the end of the computation« every processor y has a result R(y).

In a bidirectional ring, each processor can exchange messages only with its two 

neighbors. To each processor in a bidirectional ring assign an integer p, 0 <_ p <

N. If integer p is assigned to processor y and integer q is assigned to processor 

z, then we shall refer to 'processor p" and to "link (p,q)." Thus the bidirectional 

ring has links (p, p — 1 mod N) and (p, p + 1 mod N) for all p. The assignment of 

integers to processors is used only for clarity of exposition; since the processors 

are identical« processor p does not have access to the number p. Although we derive 

lower bounds on bidirectional rings« our techniques could be applied to networks 

with other topologies.
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The message complexity of an algorithm is a function that assigns to every N 

the maximum of the number of messages used by the algorithm on distributed systems 

with N processors. The bit complexity of an algorithm is a function that assigns to 

every N the maximum of the number of bits in all messages used by the algorithm on 

distributed systems with N processors. Abelson (1980), Ja' Ja' and Kumar (1984), 

Papadimitiou and Sipser (1984), and Yao (1979) studied the bit complexity measure in 

similar contexts.

Let us define the computational model precisely. A distributed system is an 

octuple (PROC, LINKS, MES, IDEN, VAL, RES, In, Out), where

PROC is a finite set of processors.
LINKS PROC x PROC is a set of links.
MES is a set of messages.
IDEN is a set of identifiers.
VAL is a set of initial values.
RES is a set of results, and
In and Out are functions defined below.

For simplicity assume that every processor y has the same number d of incoming 

links of the form (w^# y) and the same number d of outgoing links of the form 

(y* z£). At each processor assign to each incoming link a distinct number in 

{1, ..., d]. The function

In: LINKS {1, ..., d}

expresses these assignments. At each processor assign to each outgoing link a 

distinct number in {1, ..., d}. The function

Out: LINKS {1, ..., d}

expresses these assignments.

An initial value distribution is a function y — > V(y) from PROC to VAL. An 

identifier distribution is a function y — > ID(y) from PROC to IDEN. A 

result distribution is a function y — » R(y) from PROC to RES.

The computation by each processor depends only on its identifier, its initial 

value, and the sequence of messages that it has received. We formalize this notion.
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An event is the transmission or arrival of a message at a processor y. An 

event is specified by listing the processor, the message, the link number, and 

whether it is a transmission or an arrival.

Each processor has a current state. The state of a processor y comprises an 

identifier id, an initial value v, and a sequence of zero or more events at y. Thus 

a state has the form

^id, v, e , a s
9 9 1 #  v j # « t i l  |

where e^t ..., e^ are events. Call k the length of the state. State s# is a 

successor of state s if s is a prefix of s*. In response to an event e, a processor 

in state s undergoes a transition into a new state that results from the 

concatenation of e onto the end of s. Let STATES be the set of states.

Each link (y,z) has a finite queue Q(y,z) of messages. A message can be 

enqueued onto the rear of Q(y,z) or dequeued from the front of Q(y,z).

A configuration is a function C that specifies states for the processors and 

message queues for the links. If y is a processor, then C(y) is a state. If (y,z) 

is a link, then C(y,z) is a queue of messages. A configuration CQ £s initial if the 

length of every state C^(y) ¿s o an<i every queue CQ(y,z) is empty.

A distributed algorithm is a function

A: STATES (ft) u (MES x {l,...,d}) U RES

that specifies what a processor does in any state. If processor y is in state s, 

then either y does nothing (A(s) = 0); or y transmits a message on an outgoing link, 

as specified by A(s) e MES x {l,...,d}; or y concludes with a result A(s) s RES. If 

A(s) e MES x {l,...,d}, then A(s) induces a transmission event at y. A state s is 

terminal for A if for every successor s' of s, including s itself, A(s') is a fixed 

result. In other words, if processor y is in a terminal state, then despite state 

transitions caused by arrival events, y neither transmits messages nor changes its

result.
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An execution of an algorithm A is a finite sequence of configurations

C0» , Cj, • • •, ct ,

starting from an initial configuration CQ, 8UCh that for every i, Ci+1 is obtained 

from in one 0f two ways:

(1) concatenating a transmission event e. induced by A(C(7i)) at some processor 7i 

onto the end of the state of y a n d  enqueuing the corresponding message onto 

the link (y^^z^) indicated by e^; or

(2) concatenating an arrival event e^ onto the end of the state of some processor 

z£, and dequeueing the corresponding message from the link (y^z^) indicated by

V
An execution terminate,« if in its last configuration Ct all processor states are 

terminal and all message queues are empty.

A problem is a function P that maps an initial configuration CQ to a result 

distribution P(Cq ). In the sequel we shall consider restrictions of problems to 

bidirectional rings; in these cases we shall assume that P is defined only for 

initial configurations on bidirectional rings. An algorithm A solves a problem P if 

for every initial configuration every execution of A starting from Cq terminates, 

and the results computed by A agree with the result distribution P(Cq ).

These definitions ensure the properties of distributed algorithms described 

earlier in this Section. The system is asynchronous; an algorithm may have many 

executions for the same identifier distribution and initial value distribution. All 

messages sent on the same link arrive reliably in the order in which they were sent. 

Every processor executes the same algorithm. Finally, the behavior of a processor 

depends only on the messages that it has received. Since the algorithm uses numbers 

in {l,...,d} to identify links, it cannot take advantage of the size of the system.
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If a terminating execution has t events, then it has exactly t/2 transmission 

events and t/2 arrival events because all message queues become empty. For brevity 

we shall say that the execution has "t/2 messages." The message complexity of an 

algorithm A is a function g(N) that assigns to each N the maximum number of messages 

in executions of A on a distributed system of N processors. To define the bit 

complexity assume that MES is a prefix-free collection of binary strings; these 

binary strings encode the actual messages. The prefix—free property enables the 

receiving processor to parse a sequence of messages. The bit complexity of an 

algorithm A is a function that assigns to each N the maximum number of bits among 

messages in executions of A on a distributed system of N processors.

Our lower bounds on bit complexity apply to all algorithms. To obtain lower 

bounds on message complexity we consider comparison algorithms, which we define 

below. Our definitions resemble the definitions of Frederickson and Lynch (1984), 

who studied synchronous systems.

Assume that VAL MES and that VAL is a totally ordered set. Furthermore, 

assume that two elements in MES are comparable only if both are in VAL, or if both 

are not in VAL; the elements in VAL are incomparable with elements not in VAL. Use 

the symbol < for the ordering relation on MES. For a state s and i J> 1 define M.(s) 

to be the message in the ith event in s. Define M ^ s )  t0 be the initial identifier

in s and Mq ($) to be the initial value in s. States s and s' are order—equivalent 

if and only if

(1) they have the same length k;

(2) for all -1 <_ i, j ¿ k, M^(s) and Mj(s) are related in the same way as M^(s')

and M^(s») —  that is, in both cases the relation is < or = or > or 

incomparable; and

(3) for every j the jth events in s and s' are either transmission events on the 

same outgoing link or arrival events on the same incoming link.
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An algorithm A is a comparison algorithm if whenever s and s' are order-

equivalent states, the following conditions hold:

(1) A(s) and A(s') belong to the same set among 0, MES x {l,...,d}, RES;

(2) if A(s) 8 RES, then A(s) = A(s'); in particular, if s is terminal, then s' is

terminal;

(3) if A(s) 8 MES x {l,...,d}, then the successor states that result from the

transmission events induced by A(s) and A(s') are order—equivalent —  that is, 

the messages transmitted from states s and s' preserve the order-equivalence;

(4) if A(s) specifies a message m i IDEN u VAL, then A(s') specifies the same

message m;

(5) if A(s) specifies a message m 8 IDEN u VAL, then m is either the identifier in 

s or the initial value in s or a message in one of the events in s.



9

2.2. Problems

1. Activation: Notify every processor that every processor in the system is 

active. An algorithm solves the Activation Problem if in all executions of the 

algorithm, each processor y enters a terminal state only after every processor has 

transmitted a message. For this problem the initial values are irrelevant.

2. Election: Elect exactly one leader in a network. An algorithm solves the 

Election Problem if there is exactly one processor w such that the result at w is 

R(w) = 'felected/' and the result at y is R(y) = ID(w) for all y^w. Call processor w 

the leader. For this problem the initial values are irrelevant.

3. Plurality: Determine the plurality value in a network with arbitrary 

initial values. An algorithm solves the Plurality Problem if the result at every 

processor y is the same R(y) = v, where v is an initial value that appears at least 

as often as every other value among the initial values.

4. Distinctness: Determine whether all the initial values are distinct. For 

every processor y the result R(y) = 1  if all values in the initial value 

distribution are distinct, and R(y) = 0 otherwise.
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3. ELEMENTARY RESULTS

Theorem 1. An algorithm that solves the Activation» Election» Plurality, or 

Distinctness Problem on every system uses at least e messages when the system has e 

links.

Proof. Suppose, to the contrary, an algorithm that solves one of these 

problems uses fewer than e messages for all initial configurations on a system S 

with e links. It follows that for every terminating execution of the algorithm, 

there is a link (x,z) on which no messages are transmitted.

For this execution S is indistinguishable from a system S' that has an 

additional processor y with links (x,y) and (y,z), but no link (x,z). Thus for the 

execution of the algorithm on S', processors x and z reach terminal states before y 

transmits its first message.

For the Activation Problem, z has already reached a terminal state before y 

transmits a message, a contradiction. For the Election Problem, since x sends no 

messages, y will not receive the identifier of the leader, a contradiction.

For the Plurality and Distinctness Problems, although y may send messages to z, 

the result at z remains the same. But varying the initial value at y could change 

the results of these problems. []

We prove that unless the processors have distinct identifiers, the Election 

Problem cannot be solved by a distributed algorithm.

Theorem 2. There is no algorithm that solves the Election Problem in networks 

that permit multiple copies of identifiers, even if the pattern of identifiers is

asymmetric.
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Proof. Suppose, to the contrary, algorithm A uses at most M messages to elect 

a leader on a bidirectional ring S with N processors. For any identifier 

distribution on S, splice together 2 + 2 copies of this identifier

distribution to form a linear array of (2 r|j 1 + 2)N processors. Join the ends of 

this array to a new processor z with a new identifier. Call the resulting 

bidirectional ring S'. In S' there are adjacent copies Sj of S such that every

processor in or S2 is at least distance M from z. Since no messages that 

originate at z affect processors in oz Sj, both S± and S2 will elect leaders. []

Angluin (1980) gave a similar proof for her Theorem 4.6. Henceforth we assume 

that the processors have distinct identifiers.

Theorem 3. Let N be a power of 2. On a bidirectional ring of N processors 

every comparison algorithm that solves the Activation Problem has message complexity 

Q(N log N).

To establish Theorem 3, we first define a chain. If during an execution of an 

algorithm processor y^ sends a message to another processor y2 , then the sequence

(V V
is a chain of length 1, In general, a chain of length k is a sequence of distinct 

processors

*yl, **•' yk-l' yk' yk+l*
such that (y1# ..., y^^, y^) is a chain of length k—1, and y^ sends a message to 

yfc+l after the chain message from y^_^ arrives at y^.

We shall modify the proof of Frederickson and Lynch (1984) for the Election 

Problem when N is a power of 2. Frederickson and Lynch considered a particular 

identifier distribution that has some symmetry properties. They showed that for 

every execution of any algorithm that solves the Election Problem on a ring with 

this identifier distribution, the length of some chain is at least N/2.
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Furthermore, because of the symmetry in the identifier distribution, every 

comparison algorithm requires at least |  log2 N messages, in the worst case, to 

establish a chain of length N/2.

Proof of Theorem 3.. Let A be a comparison algorithm that solves the Activation 

Problem on a ring of N processors. Assume the initial configuration specifies the 

identifier distribution of Frederickson and Lynch (1984). We shall demonstrate that 

for every execution of A there is a chain whose length is at least N/2.

Suppose, to the contrary, in some execution of A the length of the longest 

chain is less than N/2. Let y be a particular processor, and let Y be the set of 

processors z such that in this execution z is in a chain that ends at y. Let Y' be 

the set of processors not in Y. By hypothesis, Y' is not empty: the processor 

diametrically opposite from y is in Yf.

Construct another execution of A, starting from the same initial configuration, 

in which no processor in Y' sends messages. In this new execution y receives the 

same sequence of messages as before and enters the same terminal state before every 

processor has transmitted a message. This is a contradiction.

Now the argument of Frederickson and Lynch implies the desired G(N log N) lower 

bound on the message complexity of A. []
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4. THE MESSAGE COMPLEXITY OF THE DISTINCTNESS AND PLURALITY PROBLEMS

An algorithm could solve the Distinctness Problem on a ring of N processors 

with 0(N log N) messages: (1) nse 0(N log N) messages to elect a leader; (2) use N 

messages of increasing length to accumulate all the initial values and deliver them 

to the leader; and (3) after the leader decides whether the initial values are 

distinct« use N messages to deliver the result to the other processors. A 

comparison algorithm must use Q(N^) messages« however. The proof of this fact must 

overcome several subtleties.

Theorem 4. On a bidirectional ring of N processors every comparison algorithm 

that solves the Distinctness Problem has message complexity Q(N^).

Proof. Let A be a comparison algorithm that solves the Distinctness Problem.

We describe a collection of distributions for which in the worst case some execution 

of A has QCN2) messages.

Let VAL be a set of N values {v0 , .... T ( M ) such that v t < Tj if and only

if i j« Let D be the collection of distributions V for which

V(p) 8 iv2p* v2p+l} for P “ °» •••> N/2 - 1,
V(p + N/2) s tv2pJ v2p+1) for p = 0, .... N/2 - 1,

Fix any distribution V in D for which

V(p) * V(p + N/2) for all p.

One might surmise that to solve the Distinctness Problem each diametrically opposite 

pair of values V(q) and V(q + N/2) must be compared. Motivated by this intuition« 

we shall demonstrate that for every processor q« at the end of every terminating 

execution of A on V some processor state s must contain both V(q) and V(q + N/2).

It follows that the values V(q) and V(q + N/2) themselves must have been transmitted 

as messages N/2 times because under A, a processor y may transmit a value v only if 

v is in the state of y. Since A uses N/2 messages for every q = 0 ,  ..., N/2 - 1, it 
uses at least (N/2)(N/2) = Q(N^) messages.
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Let

C0» Cj , •«•» Ct

be a terminating execution of A, and suppose that for some q no C^(y) contains both 

V(q) and V(q + N/2). We shall derive a contradiction. Let V' be the distribution 

defined by

V'(p) = V(p) for all p i6 q,

V*(q) - V'(q + N/2) = V(q + N/2);

whereas all values of V are distinct, not all values of V' are distinct. Since A is 

a comparison algorithm, the computation of A on V r should resemble its computation 

on V. More precisely, define to be the initial configuration in which V' is the 

initial value distribution. We shall construct inductively a terminating execution

C'A r» p#
Q *  '■'1* • • • • '■'t

of A on V' that satisfies the following Substitution Property for each k:

every C'k(y) will differ from C^(y) only by the substitution of V'(p) for 

V(p) for all p;

every C'^(y,z) will differ from C^(y,z) only by the substitution of V'(p) 

for V(p) for all p.

By hypothesis, since Ck(y) does not have both V(q) and V(q + N/2), the Substitution 

Property implies that Ck(y) is order-equivalent to C'k(y). By definition of C'q , 

the Substitution Property holds for k = 0.

Suppo se

C* p» p#Q» '■'l* •••» w J-
have been defined. Consider the event ek associated with the transition from to 

There are two possibilities. First, suppose ek is an arrival event on link 

ŷk'zk^* Define C'k+2 to be the configuration induced by an arrival event on 

7̂k'zk* from configuration C'k. Since the Substitution Property holds for C'k, it
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holds for C'^^ too. Second, suppose ek is a transmission event on link (y^s^)» 

and let m^ be the message sent by yk in state Ck(yk). Because C^iy^) is order- 

equivalent to C'k(yk)# processor yk can also send a message m'k on (ŷ »Zj-) in state

C k(yk) * ^et ^#k+l *^e c°af iguration that results from C'k by the transmission

of m'k on (y^»zj.). Since A is a comparison algorithm, the state whose

last event has n»k# is order-equivalent to the state C'^+^(y^), whose last event has

m *k. Thus, if mk e IDEN li VAL and mk is the message in the jth event in Cj,(y^),

then m'k is the message in the jth event in C'k(yk); it follows by the Substitution

Property for C'k that if mk = V(p) for some p, then m'k = V'(p), hence the

Substitution Property holds for C ' ^ .  if mk i JDEN U VAL, then mk = m'k, and again

the Substitution Property holds for ^k+1

For every y, since C^(y) is order-equivalent to C'^(y) and A is a comparison 

algorithm, the results of the two executions are the same: for every y,

A(Ct(y)) = A(C't(y)).

But because the values specified by V are distinct, A(Ct(y)) = l; and because the 

values specified by V' are not distinct, A(Crt(y)) = o. Contradiction! We have

shown that for some k and some y*, Ck(ye) bas both V(q) and V(q + N/2). []

Whereas Frederickson and Lynch (1984) use order-equivalent states during the 

same execution, this proof involves order-equivalent states in two different 

executions.

The Distinctness Problem reduces to the Plurality Problem. After finding a 

plurality value v, an algorithm on a ring can use 0(N) more messages to determine 

whether v occurs more than once among the initial values. Thus the lower bound of 

Theorem 4 implies the same lower bound for the the Plurality Problem.

Corollary. On a bidirectional ring of N processors every comparison algorithm 

that solves the Plurality Problem has message complexity Q(N^).
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5. THE BIT COMPLEXITY OF THE DISTINCTNESS PROBLEM

Although comparison algorithms permit arbitrary messages —  not just initial 

values, they seem weak. A comparison algorithm cannot achieve a small message 

complexity by encoding several initial values into one compact message: the initial 

values themselves must be transmitted. Unrestricted algorithms might solve the 

Distinctness Problem more efficiently. For example, let the initial values VAL = 

{0,...,L}. To solve the Distinctness Problem, an algorithm could arrange the 

initial values into sorted order; then it could check whether two adjacent values in 

this order are equal. To sort the initial values 0(N^ log (L/N)) bits suffice 

(Loui, 1983). Our next lower bound asserts that Q(N^ log (L/N)) bits are necessary.

Theorem S . If L > N, then on a bidirectional ring of N processors with initial 

values in {0,...,L}, every algorithm that solves the Distinctness Problem has bit 

complexity Q(N^ log (L/N)).

To prove Theorem 5 we shall use a technique developed by Tiwari (1984). This 

technique generalizes the results of Mehlhorn and Schmidt (1982), who studied 

systems with just two processors.

In a distributed system S partition the processors into sets YQ, ,,tl such 

that every link joins processors in Y. and Yi+1 for some i. Let w A be the number of 

links between Y^ and Yj.+^, and let w = max [w^]. Consider the computation of a

binary function f(U,V) on S, where U is the set of initial values in Y^ and V is the 

set of initial values in Y^; the initial values in Yj, ..., Yj^ are irrelevant. At 

termination the result at every processor is f(U,V). Define the results matrix R

for f: the rows and columns of R are indexed by sets of initial values, and for each
\

0, V,

V  = fU J.v).

Let rank(R) denote the rank of R.
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Lemma 1 (Tiwari, 1984). On S the bit complexity of every algorithm that 

computes f is

Q(k log (rank(R)K 
1 + log w '*

The results matrix R to which we

To construct R we shall use a function

b x b matrix, then

'o B B ... B
B 0 B ... B
B B 0 ... B

F(r,B) = • • • •

• • • •

• • • •

B B B 9 ,,, 0

is a br x br matrix, where 0 denotes a constant b x b matrix whose entries are all
y

zero. F(r,B) has r blocks, each of which is either 0 or B.

Lemma 2. If B is nonsingular and r 2 2, then F(r,B) is nonsingular.

Proof. Suppose there are vectors x±t xr, each with b components, such

that

F(r,B)

xL r .

= 0

By definition of F,

B 2  x. = 0 for all j * 1, ..., 
i#j 1 ( 1)

Sum Equation (1) over all j:

B E  2  x, » (r - 1) b £ x . = 0.
j i#j 1 . j J

Since B is nonsingular and r 2 2,

= 0.
j J

( 2)

By (1) and (2)
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B  ^ x j )  =  0 for all j * 1, ..., r,
hence since B is nonsingular. every = o. []

An alternative proof of Lemma 2 follows from the observation that F(r,B) is a 

Kronecker product of two matrices. Let Jr be the constant r x r matrix whose 

entries are all 1, and let 1^ be the r x r identity matrix. Then

F(r,B) = (Jr - i^) $  b .

The determinant of the Kronecker product of two matrices is a product of powers of 

their determinants:

det F(r,B) = (det(Jr - Ir))(det B)r = (r - 1)(-1)r“1(det B)r # o 

because B is nonsingular. Therefore F(r,B) is nonsingular.

Proof of Theorem 5. Let r « 2 L L/N J . Since L >. N, r > 2. Define a 

collection of initial value distributions V by

(V(p), V(p + N/2)} O  {pr, pr+1, ...» (p+l)r - 1}

for p = 0, ..., N/2 - 1

such that V(p) £ V(p + N/2) for p - N/4, ..., N/2 - 1. The initial values are

distinct if and only if V(p) £ V(p + N/2) for all p = 0, ..., N/4 - 1.

Partition the bidirectional ring into N/4 + 2 sets of processors as follows:

Y0 = (processors 0, 1, ..., N/4 - 1),

^  = {processors N/4, N-l),

Y2 = {processors N/4 + 1, N-2}, ...,

YN/4 = {processors N/2 - 1, 3N/4},

YN/4+l = {processors N/2, N/2 +1, ..., 3N/4 - 1}.

Let V(Y0) be the set of initial values at YQ and V(YN/4+1) be the set of initial

values at The initial values specified by Y are distinct if and only if no

integer is in both V(YQ) and V(YN/4+1). For sets U and U' of initial values define
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a function f by

if some integer is in both U and Ur
rf(U,U') = <

,1 if no integer is in both U and IT .

Any algorithm that solves the Distinctness Problem computes f(V(Y^)py(y )c

Using the function F defined above, we determine the results matrix for f. Let 

®0 = iU » a 1 1 1 matrix, and for n = 1, ..., N/4 let

Bn - F <r- V l > -
The r x r matrix R - is the results matrix for the function f. Each row

of R corresponds to a set of initial values for Y each column to a set of initial

values for Y,N/ 4+1

Now we apply Lemma 1. For our partition k = N/4 + 1, Since between every Y.

an<* ^i+i there are exactly 4 links, w = 4. By induction and Lemma 2, R is 

nonsingular; consequently rank(R) = r1̂ 4. Thus by Lemma 1 the bit complexity of any 

algorithm that computes f is

1 t N/4x „
Q( (N/4 + 1) y Yog 4 > = ÛÎN2 log r) = QCN2 log (L/N) ). []
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