
A C T -50 SEPTEMBER,1984

S — COORDINATED SCIENCE LABORATORY
APPOCO COMPUTATION THEORY GROUP

LOWER BOUNDS ON
COMMON KNOWLEDGE IN
DISTRIBUTED ALGORITHMS

REPORT R-1017 UILU-ENG 84-2212

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

_________ UNCLASSIFIED______
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S PAGE

1a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

REPORT DOCUMENTATION PAGE
j i b . R E S T R I C T I V E M A R K I N G S

Unclassified
2a. S E C U R I T Y C L A S S I F I C A T I O N A U T H O R I T Y 3

N/A____________________________
2b. D E C L A S S I F 1 C A T I O N / D O W N G R A D I N G S C H E O U L E

None
. d i s t r i b u t i o n /a v a i l a b i u t y o f r e p o r t
Approved for public release, distribution

unlimited.
N/A______________________

A. P E R F O R M I N G O R G A N I Z A T I O N R E P O R T N U M B E R (S) 5. M O N I T O R I N G O R G A N I Z A T I O N R E P O R T N U M 8 E R (S)

R-Report #1017, ACT-50 (UILU-ENG-84-2212) N/A
So. N A M E O F P E R F O R M I N G O R G A N I Z A T I O NCoordinated Science Laboratory
Jniversity of Illinois

Sb. O F F I C E S Y M B O L
(I f applicable>

N/A
7a. N A M E O F M O N I T O R I N G O R G A N I Z A t T o n

Joint Services Electronics Program (JSEP)
National Science Foundation (NSF)

6c. A O Q R E S S (City. State and ZIP Code)

L101 W1 Springfield Avenue
Jrbana, IL 61801

7b. A O O R E S S (Citv. State and ZIP Code)

800 N. Quincy St. 1800 G St. N.W.
Arlington, VA 22217 Washington, D.C. 20550

(JSEP) (NSF)
8*. N A M E O F F U N O IN G / S P O N S O R IN G

O R G A N I Z A T I O N
Joint Services Electronics Prog,
ifefciflflfil Science Foundation_____

8b. O F F I C E S Y M B O L
(If applicable>

____ ülA______________

9. P R O C U R E M E N T I N S T R U M E N T I D E N T I F I C A T I O N N U M B E R
(JSEP) N00014-79-C-0424
(NSF) MCS-8217445

Sc. A O O R E S S (City. State and ZIP Code) 10. S O U R C E OP F U N O I N G NOS.

300 N. Quincy St.»Arlington,VA 22217
L800 G St. N.W.»Washington,D.C. 20550

(0NR)
(NSF)

P R O G R A M
E L E M E N T NO.

P R O J E C T
NO.

•

T A S K
NO.

W O R K U N I T
NO.

11. T I T L E (Include Security Classification)

Lower Bounds on Common Knowledge... N/A N/A N/A N/A
12. p e r s o n a l a u t h o r (S) E. Gafni,M.C.Loui,P. Tiwari, D . B . West,S. Zaks
13a. T Y P E OF R E P O R T 13b. T I M E C O V E R E D 14. O A T E O F R E P O R T (Yr., Mo.. Day) IS. P A G E C O U N T

Technical F R O M T O September 1984 21
16. S U P P L E M E N T A R Y N O T A T I O N

17. C O S A T I C O O E S 18. S U B J E C T T E R M S (Continue on reverse if necessary and identify by block number)

F I E L D G R O U P SUB. GR. Distributed algorithms, communication complexity

19. A B S T R A C T (Continue on reverse if necessary and identify by block number)

We establish lower bounds on the communication complexity of several distributed
algorithms that achieve common knowledge. On a ring of N processors every comparison
algorithm that solves the plurality problem or the distinctness problem requires ft (N2) messages.
On a ring of N processors every algorithm that solves the distinctness problem requires
iKN log (L/N)) bits among its messages. We include precise definitions of distributed
algorithms and their executions.

20. Ol S T RI B U T I O N / A V A I L A B I L I T Y OF A B S T R A C T 21. A B S T R A C T S E C U R I T Y C L A S S I F I C A T I O N

U N C L A S S I F I E D / U N L I M I T E D 3 S A M E AS RPT. □ O T I C U SER S □ UNCLASSIFIED
22a. N A M E O F R E S P O N S IB L E I N D I V I D U A L

__

22b. t e l e p h o n e n u m b e r
(Include Area Code)

22c. O F F I C E S Y M B O L

NONE
DD FORM 1473, 33 APR e d i t i o n o f i j a n 73 is o b s o l e t e . UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H IS P A G E

SECUR ITY CLASSI FIÇA TIO N OF TH IS PAGE

LOWER BOUNDS ON COMMON KNOWLEDGE IN DISTRIBUTED ALGORITHMS*

Eliezer Gafni*
rMichael C. Loui
2Prasoon Tiwari

Douglas B. West**

Shmuel Zaks^

September 1984

Abstract
We establish lower bounds on the communication complexity of several

distributed algorithms that achieve common knowledge. On a ring of N processors
every comparison algorithm that solves the plurality problem or the distinctness
problem requires Q(N^) messages. On a ring of N processors every algorithm that
solves the distinctness problem requires Q(N^ log (L/N)) bits among its messages.
We include precise definitions of distributed algorithms and their executions.

♦This research was performed at the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign.

^Department of Computer Science, University of California at Los Angeles, Los
Angeles, California 90024. Supported by the Joint Services Electronics Program
(U.S. Air Force, U.S. Army, U.S. Navy) under Contract N00014-79-C0424.

2Department of Electrical and Computer Engineering and Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
Supported by the National Science Foundation under Grant MCS-8217445 and by the
Eastman Kodak Company.

^Department of Electrical and Computer Engineering and Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
Supported by the National Science Foundation under Grant MCS-8217445.

department of Mathematics,
Illinois 61801.

University of Illinois at Urbana-Champaign, Urbana,

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139. Supported by the National Science Foundation unde
Grant MCS-8302391. On leave from the Department of Computer Science, Technion,
Haifa, Israel.

1

1. INTRODUCTION

An algorithm for a distributed computer system achieves common knowledge if it

computes a function that requires the participation of all processors, Korach

et al, (1984) call such a function global. The processors compute this global

function by exchanging some local information at each step.

Efficient distributed algorithms have been designed to compute maxima (Dolev

et al., 1982; Peterson, 1982), medians (Frederickson, 1983; Rodeh, 1982; Santoro and

Sidney, 1982), minimum spanning trees (Gallager et al., 1983), shortest paths

(Chandy and Misra, 1982), and maximum flows (Segall, 1982). Each of these

algorithms achieves common knowledge.

In this paper we study further problems on distributed systems. We establish

new lower bounds on the communication complexity of activation, plurality, and

distinctness problems. These problems are ostensibly simpler than the problems

previously investigated, yet they are fundamental: algorithms that achieve common

knowledge often involve decisions about activation of processors or distinctness of

input values. Thus we believe that our techniques will yield lower bounds when

applied to other problems.

The communication complexity of an algorithm is measured by the number of

messages or the number of bits that are transmitted on communication links by the

processors executing the algorithm. Several lower bounds on communication

complexity are known. As usual, to express these lower bounds, Q(g(N)) denotes a

function f such that for some constant c, f(N) 2 c g(N) for all N sufficiently

large. For the election problem Burns (1980) obtained a lower bound of Q(N log N)

messages in the worst case on a bidirectional ring with N processors. Frederickson

and Lynch (1984) derived an Q(N log N) lower bound for election even when the ring

is synchronous. Pachl et al. (1982) demonstrated that Q(N log N) messages are

necessary on the average for election on a unidirectional ring. For the sorting

2 l
problem Loui (1983) proved that when the values are in {0,...,L}, every algorithm

requires Q(hr log (L/N)) bits among messages on a bidirectional ring. For the

computation of minimum spanning trees Santoro (1982) and Korach et al. (1984)

established Q(N log N) lower bounds on messages on various networks with N

processors.

Section 2 defines precisely the execution of a distributed algorithm and the

two performance measures: message complexity and bit complexity. Also, this Section

defines the problems that we discuss. Section 3 presents some elementary results,

including the message complexity of the activation problem. Section 4 treats the

message complexities of the distinctness and plurality problems. Section 5

discusses the bit complexity of the distinctness problem.

3

2. DEFINITIONS

2.1. The Computational Model

We adopt the model of asynchronous distributed computation developed by Santoro

(1981« 1982). After describing the model informally« we give complete« precise

definitions.

A distributed system comprises identical processors connected via a

communication network. Processor y can send a message directly to processor z if

and only if link (y,z) is in the network. The transmission of a message incurs an

unpredictable but finite delay. Messages sent on the same link (y,z) arrive at z in

the same order as they were sent.

Every processor executes the same algorithm« which specifies the messages sent

by the processor. Any message transmitted by a processor depends only on the

sequence of messages that it has received. Initially« each processor knows only the

links that involve it; thus the algorithm cannot use information about the global

structure of the network. Each processor y has an identifier ID(y) and an

initial value V(y). The processors exchange messages to compute a function of these

values. At the end of the computation« every processor y has a result R(y).

In a bidirectional ring, each processor can exchange messages only with its two

neighbors. To each processor in a bidirectional ring assign an integer p, 0 <_ p <

N. If integer p is assigned to processor y and integer q is assigned to processor

z, then we shall refer to 'processor p" and to "link (p,q)." Thus the bidirectional

ring has links (p, p — 1 mod N) and (p, p + 1 mod N) for all p. The assignment of

integers to processors is used only for clarity of exposition; since the processors

are identical« processor p does not have access to the number p. Although we derive

lower bounds on bidirectional rings« our techniques could be applied to networks

with other topologies.

4

The message complexity of an algorithm is a function that assigns to every N

the maximum of the number of messages used by the algorithm on distributed systems

with N processors. The bit complexity of an algorithm is a function that assigns to

every N the maximum of the number of bits in all messages used by the algorithm on

distributed systems with N processors. Abelson (1980), Ja' Ja' and Kumar (1984),

Papadimitiou and Sipser (1984), and Yao (1979) studied the bit complexity measure in

similar contexts.

Let us define the computational model precisely. A distributed system is an

octuple (PROC, LINKS, MES, IDEN, VAL, RES, In, Out), where

PROC is a finite set of processors.
LINKS PROC x PROC is a set of links.
MES is a set of messages.
IDEN is a set of identifiers.
VAL is a set of initial values.
RES is a set of results, and
In and Out are functions defined below.

For simplicity assume that every processor y has the same number d of incoming

links of the form (w^# y) and the same number d of outgoing links of the form

(y* z£). At each processor assign to each incoming link a distinct number in

{1, ..., d]. The function

In: LINKS {1, ..., d}

expresses these assignments. At each processor assign to each outgoing link a

distinct number in {1, ..., d}. The function

Out: LINKS {1, ..., d}

expresses these assignments.

An initial value distribution is a function y — > V(y) from PROC to VAL. An

identifier distribution is a function y — > ID(y) from PROC to IDEN. A

result distribution is a function y — » R(y) from PROC to RES.

The computation by each processor depends only on its identifier, its initial

value, and the sequence of messages that it has received. We formalize this notion.

5

An event is the transmission or arrival of a message at a processor y. An

event is specified by listing the processor, the message, the link number, and

whether it is a transmission or an arrival.

Each processor has a current state. The state of a processor y comprises an

identifier id, an initial value v, and a sequence of zero or more events at y. Thus

a state has the form

^id, v, e , a s
9 9 1 # v j # « t i l |

where e^t ..., e^ are events. Call k the length of the state. State s# is a

successor of state s if s is a prefix of s*. In response to an event e, a processor

in state s undergoes a transition into a new state that results from the

concatenation of e onto the end of s. Let STATES be the set of states.

Each link (y,z) has a finite queue Q(y,z) of messages. A message can be

enqueued onto the rear of Q(y,z) or dequeued from the front of Q(y,z).

A configuration is a function C that specifies states for the processors and

message queues for the links. If y is a processor, then C(y) is a state. If (y,z)

is a link, then C(y,z) is a queue of messages. A configuration CQ £s initial if the

length of every state C^(y) ¿s o an<i every queue CQ(y,z) is empty.

A distributed algorithm is a function

A: STATES (ft) u (MES x {l,...,d}) U RES

that specifies what a processor does in any state. If processor y is in state s,

then either y does nothing (A(s) = 0); or y transmits a message on an outgoing link,

as specified by A(s) e MES x {l,...,d}; or y concludes with a result A(s) s RES. If

A(s) e MES x {l,...,d}, then A(s) induces a transmission event at y. A state s is

terminal for A if for every successor s' of s, including s itself, A(s') is a fixed

result. In other words, if processor y is in a terminal state, then despite state

transitions caused by arrival events, y neither transmits messages nor changes its

result.

6

An execution of an algorithm A is a finite sequence of configurations

C0» , Cj, • • •, ct ,

starting from an initial configuration CQ, 8UCh that for every i, Ci+1 is obtained

from in one 0f two ways:

(1) concatenating a transmission event e. induced by A(C(7i)) at some processor 7i

onto the end of the state of y a n d enqueuing the corresponding message onto

the link (y^^z^) indicated by e^; or

(2) concatenating an arrival event e^ onto the end of the state of some processor

z£, and dequeueing the corresponding message from the link (y^z^) indicated by

V
An execution terminate,« if in its last configuration Ct all processor states are

terminal and all message queues are empty.

A problem is a function P that maps an initial configuration CQ to a result

distribution P(Cq). In the sequel we shall consider restrictions of problems to

bidirectional rings; in these cases we shall assume that P is defined only for

initial configurations on bidirectional rings. An algorithm A solves a problem P if

for every initial configuration every execution of A starting from Cq terminates,

and the results computed by A agree with the result distribution P(Cq).

These definitions ensure the properties of distributed algorithms described

earlier in this Section. The system is asynchronous; an algorithm may have many

executions for the same identifier distribution and initial value distribution. All

messages sent on the same link arrive reliably in the order in which they were sent.

Every processor executes the same algorithm. Finally, the behavior of a processor

depends only on the messages that it has received. Since the algorithm uses numbers

in {l,...,d} to identify links, it cannot take advantage of the size of the system.

7

If a terminating execution has t events, then it has exactly t/2 transmission

events and t/2 arrival events because all message queues become empty. For brevity

we shall say that the execution has "t/2 messages." The message complexity of an

algorithm A is a function g(N) that assigns to each N the maximum number of messages

in executions of A on a distributed system of N processors. To define the bit

complexity assume that MES is a prefix-free collection of binary strings; these

binary strings encode the actual messages. The prefix—free property enables the

receiving processor to parse a sequence of messages. The bit complexity of an

algorithm A is a function that assigns to each N the maximum number of bits among

messages in executions of A on a distributed system of N processors.

Our lower bounds on bit complexity apply to all algorithms. To obtain lower

bounds on message complexity we consider comparison algorithms, which we define

below. Our definitions resemble the definitions of Frederickson and Lynch (1984),

who studied synchronous systems.

Assume that VAL MES and that VAL is a totally ordered set. Furthermore,

assume that two elements in MES are comparable only if both are in VAL, or if both

are not in VAL; the elements in VAL are incomparable with elements not in VAL. Use

the symbol < for the ordering relation on MES. For a state s and i J> 1 define M.(s)

to be the message in the ith event in s. Define M ^ s) t0 be the initial identifier

in s and Mq ($) to be the initial value in s. States s and s' are order—equivalent

if and only if

(1) they have the same length k;

(2) for all -1 <_ i, j ¿ k, M^(s) and Mj(s) are related in the same way as M^(s')

and M^(s») — that is, in both cases the relation is < or = or > or

incomparable; and

(3) for every j the jth events in s and s' are either transmission events on the

same outgoing link or arrival events on the same incoming link.

8

An algorithm A is a comparison algorithm if whenever s and s' are order-

equivalent states, the following conditions hold:

(1) A(s) and A(s') belong to the same set among 0, MES x {l,...,d}, RES;

(2) if A(s) 8 RES, then A(s) = A(s'); in particular, if s is terminal, then s' is

terminal;

(3) if A(s) 8 MES x {l,...,d}, then the successor states that result from the

transmission events induced by A(s) and A(s') are order—equivalent — that is,

the messages transmitted from states s and s' preserve the order-equivalence;

(4) if A(s) specifies a message m i IDEN u VAL, then A(s') specifies the same

message m;

(5) if A(s) specifies a message m 8 IDEN u VAL, then m is either the identifier in

s or the initial value in s or a message in one of the events in s.

9

2.2. Problems

1. Activation: Notify every processor that every processor in the system is

active. An algorithm solves the Activation Problem if in all executions of the

algorithm, each processor y enters a terminal state only after every processor has

transmitted a message. For this problem the initial values are irrelevant.

2. Election: Elect exactly one leader in a network. An algorithm solves the

Election Problem if there is exactly one processor w such that the result at w is

R(w) = 'felected/' and the result at y is R(y) = ID(w) for all y^w. Call processor w

the leader. For this problem the initial values are irrelevant.

3. Plurality: Determine the plurality value in a network with arbitrary

initial values. An algorithm solves the Plurality Problem if the result at every

processor y is the same R(y) = v, where v is an initial value that appears at least

as often as every other value among the initial values.

4. Distinctness: Determine whether all the initial values are distinct. For

every processor y the result R(y) = 1 if all values in the initial value

distribution are distinct, and R(y) = 0 otherwise.

10

3. ELEMENTARY RESULTS

Theorem 1. An algorithm that solves the Activation» Election» Plurality, or

Distinctness Problem on every system uses at least e messages when the system has e

links.

Proof. Suppose, to the contrary, an algorithm that solves one of these

problems uses fewer than e messages for all initial configurations on a system S

with e links. It follows that for every terminating execution of the algorithm,

there is a link (x,z) on which no messages are transmitted.

For this execution S is indistinguishable from a system S' that has an

additional processor y with links (x,y) and (y,z), but no link (x,z). Thus for the

execution of the algorithm on S', processors x and z reach terminal states before y

transmits its first message.

For the Activation Problem, z has already reached a terminal state before y

transmits a message, a contradiction. For the Election Problem, since x sends no

messages, y will not receive the identifier of the leader, a contradiction.

For the Plurality and Distinctness Problems, although y may send messages to z,

the result at z remains the same. But varying the initial value at y could change

the results of these problems. []

We prove that unless the processors have distinct identifiers, the Election

Problem cannot be solved by a distributed algorithm.

Theorem 2. There is no algorithm that solves the Election Problem in networks

that permit multiple copies of identifiers, even if the pattern of identifiers is

asymmetric.

11

Proof. Suppose, to the contrary, algorithm A uses at most M messages to elect

a leader on a bidirectional ring S with N processors. For any identifier

distribution on S, splice together 2 + 2 copies of this identifier

distribution to form a linear array of (2 r|j 1 + 2)N processors. Join the ends of

this array to a new processor z with a new identifier. Call the resulting

bidirectional ring S'. In S' there are adjacent copies Sj of S such that every

processor in or S2 is at least distance M from z. Since no messages that

originate at z affect processors in oz Sj, both S± and S2 will elect leaders. []

Angluin (1980) gave a similar proof for her Theorem 4.6. Henceforth we assume

that the processors have distinct identifiers.

Theorem 3. Let N be a power of 2. On a bidirectional ring of N processors

every comparison algorithm that solves the Activation Problem has message complexity

Q(N log N).

To establish Theorem 3, we first define a chain. If during an execution of an

algorithm processor y^ sends a message to another processor y2 , then the sequence

(V V
is a chain of length 1, In general, a chain of length k is a sequence of distinct

processors

*yl, **•' yk-l' yk' yk+l*
such that (y1# ..., y^^, y^) is a chain of length k—1, and y^ sends a message to

yfc+l after the chain message from y^_^ arrives at y^.

We shall modify the proof of Frederickson and Lynch (1984) for the Election

Problem when N is a power of 2. Frederickson and Lynch considered a particular

identifier distribution that has some symmetry properties. They showed that for

every execution of any algorithm that solves the Election Problem on a ring with

this identifier distribution, the length of some chain is at least N/2.

12

Furthermore, because of the symmetry in the identifier distribution, every

comparison algorithm requires at least | log2 N messages, in the worst case, to

establish a chain of length N/2.

Proof of Theorem 3.. Let A be a comparison algorithm that solves the Activation

Problem on a ring of N processors. Assume the initial configuration specifies the

identifier distribution of Frederickson and Lynch (1984). We shall demonstrate that

for every execution of A there is a chain whose length is at least N/2.

Suppose, to the contrary, in some execution of A the length of the longest

chain is less than N/2. Let y be a particular processor, and let Y be the set of

processors z such that in this execution z is in a chain that ends at y. Let Y' be

the set of processors not in Y. By hypothesis, Y' is not empty: the processor

diametrically opposite from y is in Yf.

Construct another execution of A, starting from the same initial configuration,

in which no processor in Y' sends messages. In this new execution y receives the

same sequence of messages as before and enters the same terminal state before every

processor has transmitted a message. This is a contradiction.

Now the argument of Frederickson and Lynch implies the desired G(N log N) lower

bound on the message complexity of A. []

13

4. THE MESSAGE COMPLEXITY OF THE DISTINCTNESS AND PLURALITY PROBLEMS

An algorithm could solve the Distinctness Problem on a ring of N processors

with 0(N log N) messages: (1) nse 0(N log N) messages to elect a leader; (2) use N

messages of increasing length to accumulate all the initial values and deliver them

to the leader; and (3) after the leader decides whether the initial values are

distinct« use N messages to deliver the result to the other processors. A

comparison algorithm must use Q(N^) messages« however. The proof of this fact must

overcome several subtleties.

Theorem 4. On a bidirectional ring of N processors every comparison algorithm

that solves the Distinctness Problem has message complexity Q(N^).

Proof. Let A be a comparison algorithm that solves the Distinctness Problem.

We describe a collection of distributions for which in the worst case some execution

of A has QCN2) messages.

Let VAL be a set of N values {v0 , T (M) such that v t < Tj if and only

if i j« Let D be the collection of distributions V for which

V(p) 8 iv2p* v2p+l} for P “ °» •••> N/2 - 1,
V(p + N/2) s tv2pJ v2p+1) for p = 0, N/2 - 1,

Fix any distribution V in D for which

V(p) * V(p + N/2) for all p.

One might surmise that to solve the Distinctness Problem each diametrically opposite

pair of values V(q) and V(q + N/2) must be compared. Motivated by this intuition«

we shall demonstrate that for every processor q« at the end of every terminating

execution of A on V some processor state s must contain both V(q) and V(q + N/2).

It follows that the values V(q) and V(q + N/2) themselves must have been transmitted

as messages N/2 times because under A, a processor y may transmit a value v only if

v is in the state of y. Since A uses N/2 messages for every q = 0 , ..., N/2 - 1, it
uses at least (N/2)(N/2) = Q(N^) messages.

14

Let

C0» Cj , •«•» Ct

be a terminating execution of A, and suppose that for some q no C^(y) contains both

V(q) and V(q + N/2). We shall derive a contradiction. Let V' be the distribution

defined by

V'(p) = V(p) for all p i6 q,

V*(q) - V'(q + N/2) = V(q + N/2);

whereas all values of V are distinct, not all values of V' are distinct. Since A is

a comparison algorithm, the computation of A on V r should resemble its computation

on V. More precisely, define to be the initial configuration in which V' is the

initial value distribution. We shall construct inductively a terminating execution

C'A r» p#
Q * '■'1* • • • • '■'t

of A on V' that satisfies the following Substitution Property for each k:

every C'k(y) will differ from C^(y) only by the substitution of V'(p) for

V(p) for all p;

every C'^(y,z) will differ from C^(y,z) only by the substitution of V'(p)

for V(p) for all p.

By hypothesis, since Ck(y) does not have both V(q) and V(q + N/2), the Substitution

Property implies that Ck(y) is order-equivalent to C'k(y). By definition of C'q ,

the Substitution Property holds for k = 0.

Suppo se

C* p» p#Q» '■'l* •••» w J-
have been defined. Consider the event ek associated with the transition from to

There are two possibilities. First, suppose ek is an arrival event on link

ŷk'zk^* Define C'k+2 to be the configuration induced by an arrival event on

7̂k'zk* from configuration C'k. Since the Substitution Property holds for C'k, it

15

holds for C'^^ too. Second, suppose ek is a transmission event on link (y^s^)»

and let m^ be the message sent by yk in state Ck(yk). Because C^iy^) is order-

equivalent to C'k(yk)# processor yk can also send a message m'k on (ŷ »Zj-) in state

C k(yk) * ^et ^#k+l *^e c°af iguration that results from C'k by the transmission

of m'k on (y^»zj.). Since A is a comparison algorithm, the state whose

last event has n»k# is order-equivalent to the state C'^+^(y^), whose last event has

m *k. Thus, if mk e IDEN li VAL and mk is the message in the jth event in Cj,(y^),

then m'k is the message in the jth event in C'k(yk); it follows by the Substitution

Property for C'k that if mk = V(p) for some p, then m'k = V'(p), hence the

Substitution Property holds for C ' ^ . if mk i JDEN U VAL, then mk = m'k, and again

the Substitution Property holds for ^k+1

For every y, since C^(y) is order-equivalent to C'^(y) and A is a comparison

algorithm, the results of the two executions are the same: for every y,

A(Ct(y)) = A(C't(y)).

But because the values specified by V are distinct, A(Ct(y)) = l; and because the

values specified by V' are not distinct, A(Crt(y)) = o. Contradiction! We have

shown that for some k and some y*, Ck(ye) bas both V(q) and V(q + N/2). []

Whereas Frederickson and Lynch (1984) use order-equivalent states during the

same execution, this proof involves order-equivalent states in two different

executions.

The Distinctness Problem reduces to the Plurality Problem. After finding a

plurality value v, an algorithm on a ring can use 0(N) more messages to determine

whether v occurs more than once among the initial values. Thus the lower bound of

Theorem 4 implies the same lower bound for the the Plurality Problem.

Corollary. On a bidirectional ring of N processors every comparison algorithm

that solves the Plurality Problem has message complexity Q(N^).

16

5. THE BIT COMPLEXITY OF THE DISTINCTNESS PROBLEM

Although comparison algorithms permit arbitrary messages — not just initial

values, they seem weak. A comparison algorithm cannot achieve a small message

complexity by encoding several initial values into one compact message: the initial

values themselves must be transmitted. Unrestricted algorithms might solve the

Distinctness Problem more efficiently. For example, let the initial values VAL =

{0,...,L}. To solve the Distinctness Problem, an algorithm could arrange the

initial values into sorted order; then it could check whether two adjacent values in

this order are equal. To sort the initial values 0(N^ log (L/N)) bits suffice

(Loui, 1983). Our next lower bound asserts that Q(N^ log (L/N)) bits are necessary.

Theorem S . If L > N, then on a bidirectional ring of N processors with initial

values in {0,...,L}, every algorithm that solves the Distinctness Problem has bit

complexity Q(N^ log (L/N)).

To prove Theorem 5 we shall use a technique developed by Tiwari (1984). This

technique generalizes the results of Mehlhorn and Schmidt (1982), who studied

systems with just two processors.

In a distributed system S partition the processors into sets YQ, ,,tl such

that every link joins processors in Y. and Yi+1 for some i. Let w A be the number of

links between Y^ and Yj.+^, and let w = max [w^]. Consider the computation of a

binary function f(U,V) on S, where U is the set of initial values in Y^ and V is the

set of initial values in Y^; the initial values in Yj, ..., Yj^ are irrelevant. At

termination the result at every processor is f(U,V). Define the results matrix R

for f: the rows and columns of R are indexed by sets of initial values, and for each
\

0, V,

V = fU J.v).

Let rank(R) denote the rank of R.

17

Lemma 1 (Tiwari, 1984). On S the bit complexity of every algorithm that

computes f is

Q(k log (rank(R)K
1 + log w '*

The results matrix R to which we

To construct R we shall use a function

b x b matrix, then

'o B B ... B
B 0 B ... B
B B 0 ... B

F(r,B) = • • • •

• • • •

• • • •

B B B 9 ,,, 0

is a br x br matrix, where 0 denotes a constant b x b matrix whose entries are all
y

zero. F(r,B) has r blocks, each of which is either 0 or B.

Lemma 2. If B is nonsingular and r 2 2, then F(r,B) is nonsingular.

Proof. Suppose there are vectors x±t xr, each with b components, such

that

F(r,B)

xL r .

= 0

By definition of F,

B 2 x. = 0 for all j * 1, ...,
i#j 1 (1)

Sum Equation (1) over all j:

B E 2 x, » (r - 1) b £ x . = 0.
j i#j 1 . j J

Since B is nonsingular and r 2 2,

= 0.
j J

(2)

By (1) and (2)

18

B ^ x j) = 0 for all j * 1, ..., r,
hence since B is nonsingular. every = o. []

An alternative proof of Lemma 2 follows from the observation that F(r,B) is a

Kronecker product of two matrices. Let Jr be the constant r x r matrix whose

entries are all 1, and let 1^ be the r x r identity matrix. Then

F(r,B) = (Jr - i^) $ b .

The determinant of the Kronecker product of two matrices is a product of powers of

their determinants:

det F(r,B) = (det(Jr - Ir))(det B)r = (r - 1)(-1)r“1(det B)r # o

because B is nonsingular. Therefore F(r,B) is nonsingular.

Proof of Theorem 5. Let r « 2 L L/N J . Since L >. N, r > 2. Define a

collection of initial value distributions V by

(V(p), V(p + N/2)} O {pr, pr+1, ...» (p+l)r - 1}

for p = 0, ..., N/2 - 1

such that V(p) £ V(p + N/2) for p - N/4, ..., N/2 - 1. The initial values are

distinct if and only if V(p) £ V(p + N/2) for all p = 0, ..., N/4 - 1.

Partition the bidirectional ring into N/4 + 2 sets of processors as follows:

Y0 = (processors 0, 1, ..., N/4 - 1),

^ = {processors N/4, N-l),

Y2 = {processors N/4 + 1, N-2}, ...,

YN/4 = {processors N/2 - 1, 3N/4},

YN/4+l = {processors N/2, N/2 +1, ..., 3N/4 - 1}.

Let V(Y0) be the set of initial values at YQ and V(YN/4+1) be the set of initial

values at The initial values specified by Y are distinct if and only if no

integer is in both V(YQ) and V(YN/4+1). For sets U and U' of initial values define

19

a function f by

if some integer is in both U and Ur
rf(U,U') = <

,1 if no integer is in both U and IT .

Any algorithm that solves the Distinctness Problem computes f(V(Y^)py(y)c

Using the function F defined above, we determine the results matrix for f. Let

®0 = iU » a 1 1 1 matrix, and for n = 1, ..., N/4 let

Bn - F <r- V l > -
The r x r matrix R - is the results matrix for the function f. Each row

of R corresponds to a set of initial values for Y each column to a set of initial

values for Y,N/ 4+1

Now we apply Lemma 1. For our partition k = N/4 + 1, Since between every Y.

an<* ^i+i there are exactly 4 links, w = 4. By induction and Lemma 2, R is

nonsingular; consequently rank(R) = r1̂ 4. Thus by Lemma 1 the bit complexity of any

algorithm that computes f is

1 t N/4x „
Q((N/4 + 1) y Yog 4 > = ÛÎN2 log r) = QCN2 log (L/N)). []

20

REFERENCES
Abel son, H. (1980), Lower bounds on information transfer in distributed systems,

J. Asso, Comnut. Mach. 27. 384-392.

Angluin, D. (1980), Local and global properties in networks of processors, in *Proc.
12th Ann. ACM Symp. on Theory of Computing," Association for Computing
Machinery, New York, 82-93.

Burns, J.E. (1980), 'A. formal model for message passing systems," Tech. Rep. 91,
Comput. Sci. Dept., Indiana Univ. at Bloomington, May 1980.

Chandy, K.M., and Misra, J. (1982), Distributed computation on graphs: Shortest
path algorithms. Commun. Asso. Comnut. Mach. 25, 833-837.

Dolev, D., Elawe, M., and Rodeh, M. (1982), An 0(n log n) unidirectional distributed
algorithm for extrema finding in circles, J. Algorithm« 3, 245-260.

Frederickson, G.N. (1983), Tradeoffs for selection in distributed networks, _in
'Proc. 2nd ACM Symp. on Principles of Distributed Computing," Association for
Computing Machinery, New York, 1^54-160.

Frederickson, G.N., and Lynch, N.A. (1984), The impact of synchronous communication
on the problem of electing a leader in a ring, jin 'Proc. 16th Ann. ACM Symp. on
Theory of Computing," Association for Computing Machinery, New York, 493-503.

Gallager, R.G. , Humblet, P.A., and Spira, P.M. (1983), A distributed algorithm for
minimum-weight spanning trees, ACM Trans. Prog. Lang. Svst. 5., 66-77.

Ja' Ja', J., and Kumar, V.K.P. (1984), Information transfer in distributed computing
with applications to VLSI, J. Assoc. Comnut. Mach. 31, 150-162.

Korach, E., Moran, S., and Zaks, S. (1984), Tight lower and upper bounds for some *
distributed algorithms for a complete network of processors, in 'Proc. 3rd ACM
Symp. on Principles of Distributed Computing," Association for Computing
Machinery, New York, to appear.

Loui, M, C. (1983), "The complexity of sorting on distributed systems," Tech. Rep.
R—995 (ACT—39), Coordinated Science Lab., Univ. Illinois at Urbana—Champaign.
To appear in Inform. Control.

Mehlhorn, K., and Schmidt, E.M. (1982), Las Vegas is better than determinism in VLSI
and distributed computing, JLn 'Proc. 14th Ann. ACM Symp. on Theory of
Computing," Association for Computing Machinery, New York, pp. 330-337.

Papadimitriou, C.H., and Sipser, M. (1984), Communication complexity,
J. Comnut. System Sci. 28, 260-269.

Peterson, G.L. (1982), An 0(n log n) unidirectional algorithm for the circular
extrema problem, ACM Trans. Prog. Lang. Svst. 4, 758-762.

Pachl, J., Korach, E., and Rotem, D. (1982), A technique for proving lower bounds
for distributed maximum-finding algorithms, in 'Proc. 14th Ann. ACM Symp. on
Theory of Computing," Association for Computing Machinery, New York, 378-382.

21

Rodeh, M. (1982), Finding the median distributively, J. Comput. Svst. Sci. 24.
162-166.

Santoro, N. (1981), Distributed algorithms for very large distributed environments:
New results and research directions, _in 'Proc. Canad. Inform. Processing Soc. ,"
Waterloo, 1.4.1 - 1.4.5.

Santoro, N. (1982), 'On the message complexity of distributed problems," Tech. Rep.
SCS-TR-13, School of Computer Science, Carleton Univ., Dec. 1982.

Santoro, N., and Sidney, J.B. (1982), Order statistics on distributed sets, jin
'Proc. 20th Ann. Allerton Conf. on Communication, Control, and Computing,"
Univ. Illinois at Urbana-Champaign, 251-256.

Segall, A. (1982), Decentralized maximum-flow protocols, Networks 12. 213-220.

Tiwari, P. (1984), Lower bounds on communication complexity in distributed computer
networks, in 'Proc. 25th Ann. IEEE Symp. on Foundations of Computer Science,"
Institute of Electrical and Electronics Engineers, New York, to appear.

Yao, A.C.C. (1979), Some complexity questions related to distributive computing, jji
'Proc. 11th Ann. ACM Symp. on Theory of Computing," Association for Computing
Machinery, New York, 209-213.

