
ACT 27 JUNE, 1981

* COORDINATED SCIEN CE LABORATORY

APPUED COMPUTATION THEORY GROUP

MINIMIZING ACCESS POINTER
INTO TREES AND ARRAYS

MICHAEL C. LOU!

REPORT R-910 UI LU-ENG 81-2241

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

i
I

t
I

t

UNCLASSIFIED
S E C U R IT Y C L A S S IF IC A T IO N o f T h i s p a g e (When D a ta E n te ra d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM
1. r e p o r t n u m b e r 2. G O V T ACCESSIO N NO. 3. R E C I P I E N T ’ S C A T A L O G N U M B E R

4. T I T L E (a n d S u b t it le)

MINIMIZING ACCESS POINTERS INTO TREES AND ARRAYS
5. T Y P E O F R E P O R T 4 PS.RIOO C O V E R E D

Technical Report
s. p e r f o r m i n g o r g . r e p o r t n u m b e r

R-910; ACT 27; UILU-ENG 81-2241
7. a u t h o r /« ;

Michael C. Loui

3. c o n t r a c t o r g r a n t NUMBER/« .)

N00014-79-C-0424; MCS-8010707

9. p s r f q r m i n g o r g a n i z a t i o n n a m e a n o a o o r e s s Coordinated Science Laboratory
University of Illinois
1101 W. Springfield Avenue
Urbana, TT, 61801

to. p r o g r a m e l e m e n t , P R O J E C T , t a s k
AREA 4 WORK U N IT NUM B ER S

11. C O N T R O L L IN G O F F IC E NAM E ANO AOORESS
Joint Services Electronics Program; National Science
Foundation (MIT, Cambridge, MA).

' 2 . R E P O R T D A T E

June 1981
13. N U M B E R O F » A G E S

29
14. M O N IT O R IN G A G E N C Y N A M E 4 AOORESS«'!/ d if fe re n t iron t C o n tro l lin g O f f ic e) IS. S E C U R IT Y CLASS, (o f th is re p o rt)

UNCLASSIFIED
¡5 a. D ECLASS! FI C A T I O N / D O W N G R A D IN G

S C H E D U L E

15. D IS T R IB U T IO N S T A T E M E N T (o f th is R e p o rt)

Approved for public release; distribution unlimited

17. D IS T R IB U T IO N S T A T E M E N T (o f the a b s tra c t e n te red in B lo c k 20, I f d if fe re n t from R epo rt)

18. S U P P L E M E N T A R Y n o t e s

19. K E Y WORDS /C o n tin u e on re v e rs e a id e I f n e c e s s a ry and id e n t i fy by b lo c k num ber)

Tree, array, pointer, data structure, tree machine, multidimensional Turing machine,
simulation.

20. A B S T R A C T (C o n tin u e on re ve rse a ide i f n e c e s s a ry and id e n t i fy by b lo c k num ber)
Multihead tree machines and multihead multidimensional machines are used to

develop new methods for minimizing access pointers into trees and arrays. Every
multihead tree machine of time complexity t(n) can be simulated on-line by a tree
machine with only two access heads in time 0(t(n)log t(n)/log log t(n)). Every
multihead e-dimensional machine of time complexity t(n) can be simulated on-line
0(t(n) ̂ log t(n)). The simulation for trees is optimal.

DD , '2Tn 1473 UNCLASSIFIED
S E C U R IT Y C L A S S IF IC A T IO N o f TH IS P A G E ('When Oaf« E n te re d)

S E C U R IT Y C L A S S IF IC A T IO N O F TH IS P *G E (W hm n Deem E n te ra d)

IS E C U R IT Y C L A S S IF IC A T IO N O F T h i s RAGSf«7»«n D a te E n te re d)

MINIMIZING ACCESS POINTERS INTO TREES AND ARRAYS

Michael C. Loui

Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

June 1981

ABSTRACT

Multihead tree machines and multihead multidimensional machines are used

to develop new methods for minimizing access pointers into trees and arrays.

Every multihead tree machine of time complexity t(n) can be simulated on-line

by a tree machine with only two access heads in time 0(t(n)log t(n)/log log t(n)).

Every multihead e-dimensional machine of time complexity t(n) can be simulated

on-line by a d-dimensional machine with two access heads in time

0(t(n)^+ 1/delog t(n)). The simulation for trees is optimal.

Key Words: Tree, array, pointer, data structure, tree machine, multidimensional

Turing machine, simulation.

Supported by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and
U.S. Air Force) under Contract N00014-79-C-0424. Part of this work was
performed at the Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts with the support of the National Science
Foundation under Grant MCS-8010707.

1. INTRODUCTION

A data structure with local access premits an access pointer into the

structure to change its value from one location only to an adjacent location

in the structure. For example, trees are typically implemented with link

fields in each record to the parent and the children; after information in

a record is retrieved, the next record accessed is one of these adjacent

records. Even arrays may have local access if implemented by orthogonal

lists [Kl] rather than random access to entries by address.

Multihead Turing machines model storage and retrieval operations in data

structures with local access: tree machines for trees, multidimensional

machines for arrays. The access heads of the machines correspond to the access

pointers into the data structures. At each step, the machine can shift each

access head only to an adjacent cell in its worktape storage. Though possibly

unrealistic, the simple input/output and control conventions are not essential

for our results, which depend only on the storage structure and the local

access method.

Paul, Seiferas, and Simon [PSS] established nonlinear lower bounds on

the time required to simulate tree machines on-line by tree machines with

fewer access heads and to simulate multidimensional machines on-line by

multidimensional machines with fewer access heads. In essence, increasing

the number of access pointers into a tree or an array can save time.

We present efficient simulations of multihead machines by machines with

fewer access heads.

Theorem 1. Every multihead tree machine of time complexity t(n) can be

simulated on-line by a tree machine with two access heads on separate work-

tapes in time O(t(n)log t(n)/log log t(n)).

2

Theorem 2. For all d ^ 2 and e ^ 2, every multihead e-dimensional machine

of time complexity t(n) can be simulated on-line by a d-dimensional machine

with two access heads on separate worktapes in time 0 (t(n) ̂ + ~ ̂ ^ elog t(n))

(Slightly stronger versions of Theorems 1 and 2 appear as Theorems 3 and

4 below*)

The simulation for tree machines is optimal (within a constant factor).

Theorem 1 achieves the lower bound Q(t(n)log t(n)/log log t(n)) of Paul,

Seiferas, and Simon.

The simulation for multidimensional machines is not known to be optimal.

The known lower bound on the time required for simulating e-dimensional

machines by d-dimensional machines with just two access heads on-line is

Q(t(n)^+ 6^ for e v e ry § > (d-l)/de(e+1) and d ^ 2 [PSS]. Neverthe­

less, our simulation is faster than the simulation of Paul, Seiferas, and Simon

which for e = d ^ 2 runs in time 0(t(n)^ + ̂ /̂cl e), g = 1/(d^(d-1) + d) .

Furthermore, our simulation employs two data representations, converting from

one to the other when necessary. This technique may be useful in other

situations. For the case d =1, Stoss [S] generalized a classic result of

Hennie and Stearns [HS] and discovered a simulation of an e-dimensional machine

by a one-dimensional machine with two access heads on separate worktapes in

time 0(t(n)^ ^ elog t(n)).

3

2. TREE MACHINES

Tree machines generalize conventional multihead Turing machines with

linear tapes. A tree worktape is a collection of cells organized into a

complete infinite rooted binary tree. The root has two children, and all

other cells each have two children and a parent. A tree machine has a

finite-state control, a read-only linear input tape, a write-only linear

output tape, and a finite number of tree worktapes, each of which has a finite

number of access heads. At each step the machine reads the symbols in the

cells on which the input and worktape heads are positioned, writes symbols

from a finite alphabet on these worktape cells and possibly on the output

tape too, and possibly shifts each head to an adjacent cell. Initially, all

worktape calls hold blanks, and every worktape head is positioned on the root

of its tape. The machine can detect when one of its heads is at the root and

when two heads scan the same cell.

Let W be a tree worktape. To each cell of W assign in a natural way a

string in {0,1}* called the location of the cell. Write W(b) for the cell

of W at location b. Let \ denote the empty string. Then W(X) is the root

of W. Write W[b,r] fpr the complete subtree of W of height r rooted at W(b).

Cell W(a) is at distance r from cell W(b) if an access head requires exactly

r steps to move fromW(a) to W(b). For example, the leaves of W[b,r] are

at distance r fromW(b).

Let T be a tree machine. To establish Theorem 1, we devise an on-line

simulation of T by a tree machine S with two heads on separate worktapes.

Recall that in general, machine M 1 simulates machine M of time complexity

4

t(n) on-line in time f(t(n)) if on every input word, if

are the steps at which M reads or writes a symbol, then there are

corresponding steps — s£ — ••• — at reads °r writes the

same symbols, and every s| < f(s^).

Consider a computation of N steps on T. For simplicity, we present a

simulation in which N is available off-line. The simulation can be converted

to an on-line simulation with time loss of only a constant factor [PSS].
I

(For N' = 1,2,4,8,..., machine S repeats the simulation from the beginning

using N ’ for the length of the computation until N* is at least as large

as N.) Without loss of generality, assume that every worktape head of T

remains within distance O(log N) of the root of its tape. Section 2.3

justifies this assumption. Also, assume that the h access heads of T are on

separate worktapes W^,...,W^. Section 2.2 handles worktapes with multiple

heads.

2.1 Simulation

Call one worktape of S the primary tape P, the other the secondary tape.

Section 2.2 replaces the secondary tape by a linear tape. Divide the cells

of P into 4h tracks, four for each worktape of T, numbered C^,...,C^

(worktape contents), H^,...,H^ (head positions), C^,...,C^ (local contents),

H^,...,H^ (local head positions). In the initial configuration of S, the

blank symbol in every cell is interpreted as a blank symbol on every track.

Set r = (log log N)/2. The N steps of the computation of T are simulated

in N/r phases of r steps each. At the end of the simulation of each phase,

track C^ of P holds the simulated contents of ; for every b, track C^

5

of P(b) holds the same symbol as W^(b) would. Furthermore, at the end of

each simulated phase, track H. indicates a path from the root of P to P(x.)

if the simulated head on VL is positioned on W^(x^).

To simulate one phase, S first determines the location a. of the ancestori
at distance r from the current location x. of the simulated access head on W.,

1 l
setting a. = \ if W^x^) is within distance r of the root W^X). Next, S

copies the contents of tracks CL and 1L of P[ais2r] to the corresponding tracks

and of P[X,2r], using the secondary tape for intermediate storage.

Observe that the access head on VL remains in W^[a^,2r] during this phase of

r steps. Thus, when S completes these copying operations, tracks C|,...,C^

of P[X,2r] hold the contents of all cells that the simulated heads of T

could access during the phase.

To simulate one step of T, machine S employs tracks (L and of P[X,2r]

to determine for each i the contents of the cell read by the simulated head

on W.. Machine S then records the new contents of the cell on track C! andi i
the new head position on track H|. (The management of track H| is entirely

routine.) At the end of the phase, for each i, S uses the secondary tape

to copy the contents of tracks C! and H! of P[X,2rl back onto tracks C.1 x 1
and HL of P[a^,2r].

Let us reckon the time consumed by S . At the beginning and end of each

phase, S moves its head on the primary tape to each P(a^) (time O(log N)

by hypothesis on T). It copies the contents of h trees of 0(4r) cells each

to the top of P and back (time 0(4)). To simulate one step, S twice moves

the head to a cell on P[X,2r] for each simulated head of T (time 0(r)).

Therefore, S runs in time

(N/r) [0 (log N)+0(4r)+r0(r)] = 0(N log N/log log N) .

6

2.2 Multihead Tapes and a Linear Secondary Worktape

We modify S to simulate T when T has multihead tapes. Clearly, we may

assume that the h access heads of T are on the same worktape W. Divide the

primary worktape of S into 3h + 1 tracks called C, H-,...,H, ,1 h i* h
As before, at the end of the simulation of a phase, track C

holds the contents of the simulated worktape W, and tracks H^,...,

specify the access head positions. Tracks C C , * , Hi,1 * h 1*
simulate individual steps.

Machine S sets r = (log log N)/2 and simulates T in N/r phases of r

steps each. To simulate a phase, S determines the location a. of thel
ancestor at distance r from the current location of the i-th simulated access

head of T. In time 0(4r), S decides for each pair (i,j) whether W[a_^,2r] meets

W[a ,2r]. If so, then because head j might read what head i writes during

this phase, S copies track C of both Pfa^r] and P[a^,2r] to the same C'

track of P[\,2r]. Since the time to simulate one step once the copying

operations are completed is 0(hr) = 0(r), this modified S still runs in

time 0 (N log N/log log N).

(To determine whether W[ai,2r] meets W[a ,2r], S marks cells of Pfa^r]

and cells of P[a ,2r] and checks whether P[a.,2r] meets P[a.,2r]. In its
J 1 J

finite state control S constructs a graph with h vertices [l,...,hj and all

edges (i,j) such thatW[ai#2r] meets W[a ,2r]. The connected components of

this graph specify which P[a^,2r] should be copied to the same C' track of

P[X,2r].)

...,H^ are used to

7

Suppose T has head-to-head jumps: at each step head i can jump to the

cell on which head j is located. In terms of data structures, pointer i

can be assigned the current value of pointer j. To simulate this head-to-

head jump, S records the new position of head i on track Hl̂ of P[X,2hr]

in time 0(r). When completing the simulation of the phase, S adjusts the

contents of track in time O(log N) .

We can replace the secondary tree worktape of S by a linear

(one-dimensional) worktape without time loss. Initially, S writes a pattern
2rof length 0(2) on the linear tape that describes a depth-first traversal of

a complete binary tree of height 2r. This can be accomplished by using the
2rprimary tape as a linear tape to count to 2 in binary. To copy the contents

of a tree P[b,2r] from the primary worktape, S copies the contents of the tree

onto this pattern, which specifies the movement of the head on the primary

worktape.

We summarize these alterations to S in a form that subsumes Theorem 1.

Theorem 3 . Every multihead tree machine with head-to-head jumps of

time complexity t(n) can be simulated on-line by a machine with a tree

worktape and a linear worktape, each with one access head, in time

0 (t(n)log t(n)/log log t(n)).

2.3 Depth Reduction

We establish a depth reduction lemma for multihead tree machines. Paul

and Reischuk [PR] obtained a similar result.

Lemma 1. Every multihead tree machine T of time complexity t(n) can

be simulated on-line by a multihead tree machine S of time complexity 0(t(n))

whose worktape heads remain within distance 0(log t(n)) of the root.

8

Proof. As usual, assume that t is a power of 2 and is available off-line

Also, without loss of generality, assume that all h access heads of T are on

one worktape W. The simulator S has several access heads, including three

for each head of T, on one worktape V. Throughout the simulation these

heads remain within distance O(log t) of the root of V.

Divide V into two tracks, numbered 0 and 1. In the initial configuration

a blank in a cell of V is interpreted as a blank on both tracks. During

the simulation, track 0 holds the contents of cells of W, and track 1 holds

control information.

Set L = log(ht). For all b, call W[b,L] the top half of W[b,2L + l] and

the rest of W[b,2L+l] its bottom half. Let v q » vi» * * * ,vht t̂ ie iocations

of cells at distance L from the root, and set = V[v^,2L + l].

Track 0 of Vq always represents the cells of W[X,2L + 1] literally:

for every cell W(x) in W[X,2L + 1], the symbols in W(x) and track 0 of

V(vnx) are the same. (VqX is t̂ie concatenation of the binary strings0
Vq and x.)

For j > 0, however, only the bottom half of holds symbols written

in W. When a ^ X, the contents of W[a,2L + l] correspond to V^,V^, where

i < j, if

(i) there is a cell V(u^) in at distance L from V(v^) such that

v. is written on track 1 of V[u ,L];
J j

(ii) û. is written on track 1 of V[v^,L]; and

(iii) for all x, if W(ax) is in the top half of W[a,2L + l], then the

symbol in W(ax) is the same as the symbol on track 0 of V(u^x),

whereas if W(ax) is in the bottom half of W[a,2L+l], then the

symbol in W(ax) is the same as the symbol on track 0 of V(v^x).

9

Throughout the simulation, S maintains the contents of W through these

correspondences. Suppose either that W[a,2L + 1] corresponds to V^,V^ or

that a = \ and j = 0. If W(b) = W(ac) is at distance L + 1 from W(a) in

W[a,2L+l] and the bottom half of W[b,2L+l] is nonblank, then track 1 of

V[v.c,L] holds some v, , and W[b,2L+l] corresponds to V.,V, . See Figure 1. j ic j K
Observe that the relative position of v^c in is the same as the relative

position of b in W[a,2L + l]. Conversely, if V(v^c) is at distance L + l

from V(v.) in V. and track 1 of V[v.c,L] holds some v, , then W[ac,2L+l]
J J J ^

corresponds to V^,V^.

For every access head H of T, machine S has access heads A (the top

head) and (the bottom head). Suppose W[a,2L + l] corresponds to V^,V^.

To simulate Hm reading cell W(ax) using V̂ ,V̂ ., the top head Am is at cell

V(u^x) and the bottom head at V(v^x). If W(ax) is in the top half of

W[a,2L + l], then the top head Am is in V[u^.,L], and S retrieves the symbol

in W(ax) from track 0 of V(u^x). If W(ax) is in the bottom half of W[a,2L + l],

then S uses the track 0 contents of V(v.x) read by the bottom head B . A

third access head Cm is used by S as a unary counter to determine whether

W(ax) is in the top half or the bottom half of W[a,2L + l].

In the step-by-step simulation of T, there are two situations in

which A and B require reorientation, m m -------------
(1) Let W[a,2L + l] correspond to an<* let use

Suppose Hm attempts to visit a child of a leaf W(az) of W[a,2L+l]. Let

W(b) be the ancestor of W(az) at distance L fromW(az). Similarly, let

V(VjC) be the ancestor of V(v^z) at distance L from V(v^z). Define d so

that cd = z. See Figure 1. If track 1 of V[v.c,L] contains some v, ,J »

10

then W[b,2L + l] corresponds to V^,V^. In this case S sends Am from V(u^z)

to V(v.z) in V., sends B from V(v.z) to V(v, d) in V, , and resumes j j m J k ' k
the simulation with A ,B using V.jV, . Otherwise, if track 1 of VTv c,Llm m j k L j ’ J
is blank, then S marks the first unmarked V (v^)» writes in track 1 of

V[v.c,L] writes v.c in track 1 of V[v, ,L], and proceeds as above, for now J J *
W[b,2L+l] corresponds to V^,V^. (The contents of track 0 of are

completely blank.)

(2) Let W[b,2L + l] correspond to V̂ .,V̂ , and let Am,Bm use V^V^.

Suppose that Hm attempts to visit the parent of W(b). Let W(a) be the

ancestor of W(b) at distance L + l from W(b). Define c so that b = ac, and

set u, = v.c. From track 1 of V[v.,L], S retrieves u., where V(u.) is in k j J J v y
some V^. We know that W[a,2L+l] corresponds to V^,V^. S sends head Bm

from V(v^) to V(u^) and head Am from V(u^) to V(u^c), and resumes the

simulation with A ,B using V.,V..nr m ° i* j
Since for each access head H of T, machine S simulates at leastm

L = ®(log t) steps between reorientations of A ,B , and each reorientation ° r m nr
takes time 0(log t), we conclude that S simulates T in linear time. □

Corollary. Every multihead tree machine with head-to-head jumps of

time complexity t(n) can be simulated on-line by a tree machine with

head-to-head jumps of time complexity 0(t(n)) whose worktape heads remain

within distance 0(log t(n)) of the root.

11

Proof- We modify the simulator S described in the proof of Lemma 1.

Assume that the tree machine T has h heads on one worktape W. Both S and T

permit head-to-head jumps. Set L = log(ht).

For each worktape head of T, machine S has several heads on the same

worktape V, including A' (ancestor top head) and B' (descendant bottom head)m m '

in addition to the top head A and the bottom head B described earlier.ni m
The heads A' and B' will assist in reorientations. We now specify when A ’ m m m
and B^ are ready.

Suppose Am, Bm use V ̂ t o simulate Hm in W[b,2L+l], cell W(a)

is the ancestor of W(b) at distance L + l from W(b), and b = ac: the top head

A is at V(v.cx), and the bottom head B is at V(v. x) . See Figure 1. If A' m J m tc m
is ready, then A* is at V(u.c), a descendant of V(v.)> such that u. is m - J l j
written on track 1 of V[v ,L]. Note that if A , B used V. , V. to simulateJ m m l j
H at W(b) in W[a,2L + 1], then A would be at V(u .c) .m j

Now suppose further that W(be) is at distance L + l from W(b) and B ism
at V(v^ex) in the bottom half of Vfe. If B^ is ready, then B^ is at V(v^x)

in V., where W[be,2L+l] corresponds to V. , V, . Note that if A , B used* K Xj m m
Vk, to simulate Hm in W[be,2L+l], then Bm would be at V(v^x).

The on-line simulation of T by S proceeds as before. Let W[b,2L+l]

correspond to V , V, , and let A. B use V., V. . When H shifts to an J K m m j k m
adjacent cell in W[b,2L + l], heads A^ and Bm shift to the corresponding

cells in V and V, . Furthermore, if B' in V. is ready, and B remains in J K m l m
the bottom half of V^, then B^ also shifts to an adjacent cell in and

remains ready.

12

To simulate a jump of H to H , all heads of S for H jump to the

corresponding heads for H : head A jumps to A , head B to B , head A'p m p m p m
to A ’, and head B ' to B ' . If A' is ready, then S marks A' ready; if B'p ’ m p p J m - ' p
is ready, then S marks B^ ready.

Suppose H shifts to the parent of W(b). If A' is ready at a descendantm m
of V(v.), then head B jumps to A , head A jumps to A ’, and the simulation v t m j r nr m j r nr
continues with A , B using V. , V.; after this reorientation, heads A'

m m ° 1 j m

and B^ are no longer ready. If A^ is not ready when Hm shifts to the parentm m
of W(b), then a widespread reorientation is necessary to make Am, Bm use

Vi, V . Widespread reorientations are discussed below.

Suppose that W(be) is at distance L + l from W(b) and shifts to a child

of a leaf W(bex) of W[b,2L+l]. If B^ is ready in V^, then head A^ jumps

to B , head B jumps to B 1, and the simulation continues with A , B using m5 m J r nr nr m °
V, , V.; after this reorientation, heads A* and B* are no longer ready, k X m m
Suppose B' is not ready when H shifts to a child of W(bex). If W[be,2L+l]m m
corresponds to V^, for some V^, then a widespread reorientation makes

A , B use V, , V.. Otherwise, the bottom half of W[be,2L+l] has not been m* m k* Z

visited previously, and an initializing reorientation is necessary to

initialize a new V. to make A , B use V, , V..Z m m k z

As in the proof of Lemma 1, for an initializing reorientation S marks

the first unmarked V(v.), writes v. in track 1 of V[v,e,L], and writes v, e

in track 1 of V[v.,L]. Then S sends head A' to V(v.ce), head A to V(v,ex)m m
in V, , and head B to V(v.x) in V.; it marks A' ready and B' not ready, k m Z Z m m
Furthermore, for all other H , it makes ancestor top head A' ready and,P P

13

when possible, descendant bottom head ready. Observe that L cells in

the top half of W[be,2L+l] must have been visited previously because the

cells visited by heads of T always form a connected region of W. Consequently,

during the simulation of T by S , there are only 0(t/L) initializing

reorientations, each of which takes time 0(L). The total time for initializing

reorientations is 0(t).

When induces a widespread reorientation, S uses information in track 1

to send A , B to the appropriate cells in subtrees V. , V. or V, , V. .m ’ m rr r i ’ j k* i

Moreover, for every p = l,...,h', machine S makes ancestor top head

ready and, when possible, descendant bottom head B^ ready. It is crucial

to realize that S can simulate at least L steps of T between widespread

reorientations. For example, suppose that immediately after a widespread

reorientation, A , B use V ., V, to simulate H in W[b,2L+ll, and B' is p P j k p P
not ready. Then either B^ is in the top half of V^, or B^ is in V[v^e,L]

in the bottom half of V̂ . for some W(be) at distance L + l from W(b), and there

is no such that W[be,2L+l] corresponds to V^, . In the former case,

H is at distance at least L + l from a leaf of W[b,2L+l]. In the latter P
case, if Hp visited a leaf of W[b,2L+l], then it would induce an initializing

reorientation, not a widespread reorientation; after the initializing

reorientation, all ancestor top heads and as many descendant bottom heads as

possible would be ready again.

Therefore, since S simulates at least L steps of T between widespread

reorientations, there are only 0(t/L) widespread reorientations, each of

which takes time 0(L). The total time for widespread reoreintations is

0(t), and S simulates T in linear time. □

14

3. MULTIDIMENSIONAL MACHINES

The two tape simulation of a multidimensional machine devised by Paul,

Seiferas, and Simon [PSS] uses pages of fixed size and a hierarchy of simula­

tion procedures to maintain the locations of the pages. To develop a faster

simulation, we employ a directory and a mechanism for handling pages of

variable size [L]. In addition, our simulator uses both trie representations

and literal representations for contents of the raultihead machine’s worktapes.
i

During the simulation, it may convert the contents of a page from one

representation into the other.

To each cell of a d-dimensional worktape assign in the usual way a

d-tuple of integers called the coordinates of the cell. The origin is the

cell whose coordinates are all zero. A d-dimensional Turing machine has a

finite-state control, a read-only linear input tape, a write-only linear

output tape, and a finite number of d-dimensional worktapes, each of which

has a finite number of access heads. At each step the machine reads the

symbols in the cells on which the input and worktape heads are positioned,

writes symbols from a finite alphabet on these worktape cells and possibly

on the output tape too, and possibly shifts each head to an adjacent cell.

Initially, all worktape cells hold blanks, and every worktape head is

positioned on the origin of its tape.

On a d-dimensional worktape, a box is a set of cells that form a

d-dimensional cube. The volume of a box is the number of cells in it.

The base cell of a box is the cell whose coordinates are the smallest.

The relative position of a cell X in a box B is the list of coordinates

of X when the base cell of B is taken as the origin.

15

Fix integers d ^ 2, e ^ 2, and h. Let E be an e-dimensional machine

with h heads on one worktape. To establish Theorem 2, we design a

d-dimensional simulator D with one head on a d-dimensional worktape and

one head on a linear worktape. Technical details omitted from the

presentation of the simulation in Section 3.1 appear in Sections 3.2

and 3.3.

3.1 Simulation

Consider a computation of N steps on E . As before, assume that N is

available off-line. The coordinates of every cell accessed by E during the

computation can be written as a binary string of length O(log N). For

convenience write log^N for (log N)^.

Define the function tt by
n(x) = 2 ri°8 x1 ;

if x is not a power of 2, then tt maps x to the next larger power of 2. Set

{(N log N)^^e if d ^ 3 or e ^ 3

(N/log N)1 4̂ if d = e = 2

t = TT((b log N)1/d),

_ ,, e/dNu = TT(b),

u* = 4 TT((3eh N log N)1/d) .

At the cost of introducing another constant factor, we may assume that b

is an integer.

16

Partition the worktape of E into pairwise disjoint boxes of side b

called blocks. The position of a block is the list of coordinates of its

base cell.

Divide every cell of the d-dimensional worktape of D into three

tracks numbered 0,1,2. In the initial configuration of D, the blank symbol

in every cell is interpreted as a blank on each track.

A page is a box on the d-dimensional worktape whose side is a power of

2 between t and u that has a nonblank cell counter on track 0. We describe

how the contents of a page P represent the contents of a simulated block B.

(Abusing terminology, we shall say that P represents B when the configurations

are implicitly specified.) First, the value of the nonblank cell counter

must be at least the number of nonblank cells in B . To maintain the contents

of these cells, P uses either a binary internal trie on track 1 or a

literal representation on track 2.

An internal trie (sometimes called a digital trie [K3, p. 489]) is a

collection of nodes organized into a binary tree according to the value

of a binary key: the location of each node v in the tree, written as a

binary string |3(v) in a natural way as in Section 2, is an initial segment

of the key. In the page P a node is a box of fixed volume 0(log N) together

with its contents. In the internal trie representation of B there is a node

for every nonblank cell X in B, and the coordinates of cells are used as

keys. The node v for cell X holds on track 1

the coordinates of X (the key, written as a binary string),

the contents of X, and

the relative positions of the left and right children of \j (if any) in P.

17

The number of nodes equals the number of nonblank cells in B. (We may

assume that E never writes a blank on a worktape cell.) See Figure 2.

The internal trie representation is particularly useful when B has few

nonblank cells.

The literal representation is straightforward. For every cell X of B

there is a cell Y of P whose relative position in P is easily calculated

from the coordinates of X such that Y holds the same symbol (on track 2)

as X does. The literal representation is most efficient when B has many

nonblank cells.

On the d-dimensional worktape D has a mass store, a directory, and a

working area. The mass store is a box of side u* that holds the pages.)
The directory is a box of side u*/log N whose contents maintain the positions

of pages in the mass store. During the simulation, D uses the position of

a block B in E to retrieve from the directory the position of a page that

represents B. (The directory is described in Section 3.2.) The working
0area comprises 3 h contiguous boxes of side u at fixed positions; call

these boxes slo ts. For i = l,...,3n, the position of the i-th slot can

be calculated quickly. The coordinates of every cell in the mass store, the

directory, and the working area can be specified by a string of length

0 (log N).

The linear worktape of D is used for routine arithmetic calculations,

for counting, for maintaining the coordinates of the simulated heads of E,

and for copying pages between the mass store and the working area.

18

Machine D simulates N steps of E in N/b phases of b steps each. At

the beginning of the simulation of each phase, D determines the positions
0

of the at most 3 h blocks that surround the h simulated worktape heads of E;

during the phase the heads remain within these blocks. For each of these

blocks B̂ ., D calls procedure LOCATEPAGE, which uses the directory to locate

the page P that represents B^ . (LOCATEPAGE is described in Section 3.2.)

Next, D copies the contents of P. into the j-th slot Q. in the working area.
J J

In its finite-state control D maintains the correspondence between blocks

and slots; on the linear worktape it records the positions of the corresponding

pages Pj in the mass store. At the end of the phase, D copies the contents

of pages from the working area to the mass store: D copies back to P. just

the box in that was written at the beginning of the phase. To send the

head on the d-dimensional worktape to the proper locations, D uses the linear

worktape as a counter.

During a phase, to simulate one step, D first decides for each simulated

head IL of E the block B^ in which lies. Next, D recalls which slot Qi

in the working area corresponds to Bi . Using the contents of Q^, machine D

determines the contents of the cell X. read by H. and the new symbol that H1 1 L
writes on X ^ If represents Bi literally, then D calculates the relative

position of the cell Y. in Q. that represents X., reads the contents of Y.

(on track 2), and writes the new symbol on track 2 of Y^. If Q employs an

internal trie to represent B^, then D uses the coordinates of X^ to find the

node that holds the contents of X^ on track 1 and records the new contents

19

of in this node. If has not been visited previously, then it holds a

blank, and D creates a node for X^ at an appropriate location in the trie:

D adds a node v to the internal trie for which P(v) is the shortest initial

segment of the coordinates of X^, written in binary, that is not the binary

string P(v') for a node v' already in the trie.

Let us assess the time that D takes to simulate one step. First, D
2determines the coordinates of the worktape cells read by E (time O(log N)

for arithmetic calculations on the linear worktape because this worktape has

just one head). If page Q in the working area uses a literal representation,

then to retrieve or to write the contents of a cell, D computes the relative
2position of the representing cell in Q (time O(log N)) and moves its head

2across the working area (time 0(u)) for a total of O(u+log N) time. If Q

uses an internal trie representation, then the head on the d-dimensional

worktape visits O(log N) nodes of Q - at most one node for each bit of the

coordinates of the cell. For each node, D copies its contents onto the linear

worktape (time O(log N)) and moves its head across the working area (time

0(u)) for a total of O((u + log N)log N) time. Thus, each phase takes time

O(b(u + log N)) to simulate b steps
2 e+ O(log N) to calculate the positions of the 3 h blocks that

surround the heads of E

+ 0(u*) to move the head across the mass store to each of 3eh pages

+ O(u^) to copy the contents of 3eh pages of volume u^ between

the mass store and the working area

+ the time taken by calls to LOCATEPAGE.

In Section 3.2 we show that during the simulation, the total time consumed

by calls to LOCATEPAGE is 0((N/b)u*) + 0(Nu log N). Therefore, the

20

simulation runs in time

(N/b)[0(u*) + 0(u) + 0(bu log N)] + 0(Nu log N)

= 0(Nu*/b) by definition of b

= 0(N log N) if d ^ 3 or e ^ 3

= 0(N574 log374 N) if d = e = 2.

The simulation is routinely modified to handle head-to-head jumps by E.

Theorem 4 . For all d ^ 2 and e ^ 2, every multihead e-dimensional machine

with head-to-head jumps of time complexity t(n) can be simulated on-line by

a machine with a d-dimensional worktape and a linear worktape, each with one

access head, in time

0(t(n) log t(n)) if d ^ 3 or e ^ 3,

0 (t(n)374log374t(n)) if d = e = 2.

3.2 LOCATEPAGE and the Directory

The directory of D is a box of side u*/log N on the d-dimensional worktape,

To maintain the positions of pages whose contents represent contents of blocks,

the contents of the directory are organized into an internal trie that uses

the positions of blocks as keys. For every nonblank block B there is a

node v in the directory of volume 0(log N) that holds

the position of B,

the position of the page P that represents B, and

the positions of the left and right children of v (if any)

such that ¡3(v) is an initial segment of the position of B (written as a binary

string of length 0(log n)). We say that P is assigned to B . A page in the

mass store is active if it is assigned to some block.

21

Throughout the simulation, several relationships among page sizes and

nonblank cell counter values remain invariant. We assert these relationships

as a lemma.

Lemma 2. During the simulation of E by D, the following always hold.

(a) If the nonblank cell counter of a page P has value m, then P
has side min[u,TT((m log N)^^)}.

(b) Let page P represent block B. If P has side u, then P represents

B literally. If the side of P is smaller than u, then P uses an internal

trie.

(c) There are at most 3eh N/b active pages.

(d) The sum of the nonblank cell counter values of the active pages is

at most 3 ^ N.

cl 0Note that since u ^ b , if page P has side u, then P has at least as

many cells as a block B and can contain a representing cell for every cell of

B in a literal representation. If P has side tt((m log N)^^), where m is

the value of its nonblank cell counter, then the at most m nodes of volume

O(log N) in the internal trie representation, one for each nonblank cell

of B, fit in P.

Furthermore, by Lemma 2(c), the directory can accommodate the nodes

for the active pages. For each active page there is a node of volume

O(log N). The implicit constant can be chosen so that

(3eh N/b)0(log N) ^ (u*/log N)d .

22

Now we describe procedure LOCATEPAGE. Given the position of a

block B, LOCATEPAGE employs the directory to find the page P in the mass

store that represents B. If no page is assigned to B, then LOCATEPAGE

calls procedure ALLOCATE to produce a blank box of side t in the mass store

and sets the value of the nonblank cell counter of P to b; since B must

be completely blank (it has not been previously visited), P already

represents B.

If LOCATEPAGE found P in the mass store without calling ALLOCATE, then

LOCATEPAGE ensures that P is large enough to include all nodes that D may

add to the internal trie of P during the phase. Let p be the side of P and

m be the value of its nonblank cell counter. LOCATEPAGE sets the value of

the nonblank cell counter of P to m 1 = min[m+b,be}. Let

p T = minCujTTCCm1 log If p < p 1, then the contents of P are copied

into a new blank box of side p' (found in the mass store by ALLOCATE) to

produce a larger page P' that represetns B with an internal trie. If

p < p* = u, then the internal trie representation on track 1 of P* is

converted into a literal representation on track 2. From every node of the

internal trie, LOCATEPAGE extracts the coordinates of a cell X of B and

copies the contents of X from track 1 into track 2 of the cell of P' that

represents X in the literal representation. The other cells of B are blank,

and track 2 of the corresponding cells of P* remains blank. Finally,

LOCATEPAGE modifies the directory to assign P* to B. It is straightforward

to confirm that the changes made by LOCATEPAGE satisfy the assertions of

Lemma 2.

23

Let us evaluate the time taken by calls to LOCATEPAGE. Section 3.3
2demonstrates that ALLOCATE operates in time O(log N). In the directory,

to move the head from one node to another takes time proportional to

u*/log N, the side of the directory. Consequently, to determine the

position of a page assigned to a block takes time

0 (log N)[0(log N) + 0(u*/log N)] = 0(u*)

because 0(log N) nodes, each of volume 0(log N) are accessed. The arithmetic
2calculations performed by LOCATEPAGE take time 0(log N).

We assess the time for converting internal trie representations into

literal representations separately. Let page P represent block B, and

suppose D converts the internal representation in P into a literal representa

tion. Let m be the value of the nonblank cell counter of P when D performs

the conversion. According to the definition of LOCATEPAGE, m = ®(u /log N).

For each of at most m nonblank cells of B, machine D accesses 0(log N) nodes

of P in time 0((u+log N)log N). By Lemma 2(d), D converts at most

0(N/m) = 0((N log N)/ud) pages during the simulation. Therefore, the total

time for converting representations is

0((N log N)/ud)0(ud/log N)0((u + log N)log N) = 0(Nu log N).

We conclude that the total time consumed by calls to LOCATEPAGE during

the simulation is

0(N/b)[0(u*) +0(log2N)] +0(Nu log N) = 0 (Nu*/b) +0 (Nu log N) .

24

3.3 Storage Allocation

Machine D keeps a free storage list, a list of addresses of blank

boxes in the mass store. For q = 1,2,4,...,u*/2, u*, the free storage list

has positions of at most 2^-1 boxes of side q in the mass store. Initially,

the free storage list holds the position of the mass store, a single box

of side u*.

Procedure ALLOCATE employs a buddy system [Kl] to allocate a blank box

with a desired side in the mass store. To obtain a blank box of side r,

a power of 2, ALLOCATE finds the position of a box of side r on the free

storage list. If the free storage list has no boxes of side r, then let

q* be the smallest power of 2 greater than r for which the free storage

list has a box of side q*. (We shall show that when ALLOCATE is called

during the simulation, q* must exist.) For q = q*,q*/2,...,4r,2r in order,

select a position x of a box C of side q, delete x from the list, and
q q q

add to the list positions of the 2 pairwise disjoint boxes of side q/2

whose union is C^. Finally, let x be the position of a box P of side r

on the free storage list, delete x from the list, and return the value x.
2The time taken by ALLOCATE is O(log N).

Lemma 3. Let r be a power of 2. Suppose the total volume of boxes

on the free storage list is at least r^ in a configuration of D at the

beginning of a call to ALLOCATE. Then this call can produce the position
f

of a blank box of side r in the mass store.

Using Lemma 3, which can be proved routinely [L], we verify that

ALLOCATE can always find the requested boxes in the mass store. At any

25

point during the simulation, let P-^P^ ... be the active pages in the mass

store and m^n^,... be the values of their nonblank cell counters. Let P.

be assigned to block B.. According to Lemma 2(a), the side of P. is at
, ̂ J1 / c\most tt((m. log N) 7). The mass store holds smaller inactive pages that

were assigned to in previous configurations of D. Because the volumes

of these smaller pages are distinct powers of 2, the total volume of pages

ever assigned to B . is at most twice the volume of P., hence at most
1/d Jd J2(tt((iiu log N))) . By Lemma 2(c), the total volume of all pages in the

mass store is at most

^2(17(0 log N)1/d))d < 2(2d3eh N log N) < (u*)d .

Ergo, whenever ALLOCATE is invoked to find a blank box of side r, the total

volume of blank boxes on the free storage list is at least r^.

26

4. RESEARCH DIRECTIONS

1. Kosaraju [Ko] proved that multihead one-dimensional machines with

head-to-head jumps can be simulated in real time by one-dimensional machines

with just one access head per worktape. Do multihead tree machines and

multidimensional machines with head-to-head jumps share this property?

Leong and Seiferas [LS] presented real time simulations of multihead

multidimensional machines without head-to-head jumps.

2. How fast can tree machines and multidimensional machines simulate

each other? Reischuk [R] devised on-line simulations of multidimensional

machines of time complexity t(n) by tree machines in time 0(t(n)c^°^ t(n))

for a constant c. Pippenger and Fischer [PF3 gave an on-line simulation
2

of a tree machine by a one-dimensional machine in time 0(t(n) /log t(n)).

For d ^ 2, a theorem of Grigoriev [G] implies that every tree machine can
l+l/(d-l)be simulated on-line by a d-dimensional machine in time 0(t(n)

but no better upper bound is known.

),

27

REFERENCES

[G] D. Ju. Grigor’ev. Imbedding theorems for Turing machines of
different dimensions and Kolmogorov’s algorithms. Soviet Math.
Dokl. 18 (1977) 588-592.

[HS] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape
Turing machines. J. ACM 13 (1966) 533-546.

[Kl] D. E. Knuth. The Art of Computer Programming, vol. 1: Fundamental
Algorithms. Addison-Wesley, 1968.

[K3] D. E. Knuth. The Art of Computer Programming, vol. 3: Sorting and
Searching. Addison-Wesley, 1973.

[Ko] S. R. Kosaraju. Real-time simulation of concatenable double-ended
queues by double-ended queues. Proc. 11th Ann. ACM Symp. on Theory
of Computing, 1979, pp. 346-351.

[LS] B. L. Leong and J. I. Seiferas. New real-time simulations of multi-
head tape units. J. ACM 28 (1981) 166-180.

[L] M. C. Loui. Simulations among multidimensional Turing machines.
Tech. Rep. TR-242, Lab. for Comp. Sei., M. I. T., Aug. 1980.

[PSS] W. J. Paul, J. I. Seiferas, and J. Simon. An information-theoretic
approach to time bounds for on-line computation. To appear in
J. Comp. Sys. Sei.

[PR] W. J. Paul and R. Reischuk. On time versus space II. Proc. 20th
Ann. Symp. on Foundations of Computer Science, 1979, pp. 298-306.

[PF] N. Pippenger and M. J. Fischer. Relations among complexity measures.
J. ACM 26 (1979) 361-381.

[R] R. Reischuk. A fast implementation of a multidimensional storage
into a tree storage. Proc. 7th Intern. Colloq. on Automata,
Languages, and Programming, Springer-Verlag, 1980, pp. 531-542.

[S] H.-J. Stoss. Zwei-Band Simulation von Turing Maschinen. Computing 1_
(1971) 222-235.

Figure 1. 28

29

Figure 2. An internal trie representation. The cell at coordinates Xq q ̂
of E contains the symbol b^^. The string 001 is an initial
segment of Xqq ̂ (written in binary). X denotes the empty string.

